JP4126657B2 - Polishing method of magnetic disk substrate for perpendicular recording - Google Patents

Polishing method of magnetic disk substrate for perpendicular recording Download PDF

Info

Publication number
JP4126657B2
JP4126657B2 JP2003384292A JP2003384292A JP4126657B2 JP 4126657 B2 JP4126657 B2 JP 4126657B2 JP 2003384292 A JP2003384292 A JP 2003384292A JP 2003384292 A JP2003384292 A JP 2003384292A JP 4126657 B2 JP4126657 B2 JP 4126657B2
Authority
JP
Japan
Prior art keywords
polishing
substrate
adjusted
slurry
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003384292A
Other languages
Japanese (ja)
Other versions
JP2005149603A (en
Inventor
辰実 川田
典彦 中島
光男 増田
洋之 上住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2003384292A priority Critical patent/JP4126657B2/en
Publication of JP2005149603A publication Critical patent/JP2005149603A/en
Application granted granted Critical
Publication of JP4126657B2 publication Critical patent/JP4126657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、磁気ディスク記憶装置に使用される垂直記録用磁気ディスク基板とその製造方法に関する。   The present invention relates to a perpendicular recording magnetic disk substrate used in a magnetic disk storage device and a method of manufacturing the same.

磁気記録媒体の高密度化を実現する技術として、従来の長手磁気記録方式に代えて、垂直磁気記録方式が注目されつつある。   As a technique for realizing a high density magnetic recording medium, a perpendicular magnetic recording system is drawing attention instead of the conventional longitudinal magnetic recording system.

特に情報を記録する役割を担う磁気記録層の下側に、磁気ヘッドから発生する磁束を通しやすい軟磁性裏打ち層と呼ばれる軟磁性膜を付与した二層垂直磁気記録媒体は、磁気ヘッドの発生磁界強度とその磁界勾配を増加させ、記録分解能を向上させるとともに媒体からの漏洩磁束も増加させることから、高密度記録が可能な垂直磁気記録媒体として好適であることが知られている(例えば特許文献1参照)。   In particular, a double-layer perpendicular magnetic recording medium with a soft magnetic film called a soft magnetic underlayer that is easy to pass magnetic flux generated from a magnetic head below the magnetic recording layer that plays a role in recording information is a magnetic field generated by a magnetic head. It is known that it is suitable as a perpendicular magnetic recording medium capable of high-density recording because it increases the strength and its magnetic field gradient, improves the recording resolution, and increases the magnetic flux leakage from the medium (for example, Patent Documents). 1).

従来、軟磁性裏打ち層としては、NiFe合金やCoを主体とするアモルファス合金等が一般的に用いられている。これらの材料を用いる場合、記録再生特性の観点から0.1μm〜数μmの膜厚が必要とされている。このような比較的厚い膜厚の軟磁性層は、従来の磁気記録媒体の製造に用いられているスパッタ法では、安価に大量生産することが非常に困難であり、無電解めっき法による低コストでの大量生産が課題となっている。これまでのところ、この課題に対し、Ni−Fe−P層からなる軟磁性材料膜の無電解めっきによる生産の可能性が開示されている(例えば特許文献2参照)。   Conventionally, a NiFe alloy, an amorphous alloy mainly composed of Co, or the like is generally used as the soft magnetic backing layer. When these materials are used, a film thickness of 0.1 μm to several μm is required from the viewpoint of recording / reproducing characteristics. Such a relatively thick soft magnetic layer is very difficult to mass-produce at low cost by the sputtering method used in the manufacture of conventional magnetic recording media, and low cost by electroless plating method. Mass production is a challenge. So far, the possibility of production by electroless plating of a soft magnetic material film made of a Ni—Fe—P layer has been disclosed (for example, see Patent Document 2).

さらに、Ni−Pめっき基板の製造に際して、研磨工程を複数段に分けて行う方法も提案されているが(特許文献3)、Pの割合が記載されておらず、これは例えばPH4の酸性研磨液で研磨を行うものであり、後述するように、本発明の解決すべき課題には言及されていない。   Furthermore, although a method of performing a polishing process in a plurality of stages when manufacturing a Ni-P plated substrate has been proposed (Patent Document 3), the ratio of P is not described, and this is, for example, acidic polishing of PH4 The polishing is performed with a liquid, and as described later, the problem to be solved by the present invention is not mentioned.

特公昭58−91号公報Japanese Patent Publication No.58-91 特開平7−66034号公報JP 7-66034 A 特開平11−10492号公報Japanese Patent Laid-Open No. 11-10492

しかし、Ni−Fe−P層を用いた軟磁性裏打ち層は、3元素からなるため、無電解めっき法においてはそのめっき槽の組成等の管理が非常に困難であり、大量生産時にその品質を維持制御することが困難である。さらにめっき液の成分中の硫酸第一鉄が大気に触れると酸化して硫酸第二鉄に除々に変化してしまうことから、一定のめっき液組成に管理することが困難である。   However, since the soft magnetic backing layer using the Ni—Fe—P layer is composed of three elements, it is very difficult to manage the composition of the plating tank in the electroless plating method, and the quality of the soft magnetic backing layer during mass production is reduced. It is difficult to maintain and control. Furthermore, since ferrous sulfate in the components of the plating solution is oxidized and gradually changes to ferric sulfate when exposed to the atmosphere, it is difficult to control the composition to a constant plating solution.

そこで、より安定して無電解めっきにより大量生産できるめっき膜を検討した。その結果、P濃度を6wt%以下にしたNi−P膜(以下、Ni−低P膜)が有望であることがわかった。Ni−低P膜は2元素であることから、無電解めっきで作成する場合、3元素からなるめっき液に比べてめっき液が安定し管理が容易でありまた品質も安定しているので、より安定して安価に大量生産することができる。さらに該膜は、P濃度を6wt%以下にすることで、軟磁性裏打ち層として十分に機能する軟磁気特性を有し得る(特願2003−027486号)。   Therefore, a plating film that can be more stably mass-produced by electroless plating was examined. As a result, it was found that a Ni—P film (hereinafter, Ni—low P film) having a P concentration of 6 wt% or less is promising. Since the Ni-low P film is composed of two elements, the plating solution is more stable, easier to manage, and more stable in quality than the plating solution consisting of three elements when made by electroless plating. It can be mass-produced stably and inexpensively. Furthermore, the film can have a soft magnetic characteristic that sufficiently functions as a soft magnetic backing layer by making the P concentration 6 wt% or less (Japanese Patent Application No. 2003-027486).

また、このNi−低P膜に対する研磨方法を検討した。研摩加工は、アルミナスラリによる粗研摩工程とコロイダルシリカによる最終研摩の2工程からなるのが一般的であるが、これら研摩剤には、生産性と表面品質を両立させる為に、エッチング作用のある酸性エッチング剤が添加されている。P濃度12%以上の一般的なNi−Pめっき層は、酸溶液中での耐食性が高く、この酸性研摩スラリを用いることができる。しかしP濃度6%以下のNi−低Pめっきを施した基板は耐酸性が低く、表面が不均質に溶出してしまう為、鏡面研摩ができない。さらに腐食が酷い場合には、リン酸Niが再析出して黒色の被膜を形成してしまう等の問題があった。これに対し、pH8以上のアルカリ性研摩剤を用いて研摩する方法では基板上に施したNi−低P層を良好に研摩することが可能であり、また、粗研摩工程においては、Ni−低P層を従来の酸性研摩剤で研摩をしても、Ni−高P層と同様の表面粗さを得ることができることが示され、最終研摩工程においてのみアルカリ性研摩剤を用いれば、Ni−低P層に関しても従来からの一般的な表面粗さ以上の値を得ることができることが分かった(特願2003−049878号)。   Further, a polishing method for the Ni-low P film was examined. The polishing process is generally composed of two steps, a rough polishing step using alumina slurry and a final polishing step using colloidal silica. These polishing agents have an etching action in order to achieve both productivity and surface quality. An acidic etchant is added. A general Ni-P plating layer having a P concentration of 12% or more has high corrosion resistance in an acid solution, and this acidic polishing slurry can be used. However, a substrate subjected to Ni-low P plating with a P concentration of 6% or less has low acid resistance and the surface is eluted non-uniformly, so that mirror polishing cannot be performed. Further, when the corrosion is severe, there is a problem that Ni phosphate reprecipitates to form a black film. In contrast, the method of polishing using an alkaline abrasive having a pH of 8 or higher can satisfactorily polish the Ni-low P layer applied on the substrate. In the rough polishing step, Ni-low P It has been shown that even if the layer is polished with a conventional acidic abrasive, a surface roughness similar to that of the Ni-high P layer can be obtained, and if an alkaline abrasive is used only in the final polishing step, Ni-low P Regarding the layer, it was found that a value higher than the conventional general surface roughness can be obtained (Japanese Patent Application No. 2003-049878).

しかしながら、アルミナスラリによる粗研摩工程とpH8以上のアルカリ性研磨剤を用いたコロイダルシリカによる最終研摩工程とは、各々別の研磨装置を用いて実施されることから、アルミナスラリによる粗研摩工程後に酸性エッチング剤を除去するまでの間に腐蝕が進行し、基板表面状態にムラが発生してしまう。そのため、pH8以上のアルカリ性研磨剤を用いたコロイダルシリカによる最終研摩によって所望の表面粗さを得ることが出来ても、粗研磨後に発生した腐食によるムラのため表面粗さより長周期であるうねりが発生してしまう。また、このムラを防止するために、アルカリ性研磨剤のみで研磨すると、研磨速度が遅く加工時間が長くなってしまう。   However, since the rough polishing step using alumina slurry and the final polishing step using colloidal silica using an alkaline abrasive having a pH of 8 or more are performed using different polishing apparatuses, acidic etching is performed after the rough polishing step using alumina slurry. Corrosion progresses until the agent is removed, resulting in unevenness of the substrate surface state. Therefore, even if the desired surface roughness can be obtained by final polishing with colloidal silica using an alkaline abrasive having a pH of 8 or higher, undulation that is longer than the surface roughness occurs due to unevenness caused by corrosion after rough polishing. Resulting in. Further, in order to prevent this unevenness, when polishing with only an alkaline abrasive, the polishing rate is slow and the processing time is long.

本発明の課題は、P濃度の低いNi−低Pめっき膜を良好に短時間で研摩する方法を提案し、該方法により垂直記録用磁気ディスク基板を良好に研摩し、低コストで大量生産しうるめっき膜を設けた垂直記録用磁気ディスク基板を提供することである。   An object of the present invention is to propose a method of polishing a Ni-low P plating film having a low P concentration in a short time, and to polish a magnetic disk substrate for perpendicular recording well by this method, and to mass-produce it at a low cost. Another object of the present invention is to provide a magnetic disk substrate for perpendicular recording provided with a plating film.

前記課題を解決するため、本発明は、非磁性基体上に0.5wt%以上6wt%以下のPを含むNi−P系合金からなる軟磁性下地層が形成されてなる垂直磁気記録媒体用基板と、研磨部材とを相対移動させながら、前記基板を前記研磨部材で押圧した状態で、前記基板と前記研磨部材との間に、pHを4以下の酸性に調整した研磨材を含むスラリーと、pHを8以上のアルカリ性に調整した研磨材を含むスラリーとを、順次供給して、前記基板の表面を研磨する垂直磁気記録媒体用基板の研磨方法であって、前記pHを8以上のアルカリ性に調整した研磨材を含むスラリーは、前記pHを4以下の酸性に調整した研磨材を含むスラリーにpH調整液を加えることによりpH調整を行ったものであることを特徴とする。 In order to solve the above-mentioned problems, the present invention provides a perpendicular magnetic recording medium substrate in which a soft magnetic underlayer made of a Ni—P alloy containing 0.5 wt% or more and 6 wt% or less of P is formed on a nonmagnetic substrate. A slurry containing an abrasive whose pH is adjusted to 4 or lower between the substrate and the polishing member while the substrate is pressed by the polishing member while relatively moving the polishing member; Is a method for polishing a substrate for a perpendicular magnetic recording medium in which a slurry containing a polishing material adjusted to be alkaline is adjusted to 8 or more in order to polish the surface of the substrate , wherein the pH is adjusted to 8 or more The slurry containing the abrasive is characterized in that the pH is adjusted by adding a pH adjusting liquid to the slurry containing the abrasive whose pH is adjusted to 4 or less .

ここで、前記基板と前記研磨部材との間に、前記pHを4以下の酸性に調整した研磨材を含むスラリーから、前記pHを8以上のアルカリ性に調整した研磨材を含むスラリーに切り替わる間に純水を供給することができる。   Here, between the slurry containing the abrasive whose pH is adjusted to 4 or lower between the substrate and the polishing member, and the slurry containing the abrasive whose pH is adjusted to 8 or higher is switched. Pure water can be supplied.

また、前記pHを4以下の酸性に調整した研磨材を含むスラリーおよび前記pHを8以上のアルカリ性に調整した研磨材を含むスラリーの研磨材は、コロイダルシリカとすることができる。   Moreover, the slurry containing the abrasive whose pH is adjusted to 4 or lower and the slurry containing the abrasive whose pH is adjusted to 8 or higher may be colloidal silica.

本発明の好ましい実施態様では、P濃度6wt%以下のNi−低Pめっきが施された垂直記録用磁気ディスク基板を、本発明の研摩方法を用いて短時間に良好に研摩することができ、磁気ディスク基板に求められる超平坦面を確保することができる。   In a preferred embodiment of the present invention, a magnetic disk substrate for perpendicular recording subjected to Ni-low P plating with a P concentration of 6 wt% or less can be polished well in a short time using the polishing method of the present invention, The ultra flat surface required for the magnetic disk substrate can be secured.

本発明により、基板に施したNi−低P層を短時間で良好に研摩することが可能となった。これにより、垂直記録用磁気ディスク基板に安価で大量生産できるめっき膜を形成することができ、該めっき膜の超平坦面を達成することが可能となった。   According to the present invention, the Ni-low P layer applied to the substrate can be polished well in a short time. As a result, it is possible to form a plating film that can be mass-produced at low cost on the magnetic disk substrate for perpendicular recording, and to achieve an ultra flat surface of the plating film.

以下、本発明の好ましい実施形態について説明する。
まず本発明の垂直記録用磁気ディスク基板について説明する。磁気ディスク基板として好ましい構造の断面模式図を図1および図2に示す。ただしこれらは垂直記録用磁気ディスク基板の例示として示すものであり、本発明の垂直記録用磁気ディスク基板をこれに限定するものではない。
Hereinafter, preferred embodiments of the present invention will be described.
First, the perpendicular recording magnetic disk substrate of the present invention will be described. FIG. 1 and FIG. 2 show schematic cross-sectional views of a structure preferable as a magnetic disk substrate. However, these are shown as examples of the perpendicular recording magnetic disk substrate, and the perpendicular recording magnetic disk substrate of the present invention is not limited thereto.

図1に示すディスク基板10は、非磁性基体1、初期反応層2、および軟磁性下地層4を順次積層してなる構造を有する。   A disk substrate 10 shown in FIG. 1 has a structure in which a nonmagnetic substrate 1, an initial reaction layer 2, and a soft magnetic underlayer 4 are sequentially laminated.

非磁性基体1としては、一般的な垂直記録用磁気ディスク基板の基体に用いられる材質、例えばアルミ合金や強化ガラス、結晶化ガラスなどが用いられる。またポリカーボネート、ポリオレフィンおよびその他のプラスチック樹脂を射出成形することで作成した基板を用いることもできる。   As the nonmagnetic substrate 1, a material used for a substrate of a general perpendicular recording magnetic disk substrate, for example, an aluminum alloy, tempered glass, crystallized glass, or the like is used. A substrate prepared by injection molding of polycarbonate, polyolefin, and other plastic resins can also be used.

次ぎに初期反応層2について述べる。
アルミ合金を用いた基体1上の初期反応層には、ジンケート液(酸化亜鉛および苛性ソーダ水溶液を含む液)に浸漬して形成するZn膜層を用いるのが一般的である。Zn層の膜厚は、0.1〜0.8μmであることが望ましいが、該範囲をはずれた膜厚であることも可能である。
Next, the initial reaction layer 2 will be described.
As an initial reaction layer on the substrate 1 using an aluminum alloy, a Zn film layer formed by immersing in a zincate solution (a solution containing zinc oxide and a sodium hydroxide aqueous solution) is generally used. The thickness of the Zn layer is desirably 0.1 to 0.8 μm, but it is also possible to have a thickness outside the range.

強化ガラス、結晶化ガラス、プラスチック等を用いた非導電性の基体1上の初期反応層には、20〜40g/lの塩酸酸性塩化スズ溶液と0.1〜0.5g/lの塩酸酸性塩化パラジウム溶液に順次浸漬して表面にPd核を析出させる活性化処理を行うのが一般的である。尚、スパッタ法やイオンプレーティング法等の物理蒸着法を用いて、Ni、Ni−P、Cu、Cr、Fe、またはPdなどを1nm〜1000nm形成することも可能である。   The initial reaction layer on the non-conductive substrate 1 using tempered glass, crystallized glass, plastic, or the like is 20 to 40 g / l hydrochloric acid tin chloride solution and 0.1 to 0.5 g / l hydrochloric acid acidity. In general, activation treatment is performed by sequentially immersing in a palladium chloride solution to precipitate Pd nuclei on the surface. Note that Ni, Ni-P, Cu, Cr, Fe, Pd, or the like can be formed to have a thickness of 1 nm to 1000 nm using a physical vapor deposition method such as a sputtering method or an ion plating method.

さらに初期反応層2の上に、Ni−低P層からなる軟磁性下地層4を、無電解めっき法により積層する。Ni−Pめっき層の軟磁性特性を実現させるためには、P濃度は6wt%以下とし、またNi−低Pの膜厚は、0.5μm以上7.0μm以下であることが望ましい。前記Ni−低P層の飽和磁束密度[Bs]をVSM(振動試料磁力計)で測定すると、P濃度2%、膜厚1μmでは0.4T、P濃度6%、膜厚1μmでは0.15T程度の軟磁性特性が得られる。   Further, a soft magnetic underlayer 4 made of a Ni-low P layer is laminated on the initial reaction layer 2 by an electroless plating method. In order to realize the soft magnetic properties of the Ni—P plating layer, the P concentration is preferably 6 wt% or less, and the Ni—low P film thickness is preferably 0.5 μm or more and 7.0 μm or less. When the saturation magnetic flux density [Bs] of the Ni-low P layer is measured by a VSM (vibrating sample magnetometer), the P concentration is 2%, the film thickness is 1 μm, 0.4 T, the P concentration is 6%, and the film thickness is 1 μm, 0.15 T. A degree of soft magnetic properties can be obtained.

また別の態様として、図2に示すディスク基板10では、初期反応層2と軟磁性下地層4との間に、非磁性下地層3を設けることができる。非磁性下地層3は無電解めっき法により積層することができる。   As another aspect, in the disk substrate 10 shown in FIG. 2, the nonmagnetic underlayer 3 can be provided between the initial reaction layer 2 and the soft magnetic underlayer 4. The nonmagnetic underlayer 3 can be laminated by an electroless plating method.

非磁性下地層3には、Ni−高Pめっき層を用いることができる。該めっき層は無電解めっき法により積層することができる。Ni−高Pめっき層のP濃度は、10wt%以上13wt%以下が望ましい。またNi−高Pめっき層の膜厚としては、0μm以上7μm以下であることが好ましい。   As the nonmagnetic underlayer 3, a Ni-high P plating layer can be used. The plating layer can be laminated by an electroless plating method. The P concentration of the Ni-high P plating layer is desirably 10 wt% or more and 13 wt% or less. The thickness of the Ni-high P plating layer is preferably 0 μm or more and 7 μm or less.

前述のとおりNi−Pめっき層は、無電解めっき法により積層することができる。この際、無電解めっき液は、Niイオン、錯化剤、および還元剤を含む。Niイオンには、NiSO、NiClなどを用いることができる。錯化剤としては、一般的なクエン酸、酒石酸塩などを用いることができる。また還元剤としては、次亜燐酸ナトリウムを一般的に用い、さらにヒドラジン、ホルムアルデヒド、またはホウ水素化ナトリウムなどを併用してもよい。これらを含有するめっき液を80〜95℃に調整しためっき槽に、磁気ディスク基板を浸漬し、Ni−低Pめっき層を積層する。また、任意で設けることのできるNi−高P層も、P濃度を変えること以外、上述の無電解めっき法と同様の方法でめっきすることができる。 As described above, the Ni-P plating layer can be laminated by an electroless plating method. At this time, the electroless plating solution contains Ni ions, a complexing agent, and a reducing agent. The Ni ion, or the like can be used NiSO 4, NiCl 2. As the complexing agent, general citric acid, tartrate, and the like can be used. As a reducing agent, sodium hypophosphite is generally used, and hydrazine, formaldehyde, or sodium borohydride may be used in combination. The magnetic disk substrate is immersed in a plating tank in which a plating solution containing these is adjusted to 80 to 95 ° C., and a Ni-low P plating layer is laminated. Moreover, the Ni-high P layer that can be optionally provided can also be plated by the same method as the electroless plating method described above, except that the P concentration is changed.

尚、Ni−Pめっき層は、安価大量生産の観点から無電解めっき法により積層することが望ましいが、これに限定されず、求められる特性等により、スパッタ法やイオンプレーティング法等の物理蒸着法等の一般的な他の成膜方法を用いることもできる。
次に、上述のようにして作成した磁気ディスク基板表面を本発明の研摩法により研摩する。
The Ni-P plating layer is desirably laminated by an electroless plating method from the viewpoint of inexpensive mass production, but is not limited to this, and physical vapor deposition such as a sputtering method or an ion plating method is performed depending on required characteristics. Other general film forming methods such as a method can also be used.
Next, the surface of the magnetic disk substrate prepared as described above is polished by the polishing method of the present invention.

図4に本発明により研磨を行うための両面研磨装置を示す。
両面研磨装置51は次の通りの構成を有する。52は下定盤であって、水平方向に回転可能に設置され、かつその上面にドーナツ状の研磨布53を装着する。54は上定盤であって、下定盤52の上方位置にこの下定盤52と対向同軸状に配置されると共に水平方向に回転可能及び垂直方向に昇降可能に保持され、かつ下面にドーナツ状の研磨布55を装着する。56は太陽歯車であって、各研磨布53、55間において研磨布53、55の軸心位置に配置される。57は内歯歯車であって、太陽歯車56の径方向外側位置に同心状に配置される。58は円盤状の基板保持具であって、内歯歯車57及び太陽歯車6に歯合いされる外歯歯車を構成し下定盤52の研磨布53上に載置される。12はスラリー供給手段であって、上定盤54と共に回転するスラリー溜め60と、スラリー溜め60からのスラリーを上定盤54から基板59の上面に研磨材を供給するためのパイプ61とを有し、スラリー溜60に供給するスラリー61、63および純水62の供給、停止をバルブ64、65、66により制御する。
FIG. 4 shows a double-side polishing apparatus for polishing according to the present invention.
The double-side polishing apparatus 51 has the following configuration. Reference numeral 52 denotes a lower surface plate which is installed so as to be rotatable in the horizontal direction, and a donut-shaped polishing cloth 53 is mounted on the upper surface thereof. Reference numeral 54 denotes an upper surface plate, which is disposed on the upper surface of the lower surface plate 52 so as to be coaxial with the lower surface plate 52 and is held so as to be rotatable in the horizontal direction and movable up and down in the vertical direction. A polishing cloth 55 is attached. A sun gear 56 is disposed between the polishing cloths 53 and 55 at the axial center position of the polishing cloths 53 and 55. Reference numeral 57 denotes an internal gear, which is disposed concentrically at a radially outer position of the sun gear 56. Reference numeral 58 denotes a disk-shaped substrate holder that constitutes an external gear meshed with the internal gear 57 and the sun gear 6 and is placed on the polishing cloth 53 of the lower surface plate 52. 12 is a slurry supply means having a slurry reservoir 60 rotating together with the upper surface plate 54 and a pipe 61 for supplying the slurry from the slurry reservoir 60 to the upper surface of the substrate 59 from the upper surface plate 54. The supply and stop of the slurry 61 and 63 and the pure water 62 supplied to the slurry reservoir 60 are controlled by valves 64, 65 and 66.

上記のように構成される両面研磨機51において、基板59を基板保持体58の基板装着用穴に配置し、そして、基板59の上下面に上下の研磨布53、55を押し当てた状態にして、研磨材を含むスラリー61、または63を供給しながら太陽歯車56を回転駆動すると共に、上下の定盤52、54を相互に逆方向に回転駆動することにより、基板保持体58を自転させながら太陽歯車56の周りで公転させて基板59の両面を研磨加工する。   In the double-side polishing machine 51 configured as described above, the substrate 59 is placed in the substrate mounting hole of the substrate holder 58, and the upper and lower polishing cloths 53, 55 are pressed against the upper and lower surfaces of the substrate 59. Then, while supplying the slurry 61 or 63 containing the abrasive, the sun gear 56 is rotated and the upper and lower surface plates 52 and 54 are rotated in opposite directions to rotate the substrate holder 58. While revolving around the sun gear 56, both surfaces of the substrate 59 are polished.

まず、シリカ、コロイダルシルカ、アルミナ、炭化珪素、ジルコニア、ダイヤモンド等の研摩材を、一般的な有機酸を用いた酸性エッチング剤によりpH4以下に調整する。これらの研磨材の粒径は、5nm以上3000nm以下であることが望ましい。次いで、シリカ、コロイダルシルカ、アルミナ、炭化珪素、ジルコニア、ダイヤモンド等の研摩材を、pH8以上に調整する。これらの研磨材の粒径は、5nm以上3000nm以下であることが望ましい。pHの調整には、カセイソーダなどの一般的なアルカリ溶液を用いてよい。そして、両面研摩盤51のスラリー供給バルブ64を開き、pH4以下に調整した研摩材を含むスラリー61を供給しながら前述の磁気ディスク基板表面のNi−低P層を研摩する。本工程における研摩量は、100nm以上1000nm以下が望ましく、研磨条件に対する研磨レートによって、所望の研磨量を研磨するのに必要な研磨時間を算出して実施する。その後、両面研磨盤51は動作したまま、スラリー供給バルブ64を閉じ、その後スラリー供給バルブ66を開き、pH4以下に調整した研磨材を含むスラリー61からpH8以上に調整した研磨材を含むスラリー63に切り替える。本工程における研摩量は、50nm以上200nm以下が望ましく、研磨条件に対する研磨レートによって、所望の研磨量を研磨するのに必要な研磨時間を算出して実施する。その表面粗さは、Ra=0.5nm以下であることが望ましい。   First, a polishing material such as silica, colloidal silk, alumina, silicon carbide, zirconia, diamond or the like is adjusted to a pH of 4 or less with an acidic etchant using a general organic acid. The particle size of these abrasives is desirably 5 nm or more and 3000 nm or less. Next, an abrasive such as silica, colloidal silk, alumina, silicon carbide, zirconia, diamond is adjusted to pH 8 or higher. The particle size of these abrasives is desirably 5 nm or more and 3000 nm or less. For adjusting the pH, a general alkaline solution such as caustic soda may be used. Then, the slurry supply valve 64 of the double-side polishing machine 51 is opened, and the Ni-low P layer on the surface of the magnetic disk substrate is polished while supplying the slurry 61 containing the polishing material adjusted to pH 4 or lower. The polishing amount in this step is preferably 100 nm or more and 1000 nm or less, and the polishing time necessary to polish the desired polishing amount is calculated according to the polishing rate with respect to the polishing conditions. Thereafter, with the double-side polishing machine 51 operating, the slurry supply valve 64 is closed, and then the slurry supply valve 66 is opened. Switch. The polishing amount in this step is preferably 50 nm or more and 200 nm or less, and the polishing time required to polish the desired polishing amount is calculated according to the polishing rate with respect to the polishing conditions. The surface roughness is desirably Ra = 0.5 nm or less.

また、上記研磨方法において、pH4以下に調整した研磨材を含むスラリー61からpH8以上に調整した研磨材を含むスラリー63に切り替える間に、供給バルブ65を開閉して純水を供給する工程を設けることにより、前記pH4以下に調整した研磨材を含むスラリー61とpH8以上に調整した研磨材を含むスラリー63が混在することを防止でき、研磨剤同士による反応を抑制することができる。   In the above polishing method, a step of supplying pure water by opening and closing the supply valve 65 while switching from the slurry 61 containing the abrasive adjusted to pH 4 or lower to the slurry 63 containing the abrasive adjusted to pH 8 or higher is provided. Thus, the slurry 61 containing the abrasive adjusted to pH 4 or less and the slurry 63 containing the abrasive adjusted to pH 8 or more can be prevented from intermingling, and the reaction between the abrasives can be suppressed.

また、上記研磨方法において、pHが4以下の酸性に調整された研磨材を含むスラリー61と、pHが8以上のアルカリ性に調整された研磨材を含むスラリー63の研磨材を両方ともコロイダルシリカとすると、他種の研磨材が混在することがなく、スクラッチ等の発生を抑えることができる。   Further, in the above polishing method, both the slurry 61 containing an abrasive whose pH is adjusted to 4 or less and the slurry 63 containing an abrasive whose pH is adjusted to 8 or higher are colloidal silica. Then, other types of abrasives are not mixed, and the occurrence of scratches and the like can be suppressed.

また、上記研磨方法において、pHが4以下の酸性に調整された研磨材を含むスラリー61にpH調整液を加えることによりpH調整を行ってpHが8以上のアルカリ性に調整することにより、pHが4以下の酸性に調整された研磨材を含むスラリー61の供給に対して、pH調整液を供給バルブ66を開いて供給するだけで済み、非常に簡便に実施することが出来る。   Further, in the above polishing method, the pH is adjusted by adding a pH adjusting solution to the slurry 61 containing an abrasive whose pH is adjusted to 4 or less, and the pH is adjusted to be alkaline by 8 or more. For the supply of the slurry 61 containing the abrasive adjusted to 4 or less acidic, it is only necessary to supply the pH adjusting liquid by opening the supply valve 66, which can be carried out very simply.

本発明の研摩方法により研摩した磁気ディスク基板を用いて、垂直記録用磁気ディスクを作成することができる。本発明の磁気ディスクに好ましい構造の断面模式図を図3に示す。ただし図3に示した磁気ディスクは例示として示すものであり、本発明の磁気ディスクをこれに限定するものではない。   Using the magnetic disk substrate polished by the polishing method of the present invention, a perpendicular recording magnetic disk can be produced. A schematic cross-sectional view of a preferred structure for the magnetic disk of the present invention is shown in FIG. However, the magnetic disk shown in FIG. 3 is shown as an example, and the magnetic disk of the present invention is not limited to this.

図3に示すディスクは、垂直磁気記録媒体用ディスク基板10の上に、非磁性シード層20、磁気記録層30、および保護層40を順次積層してなる構造を有する。   The disk shown in FIG. 3 has a structure in which a nonmagnetic seed layer 20, a magnetic recording layer 30, and a protective layer 40 are sequentially stacked on a disk substrate 10 for perpendicular magnetic recording media.

垂直磁気記録媒体用ディスク基板10は、図1または図2に示された本発明のいずれかのディスク基板であって、本発明の研摩方法により研摩されたものを指す。   The disk substrate 10 for perpendicular magnetic recording media refers to any one of the disk substrates of the present invention shown in FIG. 1 or FIG. 2 and polished by the polishing method of the present invention.

以下に本発明の実施例を記す。
非磁性基体として3.5インチφのAl−5Mg(at%)合金を用い、P濃度12.5%のNi−高Pめっき液を用いてP濃度12.5%、膜厚9μmのNi−高P層を形成した後に、P濃度3.7%のNi−低Pめっき液を用いてP濃度4.5%、膜厚3μmのNi−低P層を形成し、Ni−P層の総膜厚を12μmとした基板を用いて研磨を実施した。
Examples of the present invention will be described below.
A 3.5-inch φ Al-5Mg (at%) alloy is used as the non-magnetic substrate, a Ni-high P plating solution having a P concentration of 12.5%, and a Ni concentration of 9 μm with a P concentration of 12.5%. After forming the high P layer, a Ni-low P layer having a P concentration of 4.5% and a film thickness of 3 μm is formed using a Ni-low P plating solution having a P concentration of 3.7%. Polishing was performed using a substrate having a film thickness of 12 μm.

スラリーとしては、pHを3.3に調整した研磨液に研磨材として砥粒径700〜900nmのアルミナを混合した酸性アルミナスラリー、そして、pHを2.8に調整した研磨液に研磨材として砥粒径30〜70nmのコロイダルシリカを混合した酸性シリカスラリー、また、この酸性シリカスラリーにpH調整液を加えてpHを8に調整したアルカリ性シリカスラリーを用いた。表1に研磨条件と、そのときの研磨速度を示す。   As the slurry, an acidic alumina slurry obtained by mixing alumina with an abrasive grain size of 700 to 900 nm as an abrasive in a polishing liquid adjusted to pH 3.3, and an abrasive grain size of 30 to 30 as an abrasive in a polishing liquid adjusted to pH 2.8 An acidic silica slurry in which 70 nm colloidal silica was mixed, or an alkaline silica slurry in which pH was adjusted to 8 by adding a pH adjusting solution to this acidic silica slurry was used. Table 1 shows the polishing conditions and the polishing rate at that time.

表1に示すスラリーを用いて、本発明実施例1〜4と、比較のための比較例1,2を以下の表2に示す研磨時間、研磨量で実施した。   Using the slurry shown in Table 1, Examples 1-4 of the present invention and Comparative Examples 1 and 2 for comparison were carried out with the polishing time and polishing amount shown in Table 2 below.

表2の、工程の番号は、処理の順番を示し、比較例1は、工程1の処理と工程2の処理とを別々の研磨装置で行い、工程1の終了後にスラリーの洗浄を行ってから工程2を実施した。表2には、各例での研磨を実施したときの、表面粗さ、うねりを合わせて示す。表面粗さの測定は、AFMにて10μm×10μmの表面粗さを測定し、うねりは、光学式測定装置ZYGOで1mm×1mmのうねりを測定した。   The number of the process of Table 2 shows the order of a process, and the comparative example 1 performs the process of the process 1 and the process of the process 2 with a separate grinding | polishing apparatus, and wash | cleans a slurry after completion | finish of the process 1. Step 2 was performed. Table 2 shows the surface roughness and waviness when the polishing in each example was performed. For the measurement of the surface roughness, the surface roughness of 10 μm × 10 μm was measured by AFM, and the waviness of 1 mm × 1 mm was measured by the optical measuring device ZYGO.

Figure 0004126657
Figure 0004126657

Figure 0004126657
Figure 0004126657

本発明実施例1〜4では、比較例1に比べて加工時間は同様でありながら、研磨後の基板は表面粗さが同等で、ムラが無く、うねりは良好な値を得ることができた。また、比較例2にくらべると、本発明実施例1〜4では、加工時間を25minから7.5minに短縮しながら、表面粗さ、うねりは同様の値を得ることができた。   In Examples 1 to 4 of the present invention, the processing time was the same as in Comparative Example 1, but the polished substrate had the same surface roughness, no unevenness, and a good swell. . Moreover, compared with the comparative example 2, in this invention Examples 1-4, the surface roughness and the wave | undulation were able to obtain the same value, shortening processing time from 25min to 7.5min.

本発明の垂直記録媒体用磁気ディスク基板のうち、非磁性基体上に初期反応層および軟磁性下地層を形成したディスク基板の断面模式図である。FIG. 2 is a schematic cross-sectional view of a disk substrate in which an initial reaction layer and a soft magnetic underlayer are formed on a nonmagnetic substrate, among the magnetic disk substrates for perpendicular recording media of the present invention. 本発明の垂直記録媒体用磁気ディスク基板のうち、非磁性基体上に初期反応層、非磁性下地層および軟磁性下地層を形成したディスク基板の断面模式図である。FIG. 3 is a schematic cross-sectional view of a disk substrate in which an initial reaction layer, a nonmagnetic underlayer, and a soft magnetic underlayer are formed on a nonmagnetic substrate, among the magnetic disk substrates for perpendicular recording media of the present invention. 本発明による垂直記録媒体用磁気ディスクの構成を示す断面模式図である。1 is a schematic cross-sectional view showing the configuration of a magnetic disk for perpendicular recording media according to the present invention. 本発明による研磨の実施に用いる両面研磨機の概略図である。It is the schematic of the double-side polish machine used for implementation of grinding | polishing by this invention.

符号の説明Explanation of symbols

1 非磁性基体
2 初期反応層
3 非磁性下地層
4 軟磁性下地層
10 垂直磁気記録用磁気ディスク基板
20 非磁性シード層
30 磁気記録層
40 保護層
51 両面研磨機
52 下定盤
53 研磨布
54 上定盤
55 研磨布
56 太陽歯車
57 内歯歯車
58 基板保持体
59 基板
60 スラリー溜め
61 研磨材を含むスラリー
62 純水
63 研磨材を含むスラリー
64 バルブ
65 バルブ
66 バルブ
DESCRIPTION OF SYMBOLS 1 Nonmagnetic base | substrate 2 Initial reaction layer 3 Nonmagnetic underlayer 4 Soft magnetic underlayer 10 Magnetic disk substrate for perpendicular magnetic recording 20 Nonmagnetic seed layer 30 Magnetic recording layer 40 Protective layer 51 Double-side polisher 52 Lower surface plate 53 Polishing cloth 54 Top Surface plate 55 Abrasive cloth 56 Sun gear 57 Internal gear 58 Substrate holder 59 Substrate 60 Slurry reservoir 61 Slurry containing abrasive 62 Pure water 63 Slurry containing abrasive 64 Valve 65 Valve 66 Valve

Claims (3)

非磁性基体上に0.5wt%以上6wt%以下のPを含むNi−P系合金からなる軟磁性下地層が形成されてなる垂直磁気記録媒体用基板と、研磨部材とを相対移動させながら、前記基板を前記研磨部材で押圧した状態で、前記基板と前記研磨部材との間に、pHを4以下の酸性に調整した研磨材を含むスラリーと、pHを8以上のアルカリ性に調整した研磨材を含むスラリーとを、順次供給して、前記基板の表面を研磨する垂直磁気記録媒体用基板の研磨方法であって、
前記pHを8以上のアルカリ性に調整した研磨材を含むスラリーは、前記pHを4以下の酸性に調整した研磨材を含むスラリーにpH調整液を加えることによりpH調整を行ったものであることを特徴とする垂直磁気記録媒体用基板の研磨方法。
While relatively moving a substrate for perpendicular magnetic recording medium, in which a soft magnetic underlayer made of a Ni-P-based alloy containing 0.5 wt% or more and 6 wt% or less of P on a nonmagnetic substrate, and a polishing member, In a state where the substrate is pressed by the polishing member, a slurry containing an abrasive whose pH is adjusted to 4 or lower and an abrasive whose pH is adjusted to 8 or higher between the substrate and the polishing member. A slurry for containing a perpendicular magnetic recording medium by sequentially supplying the slurry and polishing the surface of the substrate,
The slurry containing the abrasive whose pH is adjusted to 8 or higher is adjusted to pH by adding a pH adjusting liquid to the slurry containing the abrasive whose pH is adjusted to 4 or lower. A method for polishing a perpendicular magnetic recording medium substrate.
請求項1において、
前記基板と前記研磨部材との間に、前記pHを4以下の酸性に調整した研磨材を含むスラリーから、前記pHを8以上のアルカリ性に調整した研磨材を含むスラリーに切り替わる間に純水を供給することを特徴とする垂直磁気記録媒体用基板の研磨方法。
In claim 1,
Between the substrate and the polishing member, pure water is used while switching from the slurry containing the abrasive whose pH is adjusted to 4 or lower to the slurry containing the abrasive whose pH is adjusted to 8 or higher. A method for polishing a substrate for a perpendicular magnetic recording medium, comprising: supplying a substrate for perpendicular magnetic recording medium.
請求項1または2において、
前記pHを4以下の酸性に調整した研磨材を含むスラリーおよび前記pHを8以上のアルカリ性に調整した研磨材を含むスラリーの研磨材は、コロイダルシリカであることを特徴とする垂直磁気記録媒体用基板の研磨方法。
In claim 1 or 2,
The slurry containing the abrasive whose pH is adjusted to 4 or lower and the abrasive of the slurry containing the abrasive whose pH is adjusted to alkaline higher than 8 are colloidal silica. A method for polishing a substrate.
JP2003384292A 2003-11-13 2003-11-13 Polishing method of magnetic disk substrate for perpendicular recording Expired - Fee Related JP4126657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003384292A JP4126657B2 (en) 2003-11-13 2003-11-13 Polishing method of magnetic disk substrate for perpendicular recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003384292A JP4126657B2 (en) 2003-11-13 2003-11-13 Polishing method of magnetic disk substrate for perpendicular recording

Publications (2)

Publication Number Publication Date
JP2005149603A JP2005149603A (en) 2005-06-09
JP4126657B2 true JP4126657B2 (en) 2008-07-30

Family

ID=34692759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003384292A Expired - Fee Related JP4126657B2 (en) 2003-11-13 2003-11-13 Polishing method of magnetic disk substrate for perpendicular recording

Country Status (1)

Country Link
JP (1) JP4126657B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4801437B2 (en) * 2005-12-21 2011-10-26 昭和電工株式会社 Polishing equipment
JP4665886B2 (en) 2006-10-27 2011-04-06 富士電機デバイステクノロジー株式会社 Perpendicular magnetic recording medium, perpendicular magnetic recording medium substrate, and manufacturing method thereof
JP5586293B2 (en) * 2010-03-26 2014-09-10 昭和電工株式会社 Method for manufacturing substrate for magnetic recording medium
JP5622481B2 (en) * 2010-08-17 2014-11-12 昭和電工株式会社 Method for manufacturing substrate for magnetic recording medium
JP2014029753A (en) * 2012-07-31 2014-02-13 Kao Corp Method for producing magnetic disk substrate
JP2014029752A (en) * 2012-07-31 2014-02-13 Kao Corp Method for producing magnetic disk substrate
JP2014032718A (en) * 2012-08-01 2014-02-20 Kao Corp Method for manufacturing magnetic disk substrate

Also Published As

Publication number Publication date
JP2005149603A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
US6673474B2 (en) Medium substrate, production method thereof and magnetic disk device
US7238384B2 (en) Substrate for perpendicular magnetic recording hard disk medium and method for producing the same
CN100485785C (en) Disk substrate for a perpendicular magnetic recording medium and a perpendicular magnetic recording medium using the substrate
US20090029190A1 (en) Perpendicular magnetic recording medium, production process thereof, and perpendicular magnetic recording and reproducing apparatus
WO2008004471A1 (en) Process for producing glass substrate, magnetic disc and process for manufacturing the same
JP4126657B2 (en) Polishing method of magnetic disk substrate for perpendicular recording
KR20080017804A (en) Method of manufacturing magnetic layer, patterned magnetic recording media comprising magnetic layer formed using the method, and method of manufacturing the same
US20050221129A1 (en) Monocrystalline silicon substrate coated with metal-plated layer and perpendicular magnetic recording medium
CN100411017C (en) Substrate for a perpendicular magnetic recording medium and a perpendicular magnetic recording medium using the substrate
JP2006092721A (en) Substrate for perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording medium
US7361419B2 (en) Substrate for a perpendicular magnetic recording medium, perpendicular magnetic recording medium, and manufacturing methods thereof
JP2004335068A (en) Perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording/reproducing device
JP2005216465A (en) Disk substrate for recording medium, its polishing method, and manufacturing method of perpendicular magnetic recording medium
JP2004259378A (en) Magnetic disk substrate for perpendicular recording and its manufacturing method
JP5617387B2 (en) Method for manufacturing substrate for perpendicular magnetic recording medium, and substrate for perpendicular magnetic recording medium manufactured by the manufacturing method
JP2006048906A (en) Perpendicular magnetic recording medium, its manufacturing method and device, and magnetic recorder
JP2007287216A (en) Substrate for magnetic recording medium, its manufacturing method and magnetic recording medium
CN100495544C (en) Substrate for perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording medium
KR20050027147A (en) Magnetic recording medium and substrate for magnetic recording medium
KR100786664B1 (en) Perpendicular magnetic recording medium, production process thereof, and perpendicular magnetic recording and reproducing apparatus
JP2005108407A (en) Magnetic recording medium and substrate for magnetic recording medium
JP4525496B2 (en) Disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium
JP2004146032A (en) Base plate for perpendicular magnetic recording hard disk medium and its manufacturing method
IE84064B1 (en) Substrate for a perpendicular magnetic recording medium, a perpendicular magnetic recording medium, and manufacturing methods therefor
JP2006127736A (en) Vertical magnetic recording medium and vertical magnetic recording device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050317

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080501

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4126657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees