JP2004146032A - Base plate for perpendicular magnetic recording hard disk medium and its manufacturing method - Google Patents

Base plate for perpendicular magnetic recording hard disk medium and its manufacturing method Download PDF

Info

Publication number
JP2004146032A
JP2004146032A JP2003208913A JP2003208913A JP2004146032A JP 2004146032 A JP2004146032 A JP 2004146032A JP 2003208913 A JP2003208913 A JP 2003208913A JP 2003208913 A JP2003208913 A JP 2003208913A JP 2004146032 A JP2004146032 A JP 2004146032A
Authority
JP
Japan
Prior art keywords
substrate
less
magnetic recording
film
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003208913A
Other languages
Japanese (ja)
Inventor
Toshihiro Tsumori
津森 俊宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003208913A priority Critical patent/JP2004146032A/en
Publication of JP2004146032A publication Critical patent/JP2004146032A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base plate having a soft magnetic lining easy to manufacture, and to provide its manufacturing method. <P>SOLUTION: This base plate of a perpendicular magnetic recording hard disk medium has an Si single crystal base plate (1) which is 65 mm or less in diameter, 1 mm thick or less, and has an average asperity (Rms) of 1 nm or larger but 1000 nm or smaller, a base plating layer (2) which is provided on the base plate and containing at least one out of a group consisting of Ni, Cu, and Ag, and is 1 nm thick or thicker but 300 nm thick or thinner, and a plated soft magnetic layer (3) which is provided on the base plating layer, ≥50 nm and <1000 nm thick and has a coercive force of 20 Oe or less and saturation magnetization of 1T or larger with its average surface asperity (Rms) of ≥0.1 nm and ≤5 nm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、垂直磁気記録用基板ハードディスクに供される基板材料及びその製造方法に関するものである。
【0002】
【従来の技術】
磁気記録の分野において、ハードディクス装置による情報記録はパーソナルコンピュータを初めとするコンピュータの一次外部記録装置として必須である。ハードディスク装置における磁気記録密度の向上は近年目覚しく、年率100%以上の比率で向上している。その記録密度は研究レベルで60Gbit/inch2に近く、製品レベルでも30Gbit/inch2に達している。
【0003】
このような高記録密度は、ハードディスク装置を構成する電子部品・ソフトなどの各機械要素の目覚しい性能向上により達成されている。特に、記録情報の読み出し・書き込みを行う磁気ヘッド(薄膜ヘッド、MRヘッド、GMRヘッドなど)や読み取った信号の信頼性を向上させるあやまり訂正方法(ソフト)の進展によるところが大きい。ただ、基本的な記録方式や装置構成は特に変化がなく、水平磁気記録方式を基本とした装置構成となっている。
【0004】
ところが磁気記録密度の向上により、磁気記録を行う1ビット当たりの記録層の体積が急激に減少している。記録密度の向上には、周方向の線記録密度と径方向のトラック密度の両方の向上が必要であるが、磁気記録の原理上特に線記録密度の向上に問題が生じている。この点について、以下に詳述する。
【0005】
磁気記録方式は、記録媒体上の情報保持を保持する磁気単位配列(ビット)の配列方法により、図1と図2に模式的に示すような水平磁気記録と垂直磁気記録に大別される。
水平磁気記録は、S−Nの磁気極で構成される磁気情報単位が記録媒体平面に平行となるよう記録を行う方式であり、従来のハードディスク媒体に用いられている。一方、垂直磁気記録は、同磁気情報単位が記録媒体平面に垂直となるよう記録を行う方式であり、高密度記録が要求されるビデオテープ等に広く使用されている。
【0006】
さて、磁気記録においては、単位面積当たりの記録密度を向上させた場合、当然のことながら磁気記録単位(ビット)の体積を縮小して行く必要がある。
しかしながら、磁性理論の原理的問題から、記録を担う強磁性材料はそれを発現している磁性体の体積を減少させていった時、どこまでも安定に保たれている訳ではない事が分かっている。室温での熱エネルギーkT(k:ボルツマン定数、T:絶対温度)と強磁性体を一方向に保持している異方性エネルギーKuV(Ku:異方性エネルギー,特に磁気記録の場合は結晶磁気異方性エネルギー、V:単位記録ビット体積)の競合により、磁気記録単位の体積が極端に小さく、kT〜KuVに近くなると、強磁性体の磁化状態が室温でも不安定となることが知られている。このようにビット当たりの磁化体積が極端に小さい場合、強磁性体が常磁性体のようになる状態を超常磁性と呼ぶ。磁気記録材料により異なるが、超常磁性になる限界寸法(臨界体積)があることが知られている。
【0007】
実際の磁気記録においては、記録密度を上げることで記録単位体積が臨界寸法近くまで縮小すると、超常磁性に至る以前に問題が顕在化する。磁気記録を行った強磁性状態の磁化状態が時間とともに比較的短時間で減衰し、磁化方位がランダムな方向に向くことで磁気記録情報が変質する(磁気ヘッドから読み取る信号のS/N比が低下する)という問題が生ずる。磁気記録においてこのような現象が起きると、折角書き込んだ記録情報がある時間経過すると読み出せなくなったり、書き込み自体ができなくなったりする。このような超常磁性に伴う記録ビットの減衰は近年「熱揺らぎ」問題として、磁気記録限界を決めてしまう極めて深刻な問題となっている。
従来用いられている水平磁気記録において、熱揺らぎが原因となる記録限界がどの当たりにあるかはっきりした数値は分かっていないが、ハードディスク媒体では記録密度に換算し、概ね100Gbit/inch2前後ではないかと考えられている。
【0008】
このような従来の水平磁気記録ハードディスク媒体の熱揺らぎによる記録限界を克服する方法としては、種々の新規記録方式の提案がなされている。一番有力だと考えられ検討されているのは、垂直磁気記録方式である。垂直磁気記録では隣接ビットからの磁場が磁化方向と同じ方向となり、記録磁化ビットの安定性を助ける方向となる。別な言葉で言うと、隣接ビットの間で閉磁路を形成し、水平磁気記録に比較して自分自身の磁化による自己減磁場(以下、反磁場と呼ぶ。)が少なく、磁化状態が安定する。一方、水平磁気記録では線記録密度を上げる程、隣接記録ビットが近接し、反磁場が大きくなる。更に線記録密度を上げるには、磁気記録層の内部で磁化回転モードが起きないように、記録層の厚みを極めて薄く取る必要が有った。水平磁気記録では、記録密度向上に伴い記録ビット体積が三次元的に減少する。磁性膜厚の点においても、垂直磁気記録においては記録密度向上に伴って特に薄くする必要が無い。これらの点から、垂直磁気記録は反磁場軽減とKuVの値を確保できるため、熱揺らぎによる磁化に対する安定性が大きく、記録限界を大きく先に拡大する事が可能となる記録方式と言える。記録媒体としては、水平記録媒体との親和性も高く、磁気記録の書き込みや読み出しも基本的には従来使われていたものと同じような技術が使用できる。
【0009】
しかし、細部においては、垂直磁気記録の実用化の障害となる項目が幾つか存在する。その1つが磁気媒体の構成である。図2に水平磁気記録媒体、図3に垂直磁気記録媒体の模式的な膜構成の断面図を示す。図2の水平磁気記録媒体では、基板101上に、厚さ20〜30nmの非磁性下地層103と、厚さ20〜30nmの記録層104とが形成されている。図3の垂直磁気記録媒体では、基板101上に、厚さ100〜500nmの軟磁性層105と、厚さ20〜30nmの記録層104とが形成されている。
水平磁気記録の基板として、主に3.5インチ用は主にAl−Mg合金基板にNiPメッキを施したものが用いられており、2.5インチ用は主にガラス基板が用いられている。該基板上に非磁性下地膜(主にCr又はCr合金),記録膜(主にCo−Cr系合金)、保護膜(主にDLC:ダイアモンドライクカーボン)、潤滑膜等が成膜されてなる。
【0010】
実際は、基板/下地膜間や下地膜/記録膜間に1層又はそれ以上のバッファー層を設ける事もよく行われる。典型的な膜厚構成として、概ね20Gbit/inch2において下地膜〜30nm、記録膜〜20nm程度である。
【0011】
一方、垂直磁気記録媒体では、基板上に軟磁性裏打ち層(典型的にはパーマロイ等)、記録膜(CoCr系合金、PtCo層とPdとCoの超薄膜を交互に数層積層させた多層膜、SmCoアモルファス膜などが候補材料等)、保護膜、潤滑膜等よりなる。水平磁気記録媒体と垂直磁気記録媒体で一番大きく異なるのは、前者のCr系非磁性下地層と後者の軟磁性裏打ち層、記録層の組成の2つであろう。特に垂直記録媒体における裏打ち層は、軟磁性でかつ膜厚も概ね100nm以上500nm程度の厚膜が必要とされる。軟磁性裏打ち層は、上部記録膜からの磁束の通り道であるとともに、記録ヘッドからの書き込み用磁束の通り道ともなる。そのため、永久磁石磁気回路における鉄ヨークと同じ役割を果たしており、上記のように水平記録媒体における膜と比較すると、相対的に大変厚膜にする必要がある。
【0012】
水平記録媒体において非磁性Cr系下地膜を成膜するのに比較し、垂直記録媒体において軟磁性裏打ち膜を成膜することは簡単ではない。
通常、水平記録媒体の各構成膜はドライプロセス(主にマグネトロンスパッタ)で、全て成膜されている。垂直記録媒体においてもドライプロセスによる成膜が、自然な流れである。
しかし、垂直記録媒体における軟磁性裏打ち層のスパッタ成膜には問題がある。マグネトロンスパッタは、磁気記録媒体のみならず金属薄膜の成膜に広く用いられる物理蒸着プロセスである。これは、薄い不活性ガス雰囲気中にターゲットを設置し、該近傍に設置した電極もしくはターゲット自身を電極の1つとして、電極間に高周波を印加してプラズマ化されたガスにより、ターゲット原子を物理的に飛ばして成膜するものである。成膜速度を増加させるため、ターゲット材裏面に永久磁石磁気回路を配し、表面に漏れ出てくる磁力によりプラズマ密度を上昇させることも一般的に行われている。しかしながら、このマグネトロンスパッタ方式により垂直磁気記録用の軟磁性層を形成しようとした場合、多くの問題が生じる。ターゲットが軟磁性であるため、磁気回路から発生する磁束の多くの部分がターゲット内部を通り、ターゲット面外部上に漏洩しにくい。磁束漏洩が少なければ、発生するプラズマが微弱かつ不安定となり、スパッタの成膜速度が十分に確保できなくなる。また、ターゲットの磁束漏洩部から優先的にスパッタされて行くが、スパッタされた箇所は本来ターゲット内を通っていた磁束があるため周縁部より磁束漏洩が増加し、該漏洩箇所は益々スパッタされて掘れていくターゲットの偏磨耗を生ずる。即ち、軟磁性ターゲットのマグネトロンスパッタでは、スパッタ箇所がV溝状に磨耗し、相対的に短時間でバッキングプレートが露出してしまうため、ターゲット寿命が短くなる。一方、ターゲット上での磁束漏洩を多くするため薄いターゲットを用いると、ターゲットは短寿命となり、交換を頻繁にする必要が生じる。ターゲット寿命を長くするため、ターゲット厚みを厚くしようとすると、底部磁気回路からの磁束の大半がターゲット内を通って、磁束の外部漏洩が殆どなくなってしまうため、あまり厚くできない。漏洩磁場が大きくできない事と局所的にスパッタされやすいため、装置面ではスパッタ真空槽を増やさなければ厚い膜の成膜ができない。更にターゲットの偏磨耗は、成膜した膜の厚み均一性や合金組成の均一性にも影響する。一方、軟磁性裏打ち膜の上に成膜される記録層は相対的に薄いため、乾式プロセスでもどのようなプロセスでも特に問題なく成膜可能である。このように、垂直記録媒体における軟磁性裏打ち膜の成膜は、従来のスパッタ方法で原理的にはできるにしても、量産性や生産性の上で大きな問題を抱えている。
【0013】
【特許文献1】
特公平1−42048号公報
【特許文献2】
特公平2−41089号公報
【特許文献3】
特公平2−59523号公報
【特許文献4】
特公平1−45140号公報
【特許文献5】
特開昭57−105826号公報
【特許文献6】
特開平6−68463号公報
【特許文献7】
特開平6−28655号公報
【特許文献8】
特開平4−259908号公報
【0014】
【発明が解決しようとする課題】
本発明は、このような従来からの成膜方法と基板構成に鑑みて、容易に作製できる軟磁性裏打ち膜を有する基板とその製造方法を提案するものである。
【0015】
【課題を解決するための手段】
本発明は、単結晶Si基板の上に下地層及び良好な密着性と磁気特性を有する軟磁性金属層を形成し、さらに基板表面を研磨により平滑化して良好な金属表面を有し磁気特性と生産性に優れた垂直磁気記録用ハードディスク基板を得んとするものである。即ち、Si単結晶を用いた基板上に湿式プロセスにより軟磁性磁性膜が成膜されてなることを特徴とするハードディスク用基板を提供する。
【0016】
本発明の垂直磁気記録媒体の模式的な膜構成の断面図を図1に示す。
本発明は、直径65mm以下、厚みが1mm以下で表面平均粗さ(Rms)が1nm以上1000nm以下のSi単結晶基板1と、該基板上に設けられた厚み1nm以上300nm以下のNi及び/又はCu及び/又はAgを含む下地メッキ層2と、該下地メッキ層上に設けられた厚み50nm以上1000nm未満で保磁力20 Oe(=20エルステッド)以下かつ飽和磁化1T以上のメッキ軟磁性層3とを含み、該メッキ軟磁性層の表面平均粗さ(Rms)が0.1nm以上5nm以下である垂直磁気記録ハードディスク用媒体基板を提供する。また、本発明は、直径65mm以下、厚みが1mm以下で表面平均粗さ(Rms)が1nm以上1000nm以下のSi単結晶基板上にNi及び/又はCu及び/又はAgを含む下地メッキを施す工程と、保磁力20 Oe以下かつ飽和磁化1T以上のメッキ軟磁性層を設ける工程と、さらに該メッキ軟磁性層の表面平均粗さ(Rms)を0.1nm以上5nm以下に研磨する工程とを含む、垂直磁気記録ハードディスク用媒体基板の製造方法を提供する。
【0017】
【発明の実施の形態】
以下で本発明について詳細に述べる。
本発明では、基板としてSi単結晶基板を選択する。Si単結晶基板は、剛性に優れ、表面の平滑性も良好で、表面状態も大変安定であり高記録密度の磁気記録用基板として優れている。磁気記録用基板としてSi基板を用いることは既に公知であり、種々提案されている。例えば、特許文献1〜8などがある。またこれらの中で、Si単結晶基板上に下地層を形成してから、記録層を成膜した記録媒体も開示されている(特許文献2)。このように水平磁気記録媒体基板としてSi単結晶を用いる事は公知であるが、上記したように、水平磁気記録媒体であるため熱揺らぎの問題が解消されない。
本発明は、特に熱揺らぎの改良を目的とし、垂直磁気記録に関する基板について発明したものである。
【0018】
本発明に用いるSi単結晶基板は、直径65mm以下で厚み1mm以下の基板を対象とし、小口径HDD用途を対象としている。直径65mmを超えると、Si単結晶の材料コスト比率が高くなり過ぎる場合があり、記録媒体基板として好ましくない。65mm以下の基板に使用した場合、Si基板は高剛性であることから薄くしても振動が小さく、モバイル用途に適している。また、その厚みが1mmを超えると研磨による基板各部の厚みばらつきを一定とすることが技術的に困難となる為好ましくない。最小の寸法についてはハードディスクドライブを構成するその他部品との関係で、部品製造に係る難易度及びコストの観点より直径15mm以上が望ましい。厚さの下限は0.1mmが好ましい。厚さは、さらに好ましくは0.3〜0.7mmである。
【0019】
本発明に用いるSi単結晶基板は、表面の平方平均粗さ(Rms)としては、1nm以上1000nm以下が好ましい。ここでいうRmsはメッキ前の段階でのことである。1nm未満では、基板上に設けられた下地メッキ層の密着性が不充分となる場合があり、1000nmを超えるとハードディスクに必要な表面平滑性が得られない場合がある。表面の平方平均粗さ(Rms)は、測定平均線から測定線までの偏差の二乗を平均した値の平方根であって、AFM(アトミック・フォース・マイクロスコピー:原子間力顕微鏡)で測定できる。
【0020】
従来技術の節で述べたように、垂直記録用の成膜を特に全てドライプロセスで行おうとする点に問題があると、本発明者らは考えた。一般的にハードディスク基板材料の成形、表面加工は研磨、即ち湿式プロセスである。そこで、軟磁性裏打ち層までを基板の一部と考え、湿式プロセス(電気メッキ、無電解メッキなど)で軟磁性裏打ち層を成膜し、平滑性はメカノ・ケミカル研磨(CMP)で保障するプロセスについて鋭意検討を行った。
下地層形成、軟磁性層の湿式成膜やその後の平滑化加工工程を、基板加工の一部として捉えると、本発明は従来の基板製造プロセスとの相性が非常に良好である。
【0021】
基板としてSi単結晶基板を選択するもう1つの理由は、湿式成膜(メッキ成膜)において、浴のpH値が酸性、アルカリ性のどちらであっても安定して成膜でき、さらに単一材料から構成されているため、基板界面との相互作用が問題となるメッキ成膜では極めて優れた付着の均一性が得られるため良質の軟磁性裏打ち層が形成できることによる。
【0022】
ハードディスク媒体表面は、その使用時にヘッドスラップと呼ばれるヘッドの腹打ちによる衝撃が度々加わる為、単に軟磁性裏打ち層を湿式法で形成したのみでは密着性に乏しく、使用時に安易に剥離してしまう。さらに、本発明では表面の平滑性を確保する為、メッキ後にCMP研磨を行う必要が有るが、密着力に乏しいメッキではこの研磨の途中にメッキ膜が剥離してしまうという問題がある。
本発明者等は、Si基板と軟磁性膜間の密着性を向上させるべく検討を行い、適切なメッキ処理及びメッキ前処理を行えば良好な密着力を持ったメッキ膜が成膜可能であり、これを研磨することで平滑な媒体が得られる事を見出した。
【0023】
本発明は、Si基板に軟磁性金属層との密着性及び上記の破壊強度を強化するためにSi基板と軟磁性金属層との間に下地メッキ層を形成することを特徴とするものである。
本発明では、前処理並びに下地メッキを行うことでSi基板と磁性メッキ膜の間に良好な密着性を持った層が成膜できる。
【0024】
本発明においては、所定の前処理が施されている基板で有れば、後段の下地メッキ成膜は電解メッキでも無電解メッキでも構わない。下地メッキとしては、Ni、Cu及びAgからなる一群から選ばれる一種以上の金属(合金を含む。)で、より好ましくはNi及び/又はCuで成膜させることが好ましい。しいて言えば、無電解メッキの方がSi基板の電気的特性にメッキ条件が左右されにくいので望ましい。
下地メッキ層の製造方法としては、例えば、0.01〜0.5Nの硫酸ニッケルに0.02〜1Nの塩化アンモニウムを加えて行う。その際、pHを8〜10に調整し、温度75〜90℃でメッキを行う。他の方法で下地メッキ層を形成することもでき、Ni、Cu、Agの中から選ばれる一種以上の金属(合金を含む)で、メッキ層を設ければよく、好ましくはNi又はCuを用いる。
下地メッキ層の厚さは、1nm以上300nm以下が好ましいが、これは1nm未満だと基板表面が均一に被覆できない場合があり、300nmを超えると下地膜の結晶が肥大化してしまう場合があるからである。
【0025】
本発明者らは、密着性を向上させる上からSi単結晶ウエーハ表面に自然形成される酸化膜の除去方法を検討するうち、Si基板表面に下地メッキを施す前に、好ましくは、特定の条件化で基板表面をエッチングすることにより、酸化膜の除去に加え、基板表面に適度なメッキ膜の密着性を向上させるような適度な凹凸が発生し、さらにSi−Ni−Oよりなる遷移層がSi基板と下地層の間に形成されて、Si基板の磁性膜の密着性が飛躍的に向上することを見出したものである。
【0026】
本発明においては、メッキ前処理工程において、Si基板表面のエッチングとして、酸又はアルカリによる湿式エッチングを用いる。酸、アルカリの両エッチングを併用することも可能であるが、この場合は、アルカリ処理後、酸処理することが望ましい。このメッキ前処理により、Si単結晶基板の平方平均粗さ(Rms)を、好ましくは1nm以上1000nm以下とする。
【0027】
具体的には、酸によるエッチングでは、フッ酸、塩酸、硝酸から少なくとも1種以上選択してなる水溶液に浸漬させるものである。
エッチング液の条件としては、フッ酸水溶液の場合2〜10重量%、硝酸水溶液の場合5〜30重量%、及び塩酸水溶液の場合2〜15重量%の濃度が好ましい。
【0028】
また、アルカリによるエッチングとしては、NaOH、KOH、アンモニアから少なくとも1種以上選択してなる水溶液に浸漬させるものである。
特にアルカリとしては、0.3〜10重量%のアンモニアと0.5〜25重量%の過酸化水素を純物質の重量比2:1から1:2で混溶させた水溶液、又は2〜50重量%水酸化ナトリウム水溶液で処理することが好ましい。
処理条件は、10℃〜溶液の沸点で30秒〜1時間浸漬処理して行なうことができ、さらに酸処理の場合は、1〜20mA/cm2で1秒〜1分通電により、電解エッチングしてもよい。
【0029】
Si単結晶基板上に成膜された軟磁性裏打ち層には、種々の合金組成があり得る。良好な軟磁気特性(低保磁力Hc値)を有するには、結晶磁気異方性Kuと磁歪λuの値が同時に零を満足するような合金が望ましい。また、その飽和磁化(Bs)に関しては1T以上、特に好ましくは45モル%Niと55モル%Feのパーマロイの如くBsが1.5T前後有るような高透磁率材料が適する。その他本発明に用いられることが出来る軟磁性層材料としては、湿式プロセスで成膜可能で、軟磁性を有するパーマロイ(NiFe系合金)やCoNi系合金、CoFe系合金、CoFeNi系合金などがあげられる。さらに、磁力の観点からは、このような高飽和磁化と低保磁力特性を両立できる合金組成が望ましい。CoFeNi系合金は比較的高磁化Bsを示すが、同時にKuとλsが両方とも「0」もしくはそれに近い値を取る条件が存在すれば、低いHcを実現できる。特に逢坂らにより報告された電解メッキ成膜されたCoFeNi系合金薄膜は、微細な構造を持ち2T前後の飽和磁化とHc<20e以下の軟磁気特性を両立させる事が可能なため、本発明では大変好ましい材料の一つと考えられる。例えば、T.Osakaら,Nature387,(1998),796;K.Ohashiら,IEEE Trans.Mag.35,(1999),2538;K.Ohashiら,IEEE Trans.Mag.34,(1998),1462などで報告されている。
【0030】
また、FeTaC膜やCo系アモルファス膜も裏打ち膜の候補材料であるが、これらの膜はスパッタなどのドライプロセスにより成膜されるものであるので、本発明の範囲に属さない場合がある。本発明に適合するのは、あくまで湿式プロセス成膜可能な合金を用いることが望ましい。
【0031】
軟磁性層の透磁率を1T以上としたのは上記理由による膜厚の制限に対しての見合いによるものである。Bsが1T未満の材料を使用した場合、軟磁性裏打ち層として必要な性能を得るためには膜厚を厚くする必要がある。一般に湿式、乾式を問わず肉厚の金属層を形成しようとする場合、膜厚の増大と共に金属層組織内の粒が成長する。磁気記録においてはS/Nを向上させるために、記録層及び記録再生時に磁路となる軟磁性下地層の結晶粒界の肥大を抑制することは極めて重要で有る。本発明の湿式プロセスにおいては、軟磁性膜の厚みが1000nmを超えると粒成長が顕著に進行する。また、軟磁性膜中の微細組織の粒径分布も広がって、粒サイズの不均一が大きくなるためその膜厚みについては50〜1000nmとした。
【0032】
保磁力(Hc)については、その値が20 Oeを超えると書き込み時にヘッドより発生する磁束が該軟磁性層を透過する際に大きな妨げとなり、結果的に媒体とした場合のS/N比が大きく低下することが知られている。本発明においてはこのような知見を踏まえ軟磁性下地層を規定する用件として保磁力の上限を200e以下と規定した。好ましくは5Oe以下である。
【0033】
Si単結晶基板上に電気メッキにて軟磁性膜を成膜するにおいて、強固な化学結合形成のためには、金属下地膜を形成する際にメッキ液中の金属イオンが単結晶Si基板表面より直接電子を授受する必要が有る。電気メッキ成膜を行う場合は、真性半導体Si単結晶よりは、不純物をドープし内部に過電子対を内包するN極性を有する材料を用いる方が望ましい。無電解メッキにて軟磁性膜を成膜する場合は、Si基板はN型でも、P型でも、またノンドープの真性単結晶でも構わない。
【0034】
軟磁性膜の形成は、例えば、0.001〜0.1NのDMAB(ジメチルアミンボラン)、0.002〜0.2Nの硫酸ニッケル、0.002〜0.2Nの硫酸鉄、0.01〜1Nの硫酸コバルト等を用い、光沢剤としてはサッカリン等、キレート剤としては酒石酸、クエン酸、EDTA等、応力緩和剤としてはメルカポルベンゾジアゾティアゾール等を適宜添加し、pH6〜13に調整し、温度55〜75℃で膜を形成することができる。
【0035】
Si単結晶基板上に湿式プロセスで成膜された軟磁性膜の表面粗さは、膜厚にもよるがあまり良好ではない。湿式プロセスによる膜面上の表面粗さは、研磨により裏打ち膜表面を研磨加工することにより保障する。研磨は機械研磨でもCMP研磨でも可能である。CMPは、普通の研磨スラリーのみにより研磨するのと異なり、酸性もしくはアルカリ性研磨液による化学研磨を共存させながら加工する。研磨媒体にはコロイダルアルミナ或いはコロイダルシリカ等が使用される。特にコロイド系の研磨媒体を用いるCMP研磨は、研磨速度が速く、表面粗さも著しく向上するため、垂直磁気記録用軟磁性膜の研磨方法として好適である。これは、コロイド研磨媒体の粒径が10〜100nmと極めて微小で有ることに加えて、その形状が球状に近く優れた平滑性が具現出来る為である。さらに、CMP研磨では、単純に機械的に表面を削り取っている訳ではなく、化学的に溶かすようなプロセスにより研磨を行っているため、微小な球状研磨媒体を使用しても工業的に十分な研磨速度が確保できる。
【0036】
研磨スラリーの品種、並びにpH値は、被研磨材(本発明では軟磁性裏打ち薄膜)の合金組成により異なる。例えば、CoFeNi膜では研磨スラリーはpH10以上のアルカリサイドが望ましいが、パーマロイ膜では化学的なエッチング作用の観点から酸性側のpH値にする方がよい。
研磨条件は、各合金組成膜で良好な表面粗さになるように、最適化される。研磨に影響を与えるパラメータには、機械の種類や大きさ、研磨スラリー(研磨材、pH値、液温)、バフ、回転速度などが有り、各々との見合いで最適化する必要がある。
【0037】
本発明は、高密度記録用のハードディスク下地膜に係るものであり、その研磨後の平滑性については、平均表面粗さRa又は平方平均粗さRmsで0.1nm以上5nm以下、特に好ましくは0.1〜0.5nmとなるよう研磨する事が望ましい。0.1nm以下にしようとすると、多段CMPや条件範囲が極めて厳しくなり過ぎるため、好ましくない。また、5nm以上では、裏打ち膜の上に載せる記録膜の表面粗さに悪影響を与えるため、これ以下であることが望ましい。平均表面粗さ(Ra)は、測定平均線から測定線までの絶対値偏差の平均であり、平方平均粗さ(Rms)は、測定平均線から測定線までの偏差の二乗を平均した値の平方根である。これらは、AFMによって測定できる。
【0038】
CMP研磨により平滑性が向上した基板は、ブラシ洗浄などの手段により、表面の付着粒子を取り除いて清浄化される。
【0039】
ガラス研磨で使用される酸化物スラリーによる通常機械研磨等も使用することは可能で有るが、既に述べたような研磨速度が遅いことや良好研磨面を得るのに多段研磨が必要であったりするため、CMPの方がより望ましい。CMPに本発明の裏打ち膜の平滑化まで保障されたSi単結晶基板を使用すれば、該基板上に種々の組成の合金系記録膜や多層膜を成膜して、優れた垂直磁気記録用媒体とすることが可能となる。
【0040】
【実施例】
実施例1
CZ(チョコラルスキー)法で製作した200mmSi単結晶基板から、コア抜き・芯取り・ラップを行った、直径65mmの(100)Si単結晶(PドープのN型基板)を平均粒径95nmのコロイダルシリカにより両面研磨し、表面平均粗さ(Rms)5nm(AFM(原子間力顕微鏡)による測定)まで平滑にした。この基板を60℃、28重量%のアンモニア水溶液に飽和過酸化水素水を混合し各々の濃度を5重量%とした水溶液中で15分間浸漬エッチングして、基板表面の薄い表面酸化膜を除去した。この基板に、0.1N硫酸ニッケル水溶液と0.1N酒石酸ナトリウム水溶液に塩化アンモニウムを適宜添加しpH8とした80℃のメッキ液中で無電解メッキを施し、表面にNiメッキ膜を100nm被覆した。この後、軟磁性層としてCoNiFe軟磁性膜を概ね1000nm成膜した。メッキは、80℃、pH9のCo、Ni、Feを主含有する塩化アンモニウム浴で還元剤にはジア燐酸を使用し光沢材、応力緩和剤としてサッカリン等を適宜加えたものにより成膜を行った。
成膜後、EPMAの波長分散法で構成元素の分析を行ったところ、概ね15モル%Niと75モル%Feと10モル%Coの組成であった。VSM(試料振動型磁力計:バイブレイティング・サンプル・マグネトメータ)で磁気特性を測定したところ、Bs:1.9T、iHc:150eの低保磁力で軟磁性を示した。成膜後の軟磁性膜付き基板をpH11、液温30℃の平均粒径80nmコロイダルシリカ含有研磨液により180gf/cm2の圧力を印加しつつ不織布を張った定盤径700mmの両面研磨機により6分間研磨を行い、軟磁性膜を概ね400nm厚とした。研磨後の表面をAFMで測定したところRms:0.6nmであり、基板全面に渡り概ね平坦化されていた。
メッキ膜の密着性を確認する意味で該基板表面にマグネトロンスパッタにより20nmのダイヤモンドライクカーボン(DLC)保護膜を被覆した後、東芝社2.5インチハードディスクユニットMK−4313MATに組み込み、ヘッドが基板に密着した状態でAVEX社SM−105MPにより750Gの衝撃を印加する耐久試験(ヘッドスラップテスト)を実施した。試験後、基板表面を30倍の光学顕微鏡で観察したところ、衝突痕は確認されたもののメッキ膜の剥離は全く認められなかった。
【0041】
実施例2
CZ法で製作した200mmSi単結晶基板から、コア抜き・芯取り・ラップを行った、直径65mmの(100)Si単結晶(PドープのN型基板)をコロイダルシリカ(平均粒径95nm)により両面研磨し、表面平均粗さ(Rms)0.4nm(AFMによる測定)まで平滑にした。この基板を50〜80℃、20〜40重量%の苛性ソーダ水溶液に5〜15分間浸漬エッチングして、基板表面の薄い表面酸化膜を除去すると共に表面粗さRmsを1〜15nmまで粗面化した。概ね、1nm、4nm、10nm、15nmの四種類のRms値を持った基板作製した。この基板に、0.1N硫酸ニッケル水溶液と0.1N酒石酸ナトリウム水溶液に水酸化ナトリウムを適宜添加しpH9とした80℃のメッキ液中で無電解メッキを施し、表面にNiメッキ膜を150nm被覆した。この後、軟磁性層としてCoNiFe軟磁性膜を概ね1000nm成膜した。メッキは、80℃、pH9のCo、Ni、Feを主含有する塩化アンモニウム浴で還元剤にはジア燐酸を使用し光沢材、応力緩和剤としてサッカリン等を適宜加えたものにより製膜を行った。
各々に成膜後、EPMAの波長分散法で構成元素の分析を行ったところ、概ね60モル%Coと10モル%Niと30モル%Feの組成であった。VSMで磁気特性を測定したところ、Bs:1.9T、iHc:2 Oeの低保磁力で軟磁性を示した。
また、各々に成膜後の軟磁性膜付き基板をpH11、液温30℃の平均粒径80nmコロイダルシリカ含有研磨液により180gf/cm2の圧力を印加しつつ不織布を張った定盤径700mmの両面研磨機により6分間研磨を行い、軟磁性膜を概ね400nm厚とした。研磨後の表面をAFMで測定したところRms:0.6nmであり、基板前面に渡り概ね平坦化されていた。
メッキ膜の密着性を確認する意味で該各々の基板表面にマグネトロンスパッタにより20nmのダイヤモンドライクカーボン(DLC)保護膜を被覆した後、東芝社2.5インチハードディスクユニットMK−4313MATに組み込み、ヘッドが基板に密着した状態でAVEX社SM−105MPにより750Gの衝撃を印加する耐久試験(ヘッドスラップテスト)を実施した。試験後、基板表面を30倍の光学顕微鏡で観察したところ、どの基板表面にも衝突痕は確認されたもののメッキ膜の剥離は全く認められなかった。
【0042】
実施例3
CZ法で製作した200mmSi単結晶基板から、コア抜き・芯取り・ラップを行った、直径65mmの(100)Si単結晶(PドープのN型基板)をコロイダルシリカ(平均粒径95nm)により両面研磨し、表面粗さ(Rms)0.4nm(AFMによる測定)まで平滑にした。この基板を18℃、4重量%のHF水溶液に1分間浸漬して通電(5mA/cm2)10秒を行い、陽極酸化により基板表面の薄い表面酸化膜を除去すると共に表面粗さRmsを12nmまで粗面化した。この基板に、0.09N硫酸ニッケル水溶液、0.01N硫酸銅水溶液と0.1Nクエン酸ナトリウム水溶液に水酸化ナトリウムを適宜添加しpH8とした80℃のメッキ液中で無電解メッキを施し、表面にNiメッキ膜を180nm被覆した。この後、軟磁性層としてCoNiFe軟磁性膜を概ね1000nm成膜した。メッキは80℃、pH9のCo、Ni、Feを主含有する塩化アンモニウム浴で還元剤にはジメチルアミンボランを使用し光沢材、応力緩和剤としてサッカリン等を適宜加えたものにより製膜を行った。
成膜後、EPMAの波長分散法で構成元素の分析を行ったところ、概ね60モル%Coと10モル%Niと30モル%Feの組成であった。VSMで磁気特性を測定したところ、Bs:1.9T、iHc:2 Oeの低保磁力で軟磁性を示した。
成膜後の軟磁性膜付き基板をpH11、液温30℃の平均粒径80nmコロイダルシリカ含有研磨液により180gf/cm2の圧力を印加しつつ不織布を張った定盤径700mmの両面研磨機により6分間研磨を行い、軟磁性膜を概ね400nm厚とした。研磨後の表面をAFMで測定したところRms:0.6nmであり、基板前面に渡り概ね平坦化されていた。
メッキ膜の密着性を確認する意味で該基板表面にマグネトロンスパッタにより20nmのダイヤモンドライクカーボン(DLC)保護膜を被覆した後、東芝社2.5インチハードディスクユニットMK−4313MATに組み込み、ヘッドが基板に密着した状態でAVEX社SM−105MPにより750Gの衝撃を印加する耐久試験(ヘッドスラップテスト)を実施した。試験後、基板表面を30倍の光学顕微鏡で観察したところ、衝突痕は確認されたもののメッキ膜の剥離は全く認められなかった。
【0043】
垂直記録媒体基板として、湿式プロセスで良好な軟磁性膜を成膜でき、良好な軟磁気特性と該軟磁性膜の平坦化を実現できた。垂直磁気記録媒体用として好適な基板が提供可能となった。
【0044】
【発明の効果】
本発明によりSi単結晶基板の上に厚膜の軟磁性裏打ち膜を容易に成膜可能となり、かつ表面粗さが保障され、良好な垂直磁気記録用Si単結晶基板を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の垂直磁気記録媒体の模式的な膜構成の断面図であり、矢印は磁化方位を示す。
【図2】従来の水平磁気記録媒体の模式的な膜構成の断面図であり、矢印は磁化方位を示す。
【図3】従来の垂直磁気記録媒体の模式的な膜構成の断面図であり、矢印は磁化方位を示す。
【符号の説明】
1   Si単結晶基板
2   下地メッキ層
3   軟磁性層
101 基板
103 下地層
104 記録層
105 軟磁性層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a substrate material used for a substrate hard disk for perpendicular magnetic recording and a method for manufacturing the same.
[0002]
[Prior art]
In the field of magnetic recording, information recording by a hard disk device is indispensable as a primary external recording device of a computer such as a personal computer. The improvement in magnetic recording density of hard disk drives has been remarkable in recent years, and is increasing at a rate of 100% or more per year. The recording density is close to 60 Gbit / inch2 at the research level and reaches 30 Gbit / inch2 at the product level.
[0003]
Such a high recording density is achieved by remarkable improvement in performance of each mechanical element such as an electronic component and software constituting the hard disk device. In particular, this is largely due to the progress of magnetic heads (thin-film heads, MR heads, GMR heads, etc.) for reading / writing recorded information, and correction methods (software) for improving the reliability of read signals. However, there is no particular change in the basic recording system and the device configuration, and the device configuration is based on the horizontal magnetic recording system.
[0004]
However, as the magnetic recording density is improved, the volume of the recording layer per bit for magnetic recording is rapidly reduced. To improve the recording density, it is necessary to improve both the linear recording density in the circumferential direction and the track density in the radial direction. However, in the principle of magnetic recording, there is a problem particularly in the linear recording density. This will be described in detail below.
[0005]
The magnetic recording method is roughly classified into horizontal magnetic recording and perpendicular magnetic recording as schematically shown in FIGS. 1 and 2 according to a method of arranging magnetic unit arrays (bits) for holding information on a recording medium.
Horizontal magnetic recording is a method in which recording is performed so that a magnetic information unit composed of SN magnetic poles is parallel to the plane of a recording medium, and is used for a conventional hard disk medium. On the other hand, perpendicular magnetic recording is a method of performing recording so that the magnetic information unit is perpendicular to the plane of the recording medium, and is widely used for video tapes and the like that require high-density recording.
[0006]
Now, in magnetic recording, when the recording density per unit area is increased, it is naturally necessary to reduce the volume of the magnetic recording unit (bit).
However, from the fundamental problem of magnetic theory, it is known that the ferromagnetic material responsible for recording is not kept stable as far as the volume of the magnetic material expressing it is reduced. . Thermal energy kT (k: Boltzmann constant, T: absolute temperature) at room temperature and anisotropic energy KuV (Ku: anisotropic energy, especially in the case of magnetic recording, crystal magnetic properties in magnetic recording) It is known that due to competition for anisotropic energy (V: unit recording bit volume), when the volume of a magnetic recording unit is extremely small and approaches kT to KuV, the magnetization state of the ferromagnetic material becomes unstable even at room temperature. ing. When the magnetization volume per bit is extremely small as described above, a state in which the ferromagnetic material becomes like a paramagnetic material is called superparamagnetism. It is known that there is a critical dimension (critical volume) at which the magnetic recording material becomes superparamagnetic, depending on the magnetic recording material.
[0007]
In actual magnetic recording, if the recording unit volume is reduced to a value close to the critical dimension by increasing the recording density, the problem becomes apparent before superparamagnetism is reached. The magnetization state of the ferromagnetic state subjected to the magnetic recording is attenuated with time in a relatively short time, and the magnetic azimuth is oriented in a random direction, thereby altering the magnetic recording information (the S / N ratio of the signal read from the magnetic head is reduced). Problem). When such a phenomenon occurs in magnetic recording, after a certain period of time, the recorded information written cannot be read or cannot be written. Such attenuation of recording bits due to superparamagnetism has become a very serious problem in recent years as a "thermal fluctuation" problem, which determines the magnetic recording limit.
In conventional horizontal magnetic recording, it is not clear how far the recording limit caused by thermal fluctuations is. However, in the case of a hard disk medium, it is converted to a recording density, and it may be around 100 Gbit / inch2. It is considered.
[0008]
As a method of overcoming the recording limit due to the thermal fluctuation of the conventional horizontal magnetic recording hard disk medium, various new recording methods have been proposed. Perpendicular magnetic recording is considered to be the most promising. In perpendicular magnetic recording, the magnetic field from an adjacent bit is in the same direction as the magnetization direction, and is in a direction that helps the stability of the recorded magnetization bit. In other words, a closed magnetic path is formed between adjacent bits, the self-demagnetizing field (hereinafter, referred to as demagnetizing field) due to its own magnetization is smaller than in horizontal magnetic recording, and the magnetization state is stable. . On the other hand, in horizontal magnetic recording, as the linear recording density increases, the adjacent recording bits become closer and the demagnetizing field increases. In order to further increase the linear recording density, it is necessary to make the recording layer extremely thin so that the magnetization rotation mode does not occur inside the magnetic recording layer. In horizontal magnetic recording, the recording bit volume decreases three-dimensionally as the recording density increases. With respect to the magnetic film thickness, it is not necessary to reduce the magnetic film thickness in perpendicular magnetic recording as the recording density increases. From these points, it can be said that perpendicular magnetic recording is a recording method in which the demagnetizing field can be reduced and the value of KuV can be secured, so that the stability against magnetization due to thermal fluctuation is large, and the recording limit can be greatly expanded. As a recording medium, it has a high affinity with a horizontal recording medium, and writing and reading of magnetic recording can be basically performed using the same technology as that used conventionally.
[0009]
However, in detail, there are some items that hinder the practical use of perpendicular magnetic recording. One of them is the configuration of the magnetic medium. FIG. 2 is a cross-sectional view of a schematic film configuration of a horizontal magnetic recording medium, and FIG. In the horizontal magnetic recording medium of FIG. 2, a nonmagnetic underlayer 103 having a thickness of 20 to 30 nm and a recording layer 104 having a thickness of 20 to 30 nm are formed on a substrate 101. In the perpendicular magnetic recording medium of FIG. 3, a soft magnetic layer 105 having a thickness of 100 to 500 nm and a recording layer 104 having a thickness of 20 to 30 nm are formed on a substrate 101.
As a substrate for horizontal magnetic recording, a substrate mainly made of an Al-Mg alloy substrate plated with NiP is used for 3.5 inches, and a glass substrate is mainly used for 2.5 inches. . A non-magnetic base film (mainly Cr or Cr alloy), a recording film (mainly Co-Cr alloy), a protective film (mainly DLC: diamond-like carbon), a lubricating film, etc. are formed on the substrate. .
[0010]
In practice, it is often practiced to provide one or more buffer layers between a substrate and a base film or between a base film and a recording film. As a typical film thickness configuration, the base film is about 30 nm and the recording film is about 20 nm at about 20 Gbit / inch2.
[0011]
On the other hand, in a perpendicular magnetic recording medium, a soft magnetic backing layer (typically, permalloy or the like) and a recording film (a CoCr-based alloy, a PtCo layer, and an ultra-thin film of Pd and Co are alternately laminated on the substrate in several layers) , A SmCo amorphous film or the like as a candidate material), a protective film, a lubricating film or the like. The most significant difference between the horizontal magnetic recording medium and the perpendicular magnetic recording medium is the composition of the former Cr-based nonmagnetic underlayer, the latter soft magnetic underlayer, and the recording layer. In particular, the backing layer in a perpendicular recording medium needs to be soft magnetic and have a thickness of about 100 nm to 500 nm. The soft magnetic underlayer serves as a path for the magnetic flux from the upper recording film and also for the magnetic flux for writing from the recording head. Therefore, it plays the same role as the iron yoke in the permanent magnet magnetic circuit, and needs to be relatively thick as compared with the film on the horizontal recording medium as described above.
[0012]
Forming a soft magnetic underlayer on a perpendicular recording medium is not as easy as forming a nonmagnetic Cr-based underlayer on a horizontal recording medium.
Usually, all the constituent films of the horizontal recording medium are formed by a dry process (mainly magnetron sputtering). Even in a perpendicular recording medium, film formation by a dry process is a natural flow.
However, there is a problem in sputter deposition of a soft magnetic underlayer in a perpendicular recording medium. Magnetron sputtering is a physical vapor deposition process widely used for forming not only magnetic recording media but also metal thin films. In this method, a target is placed in a thin inert gas atmosphere, and a target atom is physically formed by applying a high frequency between the electrodes and treating the target atoms with an electrode placed in the vicinity or the target itself as one of the electrodes. It is intended to form a film by skipping. In order to increase the deposition rate, it is common practice to arrange a permanent magnet magnetic circuit on the back surface of the target material and increase the plasma density by magnetic force leaking to the front surface. However, many problems arise when an attempt is made to form a soft magnetic layer for perpendicular magnetic recording by the magnetron sputtering method. Since the target is soft magnetic, a large part of the magnetic flux generated from the magnetic circuit passes through the inside of the target and hardly leaks to the outside of the target surface. If the leakage of the magnetic flux is small, the generated plasma becomes weak and unstable, and it is not possible to sufficiently secure the film forming speed of sputtering. Also, the target is sputtered preferentially from the magnetic flux leakage portion, but the sputtered portion has a magnetic flux originally passing through the target, so the magnetic flux leakage increases from the peripheral portion, and the leaked portion is spattered more and more. Uneven wear of the digging target occurs. That is, in magnetron sputtering of a soft magnetic target, the sputtered portion is worn in a V-groove shape, and the backing plate is exposed in a relatively short time, so that the target life is shortened. On the other hand, if a thin target is used to increase magnetic flux leakage on the target, the target has a short life and needs to be replaced frequently. If the thickness of the target is increased in order to prolong the life of the target, most of the magnetic flux from the bottom magnetic circuit passes through the target and almost no external leakage of the magnetic flux occurs. Since the leakage magnetic field cannot be increased and local spatter is likely to occur, a thick film cannot be formed on the apparatus surface unless the sputtering vacuum chamber is increased. Further, uneven wear of the target also affects the uniformity of the thickness of the formed film and the uniformity of the alloy composition. On the other hand, since the recording layer formed on the soft magnetic backing film is relatively thin, it can be formed without any problem by a dry process or any process. As described above, the formation of the soft magnetic backing film on the perpendicular recording medium has a serious problem in terms of mass productivity and productivity even though it can be done in principle by a conventional sputtering method.
[0013]
[Patent Document 1]
Japanese Patent Publication No. 1-404848
[Patent Document 2]
Japanese Patent Publication No. 2-41089
[Patent Document 3]
Japanese Patent Publication No. 2-59523
[Patent Document 4]
Japanese Patent Publication No. 1-445140
[Patent Document 5]
JP-A-57-105826
[Patent Document 6]
JP-A-6-68463
[Patent Document 7]
JP-A-6-28655
[Patent Document 8]
JP-A-4-259908
[0014]
[Problems to be solved by the invention]
The present invention, in view of such a conventional film forming method and substrate configuration, proposes a substrate having a soft magnetic backing film that can be easily manufactured and a method of manufacturing the same.
[0015]
[Means for Solving the Problems]
The present invention forms a base layer and a soft magnetic metal layer having good adhesion and magnetic properties on a single crystal Si substrate, and further smoothes the substrate surface by polishing to have a good metal surface and a magnetic property. An object of the present invention is to obtain a hard disk substrate for perpendicular magnetic recording excellent in productivity. That is, a hard disk substrate is provided, in which a soft magnetic magnetic film is formed on a substrate using a Si single crystal by a wet process.
[0016]
FIG. 1 shows a cross-sectional view of a schematic film configuration of the perpendicular magnetic recording medium of the present invention.
The present invention provides a Si single crystal substrate 1 having a diameter of 65 mm or less, a thickness of 1 mm or less, and a surface average roughness (Rms) of 1 nm or more and 1000 nm or less, and Ni and / or 300 nm or less of thickness provided on the substrate. A base plating layer 2 containing Cu and / or Ag; and a plating soft magnetic layer 3 having a thickness of 50 nm or more and less than 1000 nm, a coercive force of 20 Oe (= 20 Oe) and a saturation magnetization of 1 T or more provided on the base plating layer. A medium substrate for a perpendicular magnetic recording hard disk, wherein the plated soft magnetic layer has a surface average roughness (Rms) of 0.1 nm or more and 5 nm or less. Further, the present invention provides a step of subjecting a single-crystal Si substrate having a diameter of 65 mm or less, a thickness of 1 mm or less and a surface average roughness (Rms) of 1 nm to 1000 nm to a base plating containing Ni and / or Cu and / or Ag. And a step of providing a plated soft magnetic layer having a coercive force of 20 Oe or less and a saturation magnetization of 1 T or more, and a step of polishing the plated soft magnetic layer to have a surface average roughness (Rms) of 0.1 nm or more and 5 nm or less. And a method for manufacturing a medium substrate for a perpendicular magnetic recording hard disk.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, a Si single crystal substrate is selected as the substrate. The Si single crystal substrate has excellent rigidity, good surface smoothness, very stable surface state, and is excellent as a magnetic recording substrate having a high recording density. The use of a Si substrate as a magnetic recording substrate is already known and various proposals have been made. For example, there are Patent Documents 1 to 8 and the like. Among these, a recording medium in which a recording layer is formed after forming an underlayer on a Si single crystal substrate is also disclosed (Patent Document 2). It is known to use a Si single crystal as a substrate for a horizontal magnetic recording medium as described above. However, as described above, the problem of thermal fluctuation cannot be solved because the substrate is a horizontal magnetic recording medium.
The present invention has been made for a substrate related to perpendicular magnetic recording, particularly for the purpose of improving thermal fluctuation.
[0018]
The Si single crystal substrate used in the present invention is intended for a substrate having a diameter of 65 mm or less and a thickness of 1 mm or less, and is intended for a small-diameter HDD. If the diameter exceeds 65 mm, the material cost ratio of the Si single crystal may be too high, which is not preferable as a recording medium substrate. When used for a substrate having a size of 65 mm or less, the Si substrate has high rigidity, so that even if it is thin, vibration is small, and it is suitable for mobile applications. On the other hand, if the thickness exceeds 1 mm, it becomes technically difficult to make the thickness variation of each part of the substrate due to polishing undesirably technical. The minimum size is desirably 15 mm or more in terms of the difficulty in manufacturing parts and the cost in relation to other parts constituting the hard disk drive. The lower limit of the thickness is preferably 0.1 mm. The thickness is more preferably 0.3 to 0.7 mm.
[0019]
The Si single crystal substrate used in the present invention preferably has a surface square average roughness (Rms) of 1 nm or more and 1000 nm or less. Here, Rms is a stage before plating. If it is less than 1 nm, the adhesion of the underlying plating layer provided on the substrate may be insufficient, and if it exceeds 1000 nm, the surface smoothness required for the hard disk may not be obtained. The surface average roughness (Rms) is a square root of a value obtained by averaging the squares of deviations from the measurement average line to the measurement line, and can be measured by AFM (atomic force microscopy: atomic force microscope).
[0020]
As described in the section of the prior art, the present inventors have considered that there is a problem in that all of the film formation for perpendicular recording is particularly performed by a dry process. Generally, molding and surface processing of a hard disk substrate material are polishing, that is, a wet process. Therefore, the process up to the soft magnetic backing layer is considered as a part of the substrate, the soft magnetic backing layer is formed by a wet process (electroplating, electroless plating, etc.), and the smoothness is ensured by mechano-chemical polishing (CMP). Were studied diligently.
When the formation of the underlayer, the wet film formation of the soft magnetic layer, and the subsequent smoothing process are regarded as a part of the substrate processing, the present invention is very compatible with the conventional substrate manufacturing process.
[0021]
Another reason for selecting a Si single crystal substrate as a substrate is that, in wet film formation (plating film formation), a film can be formed stably regardless of whether the pH value of the bath is acidic or alkaline. This is because, in the plating film formation in which the interaction with the substrate interface becomes a problem, extremely excellent uniformity of adhesion is obtained, so that a high quality soft magnetic underlayer can be formed.
[0022]
Since the surface of the hard disk medium is frequently subjected to an impact due to the striking of the head called a head slap at the time of its use, simply forming the soft magnetic backing layer by a wet method has poor adhesion and easily peels off at the time of use. Furthermore, in the present invention, it is necessary to perform CMP polishing after plating in order to ensure the smoothness of the surface, but there is a problem that the plating film is peeled off during the polishing in plating with poor adhesion.
The present inventors have studied to improve the adhesion between the Si substrate and the soft magnetic film, and a plating film having good adhesion can be formed by performing appropriate plating treatment and pre-plating treatment. It has been found that a smooth medium can be obtained by polishing this.
[0023]
The present invention is characterized in that a base plating layer is formed between the Si substrate and the soft magnetic metal layer in order to enhance the adhesion between the Si substrate and the soft magnetic metal layer and the above-described breaking strength. .
In the present invention, a layer having good adhesion can be formed between the Si substrate and the magnetic plating film by performing the pretreatment and the base plating.
[0024]
In the present invention, as long as the substrate has been subjected to a predetermined pretreatment, the subsequent plating of the underlying plating may be electrolytic plating or electroless plating. As the base plating, it is preferable to form a film with one or more metals (including alloys) selected from a group consisting of Ni, Cu and Ag, and more preferably with Ni and / or Cu. In other words, electroless plating is preferable because the plating conditions are hardly influenced by the electrical characteristics of the Si substrate.
As a method of manufacturing the base plating layer, for example, 0.02 to 1N ammonium chloride is added to 0.01 to 0.5N nickel sulfate. At this time, the pH is adjusted to 8 to 10 and plating is performed at a temperature of 75 to 90 ° C. The base plating layer may be formed by another method, and the plating layer may be formed of one or more metals (including alloys) selected from Ni, Cu, and Ag, and preferably Ni or Cu is used. .
The thickness of the base plating layer is preferably 1 nm or more and 300 nm or less. If the thickness is less than 1 nm, the substrate surface may not be uniformly coated. If the thickness exceeds 300 nm, crystals of the base film may be enlarged. It is.
[0025]
The present inventors have studied a method of removing an oxide film naturally formed on the surface of a Si single crystal wafer from the viewpoint of improving adhesion, and before applying a base plating on the surface of the Si substrate, preferably under a specific condition. In addition to the removal of the oxide film, the surface of the substrate is etched to form appropriate irregularities that improve the adhesion of the plated film to the substrate surface. In addition, a transition layer made of Si-Ni-O is formed. It has been found that the adhesiveness of the magnetic film on the Si substrate is significantly improved by being formed between the Si substrate and the underlayer.
[0026]
In the present invention, in the pre-plating process, wet etching with an acid or an alkali is used as the etching of the Si substrate surface. It is possible to use both etching of acid and alkali together, but in this case, it is desirable to carry out acid treatment after alkali treatment. By this plating pretreatment, the square average roughness (Rms) of the Si single crystal substrate is preferably set to 1 nm or more and 1000 nm or less.
[0027]
Specifically, in the etching using an acid, the substrate is immersed in an aqueous solution selected from at least one of hydrofluoric acid, hydrochloric acid, and nitric acid.
As the conditions for the etching solution, a concentration of 2 to 10% by weight for a hydrofluoric acid aqueous solution, 5 to 30% by weight for a nitric acid aqueous solution, and 2 to 15% by weight for a hydrochloric acid aqueous solution is preferable.
[0028]
In addition, as the etching with alkali, it is immersed in an aqueous solution selected from at least one of NaOH, KOH and ammonia.
In particular, as the alkali, an aqueous solution in which 0.3 to 10% by weight of ammonia and 0.5 to 25% by weight of hydrogen peroxide are mixed at a weight ratio of a pure substance of 2: 1 to 1: 2, or 2 to 50% It is preferred to treat with a weight% aqueous sodium hydroxide solution.
The treatment can be carried out by immersion at 10 ° C. to the boiling point of the solution for 30 seconds to 1 hour. In the case of acid treatment, the electrode is electrolytically etched at 1 to 20 mA / cm 2 for 1 second to 1 minute. Is also good.
[0029]
The soft magnetic backing layer formed on the Si single crystal substrate may have various alloy compositions. In order to have good soft magnetic properties (low coercive force Hc value), it is desirable to use an alloy in which the values of the magnetocrystalline anisotropy Ku and the magnetostriction λu simultaneously satisfy zero. With respect to the saturation magnetization (Bs), a material having a high magnetic permeability such as 1 T or more, particularly preferably a permalloy of 45 mol% Ni and 55 mol% Fe, having Bs of about 1.5 T is suitable. Other soft magnetic layer materials that can be used in the present invention include permalloy (NiFe-based alloys), CoNi-based alloys, CoFe-based alloys, and CoFeNi-based alloys that can be formed by a wet process and have soft magnetism. . Further, from the viewpoint of magnetic force, an alloy composition that can achieve such high saturation magnetization and low coercive force characteristics is desirable. The CoFeNi-based alloy shows a relatively high magnetization Bs, but at the same time, a low Hc can be realized if there is a condition that both Ku and λs take “0” or a value close thereto. In particular, the CoFeNi-based alloy thin film formed by electrolytic plating reported by Osaka et al. Has a fine structure and can achieve both saturation magnetization of about 2T and soft magnetic properties of Hc <20e or less. It is considered to be one of the very preferred materials. For example, T. Osaka et al., Nature 387, (1998), 796; Ohashi et al., IEEE Trans. Mag. 35, (1999), 2538; Ohashi et al., IEEE Trans. Mag. 34, (1998), 1462.
[0030]
In addition, FeTaC films and Co-based amorphous films are also candidate materials for the backing film. However, since these films are formed by a dry process such as sputtering, they may not belong to the scope of the present invention. It is desirable to use an alloy capable of forming a film by a wet process to conform to the present invention.
[0031]
The reason why the magnetic permeability of the soft magnetic layer is set to 1 T or more is to meet the limitation of the film thickness for the above-mentioned reason. When a material having Bs of less than 1T is used, it is necessary to increase the film thickness in order to obtain the required performance as the soft magnetic underlayer. In general, when forming a thick metal layer regardless of a wet type or a dry type, grains in the metal layer structure grow as the film thickness increases. In magnetic recording, in order to improve the S / N ratio, it is extremely important to suppress the enlargement of the crystal grain boundaries of the recording layer and the soft magnetic underlayer serving as a magnetic path during recording and reproduction. In the wet process of the present invention, when the thickness of the soft magnetic film exceeds 1000 nm, grain growth remarkably proceeds. Further, since the particle size distribution of the microstructure in the soft magnetic film is also widened and the non-uniformity of the particle size is increased, the film thickness is set to 50 to 1000 nm.
[0032]
As for the coercive force (Hc), if the value exceeds 20 Oe, the magnetic flux generated from the head at the time of writing becomes a great hindrance when passing through the soft magnetic layer, and as a result, the S / N ratio when the medium is used is reduced. It is known that it greatly decreases. In the present invention, based on such knowledge, the upper limit of the coercive force is specified to be 200 e or less as a requirement for defining the soft magnetic underlayer. Preferably it is 5 Oe or less.
[0033]
When forming a soft magnetic film by electroplating on a Si single crystal substrate, in order to form a strong chemical bond, the metal ions in the plating solution are formed from the surface of the single crystal Si substrate when forming the metal base film. It is necessary to send and receive electrons directly. In the case of performing electroplating film formation, it is preferable to use a material having N polarity, which is doped with impurities and contains a hyperelectron pair inside, rather than an intrinsic semiconductor Si single crystal. When a soft magnetic film is formed by electroless plating, the Si substrate may be an N-type, a P-type, or a non-doped intrinsic single crystal.
[0034]
The soft magnetic film is formed, for example, by using 0.001 to 0.1 N of DMAB (dimethylamine borane), 0.002 to 0.2 N of nickel sulfate, 0.002 to 0.2 N of iron sulfate, and 0.01 to 0.1 N of iron sulfate. Using 1N cobalt sulfate or the like, saccharin or the like as a brightener, tartaric acid, citric acid, EDTA or the like as a chelating agent, mercapol benzodiazothiazole as a stress relieving agent, etc., and appropriately adjusting the pH to 6 to 13. The film can be formed at a temperature of 55 to 75 ° C.
[0035]
The surface roughness of a soft magnetic film formed on a Si single crystal substrate by a wet process is not very good depending on the film thickness. The surface roughness on the film surface by the wet process is ensured by polishing the backing film surface by polishing. Polishing can be performed by either mechanical polishing or CMP polishing. The CMP process is different from polishing using only a normal polishing slurry while performing chemical polishing using an acidic or alkaline polishing solution. Colloidal alumina or colloidal silica is used as the polishing medium. In particular, CMP polishing using a colloidal polishing medium is suitable as a method for polishing a soft magnetic film for perpendicular magnetic recording because the polishing rate is high and the surface roughness is significantly improved. This is because the colloidal polishing medium has a very small particle size of 10 to 100 nm and can realize excellent smoothness due to its spherical shape. Furthermore, in CMP polishing, the surface is not simply mechanically scraped off, but is polished by a process that dissolves chemically. Therefore, even if a minute spherical polishing medium is used, it is industrially sufficient. Polishing speed can be secured.
[0036]
The type of polishing slurry and the pH value vary depending on the alloy composition of the material to be polished (the soft magnetic backing thin film in the present invention). For example, in the case of a CoFeNi film, the polishing slurry is desirably an alkali side having a pH of 10 or more, whereas in the case of a permalloy film, the pH value is preferably set to an acidic side from the viewpoint of a chemical etching action.
Polishing conditions are optimized so that each alloy composition film has good surface roughness. Parameters that affect polishing include the type and size of machine, polishing slurry (abrasive material, pH value, liquid temperature), buff, rotation speed, and the like, and need to be optimized in consideration of each.
[0037]
The present invention relates to a hard disk underlayer for high-density recording, and the smoothness after polishing is 0.1 to 5 nm, particularly preferably 0 to 5 nm, in terms of average surface roughness Ra or square average roughness Rms. It is desirable to polish to a thickness of 0.1 to 0.5 nm. If the thickness is set to 0.1 nm or less, the multi-stage CMP and the condition range become too severe, which is not preferable. If the thickness is 5 nm or more, the surface roughness of the recording film placed on the backing film is adversely affected. The average surface roughness (Ra) is the average of the absolute value deviation from the measurement average line to the measurement line, and the square average roughness (Rms) is the average of the square of the deviation from the measurement average line to the measurement line. Is the square root. These can be measured by AFM.
[0038]
The substrate whose smoothness has been improved by the CMP polishing is cleaned by removing particles adhering to the surface by means such as brush cleaning.
[0039]
Although it is possible to use ordinary mechanical polishing or the like using an oxide slurry used in glass polishing, the polishing rate is low as described above or multi-stage polishing is required to obtain a good polished surface. Therefore, CMP is more desirable. By using an Si single crystal substrate of the present invention that guarantees smoothness of the backing film for CMP, alloy-based recording films or multilayer films of various compositions can be formed on the substrate to provide excellent perpendicular magnetic recording. It can be used as a medium.
[0040]
【Example】
Example 1
A (100) Si single crystal (P-doped N-type substrate) having a diameter of 65 mm, which has been subjected to coring, centering and lapping, from a 200 mm Si single crystal substrate manufactured by the CZ (Chocolarski) method, is a colloid having an average particle size of 95 nm. Both surfaces were polished with silica and smoothed to a surface average roughness (Rms) of 5 nm (measured by AFM (atomic force microscope)). This substrate was immersed and etched for 15 minutes in an aqueous solution having a concentration of 5% by weight by mixing a saturated aqueous hydrogen peroxide solution with a 28% by weight aqueous ammonia solution at 60 ° C. to remove a thin surface oxide film on the substrate surface. . This substrate was subjected to electroless plating in a plating solution at 80 ° C. adjusted to pH 8 by appropriately adding ammonium chloride to a 0.1N aqueous solution of nickel sulfate and a 0.1N aqueous solution of sodium tartrate, and the surface was coated with a Ni plating film to a thickness of 100 nm. Thereafter, a CoNiFe soft magnetic film having a thickness of about 1000 nm was formed as a soft magnetic layer. The plating was performed by using an ammonium chloride bath containing mainly Co, Ni, and Fe at 80 ° C. and a pH of 9 and using diphosphoric acid as a reducing agent and adding saccharin and the like as a brightening agent and a stress relaxing agent as appropriate. .
When the constituent elements were analyzed by the EPMA wavelength dispersion method after the film formation, the composition was approximately 15 mol% Ni, 75 mol% Fe, and 10 mol% Co. When the magnetic properties were measured with a VSM (sample vibrating magnetometer: vibrating sample magnetometer), soft magnetism was exhibited with a low coercive force of Bs: 1.9 T and iHc: 150 e. The substrate with the soft magnetic film after film formation was coated with a polishing pad of 700 mm in diameter with a polishing plate of 700 mm in diameter while applying a pressure of 180 gf / cm 2 with a polishing liquid containing colloidal silica having an average particle diameter of 80 nm at a liquid temperature of 30 ° C. Then, the soft magnetic film was polished for 400 minutes to a thickness of about 400 nm. The polished surface was measured by AFM and found to have an Rms of 0.6 nm, which was almost flat over the entire surface of the substrate.
The surface of the substrate is coated with a 20 nm diamond-like carbon (DLC) protective film by magnetron sputtering in order to confirm the adhesion of the plating film, and then incorporated into a 2.5 inch hard disk unit MK-4313MAT of Toshiba Corporation. A durability test (head slap test) in which a shock of 750 G was applied by SM-105MP from AVEX in a state of being in close contact with each other was performed. After the test, the substrate surface was observed with a 30-fold optical microscope. As a result, collision traces were confirmed, but no peeling of the plated film was observed.
[0041]
Example 2
A (100) Si single crystal (P-doped N-type substrate) having a diameter of 65 mm, which has been subjected to coring, centering, and lapping from a 200 mm Si single crystal substrate manufactured by the CZ method, is made of colloidal silica (average particle diameter 95 nm) on both surfaces. It was polished and smoothed to a surface average roughness (Rms) of 0.4 nm (measured by AFM). This substrate was immersed and etched in an aqueous solution of caustic soda at 50 to 80 ° C. and 20 to 40% by weight for 5 to 15 minutes to remove a thin surface oxide film on the substrate surface and roughen the surface roughness Rms to 1 to 15 nm. . Substrates having four types of Rms values of about 1 nm, 4 nm, 10 nm, and 15 nm were manufactured. This substrate was subjected to electroless plating in a plating solution at 80 ° C. adjusted to pH 9 by appropriately adding sodium hydroxide to a 0.1N aqueous solution of nickel sulfate and a 0.1N aqueous solution of sodium tartrate, and the surface was coated with a Ni plating film to a thickness of 150 nm. . Thereafter, a CoNiFe soft magnetic film having a thickness of about 1000 nm was formed as a soft magnetic layer. The plating was carried out in an ammonium chloride bath containing mainly Co, Ni, and Fe at 80 ° C. and pH 9, using diphosphoric acid as a reducing agent, and adding a gloss material and a saccharin or the like as a stress relaxing agent as appropriate. .
The constituent elements were analyzed by a wavelength dispersion method of EPMA after film formation on each of them. As a result, the composition was approximately 60 mol% Co, 10 mol% Ni and 30 mol% Fe. When the magnetic properties were measured by VSM, it showed soft magnetism with a low coercive force of Bs: 1.9 T and iHc: 2 Oe.
A substrate with a soft magnetic film after film formation was coated with a nonwoven fabric at a pH of 11 and a polishing liquid containing colloidal silica having an average particle size of 80 nm at a liquid temperature of 30 ° C. and a pressure of 180 gf / cm 2. Polishing was performed for 6 minutes using a polishing machine to make the soft magnetic film approximately 400 nm thick. When the surface after polishing was measured by AFM, Rms was 0.6 nm, and the surface was almost flattened over the front surface of the substrate.
In order to confirm the adhesion of the plating film, each substrate surface was coated with a 20 nm diamond-like carbon (DLC) protective film by magnetron sputtering, and then incorporated into Toshiba Corporation 2.5 inch hard disk unit MK-4313MAT. A durability test (head slap test) in which a shock of 750 G was applied by SM-105MP from AVEX in a state of being in close contact with the substrate was performed. After the test, when the substrate surface was observed with a 30-fold optical microscope, collision marks were confirmed on any of the substrate surfaces, but no peeling of the plating film was observed at all.
[0042]
Example 3
A (100) Si single crystal (P-doped N-type substrate) having a diameter of 65 mm, which has been subjected to coring, centering, and lapping from a 200 mm Si single crystal substrate manufactured by the CZ method, is made of colloidal silica (average particle diameter 95 nm) on both surfaces. It was polished and smoothed to a surface roughness (Rms) of 0.4 nm (measured by AFM). This substrate is immersed in a 4% by weight HF aqueous solution at 18 ° C. for 1 minute, and energized (5 mA / cm 2) for 10 seconds to remove a thin surface oxide film on the substrate surface by anodic oxidation and to reduce the surface roughness Rms to 12 nm. Roughened. The substrate was subjected to electroless plating in a plating solution at 80 ° C. adjusted to pH 8 by appropriately adding sodium hydroxide to a 0.09 N nickel sulfate aqueous solution, a 0.01 N copper sulfate aqueous solution, and a 0.1 N sodium citrate aqueous solution. To a thickness of 180 nm. Thereafter, a CoNiFe soft magnetic film having a thickness of about 1000 nm was formed as a soft magnetic layer. Plating was performed using an ammonium chloride bath containing mainly Co, Ni, and Fe at 80 ° C. and pH 9, using dimethylamine borane as a reducing agent, and adding a gloss material and a saccharin or the like as a stress relaxing agent as appropriate. .
When the constituent elements were analyzed by the EPMA wavelength dispersion method after the film formation, the composition was approximately 60 mol% Co, 10 mol% Ni, and 30 mol% Fe. When the magnetic properties were measured by VSM, it showed soft magnetism with a low coercive force of Bs: 1.9 T and iHc: 2 Oe.
The substrate with the soft magnetic film after film formation was coated with a polishing pad of 700 mm in diameter with a polishing plate of 700 mm in diameter while applying a pressure of 180 gf / cm 2 with a polishing liquid containing colloidal silica having an average particle diameter of 80 nm at a liquid temperature of 30 ° C. Then, the soft magnetic film was polished for 400 minutes to a thickness of about 400 nm. When the surface after polishing was measured by AFM, Rms was 0.6 nm, and the surface was almost flattened over the front surface of the substrate.
The surface of the substrate is coated with a 20 nm diamond-like carbon (DLC) protective film by magnetron sputtering in order to confirm the adhesion of the plating film, and then incorporated into a 2.5 inch hard disk unit MK-4313MAT of Toshiba Corporation. A durability test (head slap test) in which a shock of 750 G was applied by SM-105MP from AVEX in a state of being in close contact with each other was performed. After the test, the substrate surface was observed with a 30-fold optical microscope. As a result, collision traces were confirmed, but no peeling of the plated film was observed.
[0043]
As a perpendicular recording medium substrate, a good soft magnetic film could be formed by a wet process, and good soft magnetic characteristics and flatness of the soft magnetic film could be realized. A substrate suitable for a perpendicular magnetic recording medium can be provided.
[0044]
【The invention's effect】
According to the present invention, it is possible to easily form a thick soft magnetic backing film on a Si single crystal substrate, and it is possible to provide a good Si single crystal substrate for perpendicular magnetic recording while ensuring surface roughness. Become.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a schematic film configuration of a perpendicular magnetic recording medium of the present invention, in which arrows indicate magnetization directions.
FIG. 2 is a cross-sectional view of a schematic film configuration of a conventional horizontal magnetic recording medium, and arrows indicate magnetization directions.
FIG. 3 is a cross-sectional view of a schematic film configuration of a conventional perpendicular magnetic recording medium, and arrows indicate magnetization directions.
[Explanation of symbols]
1 Si single crystal substrate
2 Base plating layer
3 Soft magnetic layer
101 substrate
103 Underlayer
104 recording layer
105 Soft magnetic layer

Claims (8)

直径65mm以下、厚みが1mm以下で表面平均粗さ(Rms)が1nm以上1000nm以下のSi単結晶基板と、該基板上に設けられ、NiとCuとAgとからなる一群から選ばれる一以上を含み、厚み1nm以上300nm以下の下地メッキ層と、該下地メッキ層上に設けられた厚み50nm以上1000nm未満で保磁力20 Oe以下かつ飽和磁化1T以上のメッキ軟磁性層とを含み、該メッキ軟磁性層の表面平均粗さ(Rms)が0.1nm以上5nm以下である垂直磁気記録ハードディスク用媒体基板。A Si single crystal substrate having a diameter of 65 mm or less, a thickness of 1 mm or less, and a surface average roughness (Rms) of 1 nm or more and 1000 nm or less, and one or more selected from the group consisting of Ni, Cu, and Ag provided on the substrate. An underlying plating layer having a thickness of 1 nm or more and 300 nm or less, and a plating soft magnetic layer provided on the underlying plating layer with a thickness of 50 nm or more and less than 1000 nm and a coercive force of 20 ° Oe or less and a saturation magnetization of 1 T or more. A medium substrate for a perpendicular magnetic recording hard disk, wherein a surface average roughness (Rms) of a magnetic layer is 0.1 nm or more and 5 nm or less. 直径65mm以下、厚みが1mm以下で表面平均粗さ(Rms)が1nm以上1000nm以下のSi単結晶基板上にNiとCuとAgとからなる一群から選ばれる一以上を含む下地メッキを施す工程と、該下地メッキ層上に保磁力20 Oe以下かつ飽和磁化1T以上のメッキ軟磁性層を設ける工程と、さらに該メッキ軟磁性層の表面平均粗さ(Rms)を0.1nm以上5nm以下に研磨する工程とを含む、垂直磁気記録ハードディスク用媒体基板の製造方法。Applying a base plating containing at least one selected from the group consisting of Ni, Cu and Ag on a Si single crystal substrate having a diameter of 65 mm or less, a thickness of 1 mm or less and a surface average roughness (Rms) of 1 nm or more and 1000 nm or less; Providing a plated soft magnetic layer having a coercive force of 20 ° Oe or less and a saturation magnetization of 1 T or more on the base plating layer, and polishing the plated soft magnetic layer to have a surface average roughness (Rms) of 0.1 nm or more and 5 nm or less. And a method of manufacturing a medium substrate for a perpendicular magnetic recording hard disk. 上記下地メッキを施す前の上記Si単結晶基板が、Si単結晶基板をエッチングするメッキ前処理工程によって得られる請求項2に記載の垂直磁気記録ハードディスク用媒体基板の製造方法。3. The method for manufacturing a medium substrate for a perpendicular magnetic recording hard disk according to claim 2, wherein the Si single crystal substrate before the underplating is obtained by a plating pretreatment step of etching the Si single crystal substrate. 上記下地メッキを施す工程が、無電解メッキである請求項2又は請求項3に記載の垂直磁気記録ハードディスク用媒体基板の製造方法。4. The method for manufacturing a medium substrate for a perpendicular magnetic recording hard disk according to claim 2, wherein the step of applying the base plating is electroless plating. 上記メッキ前処理工程が、上記Si単結晶基板の化学エッチングである請求項2〜4のいずれかに記載の垂直磁気記録ハードディスク用媒体基板の製造方法。The method for manufacturing a medium substrate for a perpendicular magnetic recording hard disk according to any one of claims 2 to 4, wherein the plating pretreatment step is chemical etching of the Si single crystal substrate. 上記メッキ前処理工程が、NaOHとKOHとアンモニアとからなる一群から選ばれる少なくとも1種以上のアルカリ水溶液でのエッチング処理である請求項3〜5のいずれかに記載の垂直磁気記録ハードディスク用媒体基板の製造方法。The medium substrate for a perpendicular magnetic recording hard disk according to any one of claims 3 to 5, wherein the plating pretreatment step is an etching treatment with at least one kind of an alkaline aqueous solution selected from the group consisting of NaOH, KOH, and ammonia. Manufacturing method. 上記メッキ前処理工程が、フッ酸と塩酸と硝酸とからなる一群から選ばれる少なくとも1種以上の酸性水溶液でのエッチング処理である請求項3〜5のいずれかに記載の垂直磁気記録ハードディスク用媒体基板の製造方法。The medium for a perpendicular magnetic recording hard disk according to any one of claims 3 to 5, wherein the plating pretreatment step is an etching treatment with at least one kind of an acidic aqueous solution selected from the group consisting of hydrofluoric acid, hydrochloric acid, and nitric acid. Substrate manufacturing method. 上記メッキ軟磁性層を設ける工程の後、研磨により平滑化する工程を含む請求項2〜7のいずれかに記載の垂直磁気記録用ハードディスク用媒体基板の製造方法。The method for manufacturing a medium substrate for a perpendicular magnetic recording hard disk according to claim 2, further comprising a step of smoothing by polishing after the step of providing the plated soft magnetic layer.
JP2003208913A 2002-08-26 2003-08-26 Base plate for perpendicular magnetic recording hard disk medium and its manufacturing method Pending JP2004146032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003208913A JP2004146032A (en) 2002-08-26 2003-08-26 Base plate for perpendicular magnetic recording hard disk medium and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002244837 2002-08-26
JP2003208913A JP2004146032A (en) 2002-08-26 2003-08-26 Base plate for perpendicular magnetic recording hard disk medium and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004146032A true JP2004146032A (en) 2004-05-20

Family

ID=32472633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003208913A Pending JP2004146032A (en) 2002-08-26 2003-08-26 Base plate for perpendicular magnetic recording hard disk medium and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004146032A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031714A1 (en) * 2003-09-26 2005-04-07 Tdk Corporation Magnetic recording medium and process for producing the same
WO2005122148A1 (en) * 2004-06-07 2005-12-22 Showa Denko K.K. Magnetic recording and reproducing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031714A1 (en) * 2003-09-26 2005-04-07 Tdk Corporation Magnetic recording medium and process for producing the same
WO2005122148A1 (en) * 2004-06-07 2005-12-22 Showa Denko K.K. Magnetic recording and reproducing device

Similar Documents

Publication Publication Date Title
US7238384B2 (en) Substrate for perpendicular magnetic recording hard disk medium and method for producing the same
US20050249984A1 (en) Perpendicular magnetic recording medium, production process thereof, and perpendicular magnetic recording and reproducing apparatus
WO2007010908A1 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US20050221129A1 (en) Monocrystalline silicon substrate coated with metal-plated layer and perpendicular magnetic recording medium
JP4539282B2 (en) Disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium using the same
JP2004146033A (en) Base plate of induction anisotropic perpendicular magnetic recording hard disk and its manufacturing method
TW200534246A (en) Substrate for a perpendicular magnetic recording medium and a perpendicular magnetic recording medium using the substrate
JP2006092721A (en) Substrate for perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording medium
JP4023408B2 (en) Substrate for perpendicular magnetic recording medium, perpendicular magnetic recording medium, and method for producing them
JP4408210B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2004146032A (en) Base plate for perpendicular magnetic recording hard disk medium and its manufacturing method
JP2007287216A (en) Substrate for magnetic recording medium, its manufacturing method and magnetic recording medium
JPWO2004084193A1 (en) Magnetic recording medium and method for manufacturing the same, magnetic recording apparatus and magnetic recording method
JP2005108407A (en) Magnetic recording medium and substrate for magnetic recording medium
JP2007026536A (en) Magnetic recording medium, its manufacturing method and magnetic recording and reproducing apparatus
JP4525496B2 (en) Disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium
KR100786664B1 (en) Perpendicular magnetic recording medium, production process thereof, and perpendicular magnetic recording and reproducing apparatus
JP4023610B2 (en) Substrate for perpendicular magnetic recording medium and method for producing perpendicular magnetic recording medium
JP4023609B2 (en) Substrate for magnetic recording medium and method for manufacturing magnetic recording medium
JP2006127736A (en) Vertical magnetic recording medium and vertical magnetic recording device
JP2007272999A (en) Substrate for magnetic recording medium, its manufacturing method and magnetic recording medium
JP2008176846A (en) Substrate for magnetic recording medium, manufacturing method, and magnetic recording medium
JP2007141309A (en) Substrate for magnetic recording medium, its manufacturing method, and magnetic recording medium
IE84064B1 (en) Substrate for a perpendicular magnetic recording medium, a perpendicular magnetic recording medium, and manufacturing methods therefor
JP2007164963A (en) Substrate for magnetic recording medium, fabrication method thereof and magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A02 Decision of refusal

Effective date: 20071218

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20080421

Free format text: JAPANESE INTERMEDIATE CODE: A523