JP2006127736A - Vertical magnetic recording medium and vertical magnetic recording device - Google Patents

Vertical magnetic recording medium and vertical magnetic recording device Download PDF

Info

Publication number
JP2006127736A
JP2006127736A JP2005282479A JP2005282479A JP2006127736A JP 2006127736 A JP2006127736 A JP 2006127736A JP 2005282479 A JP2005282479 A JP 2005282479A JP 2005282479 A JP2005282479 A JP 2005282479A JP 2006127736 A JP2006127736 A JP 2006127736A
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
soft magnetic
recording medium
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005282479A
Other languages
Japanese (ja)
Inventor
Nobuaki Mukai
展彰 迎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2005282479A priority Critical patent/JP2006127736A/en
Publication of JP2006127736A publication Critical patent/JP2006127736A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a vertical magnetic recording medium at high productivity by forming a soft magnetic layer to be provided between a substrate and vertical magnetic recording layer of the recording medium in such a manner that rapid formation of thick films is possible and spike noise and soft magnetic layer noise are reduced. <P>SOLUTION: The vertical magnetic recording medium is obtained by successively forming a crystalline Ni-P alloy plating layer 2, a soft magnetic backing layer 3 composed of a plating layer of an Ni-Fe-B alloy, a soft magnetic buffer layer 4 composed of two layers of an Ni-Fe alloy and Co-Fe, an antiferromagnetic layer 5, a base layer 6, and a vertical magnetic recording layer 7, from the lower side, on a substrate 1 provided with an amorphous Ni-P alloy plating layer 1b on an aluminum sheet or aluminum alloy sheet. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、軟磁性裏打ち層に起因するノイズ、特にスパイクノイズの抑制が可能で、ハードディスクや磁気テープなどに好適に適用できる垂直磁気記録媒体およびそれを用いた垂直磁気記録装置に関する。   The present invention relates to a perpendicular magnetic recording medium that can suppress noise caused by a soft magnetic backing layer, particularly spike noise, and can be suitably applied to a hard disk, a magnetic tape, and the like, and a perpendicular magnetic recording apparatus using the perpendicular magnetic recording medium.

従来、ハードディスク装置(HDD)等の磁気記録装置に搭載されている磁気記録媒体として、記録媒体の表面に平行な方向、すなわち磁気記録層の面内方向に磁化方向を固定してデータを記録する面内記録方式が使用されている。この面内記録方式においては、単位面積あたりの記録密度をさらに高めることが求められ、保磁力を高めることで対応してきた。しかし、保磁力が高くなり過ぎるとリングヘッドを用いるデータの書き込みが不可能になるなどの弊害が認められる。   Conventionally, as a magnetic recording medium mounted on a magnetic recording device such as a hard disk drive (HDD), data is recorded with a magnetization direction fixed in a direction parallel to the surface of the recording medium, that is, in an in-plane direction of the magnetic recording layer. The in-plane recording method is used. In this in-plane recording method, it is required to further increase the recording density per unit area, and it has been dealt with by increasing the coercive force. However, if the coercive force becomes too high, there are problems such as data writing using a ring head becoming impossible.

一方、単磁極ヘッドを用いて、記録媒体の表面に垂直な方向にデータを記録する垂直磁気記録方式においては、高保磁力を有する記録媒体であっても記録することが可能であり、面内記録方式よりも高い記録密度が得られる。そのため垂直磁気記録方式を用いる記録媒体の研究開発も従来より行われている。垂直磁気記録媒体としては、記録媒体の基体上に軟磁性層とその上に垂直磁気記録層との2層を設けてなる構造の垂直磁気記録媒体が用いられている。この2層構造の垂直磁気記録媒体においては、垂直磁気記録層の10倍以上の厚さのパーマロイ系結晶質材料やCoZrNbなどの非晶質材料からなる軟磁性層をスパッタリング法を用いて設けているが、軟磁性層中に形成される磁壁から磁束が漏洩することに起因するスパイクノイズが多発する欠点を有している。   On the other hand, in the perpendicular magnetic recording method in which data is recorded in a direction perpendicular to the surface of the recording medium using a single magnetic pole head, it is possible to record even a recording medium having a high coercive force. A recording density higher than that of the method can be obtained. For this reason, research and development of recording media using the perpendicular magnetic recording method has been conventionally performed. As the perpendicular magnetic recording medium, a perpendicular magnetic recording medium having a structure in which a soft magnetic layer and a perpendicular magnetic recording layer are provided on a recording medium substrate is used. In this perpendicular magnetic recording medium having a two-layer structure, a soft magnetic layer made of an amorphous material such as a permalloy-based crystalline material or CoZrNb having a thickness 10 times or more that of the perpendicular magnetic recording layer is provided by a sputtering method. However, there is a drawback that spike noise frequently occurs due to leakage of magnetic flux from the domain wall formed in the soft magnetic layer.

上記のスパイクノイズの発生を抑制することを目的として、以下に示すような技術が提案されている。例えば、基体と非晶質のCo合金からなる軟磁性層の間に、Coを含むMn合金またはIrを含むMn合金からなる反強磁性薄膜を形成し、交換結合を利用して軟磁性層の磁化を固定することにより、軟磁性層における磁壁形成を阻止してスパイクノイズの発生を抑制する方法が開示されている(例えば、特許文献1参照)。この方法においては、基体上にスパッタリング法を用いて反強磁性薄膜層、軟磁性層、磁気記録層などを形成しているが、軟磁性層の厚さは反強磁性薄膜層や磁気記録層などの厚さの10倍近くまで厚く形成する必要があり、長時間のスパッタリング処理が余儀なくされ、生産性に乏しい。   In order to suppress the occurrence of spike noise, the following techniques have been proposed. For example, an antiferromagnetic thin film made of a Mn alloy containing Co or a Mn alloy containing Ir is formed between a base and a soft magnetic layer made of an amorphous Co alloy, and the soft magnetic layer is made of exchange coupling. A method of suppressing the occurrence of spike noise by fixing the magnetization to prevent the domain wall formation in the soft magnetic layer is disclosed (for example, see Patent Document 1). In this method, an antiferromagnetic thin film layer, a soft magnetic layer, a magnetic recording layer, and the like are formed on a substrate using a sputtering method. The thickness of the soft magnetic layer may be an antiferromagnetic thin film layer or a magnetic recording layer. For example, it is necessary to form a thick film up to nearly 10 times the thickness of the film, which necessitates a long-time sputtering process, resulting in poor productivity.

また、垂直磁化膜と裏打ち軟磁性層の間に垂直磁化膜から100nm以下の距離を隔てて反強磁性層を設け、垂直磁化膜と反強磁性層の間に非磁性中間層を配置し、垂直磁化膜と反強磁性層の間に非磁性中間層と強磁性層(軟磁性膜)からなる層を設けることにより、裏打ち軟磁性層から発生するスパイク状ノイズを低減する方法が開示されている(例えば特許文献2参照)。この方法においても、これらの各層はスパッタリング法を用いて形成されるが、軟磁性層の厚さは各層の厚さの10倍以上の厚さで形成する必要があり、長時間のスパッタリング処理が余儀なくされ、生産性に乏しい。
特許公開公報 特開2001−291224号公報 特許公開公報 特開2002−298326号公報
Further, an antiferromagnetic layer is provided between the perpendicular magnetization film and the backing soft magnetic layer at a distance of 100 nm or less from the perpendicular magnetization film, and a nonmagnetic intermediate layer is disposed between the perpendicular magnetization film and the antiferromagnetic layer, Disclosed is a method for reducing spike noise generated from a backing soft magnetic layer by providing a layer composed of a nonmagnetic intermediate layer and a ferromagnetic layer (soft magnetic film) between a perpendicular magnetization film and an antiferromagnetic layer. (For example, refer to Patent Document 2). Even in this method, each of these layers is formed by using a sputtering method. However, the thickness of the soft magnetic layer must be 10 times or more the thickness of each layer, and a long-time sputtering process is required. Forced and poor productivity.
Japanese Patent Laid-Open No. 2001-291224 Japanese Patent Laid-Open No. 2002-298326

本発明においては、記録媒体の基板と垂直磁気記録層の間に設ける軟磁性層を、短時間で厚く皮膜形成が可能で、且つスパイクノイズや軟磁性層ノイズが低減され、高生産性で得ることができる垂直磁気記録媒体及びそれを用いた垂直磁気記録装置を提供することを目的とする。   In the present invention, the soft magnetic layer provided between the substrate of the recording medium and the perpendicular magnetic recording layer can be formed thick in a short time, and spike noise and soft magnetic layer noise are reduced, resulting in high productivity. An object of the present invention is to provide a perpendicular magnetic recording medium that can be used, and a perpendicular magnetic recording apparatus using the same.

本発明の目的を達成する本発明の垂直磁気記録媒体は、軟磁性裏打ち層を介して垂直磁気記録層を有する垂直磁気記録媒体であって、基板と、無電解めっき法によって成膜するNi−Fe−B合金めっきからなる前記軟磁性裏打ち層と、該軟磁性裏打ち層上に成膜してなる反強磁性層と、該反強磁性層上にスパッタ法を用いて成膜してなる下地層と、該下地層上にスパッタ法を用いて成膜してなる垂直磁気記録層とを備えてなることを特徴とするものである。上記構成により、軟磁性裏打ち層を、無電解めっき法を用いて短時間で厚膜に成膜できるので、従来のスパッタ法のみで厚膜の軟磁性裏打ち層を設ける場合に比べて高生産性で垂直磁気記録媒体を製造することができ、さらにその上に反強磁性を設けることによりスパイクノイズの発生を抑制することができる。上記構成の垂直磁気記録媒体において、前記反強磁性層と垂直磁気記録層との間に成膜してなる下地層は単層又は多層構造何れでもよい。下地層は、その上に形成する垂直記録層の垂直磁化膜化を促進するものであり、スパッタ法を用いて正確な層厚に形成するのが望ましい。   The perpendicular magnetic recording medium of the present invention that achieves the object of the present invention is a perpendicular magnetic recording medium having a perpendicular magnetic recording layer via a soft magnetic underlayer, and is formed by forming a Ni-- film formed by electroless plating with a substrate. The soft magnetic underlayer made of Fe-B alloy plating, an antiferromagnetic layer formed on the soft magnetic underlayer, and a lower layer formed on the antiferromagnetic layer by sputtering. It is characterized by comprising a base layer and a perpendicular magnetic recording layer formed on the base layer by sputtering. With the above configuration, the soft magnetic backing layer can be formed into a thick film in a short time using the electroless plating method. Therefore, the productivity is higher than when a thick soft magnetic backing layer is provided only by the conventional sputtering method. Thus, a perpendicular magnetic recording medium can be manufactured, and the occurrence of spike noise can be suppressed by providing antiferromagnetism thereon. In the perpendicular magnetic recording medium having the above structure, the underlayer formed between the antiferromagnetic layer and the perpendicular magnetic recording layer may be either a single layer or a multilayer structure. The underlayer promotes the formation of a perpendicular magnetic film on the perpendicular recording layer formed thereon, and is desirably formed with an accurate layer thickness using a sputtering method.

上記構成の垂直磁気記録媒体において、Ni−Fe−B合金めっきからなる軟磁性裏打ち層におけるFeの含有量が30〜50重量%の範囲にすることによって、飽和磁束密度を1.2T以上、保持力を5Oe以下とすることが可能となり、結晶構造を結晶質とすることができる。Feの含有量が30重量%未満であると飽和磁束密度が1.2T未満であり、50重量%を超えると飽和磁束密度は問題ないが、製造上めっき制御が困難であるので、30〜50重量%の範囲が好ましい。また前記軟磁性裏打ち層は、研磨後の厚さが100〜1000nmであり、表面粗さRa(JIS B 0601)が0.5nm以下にすることが望ましい。100nm未満であると十分な研磨精度の確保が困難になり、1000nmを超えても記録密度向上の利点が向上せず、経済的に有利でなくなる。   In the perpendicular magnetic recording medium having the above configuration, the saturation magnetic flux density is maintained at 1.2 T or more by setting the Fe content in the soft magnetic underlayer made of Ni—Fe—B alloy plating in the range of 30 to 50% by weight. The force can be 5 Oe or less, and the crystal structure can be made crystalline. If the Fe content is less than 30% by weight, the saturation magnetic flux density is less than 1.2T, and if it exceeds 50% by weight, there is no problem with the saturation magnetic flux density. A range of% by weight is preferred. The soft magnetic backing layer preferably has a thickness after polishing of 100 to 1000 nm and a surface roughness Ra (JIS B 0601) of 0.5 nm or less. If it is less than 100 nm, it will be difficult to ensure sufficient polishing accuracy, and if it exceeds 1000 nm, the advantage of improving the recording density will not be improved and it will not be economically advantageous.

さらに、上記構成の垂直磁気記録媒体において、前記基板として、アルミニウム基板に非晶質Ni−P合金めっき層を形成した基板を採用することができる。基板は、非磁性体であれば、金属、樹脂、ガラス、セラミックス等その材質は限定されないが、アルミニウム基板に非晶質Ni−P合金めっき層を形成した基板を採用することによって、無電解めっき法により形成される軟磁性裏打ち層と構造が共通しためっき装置やめっき廃液処理設備を利用できる利点がある。   Furthermore, in the perpendicular magnetic recording medium having the above configuration, a substrate in which an amorphous Ni—P alloy plating layer is formed on an aluminum substrate can be adopted as the substrate. As long as the substrate is a non-magnetic material, the material such as metal, resin, glass, ceramics is not limited, but by adopting a substrate in which an amorphous Ni-P alloy plating layer is formed on an aluminum substrate, electroless plating is possible. There is an advantage that a plating apparatus and plating waste liquid treatment equipment having a common structure with the soft magnetic backing layer formed by the method can be used.

さらに、上記構成の垂直磁気記録媒体において、前記基板と前記軟磁性裏打ち層との間に結晶質Ni−P合金めっき層を設けることが望ましい。その場合、前記結晶質Ni−P合金めっき層中のPの含有量が5%以下であることが望ましい。基板と前記軟磁性バッファー層との間に結晶質Ni−P合金めっき層を設けることによって、前記軟磁性裏打ち層の析出速度が向上し、生産性を高めることができる。結晶質Ni−P合金めっき層中のPの含有量が5%を超えると、Ni−P合金が非晶質化しNi−Fe−B合金の析出速度が低下する。   Furthermore, in the perpendicular magnetic recording medium having the above configuration, it is desirable to provide a crystalline Ni—P alloy plating layer between the substrate and the soft magnetic underlayer. In that case, the content of P in the crystalline Ni—P alloy plating layer is desirably 5% or less. By providing a crystalline Ni—P alloy plating layer between the substrate and the soft magnetic buffer layer, the deposition rate of the soft magnetic backing layer can be improved and the productivity can be increased. If the content of P in the crystalline Ni—P alloy plating layer exceeds 5%, the Ni—P alloy becomes amorphous and the precipitation rate of the Ni—Fe—B alloy decreases.

さらに、上記構成の垂直磁気記録媒体において、前記軟磁性裏打ち層と反強磁性層との間に、軟磁性バッファー層を設けることができる。軟磁性バッファー層を設けることによって、前記反強磁性層の結晶成長及び結晶配向制御ができ、一方向磁気異方性を誘導することに寄与することができる。前記軟磁性バッファー層は、特に限定されるものではないが、前記性能を発揮できる軟磁性材料の単層、あるいは積層構成が採用でき、積層構成としては、下層のNi−Fe合金層と上層のCo−Fe合金層との2層構造が好適に採用できる。
以上のような構成の垂直磁気記録媒体を用いて、生産性に優れスパイクノイズや軟磁性層ノイズが低減された垂直磁気記録装置を構成することができる。
Furthermore, in the perpendicular magnetic recording medium having the above configuration, a soft magnetic buffer layer can be provided between the soft magnetic underlayer and the antiferromagnetic layer. By providing a soft magnetic buffer layer, crystal growth and crystal orientation control of the antiferromagnetic layer can be performed, which can contribute to inducing unidirectional magnetic anisotropy. The soft magnetic buffer layer is not particularly limited, but a single layer of a soft magnetic material capable of exhibiting the above performance or a laminated structure can be adopted. The laminated structure includes a lower Ni—Fe alloy layer and an upper layer. A two-layer structure with a Co—Fe alloy layer can be suitably employed.
Using the perpendicular magnetic recording medium configured as described above, a perpendicular magnetic recording apparatus with excellent productivity and reduced spike noise and soft magnetic layer noise can be configured.

本発明の垂直磁気記録媒体は、記録媒体の基板と垂直磁気記録層の間に設ける軟磁性裏打ち層を、無電解めっき法を用いて短時間で厚膜に成膜して構成するので、スパッタ法のみで厚膜の軟磁性裏打ち層を設ける場合に比べて高生産性で垂直磁気記録媒体を得ることができる。特に、アルミニウム板またはアルミニウム合金板に湿式皮膜形成法である無電解合金めっきにより表面硬度確保のためのNi−P合金めっき層を形成させた基板を用いる場合は、引き続いて皮膜形成法を変更することなく、湿式皮膜形成法である無電解合金めっきにより軟磁性裏打ち層を形成させるので、極めて効率がよく高生産性で皮膜形成することが可能となる。また、無電解めっき法を用いて形成した軟磁性裏打ち層の上にスパッタ法を用いて軟磁性バッファー層を設け、さらにその上に反強磁性層を設けることにより、スパイクノイズの発生を抑制することができる。   In the perpendicular magnetic recording medium of the present invention, a soft magnetic backing layer provided between the substrate of the recording medium and the perpendicular magnetic recording layer is formed by forming a thick film in a short time using an electroless plating method. A perpendicular magnetic recording medium can be obtained with high productivity as compared with the case where a thick soft magnetic backing layer is provided only by the method. In particular, when using a substrate on which an Ni-P alloy plating layer for ensuring surface hardness is formed by electroless alloy plating, which is a wet film formation method, on an aluminum plate or an aluminum alloy plate, the film formation method is subsequently changed. Without forming the soft magnetic backing layer by electroless alloy plating, which is a wet film forming method, it is possible to form a film with extremely high efficiency and high productivity. In addition, by providing a soft magnetic buffer layer using a sputtering method on a soft magnetic backing layer formed using an electroless plating method, and further providing an antiferromagnetic layer thereon, the occurrence of spike noise is suppressed. be able to.

以下、本発明の垂直磁気記録媒体とそれを備えた磁気記録装置の一実施形態について図面に基づき説明する。なお、これらの実施形態は発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り本発明を限定するものではない。   Hereinafter, an embodiment of a perpendicular magnetic recording medium of the present invention and a magnetic recording apparatus including the perpendicular magnetic recording medium will be described with reference to the drawings. These embodiments are specifically described for better understanding of the gist of the invention, and do not limit the present invention unless otherwise specified.

図1は本発明の垂直磁気記録媒体の実施例の一例を示す、概略断面図である。垂直記録媒体10は、基板1上に図面上で下から順に、基板により選択的に設ける結晶質Ni−P合金めっき層2、軟磁性裏打ち層3、Ni−Fe合金層4cおよびCo−Fe合金層4bの2層からなる軟磁性バッファー層4、反強磁性層5、下地層6、垂直磁気記録層7、および保護膜8、潤滑膜9を形成して構成される。図2は本発明の垂直磁気記録媒体の実施例の他の一例において、基板としてアルミニウム基板からなる基板1aに非晶質Ni−P合金めっき層1bを形成したものを用いた場合を示す概略断面図である。   FIG. 1 is a schematic sectional view showing an example of an embodiment of the perpendicular magnetic recording medium of the present invention. The perpendicular recording medium 10 includes a crystalline Ni—P alloy plating layer 2, a soft magnetic backing layer 3, a Ni—Fe alloy layer 4 c, and a Co—Fe alloy that are selectively provided on the substrate 1 in order from the bottom on the drawing. A soft magnetic buffer layer 4, an antiferromagnetic layer 5, an underlayer 6, a perpendicular magnetic recording layer 7, a protective film 8, and a lubricating film 9 are formed. FIG. 2 is a schematic cross-sectional view showing another example of the embodiment of the perpendicular magnetic recording medium of the present invention, in which a substrate 1a made of an aluminum substrate and an amorphous Ni—P alloy plating layer 1b formed thereon is used. FIG.

基板1としては、磁気ディスク用に非磁性の金属や樹脂からなる円板またはその上に他の非磁性の皮膜を形成させたものがあげられる。非磁性の金属や樹脂からなる円板としては、アルミニウム、チタン、またはそれらを主成分とする合金、ガラス、シリコン、カーボン、セラミックス、樹脂、またはこれらの2種以上からなる複合体からなる円板を用いることができる。これらの円板上に形成させる皮膜は、高温に加熱しても磁性を帯びず、導電性を有し、熱伝導性に優れ、研磨などの機械加工が容易に実施可能で、かつ取扱に際して疵が付きにくい適度な硬度を有している非磁性皮膜が用いられ、Ni−P、Ni−Ta、Ni−Ti、Ni−Alなどの合金からなる皮膜があり、スパッタ法、蒸着法、めっき法などを用いて成膜することができる。基板1aに形成する非晶質Ni−P合金めっき層1bも非磁性皮膜である。   Examples of the substrate 1 include a disk made of a nonmagnetic metal or resin for a magnetic disk or another nonmagnetic film formed thereon. As a disk made of a nonmagnetic metal or resin, a disk made of aluminum, titanium, an alloy mainly containing them, glass, silicon, carbon, ceramics, resin, or a composite made of two or more of these. Can be used. Films formed on these disks do not become magnetized even when heated to high temperatures, have electrical conductivity, have excellent thermal conductivity, can be easily machined such as polishing, and must be handled easily. A non-magnetic film having an appropriate hardness that is difficult to stick to is used, and there is a film made of an alloy such as Ni-P, Ni-Ta, Ni-Ti, Ni-Al, a sputtering method, a vapor deposition method, and a plating method. The film can be formed using, for example. The amorphous Ni—P alloy plating layer 1b formed on the substrate 1a is also a nonmagnetic film.

本発明においては、軟磁性裏打ち層3を湿式皮膜形成法である無電解めっき法により形成することを特徴としている。そのため、同様に湿式皮膜形成法を用いて磁気ディスク基板として広汎に製造されている、図2に示すようなアルミニウム基板1a(アルミニウム合金板も含む、以下同様)上に非晶質Ni−P合金めっき層1bを形成した基板1を用いると、構造が共通しためっき装置やめっき廃液処理設備等を利用できるので、生産性の観点から好ましい。   The present invention is characterized in that the soft magnetic backing layer 3 is formed by an electroless plating method which is a wet film forming method. Therefore, an amorphous Ni-P alloy is similarly formed on an aluminum substrate 1a (including an aluminum alloy plate, hereinafter the same) as shown in FIG. 2, which is also widely manufactured as a magnetic disk substrate using the wet film formation method. Use of the substrate 1 on which the plating layer 1b is formed is preferable from the viewpoint of productivity because a plating apparatus or plating waste liquid treatment equipment having a common structure can be used.

また、基板1として非晶質Ni−P合金めっき層1bを形成したアルミニウム板またはアルミニウム合金板1aを用いる場合は、非晶質Ni−P合金めっき層1b上に無電解めっき法を用いて薄い結晶質Ni−P合金めっき層2を設けることが好ましい。この結晶質Ni−P合金めっき層2を設けない場合、その上層に無電解めっき法を用いてNi−Fe−B合金めっきからなる軟磁性裏打ち層3を形成する際に、軟磁性裏打ち層3の析出速度が極端に低下してしまい、生産性の観点から好ましくない。また、この結晶質Ni−P合金めっきを適用する場合、めっき皮膜中のPの含有量を5%以下にすることが好ましく、Pの含有量が5%を超えるとNi−P合金が非晶質化し、Ni−Fe−B合金の析出速度が極端に低下する。めっき皮膜中のPの含有量を5%以下とするためには、Ni−P合金めっきにおいてめっき浴の温度を替えて合金の析出速度を加減したり、めっき浴のpHを変化させることにより適宜調整することができる。この結晶質Ni−P合金めっき層2の厚さは100nm以下であることが好ましい。100nmを超えるとその上に形成する Ni−Fe−B合金めっき皮膜の密着性が低下して剥離しやすくなる。なお、ここでいう非晶質Ni−P合金めっき層とは、透過電子顕微鏡による電子回折像においてハローパターンが認められるものを指し、それ以外のものを結晶質Ni−P合金めっき層という。   When an aluminum plate or an aluminum alloy plate 1a on which an amorphous Ni—P alloy plating layer 1b is formed as the substrate 1, an electroless plating method is used to thin the amorphous Ni—P alloy plating layer 1b. It is preferable to provide a crystalline Ni—P alloy plating layer 2. When the crystalline Ni—P alloy plating layer 2 is not provided, when the soft magnetic backing layer 3 made of Ni—Fe—B alloy plating is formed thereon using an electroless plating method, the soft magnetic backing layer 3 is formed. The deposition rate is extremely lowered, which is not preferable from the viewpoint of productivity. In addition, when this crystalline Ni—P alloy plating is applied, the P content in the plating film is preferably set to 5% or less, and when the P content exceeds 5%, the Ni—P alloy becomes amorphous. The precipitation rate of the Ni—Fe—B alloy is extremely reduced. In order to make the content of P in the plating film 5% or less, the temperature of the plating bath is changed in Ni-P alloy plating, and the precipitation rate of the alloy is adjusted or the pH of the plating bath is changed appropriately. Can be adjusted. The thickness of the crystalline Ni—P alloy plating layer 2 is preferably 100 nm or less. If it exceeds 100 nm, the adhesion of the Ni—Fe—B alloy plating film formed on the Ni film decreases and it becomes easy to peel off. The amorphous Ni—P alloy plating layer referred to here refers to a layer in which a halo pattern is observed in an electron diffraction image by a transmission electron microscope, and the other is referred to as a crystalline Ni—P alloy plating layer.

一般に、垂直磁気記録媒体の場合、磁気ヘッドが該垂直磁気記録媒体に書き込まれた信号を良好に読みとるためには、磁気ヘッドと該垂直磁気記録媒体の空隙は小さい方が好ましい。特に、磁気ヘッドが垂直磁気記録媒体上を浮上しながら記録再生する場合には、その浮上量は出きるだけ小さい方が好ましい。さらに、磁気ヘッドを浮上させずに垂直磁気記録媒体の表面に接触させて記録再生することができればより好ましい。したがって、垂直磁気記録媒体用の基体としては、優れた表面平滑性を有するものが好ましく、さらには、基体の表裏両面の平行性、および基体の円周方向のうねりが適切に制御されたものが好ましい。   In general, in the case of a perpendicular magnetic recording medium, it is preferable that the gap between the magnetic head and the perpendicular magnetic recording medium is small in order for the magnetic head to satisfactorily read a signal written on the perpendicular magnetic recording medium. In particular, when the magnetic head performs recording / reproduction while flying above the perpendicular magnetic recording medium, the flying height is preferably as small as possible. Further, it is more preferable that recording / reproduction can be performed by bringing the magnetic head into contact with the surface of the perpendicular magnetic recording medium without flying. Accordingly, the substrate for the perpendicular magnetic recording medium is preferably one having excellent surface smoothness, and further, one in which the parallelism of the front and back surfaces of the substrate and the circumferential waviness of the substrate are appropriately controlled. preferable.

基板1上に設ける軟磁性裏打ち層3は、ヘッド系磁気回路の一部として機能するため、膜厚は100〜1000nmのように厚く堆積し、その後表面を研磨して用いられる。そのため、生産性の観点からはスパッタ法、蒸着法などの皮膜形成方法を用いるよりも無電解めっきなどの湿式皮膜形成法を用いる方が有利である。特に、基板1としてNi−P合金めっき層を形成したアルミニウム板を用いる場合は、上記のように、構造が共通しためっき装置や、共通のめっき廃液処理設備等を利用できるのでより有利になる。   Since the soft magnetic backing layer 3 provided on the substrate 1 functions as a part of the head magnetic circuit, the soft magnetic backing layer 3 is deposited as thick as 100 to 1000 nm, and then the surface is polished for use. Therefore, from the viewpoint of productivity, it is more advantageous to use a wet film forming method such as electroless plating than to use a film forming method such as sputtering or vapor deposition. In particular, when an aluminum plate on which a Ni-P alloy plating layer is formed is used as the substrate 1, it is more advantageous because a plating apparatus having a common structure, a common plating waste liquid treatment facility, and the like can be used as described above.

軟磁性裏打ち層3としては、スパッタ法によって成膜するNi−Fe、Ni−Fe−Co、Co−Zr−Nb、Fe−Al−Si、Co−Ta−Zr、Fe−Ta−C、Fe−Nなどの合金を用いることができるが、本発明においては、湿式皮膜形成法である無電解めっき法を用いてBを還元剤とするNi−Fe−B合金めっき層を軟磁性裏打ち層3として適用する。基板1に非晶質Ni−P合金めっき層を形成したアルミニウム板を用いる場合は、非晶質Ni−P合金めっき層に無電解めっき法を用いて薄い結晶質Ni−P合金めっき層2を設け、その上に無電解めっき法を用いてNi−Fe−B合金めっき層を形成する。   As the soft magnetic backing layer 3, Ni—Fe, Ni—Fe—Co, Co—Zr—Nb, Fe—Al—Si, Co—Ta—Zr, Fe—Ta—C, Fe— An alloy such as N can be used, but in the present invention, a Ni—Fe—B alloy plating layer using B as a reducing agent by an electroless plating method which is a wet film forming method is used as the soft magnetic backing layer 3. Apply. When an aluminum plate having an amorphous Ni-P alloy plating layer formed on the substrate 1 is used, a thin crystalline Ni-P alloy plating layer 2 is formed on the amorphous Ni-P alloy plating layer by using an electroless plating method. And a Ni—Fe—B alloy plating layer is formed thereon using an electroless plating method.

Ni−Fe−B合金めっき層を軟磁性裏打ち層3として適用する場合、Ni−Fe−B合金めっき層においてFeの含有量を30〜50重量%とすることにより、飽和磁束密度を1.2T以上、保磁力を5Oe以下とすることが可能となり、結晶構造は結晶質となる。Ni−Fe−B合金めっきにおいて、Feの含有量を上記の範囲とするためには、合金めっきにおいてめっき浴の温度を変えてめっき層の析出速度を加減したり、めっきのpHを変化させて適宜調整する。一方、Ni−Fe−B合金めっき層からなる軟磁性裏打ち層において、Niの含有率が68%以下であると、飽和磁束密度が1.2T以上となり良好である。したがって、Ni−Fe−B合金めっき層におけるB量は、Ni量及びFe量が共に上記条件を満たしておれば特に限定されないが、B量はNi量及びFe量と比べてかなり少ない量が望ましく、例えば2重量%以下でよい。   When the Ni—Fe—B alloy plating layer is applied as the soft magnetic backing layer 3, the saturation magnetic flux density is set to 1.2 T by setting the Fe content in the Ni—Fe—B alloy plating layer to 30 to 50% by weight. As described above, the coercive force can be 5 Oe or less, and the crystal structure becomes crystalline. In Ni-Fe-B alloy plating, in order to keep the Fe content within the above range, the plating bath temperature is changed by changing the plating bath temperature in the alloy plating, or the plating pH is changed. Adjust as appropriate. On the other hand, in the soft magnetic backing layer made of the Ni—Fe—B alloy plating layer, when the Ni content is 68% or less, the saturation magnetic flux density is 1.2 T or more, which is favorable. Therefore, the amount of B in the Ni—Fe—B alloy plating layer is not particularly limited as long as both the amount of Ni and the amount of Fe satisfy the above conditions, but the amount of B is preferably much smaller than the amounts of Ni and Fe. For example, it may be 2% by weight or less.

図5は、Ni−Fe−B合金めっき層からなる軟磁性裏打ち層におけるNi量と飽和磁束密度の関係を調べるために行った実験結果を示すグラフであり、縦軸に飽和磁束密度(T)を横軸にNi量(重量パーセント)を示している。該実験は、軟磁性裏打ち層が表1に示す配合成分を有する10個の試料について、Ni含有量が低い順に行なったものである。該グラフから明らかなように、Niの含有率が高くなるつれて飽和磁束密度(T)が低下し、Niの含有率が68%以下であると、飽和磁束密度が1.2T以上となる。
FIG. 5 is a graph showing the results of an experiment conducted to examine the relationship between the amount of Ni and the saturation magnetic flux density in the soft magnetic backing layer composed of the Ni—Fe—B alloy plating layer, and the vertical axis represents the saturation magnetic flux density (T). The amount of Ni (weight percent) is shown on the horizontal axis. The experiment was conducted on the 10 samples having the blending components shown in Table 1 in the soft magnetic underlayer in ascending order of Ni content. As is apparent from the graph, the saturation magnetic flux density (T) decreases as the Ni content increases, and when the Ni content is 68% or less, the saturation magnetic flux density is 1.2 T or more.

上記実験で使用した各試料は、アルミニウム基板に非晶質Ni−P合金めっき層を有する基板に、結晶質Ni−合金めっき層を形成し、その上にNi−Fe−B合金めっき層からなる軟磁性裏打ち層を形成したしたものであり、各層の条件は以下に示す通りである。
(1)基板の厚み:
アルミニウム基板1.27mm
非晶質Ni−P合金めっき層(P含有量12重量%)11μm
(2)結晶質Ni−Pめっき層:
P含有率3重量%、厚み0.05μm
(3)軟磁性裏打ち層の厚み: 0.5μm
また、飽和磁束密度の測定条件は、以下のとおりである。
試料サイズ: 10mm角
最大印加磁場:5KOe
スイープ速度:20分/ループ
Each sample used in the above experiment is formed by forming a crystalline Ni-alloy plating layer on a substrate having an amorphous Ni-P alloy plating layer on an aluminum substrate, and forming a Ni-Fe-B alloy plating layer thereon. A soft magnetic backing layer is formed, and the conditions of each layer are as follows.
(1) Substrate thickness:
Aluminum substrate 1.27mm
Amorphous Ni-P alloy plating layer (P content 12% by weight) 11 μm
(2) Crystalline Ni-P plating layer:
P content 3% by weight, thickness 0.05μm
(3) Thickness of soft magnetic backing layer: 0.5 μm
The measurement conditions for the saturation magnetic flux density are as follows.
Sample size: 10 mm square Maximum applied magnetic field: 5 KOe
Sweep speed: 20 minutes / loop

これらの軟磁性裏打ち層3の厚さは研磨後の厚さで100〜1000nmであることが好ましく、300〜500nmであることがより好ましい。100nm未満であると、研磨に際して十分な研磨精度の確保が困難になり、1000nmを超えても記録密度向上の利点が向上せず、経済的に有利でなくなる。   The thickness of the soft magnetic backing layer 3 is preferably 100 to 1000 nm, more preferably 300 to 500 nm, as a thickness after polishing. If it is less than 100 nm, it will be difficult to ensure sufficient polishing accuracy during polishing, and if it exceeds 1000 nm, the advantage of improving the recording density will not be improved and it will not be economically advantageous.

また、これらの軟磁性裏打ち層3の表面粗さRa(JIS B 0601)は0.5nm以下とする必要がある。表面粗さRa(JIS B 0601)が0.5nmを超えるとノイズパワースペクトル中に観測されるノイズパワーが増加するばかりではなく、ヘッドクラッシュが生じやすくなる。そのためには、基板1として非晶質Ni−P合金めっき層を形成したアルミニウム板を用いる場合は、非晶質Ni−P合金めっき後に表面粗さRa(JIS B 0601)が0.2nm以下となるように表面を研磨した非晶質Ni−P合金めっき層上に結晶質Ni−P合金めっき層を100nm以下の厚さで形成し、その上にNi−Fe−B合金めっき層を上記の厚さで形成した後、表面を再研磨することにより表面粗さRa(JIS B 0601)を0.5nm以下とすることができる。また、アルミニウム板上に非晶質Ni−P合金めっき層を形成した後に行う表面研磨を省略して結晶質Ni−P合金めっき層およびNi−Fe−B合金めっき層を形成させた後、表面研磨を行って表面粗さRa(JIS B 0601)を0.5nm以下とすることもできる。   Further, the surface roughness Ra (JIS B 0601) of these soft magnetic backing layers 3 needs to be 0.5 nm or less. When the surface roughness Ra (JIS B 0601) exceeds 0.5 nm, not only the noise power observed in the noise power spectrum increases, but also head crashes easily occur. For this purpose, when an aluminum plate having an amorphous Ni—P alloy plating layer is used as the substrate 1, the surface roughness Ra (JIS B 0601) is 0.2 nm or less after the amorphous Ni—P alloy plating. A crystalline Ni—P alloy plating layer having a thickness of 100 nm or less is formed on the amorphous Ni—P alloy plating layer whose surface is polished so that the Ni—Fe—B alloy plating layer is formed thereon. After forming with the thickness, the surface roughness Ra (JIS B 0601) can be reduced to 0.5 nm or less by repolishing the surface. Further, the surface polishing after the formation of the amorphous Ni-P alloy plating layer on the aluminum plate is omitted, and the crystalline Ni-P alloy plating layer and the Ni-Fe-B alloy plating layer are formed. The surface roughness Ra (JIS B 0601) may be 0.5 nm or less by polishing.

一般に、垂直磁気記録媒体においては、基板上に軟磁性層を設けた後にその上に反強磁性層を設ける。反強磁性層は、軟磁性層との交換結合作用により、軟磁性層にブロッホ磁壁を形成させずにスパイクノイズを抑制するために設ける層である。特に軟磁性裏打ち層の磁化を基板(円板)の径方向に固定し、残留磁化状態で単磁区化させることは、ブロッホ磁壁からの漏洩磁束を完全に排除できる結果スパイクノイズの発生を抑制できるため好ましい。軟磁性層との交換結合により大きな一方向磁気異方性を誘導するために、反強磁性層の結晶成長ならびに結晶配向制御を目的として、軟磁性層と反強磁性層の間に軟磁性バッファー層を設けてもよい。本発明においては、上記のように基板1上に結晶質Ni−P合金めっき層2を形成したその上に軟磁性裏打ち層3としてNi−Fe−B合金めっき層を形成し、その上に軟磁性バッファー層4を形成する。軟磁性バッファー層4としては、特に限定するものではないが、反強磁性層の構造をめっき軟磁性層の構造に依存せずに制御できるような軟磁性材料、また、軟磁性バッファー層4の上に形成する反強磁性層5との組み合わせにより大きな一方向磁気異方性を誘導できるような軟磁性材料、あるいはそれらの積層構成を用いてもよい。具体的には、Co−Fe合金からなる単層、または図1に示すように基板側からNi−Fe合金4cとCo−Fe合金4bからなる2層を用いることが好ましい。軟磁性バッファー層4の厚さは生産性の観点から1〜20nmであることが好ましい。軟磁性バッファー層4の形成には湿式皮膜形成法、乾式皮膜形成法のいずれも適用できるが、膜厚の厳密制御の観点からは、スパッタリング法等の乾式皮膜形成が好ましい。   In general, in a perpendicular magnetic recording medium, a soft magnetic layer is provided on a substrate and then an antiferromagnetic layer is provided thereon. The antiferromagnetic layer is a layer provided to suppress spike noise without forming a Bloch domain wall in the soft magnetic layer by an exchange coupling action with the soft magnetic layer. In particular, fixing the magnetization of the soft magnetic underlayer in the radial direction of the substrate (disk) and making it a single domain in the residual magnetization state can completely eliminate the leakage magnetic flux from the Bloch domain wall, thereby suppressing the occurrence of spike noise. Therefore, it is preferable. In order to induce large unidirectional magnetic anisotropy by exchange coupling with the soft magnetic layer, the soft magnetic buffer is interposed between the soft magnetic layer and the antiferromagnetic layer for the purpose of controlling crystal growth and crystal orientation of the antiferromagnetic layer. A layer may be provided. In the present invention, the Ni—Fe—B alloy plating layer is formed as the soft magnetic backing layer 3 on the crystalline Ni—P alloy plating layer 2 formed on the substrate 1 as described above, and the soft coating is formed thereon. The magnetic buffer layer 4 is formed. The soft magnetic buffer layer 4 is not particularly limited, but a soft magnetic material that can control the structure of the antiferromagnetic layer without depending on the structure of the plated soft magnetic layer, A soft magnetic material capable of inducing a large unidirectional magnetic anisotropy by a combination with the antiferromagnetic layer 5 formed above, or a laminated structure thereof may be used. Specifically, it is preferable to use a single layer made of a Co—Fe alloy or two layers made of a Ni—Fe alloy 4c and a Co—Fe alloy 4b from the substrate side as shown in FIG. The thickness of the soft magnetic buffer layer 4 is preferably 1 to 20 nm from the viewpoint of productivity. Either the wet film formation method or the dry film formation method can be applied to the formation of the soft magnetic buffer layer 4, but dry film formation such as sputtering is preferred from the viewpoint of strict control of the film thickness.

反強磁性層5としては、Mn−Ir、Co−Mn、Ni−Mn、Pt−Mn等の合金およびこれらの合金に反強磁性層としての特性に悪影響を与えない範囲で他の金属1種以上を添加したものを用いることができる。厚さは、ヘッド系磁気回路の観点からスペーシングロスとなるため、一方向磁気異方性を誘導する機能を損ねない程度に薄いことが好ましい。具体的には1〜10nmの厚さの層を設けることが好ましい。反強磁性層5の形成には湿式皮膜形成法、乾式皮膜形成法などのいずれも適用できるが、膜厚の厳密制御の観点からは、スパッタリング法等の乾式皮膜形成法がより好ましい。   The antiferromagnetic layer 5 includes alloys such as Mn—Ir, Co—Mn, Ni—Mn, and Pt—Mn, and other metals as long as they do not adversely affect the properties of the antiferromagnetic layer. What added the above can be used. Since the thickness is a spacing loss from the viewpoint of the head system magnetic circuit, the thickness is preferably thin enough not to impair the function of inducing unidirectional magnetic anisotropy. Specifically, it is preferable to provide a layer having a thickness of 1 to 10 nm. Both the wet film formation method and the dry film formation method can be applied to the formation of the antiferromagnetic layer 5, but a dry film formation method such as a sputtering method is more preferable from the viewpoint of strict control of the film thickness.

次いで反強磁性層5の上にスパッタ法を用いて、下地層6を設けてもよい。この下地層6としては、その上に形成する垂直記録層7を垂直磁化膜化させる材料であればいかなる材料であっても差し支えない。例えば、Ti、Ru、Hf、非磁性CoCr、Pt及びPdを用いることができる。また、下地層6の構成としては、これらの単層構造の他、2層またはそれ以上の多層構造であってもよい。   Next, the underlayer 6 may be provided on the antiferromagnetic layer 5 by sputtering. The underlayer 6 may be made of any material as long as it is a material for forming the perpendicular recording layer 7 formed thereon into a perpendicular magnetization film. For example, Ti, Ru, Hf, nonmagnetic CoCr, Pt, and Pd can be used. In addition to the single layer structure, the underlayer 6 may have a multilayer structure of two layers or more.

スパッタ法を用いて形成する垂直磁気記録層7は、磁化容易軸が膜面に略垂直方向に一方向に磁気異方性を有して配向した強磁性材料であればよく、特に組成を限定するものではないが、例えば、CoとCrを主たる成分とし、磁化容易軸が膜面に略垂直方向に一方向に磁気異方性を有して配向した六方稠密構造(hcp:hexagonal closest packed structure)を有するCo−Cr系強磁性材料が好適に用いられる。このCo−Cr系強磁性材料は、必要に応じて他の元素を添加したものであっても良い。   The perpendicular magnetic recording layer 7 formed by sputtering may be a ferromagnetic material whose easy axis is oriented with magnetic anisotropy in one direction substantially perpendicular to the film surface, and its composition is particularly limited. However, for example, a hexagonal closest packed structure in which Co and Cr are main components and the easy magnetization axis is oriented with magnetic anisotropy in one direction substantially perpendicular to the film surface. Co-Cr-based ferromagnetic material having a) is preferably used. This Co—Cr based ferromagnetic material may be added with other elements as required.

CoCr系強磁性材料の具体例としては、Co−Cr(Cr<25at%)、Co−Cr−Ni、Co−Cr−Ta、Co−Cr−Pt、Co−Cr−Pt−Ta、Co−Cr−Pt−B等のCo−Cr系合金が挙げられる。また、この垂直磁気記録層7の結晶粒の粒径制御や粒間の偏析制御、結晶粒の結晶磁気異方性定数(Ku)、結晶粒径の制御、耐食性の制御、低温プロセスへの対応等を目的として、これら合金にO、SiOx、MgOx、TaOx、ZrOx、Fe、Mo、V、Si、B、Ir、W、Hf、Nb、Ru、希土類元素等を適宜添加してもよい。   Specific examples of the CoCr-based ferromagnetic material include Co—Cr (Cr <25 at%), Co—Cr—Ni, Co—Cr—Ta, Co—Cr—Pt, Co—Cr—Pt—Ta, and Co—Cr. Co-Cr alloys such as -Pt-B can be mentioned. Also, the grain size control and grain segregation control of the perpendicular magnetic recording layer 7, crystal grain magnetic anisotropy constant (Ku), grain size control, corrosion resistance control, correspondence to low temperature process For these purposes, O, SiOx, MgOx, TaOx, ZrOx, Fe, Mo, V, Si, B, Ir, W, Hf, Nb, Ru, rare earth elements, and the like may be appropriately added to these alloys.

また、上記のCo−Cr系合金以外の強磁性材料、例えば、Co−Pt、Co−Pd、Fe−Pt等の熱擾乱耐性に優れた材料や、それらを微細化するためにB、N、O、SiOx、MgOx、TaOx、ZrOx、Zr等を添加した材料を用いてもよい。さらに、Co層とPt層を多数積層した多層構造の垂直記録層も適用可能である。このような多層構造の垂直記録層としては、Co層とPd層、あるいはFe層とPd層等を組み合わせた多層構造の垂直記録層、またはこれらの各層にB、N、O、Zr、SiOx等を添加したものも適用可能である。これらいずれの記録層材料を選定した場合も、垂直磁気記録層7の厚さは5〜100nmであることが好ましい。   In addition, ferromagnetic materials other than the above Co-Cr alloys, for example, materials excellent in thermal disturbance resistance such as Co-Pt, Co-Pd, and Fe-Pt, and B, N, A material to which O, SiOx, MgOx, TaOx, ZrOx, Zr or the like is added may be used. Furthermore, a perpendicular recording layer having a multilayer structure in which a large number of Co layers and Pt layers are laminated is also applicable. As such a perpendicular recording layer having a multilayer structure, a perpendicular recording layer having a multilayer structure in which a Co layer and a Pd layer, an Fe layer and a Pd layer, or the like are combined, or B, N, O, Zr, SiOx, etc. Those added with can also be applied. Regardless of which recording layer material is selected, the thickness of the perpendicular magnetic recording layer 7 is preferably 5 to 100 nm.

このようにして本発明の垂直磁気記録媒体が得られるが、実際にドライブに組み込んで使用する場合は、垂直磁気記録層7の上に保護膜8および保護膜8上に潤滑膜9を設ける必要がある。保護層8は、垂直磁気記録層7の表面を保護するためのもので、保護膜として必要な機械的強度、耐熱性、耐酸化性、耐腐食性等を備えたものであればよく、特に材料組成を限定するものではないが、例えば、カーボンが好適に用いられる。潤滑膜は基体が回転している際に、磁気ヘッドを安定して浮上させるためのものであり、例えばパーフルオロポリエーテルが好適に用いられる。   In this way, the perpendicular magnetic recording medium of the present invention can be obtained. However, when actually used in a drive, it is necessary to provide the protective film 8 on the perpendicular magnetic recording layer 7 and the lubricating film 9 on the protective film 8. There is. The protective layer 8 is for protecting the surface of the perpendicular magnetic recording layer 7 and may be any layer provided with mechanical strength, heat resistance, oxidation resistance, corrosion resistance, etc. necessary as a protective film. Although the material composition is not limited, for example, carbon is preferably used. The lubricating film is for stably floating the magnetic head when the substrate is rotating. For example, perfluoropolyether is preferably used.

以下、実施例にて本発明を詳細に説明する。
(基板の作成)
磁気ディスク用のアルミニウム合金からなる、中心に孔を有する直径:2.5インチ規格の円板(直径:65mm)に非晶質のNi−P合金めっきを施した後、アルミナ系の研磨液を用いて粗研磨した後、コロイダルシリカ研磨液を用いて仕上げ研磨し、表面粗さRa(JIS B 0601)を0.3nmにポリッシュし、基板とした。
Hereinafter, the present invention will be described in detail with reference to examples.
(Creation of substrate)
An amorphous Ni—P alloy plating is applied to a 2.5-inch diameter disc (diameter: 65 mm) made of an aluminum alloy for a magnetic disk and having a hole in the center, and then an alumina-based polishing liquid is used. After rough polishing using the resultant, final polishing was performed using a colloidal silica polishing liquid, and the surface roughness Ra (JIS B 0601) was polished to 0.3 nm to obtain a substrate.

(軟磁性裏打ち層の形成)
この基板に前処理を施すことなく、以下に示す浴組成のNi−P合金めっき浴を用いてNi(97重量%)−P(3重量%)の組成を有する厚さ86nmの結晶質Ni−P合金層を形成した。
(Formation of soft magnetic backing layer)
Without pretreatment of this substrate, a Ni—P alloy plating bath having the following bath composition was used, and a crystalline Ni— with a thickness of 86 nm having a composition of Ni (97 wt%)-P (3 wt%) was used. A P alloy layer was formed.

[Ni−P合金めっき浴]
硫酸ニッケル 14g/L
L(+)−酒石酸 45g/L
次亜リン酸ナトリウム 5.5g/L
pH(アンモニア水で調整) 9.5
浴温 80℃
[Ni-P alloy plating bath]
Nickel sulfate 14g / L
L (+)-tartaric acid 45g / L
Sodium hypophosphite 5.5g / L
pH (adjusted with ammonia water) 9.5
Bath temperature 80 ° C

次いで、上記のようにして形成した結晶質Ni−P合金層上に、以下に示す浴組成のNi−Fe−B合金めっき浴を用いてNi(62.3重量%)−Fe(36.2重量%)−B(0.5重量%)の組成を有するNi−Fe−B合金層を形成した。次いでコロイダルシリカ研磨液を用いて表面を研磨し、表面粗さ:0.29nmRaおよび厚さ:300nmを有する軟磁性裏打ち層とし、試料番号1の試料とした。このようにして得られた試料番号1の試料の軟磁性裏打ち層の軟磁気特性を振動試料型磁力計(VSM:理研電子社製BHV−35)を用いて測定したところ、保磁力:2.5Oe、飽和磁束密度:1.3であった。   Next, Ni (62.3 wt%)-Fe (36.2) is formed on the crystalline Ni—P alloy layer formed as described above using a Ni—Fe—B alloy plating bath having the following bath composition. A Ni—Fe—B alloy layer having a composition of (wt%)-B (0.5 wt%) was formed. Next, the surface was polished with a colloidal silica polishing liquid to obtain a soft magnetic backing layer having a surface roughness of 0.29 nm Ra and a thickness of 300 nm, and a sample of sample number 1 was obtained. The soft magnetic properties of the soft magnetic underlayer of the sample No. 1 obtained as described above were measured using a vibrating sample magnetometer (VSM: BHV-35 manufactured by Riken Denshi Co., Ltd.). 5 Oe, saturation magnetic flux density: 1.3.

[Ni−Fe−B合金めっき浴]
硫酸ニッケル 2.6g/L
硫酸第一鉄 5.7g/L
酒石酸ナトリウム 45g/L
クエン酸三ナトリウム 10g/L
硫酸アンモニウム 25g/L
ジメチルアミンボラン 1.5g/L
pH(アンモニア水で調整) 9.5
浴温 70℃
[Ni-Fe-B alloy plating bath]
Nickel sulfate 2.6g / L
Ferrous sulfate 5.7g / L
Sodium tartrate 45g / L
Trisodium citrate 10g / L
Ammonium sulfate 25g / L
Dimethylamine borane 1.5g / L
pH (adjusted with ammonia water) 9.5
Bath temperature 70 ° C

(軟磁性バッファー層の形成)
上記のようにして基板にNi−Fe−B合金めっき層を形成して表面を研磨した試料番号1の試料に、スパッタリング法を用いて表面に基板から順にNi(81重量%)−Fe(19重量%)の組成を有する厚さ:6nmのFe−Ni合金層およびCo(70重量%)−Fe(30重量%)の組成を有する厚さ:4nmのCo−Fe合金層層を設け、厚さ:10nmの軟磁性バッファー層を形成した。
(Formation of soft magnetic buffer layer)
The sample of Sample No. 1 in which the Ni—Fe—B alloy plating layer was formed on the substrate as described above and the surface was polished was applied to the Ni (81 wt%)-Fe (19 Thickness: having a composition of 6 wt.%: A 6 nm Fe-Ni alloy layer and a thickness having a composition of Co (70 wt.%)-Fe (30 wt.%): 4 nm of a Co-Fe alloy layer. S: A 10 nm soft magnetic buffer layer was formed.

(反強磁性層の形成)
この軟磁性バッファー層の上にスパッタリング法を用いて、Mn(75重量%)−Ir(25重量%)の組成を有する厚さ:6nmのMnIrからなる反強磁性層を形成し、径方向へ磁化容易軸を誘導させた。比較用に、試料番号1の試料に反強磁性層を設けない試料(以下、試料番号2とする)も作製した。
(Formation of antiferromagnetic layer)
On the soft magnetic buffer layer, a sputtering method is used to form an antiferromagnetic layer having a composition of Mn (75 wt%)-Ir (25 wt%): MnIr having a thickness of 6 nm in the radial direction. The easy axis of magnetization was induced. For comparison, a sample in which the antiferromagnetic layer was not provided on the sample of sample number 1 (hereinafter referred to as sample number 2) was also produced.

(スパイクノイズの有無の判定)
反強磁性層を形成させた後の試料番号1および反強磁性層を設けない試料番号2の試料について、オプティカル・サーフェス・アナライザを用いディスク状の軟磁性層の磁区構造を評価することにより、スパイクノイズの有無を判定した。結果を図3および図4に示す。図3は試料番号2のディスク状軟磁性層15の磁区構造を示したものであり、磁壁の生成を示す縞状模様16が認められ、したがってスパイクノイズが発生する。一方、図4は試料番号1のディスク状軟磁性層20の磁区構造を示したものであり、磁壁の生成を示す縞状模様が認められず、スパイクノイズは発生しない。
(Determination of spike noise)
By evaluating the magnetic domain structure of the disk-shaped soft magnetic layer using the optical surface analyzer for the sample No. 1 after forming the antiferromagnetic layer and the sample No. 2 without the antiferromagnetic layer, The presence or absence of spike noise was determined. The results are shown in FIG. 3 and FIG. FIG. 3 shows the magnetic domain structure of the disk-shaped soft magnetic layer 15 of Sample No. 2. A striped pattern 16 indicating the generation of a domain wall is recognized, and therefore spike noise is generated. On the other hand, FIG. 4 shows the magnetic domain structure of the disk-shaped soft magnetic layer 20 of Sample No. 1, no striped pattern indicating the generation of the domain wall is recognized, and no spike noise is generated.

(下地層および垂直磁気記録層の形成)
次いで試料番号1の試料の反強磁性層の上にスパッタ法を用いて、下地層として厚さ25nmを有するTi層を形成させた後、この下地Ru層の上に、Co(65重量%)−Cr(20重量%)−Pt(15重量%)の組成を有する厚さ:22nmのCo−Cr−Pt合金からなる垂直磁気記録層を形成した。
(Formation of underlayer and perpendicular magnetic recording layer)
Next, a Ti layer having a thickness of 25 nm was formed as an underlayer on the antiferromagnetic layer of the sample No. 1 sample, and then Co (65 wt%) was formed on the underlayer Ru layer. A perpendicular magnetic recording layer made of a Co—Cr—Pt alloy having a thickness of 22 nm and a composition of —Cr (20 wt%) — Pt (15 wt%) was formed.

(保護膜および潤滑膜の形成)
次いで垂直磁気記録層の上にスパッタ法を用いて、厚さ:7nmのカーボンからなる保護膜を形成し、次いで、浸漬法を用いて厚さ:2nmのパーフルオロポリエーテルからなる潤滑膜を形成した。以上のようにして本発明の垂直磁気記録媒体を作成した。このようにして、本発明によれば、無電解めっき法によってNi−Fe−B合金層を形成することによって形成したので、短時間で層厚の厚い軟磁性裏打ち層を形成することができ生産性に優れ、かつ図4に示すように、スパイクノイズの発生が殆どない垂直磁気記録媒体が得られることが確認された。
(Formation of protective film and lubricating film)
Next, a protective film made of carbon having a thickness of 7 nm is formed on the perpendicular magnetic recording layer by sputtering, and then a lubricating film made of perfluoropolyether having a thickness of 2 nm is formed by using an immersion method. did. The perpendicular magnetic recording medium of the present invention was produced as described above. Thus, according to the present invention, since the Ni—Fe—B alloy layer is formed by the electroless plating method, a thick soft magnetic backing layer can be formed in a short time. As shown in FIG. 4, it was confirmed that a perpendicular magnetic recording medium having excellent performance and almost no spike noise was obtained.

本発明の垂直磁気記録媒体は上記のように構成されており、軟磁性裏打ち層を湿式皮膜形成法である無電解めっき法により形成するので、乾式皮膜形成法あるスパッタリング法などに比べて簡便に短時間で厚い軟磁性裏打ち層を成膜できる。また、スパッタリング法によるコラム状に成長する結晶質軟磁性裏打ち層に比べ、高生産性でスパイクノイズが低減した垂直磁気記録媒体を得ることができ、ハードディスクや磁気テープなどの垂直磁気記録媒体として産業上の利用可能性が高い。   The perpendicular magnetic recording medium of the present invention is configured as described above, and since the soft magnetic underlayer is formed by an electroless plating method that is a wet film forming method, it is simpler than a sputtering method that is a dry film forming method. A thick soft magnetic backing layer can be formed in a short time. In addition, it is possible to obtain perpendicular magnetic recording media with high productivity and reduced spike noise compared to crystalline soft magnetic underlayers grown in a columnar shape by sputtering, and can be used as perpendicular magnetic recording media such as hard disks and magnetic tapes. High availability on.

本発明の垂直磁気記録媒体の実施例の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the Example of the perpendicular magnetic recording medium of this invention. 本発明の垂直磁気記録媒体に用いる基板の一例を示す、概略断面図である。It is a schematic sectional drawing which shows an example of the board | substrate used for the perpendicular magnetic recording medium of this invention. 比較用の反強磁性層を形成させない場合の磁区構造を示す図である。It is a figure which shows the magnetic domain structure when not forming the antiferromagnetic layer for a comparison. 本発明の反強磁性層を形成させた場合の磁区構造を示す図である。It is a figure which shows the magnetic domain structure at the time of forming the antiferromagnetic layer of this invention. 本発明の軟磁性裏打ち層のNi含有率と飽和磁束密度との関係を示す図である。It is a figure which shows the relationship between Ni content rate and saturation magnetic flux density of the soft-magnetic underlayer of this invention.

符号の説明Explanation of symbols

1 基板
1a 基板(アルミニウム板)
1b 非晶質Ni−P合金めっき層
2 結晶質Ni−P合金めっき層
3 軟磁性裏打ち層
4 軟磁性バッファー層
4b Co−Fe合金
4c Ni−Fe合金
5 反強磁性層
6 下地層
7 垂直磁気記録層
8 保護膜
9 潤滑膜
15 試料1のディスク状軟磁性層
16 縞状模様
20 試料2のディスク状軟磁性層
1 substrate 1a substrate (aluminum plate)
1b Amorphous Ni-P alloy plating layer 2 Crystalline Ni-P alloy plating layer 3 Soft magnetic backing layer 4 Soft magnetic buffer layer 4b Co-Fe alloy 4c Ni-Fe alloy 5 Antiferromagnetic layer 6 Underlayer 7 Perpendicular magnetism Recording layer 8 Protective film 9 Lubricating film 15 Disc-shaped soft magnetic layer 16 of sample 1 Striped pattern 20 Disc-shaped soft magnetic layer of sample 2

Claims (10)

軟磁性裏打ち層を介して垂直磁気記録層を有する垂直磁気記録媒体であって、基板と、無電解めっき法によって成膜するNi−Fe−B合金めっきからなる前記軟磁性裏打ち層と、該軟磁性裏打ち層上に成膜してなる反強磁性層と、該反強磁性層上にスパッタ法を用いて成膜してなる下地層と、該下地層上にスパッタ法を用いて成膜してなる垂直磁気記録層とを備えてなることを特徴とする垂直磁気記録媒体。   A perpendicular magnetic recording medium having a perpendicular magnetic recording layer through a soft magnetic backing layer, the substrate, the soft magnetic backing layer made of Ni-Fe-B alloy plating formed by an electroless plating method, and the soft magnetic backing layer An antiferromagnetic layer formed on the magnetic backing layer, an underlayer formed on the antiferromagnetic layer using a sputtering method, and formed on the underlayer using a sputtering method A perpendicular magnetic recording medium comprising: a perpendicular magnetic recording layer. 前記Ni−Fe−B合金めっきからなる軟磁性裏打ち層においてFeの含有量が30〜50重量%である請求項1に記載の垂直磁気記録媒体。   2. The perpendicular magnetic recording medium according to claim 1, wherein the content of Fe in the soft magnetic backing layer made of the Ni—Fe—B alloy plating is 30 to 50 wt%. 前記軟磁性裏打ち層は、研磨後の厚さが100〜1000nmであり、表面粗さRa(JIS B 0601)が0.5nm以下である請求項1又は2に記載の垂直磁気記録媒体。   3. The perpendicular magnetic recording medium according to claim 1, wherein the soft magnetic underlayer has a polished thickness of 100 to 1000 nm and a surface roughness Ra (JIS B 0601) of 0.5 nm or less. 前記軟磁性裏打ち層の飽和磁束密度が1.2T以上、保磁力が5Oe以下であることを特徴とする請求項1〜3のいずれかに記載の垂直磁気記録媒体。   The perpendicular magnetic recording medium according to claim 1, wherein the soft magnetic underlayer has a saturation magnetic flux density of 1.2 T or more and a coercive force of 5 Oe or less. 前記基板が、アルミニウム基板に非晶質Ni−P合金めっき層を形成した基板からなる請求項1〜4何れかに記載の垂直磁気記録媒体。   The perpendicular magnetic recording medium according to claim 1, wherein the substrate is a substrate in which an amorphous Ni—P alloy plating layer is formed on an aluminum substrate. 前記基板と前記軟磁性裏打ち層との間に結晶質Ni−P合金めっき層を有する請求項1〜5何れかに記載の垂直磁気記録媒体。   The perpendicular magnetic recording medium according to claim 1, further comprising a crystalline Ni—P alloy plating layer between the substrate and the soft magnetic backing layer. 前記結晶質Ni−P合金めっき層中のPの含有量が5%以下である請求項6に記載の垂直磁気記録媒体。   The perpendicular magnetic recording medium according to claim 6, wherein the content of P in the crystalline Ni—P alloy plating layer is 5% or less. 前記軟磁性裏打ち層と反強磁性層との間に、軟磁性バッファー層を設けた請求項1〜6いずれかに記載の垂直磁気記録媒体。   The perpendicular magnetic recording medium according to claim 1, wherein a soft magnetic buffer layer is provided between the soft magnetic underlayer and the antiferromagnetic layer. 前記軟磁性バッファー層が、下層のNi−Fe合金層と上層のCo−Fe合金層との2層からなる請求項8に記載の垂直磁気記録媒体。   9. The perpendicular magnetic recording medium according to claim 8, wherein the soft magnetic buffer layer comprises two layers, a lower Ni—Fe alloy layer and an upper Co—Fe alloy layer. 請求項1〜9のいずれかに記載の垂直磁気記録媒体を用いてなる垂直磁気記録装置。   A perpendicular magnetic recording apparatus using the perpendicular magnetic recording medium according to claim 1.
JP2005282479A 2004-09-29 2005-09-28 Vertical magnetic recording medium and vertical magnetic recording device Withdrawn JP2006127736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005282479A JP2006127736A (en) 2004-09-29 2005-09-28 Vertical magnetic recording medium and vertical magnetic recording device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004285022 2004-09-29
JP2005282479A JP2006127736A (en) 2004-09-29 2005-09-28 Vertical magnetic recording medium and vertical magnetic recording device

Publications (1)

Publication Number Publication Date
JP2006127736A true JP2006127736A (en) 2006-05-18

Family

ID=36722280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005282479A Withdrawn JP2006127736A (en) 2004-09-29 2005-09-28 Vertical magnetic recording medium and vertical magnetic recording device

Country Status (1)

Country Link
JP (1) JP2006127736A (en)

Similar Documents

Publication Publication Date Title
US7238384B2 (en) Substrate for perpendicular magnetic recording hard disk medium and method for producing the same
CN100485785C (en) Disk substrate for a perpendicular magnetic recording medium and a perpendicular magnetic recording medium using the substrate
US20090029190A1 (en) Perpendicular magnetic recording medium, production process thereof, and perpendicular magnetic recording and reproducing apparatus
JP2009087446A (en) Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic recording device
US6372367B1 (en) Magnetic recording medium, method for producing the same and magnetic recording apparatus using the same
JP2006092721A (en) Substrate for perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording medium
TW200534246A (en) Substrate for a perpendicular magnetic recording medium and a perpendicular magnetic recording medium using the substrate
JPH11339240A (en) Magnetic recording medium and magnetic disk device
JP4023408B2 (en) Substrate for perpendicular magnetic recording medium, perpendicular magnetic recording medium, and method for producing them
JP3892401B2 (en) Manufacturing method of disk substrate for perpendicular magnetic recording medium, and manufacturing method of perpendicular magnetic recording disk
JP2004146033A (en) Base plate of induction anisotropic perpendicular magnetic recording hard disk and its manufacturing method
JP5701784B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
KR20050012227A (en) Vertical magnetic recording medium, magnetic recorder having same, vertical magnetic recording medium manufacturing method, and vertical magnetic recording medium manufacturing apparatus
JP4220475B2 (en) Magnetic recording medium and method for manufacturing the same, magnetic recording apparatus and magnetic recording method
JP2008123602A (en) Perpendicular magnetic recording medium
JP2006048906A (en) Perpendicular magnetic recording medium, its manufacturing method and device, and magnetic recorder
JP2006127736A (en) Vertical magnetic recording medium and vertical magnetic recording device
US20070111036A1 (en) Substrate for magnetic recording medium and fabrication method thereof
JP2007287216A (en) Substrate for magnetic recording medium, its manufacturing method and magnetic recording medium
JP2012230733A (en) Magnetic recording medium, manufacturing method thereof and magnetic recording, and reproducing device
JP3864637B2 (en) Magnetic recording medium
JP2007066477A (en) Perpendicular magnetic recording medium and perpendicular magnetic recording device
JP4525496B2 (en) Disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium
JP2005092924A (en) Perpendicular magnetic recording medium and device
JP2007095229A (en) Perpendicular magnetic recording medium and manufacturing method of same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202