JP2008176846A - Substrate for magnetic recording medium, manufacturing method, and magnetic recording medium - Google Patents

Substrate for magnetic recording medium, manufacturing method, and magnetic recording medium Download PDF

Info

Publication number
JP2008176846A
JP2008176846A JP2007008074A JP2007008074A JP2008176846A JP 2008176846 A JP2008176846 A JP 2008176846A JP 2007008074 A JP2007008074 A JP 2007008074A JP 2007008074 A JP2007008074 A JP 2007008074A JP 2008176846 A JP2008176846 A JP 2008176846A
Authority
JP
Japan
Prior art keywords
film
magnetic
soft magnetic
substrate
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007008074A
Other languages
Japanese (ja)
Inventor
Takeshi Ohashi
健 大橋
Yasushi Takai
康 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007008074A priority Critical patent/JP2008176846A/en
Publication of JP2008176846A publication Critical patent/JP2008176846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate suitable for manufacturing vertical magnetic recording medium which has good signal reproducing characteristic with low noise and a manufacturing method thereof. <P>SOLUTION: On the non magnetic substrate 1, preferably a core forming layer 2 is formed, and a multilayer soft magnetic backing layer 3 including antiferromagnetic film is formed on the layer 2. The soft magnetic backing layer 3 is exchange coupled between the soft magnetic film and the antiferromagnetic film, and has anisotropy in the circumferential direction or radial direction. The antiferromagnetic film is an alloy film preferably including Cr or Mn or metal oxide film except natural oxidization, and is obtained by film forming like plating. Anisotropic processing is carried out by thermal treatment in a magnetic field, and circumferential or radial anisotropy is made by changing the direction of applying the magnetic field, and a magnetic recording layer 5 for vertical magnetic recording is formed on the soft magnetic backing layer 3. Further, a protection layer 6 and a lubricating layer 7 are favorably laminated in order. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁気記録媒体用基板及びその製造方法ならびに磁気記録媒体に関し、より詳細には、低ノイズで良好な信号再生特性を有する垂直磁気記録媒体の製造に適する基板及びその製造方法に関する。   The present invention relates to a magnetic recording medium substrate, a manufacturing method thereof, and a magnetic recording medium, and more particularly to a substrate suitable for manufacturing a perpendicular magnetic recording medium having low noise and good signal reproduction characteristics, and a manufacturing method thereof.

情報記録の技術分野において、文字や画像あるいは楽曲といった情報を磁気的に読み込み・書き出しする手段であるハードディスク装置(以下ではHDD)は、パーソナルコンピュータを初めとする電子機器の一次外部記録装置や内蔵型記録手段として必須のものとなっている。このようなHDDには磁気記録媒体としてハードディスクが内蔵されているが、従来のハードディスクでは、ディスク表面に磁気情報を水平に書き込むいわゆる「面内磁気記録方式(水平磁気記録方式)」が採用されていた。   In the technical field of information recording, hard disk devices (hereinafter referred to as HDDs), which are means for magnetically reading and writing information such as characters, images, and music, are primary external recording devices and built-in type electronic devices such as personal computers. It is indispensable as a recording means. Such HDDs have a built-in hard disk as a magnetic recording medium. Conventional hard disks employ a so-called “in-plane magnetic recording method (horizontal magnetic recording method)” in which magnetic information is written horizontally on the disk surface. It was.

図9は、水平磁気記録方式のハードディスクの一般的な積層構造を説明するための断面概略図で、非磁性基板101上に、スパッタリング法で成膜されたCr系下地層103、磁気記録層105及び保護膜106としてのカーボン層が順次積層され、このカーボン層の表面に液体潤滑剤を塗布して形成された潤滑層107が形成されている(例えば、特許文献1参照)。磁気記録層105は、CoNiCr、CoCrTa、CoCrPt等の一軸結晶磁気異方性のCo系合金であり、該合金膜がディスク面と水平に磁化されて情報が記録されることとなる。   FIG. 9 is a schematic cross-sectional view for explaining a general laminated structure of a horizontal magnetic recording type hard disk. A Cr-based underlayer 103 and a magnetic recording layer 105 are formed on a nonmagnetic substrate 101 by sputtering. And the carbon layer as the protective film 106 is laminated | stacked one by one, and the lubrication layer 107 formed by apply | coating a liquid lubricant on the surface of this carbon layer is formed (for example, refer patent document 1). The magnetic recording layer 105 is a uniaxial crystal magnetic anisotropy Co-based alloy such as CoNiCr, CoCrTa, or CoCrPt, and the alloy film is magnetized horizontally to the disk surface to record information.

しかしながら、このような水平磁気記録方式では、記録密度を高めるために個々の結晶粒のサイズを小さくすると、隣接した記録ビットのN極同士及びS極同士が反発し合って磁化の打ち消し合いが生じる。高記録密度化のためには磁気記録層の厚みを薄くして結晶粒の垂直方向のサイズを小さくする必要があること、また、結晶粒の微細化(小体積化)が進むと熱エネルギによって結晶粒の磁化方向が乱されてデータが消失するという「熱揺らぎ」の現象が生じること等の問題点が指摘され、高記録密度化には限界があるとされるようになった。   However, in such a horizontal magnetic recording system, if the size of each crystal grain is reduced in order to increase the recording density, the N poles and S poles of adjacent recording bits repel each other and magnetization cancels out. . In order to increase the recording density, it is necessary to reduce the thickness of the magnetic recording layer to reduce the vertical size of the crystal grains, and as the crystal grains become finer (smaller volume), the thermal energy Problems such as the occurrence of the phenomenon of “thermal fluctuation” in which the magnetization direction of crystal grains is disturbed and data is lost have been pointed out, and there is a limit to increasing the recording density.

このような問題に鑑みて検討されるようになったのが「垂直磁気記録方式」である。この記録方式では、磁気記録層はディスク表面と垂直に磁化されるため、記録ビットのN極とS極が交互に束ねられてビット配置され、各記録ビットのN極とS極は隣接しあって相互に磁化を強めることとなる(別な言い方では反磁場が低下する)。その結果、磁化状態(磁気記録)の安定性が高くなる。水平磁気記録方式とは異なり、結晶粒の垂直方向厚みをあまり小さくする必要はない。このため、結晶粒の水平方向のサイズを小さくしても、記録層厚を厚くして垂直方向を大きくとれば、全体としての記録時の体積が大きくなって「熱揺らぎ」の影響を小さくすることが可能である。
つまり、垂直磁気記録方式は、反磁場の軽減とKuV値(Kuは磁気記録層の結晶磁気異方性エネルギ、Vは単位記録ビット体積を表す)を確保できるため、「熱揺らぎ」による磁化不安定性が低減され、記録密度の限界を大幅に拡大することが可能となる磁気記録方式であることから、超高密度記録を実現する方式として期待されている。
In view of such problems, the “perpendicular magnetic recording method” has been studied. In this recording method, since the magnetic recording layer is magnetized perpendicularly to the disk surface, the N bits and S poles of the recording bits are alternately bundled and arranged in bits, and the N and S poles of each recording bit are adjacent to each other. In other words, the demagnetizing field is lowered. As a result, the stability of the magnetization state (magnetic recording) is increased. Unlike the horizontal magnetic recording method, it is not necessary to reduce the thickness of the crystal grains in the vertical direction. For this reason, even if the horizontal size of the crystal grains is reduced, if the recording layer thickness is increased and the vertical direction is increased, the entire recording volume increases and the influence of “thermal fluctuation” is reduced. It is possible.
That is, the perpendicular magnetic recording method can reduce the demagnetizing field and ensure the K u V value (K u is the magnetocrystalline anisotropy energy of the magnetic recording layer and V is the unit recording bit volume). This is a magnetic recording system that reduces the instability of magnetization and greatly expands the limit of recording density, and is therefore expected as a system for realizing ultra-high density recording.

図10は、軟磁性裏打ち層(SUL)の上に垂直磁気記録のための記録層を設けた「垂直二層式磁気記録媒体」としてのハードディスクの基本的な層構造を説明するための断面概略図である。非磁性基板111上に、軟磁性裏打ち層113、磁気記録層115、保護層116、潤滑層117が順次積層されている。ここで、軟磁性裏打ち層113には、パーマロイやCoZrTaアモルファス等が典型的に用いられる。また、磁気記録層115としては、CoCrPt系合金の膜、PtCo膜、PdとCoの超薄膜を交互に数層積層させた多層膜、FePt、又はSmCoアモルフアス膜等が用いられる。 FIG. 10 is a schematic cross-sectional view for explaining the basic layer structure of a hard disk as a “perpendicular dual-layer magnetic recording medium” in which a recording layer for perpendicular magnetic recording is provided on a soft magnetic underlayer (SUL). FIG. On the nonmagnetic substrate 111, a soft magnetic backing layer 113, a magnetic recording layer 115, a protective layer 116, and a lubricating layer 117 are sequentially laminated. Here, permalloy, CoZrTa amorphous, or the like is typically used for the soft magnetic backing layer 113. As the magnetic recording layer 115, a CoCrPt-based alloy film, a PtCo film, a multilayer film in which several ultrathin films of Pd and Co are laminated, an FePt film , an SmCo amorphous film, or the like is used.

図10に示すように、垂直磁気記録方式のハードディスクでは、通常、基板111の上に、磁気記録層115、保護層116、潤滑層117を備える。磁気記録層115の下地として軟磁性裏打ち層113が設けられ、その磁気的性質は「軟磁性」であり、層厚みは概ね100〜500nm程度とされる。この軟磁性裏打ち層113は、書き込み磁場の増大効果と磁気記録膜の反磁場低減を図るためのもので、磁気記録層115からの磁束の通り道であるとともに、記録ヘッドからの書き込み用磁束の通り道として機能する。つまり、軟磁性裏打ち層113は、永久磁石磁気回路における鉄ヨークと同様の役割を果たす。このため、書き込み時における磁気的飽和の回避を目的として、磁気記録層115の層厚に比較して厚く層厚設定される必要がある。   As shown in FIG. 10, a perpendicular magnetic recording type hard disk normally includes a magnetic recording layer 115, a protective layer 116, and a lubricating layer 117 on a substrate 111. A soft magnetic backing layer 113 is provided as an underlayer for the magnetic recording layer 115. Its magnetic property is “soft magnetic”, and the layer thickness is about 100 to 500 nm. This soft magnetic backing layer 113 is for increasing the write magnetic field and reducing the demagnetizing field of the magnetic recording film. The soft magnetic underlayer 113 is a path for the magnetic flux from the magnetic recording layer 115 and a path for the write magnetic flux from the recording head. Function as. That is, the soft magnetic backing layer 113 plays the same role as the iron yoke in the permanent magnet magnetic circuit. For this reason, it is necessary to set the layer thickness thicker than the layer thickness of the magnetic recording layer 115 for the purpose of avoiding magnetic saturation at the time of writing.

積層構成の観点からは、軟磁性裏打ち層113は、水平磁気記録方式のハードディスクで設けられるCr系下地層103に対応するものであるが、その成膜は、水平記録媒体のCr系下地層103の成膜に比較して容易ではない。
水平磁気記録方式におけるハードディスクの各層の厚みはせいぜい20nm前後であり、全てドライプロセス(主にマグネトロンスパッタ)で形成される(特許文献1参照)。
From the viewpoint of the laminated structure, the soft magnetic backing layer 113 corresponds to the Cr-based underlayer 103 provided in a horizontal magnetic recording type hard disk, but the film formation is performed on the Cr-based underlayer 103 of the horizontal recording medium. It is not easy compared with film formation.
The thickness of each layer of the hard disk in the horizontal magnetic recording system is at most about 20 nm, and all are formed by a dry process (mainly magnetron sputtering) (see Patent Document 1).

垂直二層式記録媒体においても、磁気記録層115と軟磁性裏打ち層113をドライプロセスで形成する方法が種々検討されているが、ドライプロセスで軟磁性裏打ち層113を形成する場合には、スパッタリング・ターゲットが飽和磁化の大きい強磁性体であること、しかも軟磁性裏打ち層113の厚みとして100nmもしくはそれ以上のものが必要とされること等の理由により、膜厚均一性や組成均一性、ターゲット寿命、プロセスの安定性、そして何よりも成膜速度の低さから、量産性や生産性の上で大きな問題を抱えている。   Various methods for forming the magnetic recording layer 115 and the soft magnetic backing layer 113 by a dry process have also been studied in the perpendicular double-layer recording medium. When the soft magnetic backing layer 113 is formed by a dry process, sputtering is performed. The film thickness uniformity, composition uniformity, target because the target is a ferromagnetic material with a large saturation magnetization and the thickness of the soft magnetic underlayer 113 is required to be 100 nm or more. Lifetime, process stability, and above all, low film deposition speeds have major problems in terms of mass productivity and productivity.

また、高記録密度化のためには、磁気ディスク表面を浮上する磁気ヘッドの浮上高さ(フライングハイト)を極力低くする必要があるが、ドライプロセスにより成膜された比較的厚い膜はその表面平滑性が劣化しがちでヘッドクラッシュの原因ともなってしまう。   In order to increase the recording density, it is necessary to reduce the flying height of the magnetic head that floats on the magnetic disk surface as much as possible. The smoothness tends to deteriorate, and this may cause a head crash.

このような理由により、厚膜化が容易でしかも研磨加工が可能なめっき法で、軟磁性裏打ち層113を形成する試みが検討されている(例えば特許文献2参照)。
特開平5−143972号公報 特開2005−108407号公報
For these reasons, attempts have been made to form the soft magnetic backing layer 113 by a plating method that is easy to thicken and that can be polished (see, for example, Patent Document 2).
JP-A-5-143972 JP 2005-108407 A

軟磁性層をめっき法により成膜した場合、軟磁性層を構成するめっき膜面の数mmから数cmの範囲にわたり特定の方向に磁性を帯びた磁区が多数発生し、それら磁区の境界には磁壁が発生する。特に、該軟磁性層が径方向に異方性を有する場合に、磁壁が顕著である。このような磁壁を有する軟磁性膜を裏打ち層として垂直二層式磁気記録媒体用ハードディスクに用いた場合、磁壁部分より発生する漏れ磁界によりスパイクノイズやマイクロスパイクノイズと呼ばれる孤立パルスノイズが発生し、信号再生特性が大きく損なわれる可能性が有る。該スパイクノイズは軟磁性膜の磁壁が主因で、該膜に異方性を付与することにより、ある程度抑制できる。
しかし、該異方性軟磁性膜においてもスパイクノイズの発生を完全には抑えきれておらず、特に径方向異方性の軟磁性膜の場合にスパイクノイズが顕著である。軟磁性膜の異方性化に更に加えて、スパイクノイズを抑制することが求められている。
When a soft magnetic layer is formed by plating, a large number of magnetic domains are generated in a specific direction over a range of several mm to several cm on the surface of the plating film constituting the soft magnetic layer. A domain wall is generated. In particular, the domain wall is remarkable when the soft magnetic layer has anisotropy in the radial direction. When a soft magnetic film having such a domain wall is used as a backing layer for a hard disk for a perpendicular double-layer magnetic recording medium, an isolated pulse noise called spike noise or micro spike noise is generated due to a leakage magnetic field generated from the domain wall portion, There is a possibility that the signal reproduction characteristic is greatly impaired. The spike noise is mainly caused by the domain wall of the soft magnetic film, and can be suppressed to some extent by imparting anisotropy to the film.
However, the generation of spike noise is not completely suppressed even in the anisotropic soft magnetic film, and spike noise is particularly remarkable in the case of a soft magnetic film having radial anisotropy. In addition to anisotropy of the soft magnetic film, it is required to suppress spike noise.

本発明者らは、簡便な方法にて優れた特性を有する垂直二層式磁気記録媒体を得るべく、めっき法により軟磁性裏打ち層を形成する条件ならびに適用可能な軟磁性膜の種類について鋭意研究を重ねた。その結果、非磁性基板上にめっき法等を用いて軟磁性膜と、反強磁性膜を適度な組み合わせで積層し、交換結合させることにより、磁壁の発生を抑制することが可能であることを見出した。この効果は、基板の面内周方向もしくは面内径方向に異方性を有する軟磁性膜のどちらに対しても有効であるが、特に径方向異方性の場合により有効である。この理由は、径方向異方性軟磁性膜では、数百nm厚では磁壁がブロッホ型であるのに対して、周方向異方性軟磁性膜では数百nm厚までネール型である。そのため、径方向異方性膜のスパイクノイズがかなり大きい。該ブロッホ磁壁の発生を多層構造により抑制できるため、径方向異方性の方がより効果が大きいと考えられる。   In order to obtain a perpendicular double-layer magnetic recording medium having excellent characteristics by a simple method, the present inventors have intensively studied the conditions for forming a soft magnetic underlayer by plating and the types of applicable soft magnetic films. Repeated. As a result, it is possible to suppress the occurrence of domain walls by laminating a soft magnetic film and an antiferromagnetic film in an appropriate combination using a plating method or the like on a non-magnetic substrate and exchange coupling them. I found it. This effect is effective for both soft magnetic films having anisotropy in the in-plane circumferential direction or in-plane inner diameter direction of the substrate, but is particularly effective in the case of radial anisotropy. The reason is that the radial anisotropic soft magnetic film has a Bloch type domain wall at a thickness of several hundred nm, while the circumferential anisotropic soft magnetic film has a nail type up to several hundred nm. Therefore, the spike noise of the radial direction anisotropic film is considerably large. Since the generation of the Bloch domain wall can be suppressed by the multilayer structure, it is considered that the radial anisotropy is more effective.

ここで、「異方性」とは、面内径方向の磁化飽和磁場強度(Hd)と面内周方向の磁化飽和磁場強度(Hc)との差(δH=Hd−Hc)を意味し、δHが正の場合(Hd−Hc>0)には面内径方向が磁化容易方向であり、δHが負の場合(Hd−Hc<0)には面内周方向が磁化容易方向であることを意味する。 Here, “anisotropy” means the difference (δH = H d −H c ) between the magnetization saturation magnetic field strength (Hd) in the in-plane inner diameter direction and the magnetization saturation magnetic field strength (H c ) in the in-plane circumferential direction. When δH is positive (H d −H c > 0), the surface inner diameter direction is the easy magnetization direction, and when δH is negative (H d −H c <0), the in-plane circumferential direction is magnetization. It means easy direction.

つまり、本発明は、反強磁性膜を含む多層軟磁性層をめっき法等により積層し異方性化処理を行って、スパイクノイズの少ない良好なS/N比の垂直二層式磁気記録媒の製造に適する基板及びその製造方法を提供することを目的とする。   That is, according to the present invention, a multilayer soft magnetic layer including an antiferromagnetic film is laminated by a plating method or the like, and subjected to an anisotropy treatment, so that a perpendicular two-layer magnetic recording medium having a good S / N ratio with less spike noise. An object of the present invention is to provide a substrate suitable for the manufacture of the substrate and a method for manufacturing the substrate.

本発明は、直径90mm以下で中心穴を有した円板形状の非磁性基板の上に軟磁性裏打ち層を有する磁気記録媒体用基板であって、該軟磁性裏打ち層が、順序を問わない、めっき法を用いて形成された少なくとも一つの軟磁性膜と、少なくとも一つの反強磁性膜から構成され、周もしくは径方向磁気異方性を有する磁気記録媒体用基板を提供する。反強磁性膜は、好ましくは、Cr又はMnを含有する合金の膜又は自然酸化以外の金属酸化膜であり、軟磁性膜と交換結合しており、ネール温度が100℃以上で、膜厚が5nm以上50nm以下である。金属酸化膜は、好ましくは軟磁性膜の少なくとも一つを表面酸化した膜である。
また、本発明は、直径90mm以下で中心穴を有した円板形状の非磁性基板の上に軟磁性裏打ち層を有する磁気記録媒体用基板の製造方法であって、どちらを先に行ってもよい、めっき法を用いて軟磁性膜を形成する段階を少なくとも一つと、反強磁性膜を形成する段階を少なくとも一つ含む軟磁性裏打ち層の形成工程と、該軟磁性裏打ち層に周もしくは径方向磁気異方性を付与する工程を含んでなる磁気記録媒体用基板の製造方法を提供する。反磁性膜を形成する段階の少なくとも一つは、好ましくはめっき法を用いて行われる。
また、反強磁性膜を形成する段階の少なくとも一つは、好ましくは、めっき法を用いて形成された軟磁性膜の表面を酸化させることを含み、より好ましくは、この軟磁性膜の表面の酸化は、酸化剤溶液中、又は酸化雰囲気下で行われる。
さらに、本発明は、この磁気記録媒体用基板を用いた垂直記録媒体を提供する。
The present invention is a substrate for a magnetic recording medium having a soft magnetic backing layer on a disc-shaped nonmagnetic substrate having a diameter of 90 mm or less and having a center hole, and the soft magnetic backing layer does not matter in any order. Provided is a substrate for a magnetic recording medium comprising at least one soft magnetic film formed by using a plating method and at least one antiferromagnetic film and having circumferential or radial magnetic anisotropy. The antiferromagnetic film is preferably a film of an alloy containing Cr or Mn or a metal oxide film other than natural oxidation, and is exchange-coupled to the soft magnetic film, has a Neel temperature of 100 ° C. or more, and has a film thickness. It is 5 nm or more and 50 nm or less. The metal oxide film is preferably a film obtained by surface-oxidizing at least one of the soft magnetic films.
The present invention also provides a method for manufacturing a substrate for a magnetic recording medium having a soft magnetic backing layer on a disk-shaped nonmagnetic substrate having a diameter of 90 mm or less and having a central hole, whichever is performed first. A step of forming a soft magnetic film using a plating method, a step of forming a soft magnetic backing layer including at least one step of forming an antiferromagnetic film, and a circumference or a diameter of the soft magnetic backing layer. Provided is a method for manufacturing a magnetic recording medium substrate, which includes a step of imparting directional magnetic anisotropy. At least one of the steps of forming the diamagnetic film is preferably performed using a plating method.
In addition, at least one of the steps of forming the antiferromagnetic film preferably includes oxidizing the surface of the soft magnetic film formed by using a plating method, and more preferably, the surface of the soft magnetic film. Oxidation is performed in an oxidizing agent solution or in an oxidizing atmosphere.
Furthermore, the present invention provides a perpendicular recording medium using this magnetic recording medium substrate.

本発明の磁気記録媒体用基板に設けられる軟磁性裏打ち層は、その特に好ましい形態例では、CoとNiとFeからなる群から選択される少なくとも2種の元素と、BとCとPとSからなる群から選択される少なくとも1種の元素とを含有する合金からなる軟磁性めっき膜と100℃以上のネール点を有する反強磁性めっき膜により構成され、この軟磁性裏打ち層の磁化容易方向を面内径方向か面内周方向となるようにめっき後に磁場中熱処理して異方性化するもので、磁壁発生が抑制されスパイクノイズが低減される。
このため、該軟磁性裏打ち層上に垂直磁気記録用磁性膜を設けたハードディスクは、ヘッド磁束の増大により良好な書き込み特性を有する高記録密度の磁気記録媒体が得られる。また、本発明の磁気記録媒体用基板は、特に軟磁性裏打ち層が湿式のめっき法により成膜される場合には、蒸着法等によるドライプロセス成膜に比較して製造プロセスが大幅に簡便化され、かつ、生産性にも優れている。
In a particularly preferred embodiment, the soft magnetic backing layer provided on the magnetic recording medium substrate of the present invention has at least two elements selected from the group consisting of Co, Ni and Fe, B, C, P and S. A soft magnetic plating film made of an alloy containing at least one element selected from the group consisting of: an antiferromagnetic plating film having a Neel point of 100 ° C. or higher, and the direction of easy magnetization of the soft magnetic underlayer Is subjected to heat treatment in a magnetic field after plating so as to be in the direction of the inner diameter of the surface or in the direction of the inner surface of the surface, so that the domain wall generation is suppressed and spike noise is reduced.
For this reason, a hard disk in which a magnetic film for perpendicular magnetic recording is provided on the soft magnetic underlayer can provide a high recording density magnetic recording medium having good writing characteristics due to an increase in head magnetic flux. In addition, the magnetic recording medium substrate of the present invention greatly simplifies the manufacturing process compared to dry process film formation such as vapor deposition, especially when the soft magnetic underlayer is formed by a wet plating method. It is also excellent in productivity.

以下に、図面を参照して本発明を実施するための形態について詳細に説明する。
本発明の磁気記録媒体用基板は垂直磁気記録用のもので、軟磁性裏打ち層上に磁気記録層を形成することで、垂直二層式磁気記録媒体としてのハードディスクが得られる。すなわち、本発明の磁気記録媒体用基板は、図1に示すように、非磁性基板1上にめっき法等により成膜された軟磁性裏打ち層3が設けられている。そして、たとえば、この軟磁性裏打ち層3上に好ましくは配向制御用の中間膜4を形成し、垂直磁気記録用の磁気記録層5を形成し、さらに、好ましくは保護層6及び潤滑層7を順次積層することで、本発明の磁気記録媒体が得られる。
EMBODIMENT OF THE INVENTION Below, the form for implementing this invention with reference to drawings is demonstrated in detail.
The magnetic recording medium substrate of the present invention is for perpendicular magnetic recording. By forming a magnetic recording layer on a soft magnetic underlayer, a hard disk as a perpendicular double-layer magnetic recording medium can be obtained. That is, the magnetic recording medium substrate of the present invention is provided with a soft magnetic backing layer 3 formed on a nonmagnetic substrate 1 by plating or the like, as shown in FIG. Then, for example, an orientation control intermediate film 4 is preferably formed on the soft magnetic underlayer 3, a perpendicular magnetic recording magnetic recording layer 5 is formed, and a protective layer 6 and a lubricating layer 7 are preferably formed. By sequentially laminating, the magnetic recording medium of the present invention can be obtained.

本発明の軟磁性裏打ち膜基板を用いる場合、図1に示すように、非磁性基板1として好ましい単結晶Si基板と軟磁性裏打ち層3との間に、好ましくは核付け膜(下地めっき層)2を設ける。軟磁性裏打ち層3は、軟磁性膜と反強磁性膜を含む二層以上の層で構成される。   When using the soft magnetic backing film substrate of the present invention, as shown in FIG. 1, a nucleation film (undercoat layer) is preferably provided between the single crystal Si substrate preferable as the nonmagnetic substrate 1 and the soft magnetic backing layer 3. 2 is provided. The soft magnetic backing layer 3 is composed of two or more layers including a soft magnetic film and an antiferromagnetic film.

本発明の磁気記録媒体用基板に用いられる非磁性基板としては、好ましくは単結晶Si基板が挙げられる。非磁性基板として単結晶Si基板を用いると、表面の原子配列が面内で一様であり、めっき工程における表面化学的状態や表面電位状態も面内で均質となるという利点がある。また、NiやNiPの核付け膜を成膜する際に単結晶Si基板上への直接めっきが可能であり、しかも、めっき不均一に起因する磁気的な不均一を抑制できる。   The non-magnetic substrate used for the magnetic recording medium substrate of the present invention is preferably a single crystal Si substrate. When a single crystal Si substrate is used as the nonmagnetic substrate, there is an advantage that the atomic arrangement on the surface is uniform in the plane, and the surface chemical state and the surface potential state in the plating process are also uniform in the plane. In addition, when a nucleation film of Ni or NiP is formed, direct plating on a single crystal Si substrate is possible, and magnetic non-uniformity due to non-uniform plating can be suppressed.

単結晶Si基板としては、CZ(チョコラルスキー)法あるいはFZ(フローティングゾーン)法により結晶育成されたものが容易に入手可能である。基板の面方位に特に制限はなく、(100)、(110)あるいは(111)等の任意の面方位であってよい。また、基板中に含まれる不純物として、Siとの原子比で10%程度まで(〜1022atoms/cm3)のドナーやアクセプターあるいは酸素、炭素、窒素といった軽元素を含んでいてもよい。 As the single crystal Si substrate, a crystal grown by the CZ (chocolate ski) method or the FZ (floating zone) method is easily available. There is no particular limitation on the plane orientation of the substrate, and any plane orientation such as (100), (110), or (111) may be used. Further, as an impurity contained in the substrate, a donor or acceptor up to about 10% (−10 22 atoms / cm 3 ) by atomic ratio with Si or a light element such as oxygen, carbon, or nitrogen may be included.

本発明においては、非磁性基板の基板直径は90mm以下で中心穴が開いている。これは、高記録密度用のHDD小口径基板の製作を目的としているためである。   In the present invention, the nonmagnetic substrate has a substrate diameter of 90 mm or less and a center hole. This is because the purpose is to produce an HDD small-diameter substrate for high recording density.

非磁性基板として単結晶Si基板を用いる場合には、好ましくは、単結晶Si基板と軟磁性裏打ち層との間に核付け膜を設ける。核付け膜は、軟磁性裏打ち層と単結晶Si基板の相互密着力を確保するために有効である。
核付け膜としては、Ni、NiP、NiFe等が用いられ、上部の軟磁性裏打ち層のめっき成膜に際し、めっき活性を有することが好ましい。Niは置換めっきで成膜でき、NiPやNiFeは還元剤を添加してめっきすることができる。前二者の成膜詳細については、既に出願した特許に述べている(特許文献2)。NiFeの場合もめっき浴(例えば、硫酸ニッケルと硫酸鉄)を所定液組成とし、それ以外はNiPの場合と同様に行えばよい。
核付け膜の厚さは、好ましくは、10〜1000nmである。
When a single crystal Si substrate is used as the nonmagnetic substrate, a nucleation film is preferably provided between the single crystal Si substrate and the soft magnetic backing layer. The nucleation film is effective for ensuring mutual adhesion between the soft magnetic backing layer and the single crystal Si substrate.
As the nucleation film, Ni, NiP, NiFe or the like is used, and preferably has plating activity when the upper soft magnetic underlayer is plated. Ni can be formed by displacement plating, and NiP and NiFe can be plated by adding a reducing agent. The details of the former two are described in the already filed patent (Patent Document 2). In the case of NiFe, a plating bath (for example, nickel sulfate and iron sulfate) is used as a predetermined liquid composition, and the other steps may be performed in the same manner as in the case of NiP.
The thickness of the nucleation film is preferably 10 to 1000 nm.

核付け膜と軟磁性裏打ち層の間に、さらに非磁性層(CuやPd)を成膜することもある。   A nonmagnetic layer (Cu or Pd) may be further formed between the nucleation film and the soft magnetic backing layer.

本発明の軟磁性裏打ち層は、少なくとも一つの軟磁性膜と少なくとも一つの反強磁性膜を含んだ多層構造を有する。反強磁性膜で軟磁性膜に交換結合を及ぼすことにより、印加される交換磁場の影響で磁壁発生が抑制される。反強磁性膜と軟磁性膜の交換結合は、軟磁性材料と反磁性材料との界面における粒子の交換結合であり、磁壁のノイズを抑制する結合である。   The soft magnetic underlayer of the present invention has a multilayer structure including at least one soft magnetic film and at least one antiferromagnetic film. By giving exchange coupling to the soft magnetic film with the antiferromagnetic film, the generation of the domain wall is suppressed by the influence of the applied exchange magnetic field. The exchange coupling between the antiferromagnetic film and the soft magnetic film is a particle exchange coupling at the interface between the soft magnetic material and the diamagnetic material, and is a coupling that suppresses noise on the domain wall.

スパッタ成膜による軟磁性裏打ち層成膜においても、反強磁性層を用いることが提案されている(特開2002−279615号公報及び特開2002−342909号公報)。軟磁性裏打ち層構成の点ではスパッタ膜と大きく異なるものではない。しかし、本発明の主にめっき成膜による多層軟磁性裏打ち層はスパッタ成膜による膜にはない利点を有していることを本発明者らは見出したものである。   It has also been proposed to use an antiferromagnetic layer in the formation of a soft magnetic underlayer by sputtering (Japanese Patent Laid-Open Nos. 2002-279615 and 2002-342909). In terms of the configuration of the soft magnetic backing layer, it does not differ greatly from the sputtered film. However, the present inventors have found that the multilayer soft magnetic underlayer mainly formed by plating in the present invention has advantages not found in the film formed by sputtering.

スパッタによる多層軟磁性裏打ち膜の磁気特性(交換結合の様子)は、強磁性膜厚や反強磁性/強磁性界面に非常に敏感に影響される。スパッタによる強磁性膜では膜厚増加とともに、膜の磁化が常に面直成分を持とうとする。軟磁性裏打ち膜の面直成分はノイズとなるため、好ましくない。つまり磁化が面内から立ち上がろうとする傾向があるため、反強磁性膜により強くピンニングして、面内に倒しておく必要がある。ピンニングできる強磁性膜厚制御や平滑で元素拡散の少ない良好な界面が要求され、ピンニング可能な膜厚は100nm程度までと言われている。このため多層の各膜を精密に制御することが求められる。   The magnetic properties (exchange coupling state) of the multilayer soft magnetic backing film by sputtering are very sensitively influenced by the ferromagnetic film thickness and the antiferromagnetic / ferromagnetic interface. In a ferromagnetic film formed by sputtering, as the film thickness increases, the magnetization of the film always tends to have a perpendicular component. Since the perpendicular component of the soft magnetic backing film becomes noise, it is not preferable. That is, since the magnetization tends to rise from the in-plane, it is necessary to strongly pin the antiferromagnetic film and tilt it in the plane. A ferromagnetic film thickness control capable of pinning and a smooth and good interface with little element diffusion are required, and it is said that the film thickness capable of pinning is up to about 100 nm. Therefore, it is required to precisely control each multilayer film.

これに対して本発明の主にめっき成膜による多層軟磁性裏打ち層は、強磁性膜の膜厚が厚くてもピンニングできて、1000nm前後まで交換結合を及ぼす事が可能である。これは、めっき強磁性膜に残留応力が強く働いて、磁化を面内に強く束縛しているため、磁化の面直成分抑制を行う必要がないからである。このため1000nmまでの間で強磁性膜厚は必要に応じた膜厚に調整することができ、強磁性膜が数百nm厚でもピンニングに問題がないことを初めて見出した。更に、めっきは低温成膜であるため、反強磁性/強磁性界面における各層間の元素相互拡散も起こらない。界面の平滑性もスパッタ膜ほどの平滑性は必要ない。この理由ははっきりしないが、低温成膜であるため界面原子層がダメージを受けてないためではないかと考えている。本発明のめっきによる多層軟磁性裏打ち層において、このような効果(別な言葉では、構造と膜厚に敏感でない)が得られることは従来知られていなかった事で、スパッタによる多層軟磁性裏打ち層に比較して大きな利点である。   On the other hand, the multilayer soft magnetic underlayer mainly formed by plating of the present invention can be pinned even if the ferromagnetic film is thick and can exert exchange coupling up to about 1000 nm. This is because the residual stress acts strongly on the plated ferromagnetic film and the magnetization is strongly bound in the plane, so that it is not necessary to suppress the perpendicular component of the magnetization. For this reason, it has been found for the first time that the ferromagnetic film thickness can be adjusted to the required film thickness up to 1000 nm, and that there is no problem in pinning even if the ferromagnetic film is several hundred nm thick. Furthermore, since plating is performed at a low temperature, element interdiffusion between layers at the antiferromagnetic / ferromagnetic interface does not occur. The smoothness of the interface is not as smooth as the sputtered film. The reason for this is not clear, but it is thought that this is because the interface atomic layer is not damaged because of low-temperature film formation. In the multilayer soft magnetic backing layer by plating of the present invention, it has not been known that such an effect (in other words, it is not sensitive to the structure and film thickness) has been conventionally known. This is a great advantage compared to the layer.

本発明による多層軟磁性裏打ち層の構成の例を図2(a)〜(e)に示すが、本発明はこれだけに限定されるものではない。また、図2(a)〜(e)では反強磁性膜(AFL)は全て1層だけであるが、必要に応じて複数の膜を用いてもよい。
基板の上1に、図2(a)は、核付け膜2F、軟磁性膜3S、反強磁性膜3A、軟磁性膜3Sを順次設ける態様、図2(b)は、強磁性核付け膜2F、反強磁性膜3A、軟磁性膜3Sを順次設ける態様、図2(c)は、軟磁性核付け膜2S、反強磁性膜3A、軟磁性膜3Sを順次設ける態様、図2(d)は、非磁性核付け膜2N、反強磁性膜3A、軟磁性膜3Sを順次設ける態様、図2(e)は、非磁性核付け膜2N、軟磁性膜3S、反強磁性膜3Aを順次設ける態様を示す。
Examples of the structure of the multilayer soft magnetic backing layer according to the present invention are shown in FIGS. 2A to 2E, but the present invention is not limited to this. In FIGS. 2A to 2E, the antiferromagnetic film (AFL) is only one layer, but a plurality of films may be used as necessary.
FIG. 2A shows an embodiment in which a nucleation film 2F, a soft magnetic film 3S, an antiferromagnetic film 3A, and a soft magnetic film 3S are sequentially provided on the substrate 1. FIG. 2B shows a ferromagnetic nucleation film. 2F, an antiferromagnetic film 3A, and a soft magnetic film 3S are sequentially provided. FIG. 2C is an exemplary embodiment in which a soft magnetic nucleation film 2S, an antiferromagnetic film 3A, and a soft magnetic film 3S are sequentially provided. ) Shows an embodiment in which a nonmagnetic nucleation film 2N, an antiferromagnetic film 3A, and a soft magnetic film 3S are sequentially provided. FIG. 2E shows a nonmagnetic nucleation film 2N, a soft magnetic film 3S, and an antiferromagnetic film 3A. The mode of providing sequentially is shown.

図2(d)では、核付け膜に軟磁性を示すもの(例えばNiFe等)を用いており、該層は核付けと軟磁性層の両方の機能を担っている。   In FIG. 2D, a nucleation film having soft magnetism (for example, NiFe or the like) is used, and the layer functions as both nucleation and a soft magnetic layer.

軟磁性膜は、通常、無電解めっきにより成膜される。めっき浴としては、硫化物浴又は塩化物浴の何れを用いることも可能であり、その浴中に含有される金属種としても種々のものを採用し得る。好ましくは、めっき膜の磁気特性を軟磁性膜としてのものとすると同時にその結晶構造を立方晶とする必要から、Co、Ni、Feからなる群から選択される少なくとも2種の元素を含有する金属塩含有のめっき浴が選ばれる。このような金属元素の選択とするのは、Co、Ni、及びFeは何れも無電解めっきが可能であるものの、単独元素のめっき膜からは良好な軟磁気特性を得ることが困難なためである。具体的な浴組成としては、例えば、硫酸ニッケルと硫酸コバルト混合浴、あるいは硫酸鉄を含む混合浴等が例示され、その好ましい濃度は0.01〜0.5Nである。なお、めっき浴の温度は40〜95℃の範囲に設定することが好ましい。   The soft magnetic film is usually formed by electroless plating. As the plating bath, either a sulfide bath or a chloride bath can be used, and various metal species can be employed as the metal species contained in the bath. Preferably, a metal containing at least two elements selected from the group consisting of Co, Ni, and Fe because it is necessary to make the magnetic properties of the plating film as a soft magnetic film and at the same time make the crystal structure cubic. A salt-containing plating bath is selected. The reason for selecting such a metal element is that although Co, Ni, and Fe can be electrolessly plated, it is difficult to obtain good soft magnetic properties from a single element plating film. is there. Specific examples of the bath composition include a nickel sulfate and cobalt sulfate mixed bath, or a mixed bath containing iron sulfate, and the preferred concentration is 0.01 to 0.5N. In addition, it is preferable to set the temperature of a plating bath in the range of 40-95 degreeC.

また、このようなめっき浴には、BとCとPとSからなる群から選択される少なくとも1種の元素がめっき膜中に有意に(好ましくは3at%(原子%)以下)含有されるように、必要に応じて、浴に含まれる金属イオンに応じた還元剤が添加される。このような還元剤としては、例えば、次亜燐酸(H2PO2)やジメチルアミンボラン(DMAB:(CH32HNBH3)等がある。めっき膜中に、B、C、P、及びSのうちの少なくとも1種の元素を含有させるのは、膜の軟磁気特性を考慮してのものであり、これらの元素の少なくとも1種を有意に含有させる点は、スパッタリング法等の乾式成膜法との大きな相違点である。 In addition, in such a plating bath, at least one element selected from the group consisting of B, C, P, and S is significantly (preferably 3 at% (atomic%) or less) contained in the plating film. Thus, if necessary, a reducing agent corresponding to the metal ions contained in the bath is added. Examples of such a reducing agent include hypophosphorous acid (H 2 PO 2 ) and dimethylamine borane (DMAB: (CH 3 ) 2 HNBH 3 ). The inclusion of at least one element of B, C, P, and S in the plated film is in consideration of the soft magnetic properties of the film, and at least one of these elements is significant. The point of inclusion in is a significant difference from a dry film forming method such as a sputtering method.

多層磁性裏打ち層のうち、少なくとも一層の反強磁性膜を有する。反強磁性膜は、好ましくは、合金の膜又は自然酸化以外の金属酸化膜等の金属系反強磁性膜で構成される。
合金の反強磁性膜としては、Cr系合金(Cr−Mn、Cr−Pt、Cr−Ru、Cr−Rh、Cr−Ir、Cr−Os、Cr−Re等)やMn系合金(Mn−Pt、Mn−Ir等)が用いられ、その混合系でも構わない。めっきのし易さから、特にCr系合金が望ましい。
Cr単体では反強磁性のネール温度(反強磁性構造から常磁性構造に変わる温度)が310K程度と低いが、遷移金属でMn、貴金属系でPt、Ru、Rh、Ir、Os、Re等を1〜10at%程度、好ましくは1〜5at%の添加により、100K以上上昇させることができ、ネール温度を100℃以上とすることができる。Crに該添加金属を添加した反強磁性膜をめっきで成膜することにより、多層磁性裏打ち層12を形成することが可能となる。
反強磁性膜の組成としては、特に好ましくは、Cr−Mn、Cr−Pt、Cr−Ru等が上げられる。
Of the multilayer magnetic backing layer, at least one antiferromagnetic film is provided. The antiferromagnetic film is preferably composed of a metal antiferromagnetic film such as an alloy film or a metal oxide film other than natural oxidation.
Examples of the antiferromagnetic film of the alloy include a Cr-based alloy (Cr—Mn, Cr—Pt, Cr—Ru, Cr—Rh, Cr—Ir, Cr—Os, Cr—Re, etc.) and a Mn alloy (Mn—Pt). , Mn-Ir, etc.) may be used, and a mixed system thereof may be used. In view of ease of plating, a Cr alloy is particularly desirable.
Cr alone has an antiferromagnetic Neel temperature (a temperature at which an antiferromagnetic structure changes to a paramagnetic structure), which is as low as about 310 K. However, transition metals such as Mn, noble metals such as Pt, Ru, Rh, Ir, Os, Re, etc. By adding about 1 to 10 at%, preferably 1 to 5 at%, the temperature can be raised by 100 K or more, and the Neel temperature can be made 100 ° C. or more. The multilayer magnetic backing layer 12 can be formed by forming an antiferromagnetic film in which the additive metal is added to Cr by plating.
The composition of the antiferromagnetic film is particularly preferably Cr—Mn, Cr—Pt, Cr—Ru or the like.

合金の反強磁性膜は、好ましくは、めっき法を用いて形成できる。
反強磁性膜のめっきとしては、電解めっき又は無電解めっきのどちらでもよい。反強磁性膜がCr系合金の場合には電解めっきが好ましい。
具体的な浴組成は塩化浴又は硫酸塩浴を用いる。たとえば、塩化クロムと塩化マンガンの混合浴、又は硫酸クロムと硫酸マンガン等の混合浴が好ましい。濃度は0.01〜1.0Mol/Lがよく、特に0.1〜0.8Mol/Lが好ましい。pHが1から5の弱酸性がよい。電流密度は5A/dm2以上、60A/dm2以下がよい。錯化剤としてはグリシン等の有機アミンや硫酸アンモニウム等のアンモニウム塩、ホウ酸が好ましい。
反強磁性膜の厚みは、好ましくは2〜50nm、より好ましくは5〜20nmである。反強磁性膜は、コロイダルシリカ等を用いて所望の表面粗さになるように研磨してもよい。
The antiferromagnetic film of the alloy can be preferably formed using a plating method.
The plating of the antiferromagnetic film may be either electrolytic plating or electroless plating. Electroplating is preferred when the antiferromagnetic film is a Cr-based alloy.
As a specific bath composition, a chloride bath or a sulfate bath is used. For example, a mixed bath of chromium chloride and manganese chloride or a mixed bath of chromium sulfate and manganese sulfate is preferable. The concentration is preferably from 0.01 to 1.0 mol / L, particularly preferably from 0.1 to 0.8 mol / L. A weak acidity with a pH of 1 to 5 is good. The current density is preferably 5 A / dm 2 or more and 60 A / dm 2 or less. As the complexing agent, organic amines such as glycine, ammonium salts such as ammonium sulfate, and boric acid are preferable.
The thickness of the antiferromagnetic film is preferably 2 to 50 nm, more preferably 5 to 20 nm. The antiferromagnetic film may be polished so as to have a desired surface roughness using colloidal silica or the like.

自然酸化以外の金属酸化膜の反強磁性膜は、好ましくは、Co、Ni及びFeからなる群から選ばれる少なくとも1種以上の金属の酸化物であり、例えば、NiFeO、CoNiFeO{CoNiFeOx(xは正数である)}が挙げられる。
自然酸化以外の金属酸化膜の反強磁性膜は、好ましくは軟磁性裏打ち層を構成する少なくとも一つの軟磁性膜の酸化により得ることができる。
軟磁性がNiFeパーマロイ膜の場合、酸化されるとNi(Fe)Oであり、該酸化膜は反強磁性を示す。軟磁性がCoNiFe膜の場合、酸化されるとCoNiFeOx(xは正数である)であり、この場合も反強磁性膜となる。
反強磁性膜の酸化は、湿式めっき工程中において酸化剤(H22等)を入れた液中で湿式酸化させてもよいし、めっき後に大気中ないし雰囲気制御下で乾式酸化(好ましくはオゾン酸化)させてもよい。
The antiferromagnetic film of the metal oxide film other than natural oxidation is preferably an oxide of at least one metal selected from the group consisting of Co, Ni, and Fe. For example, NiFeO, CoNiFeO {CoNiFeO x (x Is a positive number)}.
An antiferromagnetic film of a metal oxide film other than natural oxidation can be obtained by oxidation of at least one soft magnetic film constituting a soft magnetic underlayer.
When the soft magnetic film is a NiFe permalloy film, it is Ni (Fe) O when oxidized, and the oxide film exhibits antiferromagnetism. When the soft magnetism is a CoNiFe film, it is CoNiFeO x (x is a positive number) when oxidized, and in this case also becomes an antiferromagnetic film.
The oxidation of the antiferromagnetic film may be performed by wet oxidation in a solution containing an oxidizing agent (H 2 O 2 or the like) during the wet plating process, or dry oxidation (preferably in the atmosphere or under atmospheric control after plating) (Ozone oxidation).

自然酸化以外の金属酸化膜の反強磁性膜の厚みは、好ましくは、酸化の条件を変えることにより好ましくは2nmから50nm程度、より好ましくは5〜20nm程度の間で制御可能で、最適な膜厚の反強磁性膜を含む多層磁性裏打ち層を形成することができる。50nm以上の酸化膜とすることは可能であるが、酸化処理に時間がかかりすぎるため、好ましくない。
反強磁性膜は、コロイダルシリカ等を用いて所望の表面粗さになるように研磨してもよい。
The thickness of the antiferromagnetic film of the metal oxide film other than natural oxidation is preferably an optimum film that can be controlled between about 2 nm to 50 nm, more preferably about 5 to 20 nm by changing the oxidation conditions. A multilayer magnetic backing layer including a thick antiferromagnetic film can be formed. Although an oxide film having a thickness of 50 nm or more is possible, it is not preferable because the oxidation process takes too much time.
The antiferromagnetic film may be polished so as to have a desired surface roughness using colloidal silica or the like.

軟磁性裏打ち層を構成する少なくとも一つの軟磁性膜は、例えば、無電解めっきとして知られる一般的な方法でめっき膜厚が好ましくは100〜1500nmとなるように成膜した後に、このめっき膜を所定の厚みまで研磨して好ましくは50〜500nmとすることにより得られる。この研磨工程は、コロイダルシリカやセリア等の無機微粒子を用いて行われ、厚み調整と同時に表面粗さ制御も兼ねるものである。   At least one soft magnetic film constituting the soft magnetic underlayer is formed by, for example, a general method known as electroless plating so that the plating film thickness is preferably 100 to 1500 nm, and then the plating film is formed. It is obtained by polishing to a predetermined thickness, preferably 50 to 500 nm. This polishing step is performed using inorganic fine particles such as colloidal silica and ceria, and also serves to control the surface roughness simultaneously with the thickness adjustment.

本発明の軟磁性裏打ち層は、面内径もしくは周方向が磁化容易方向の異方性を有する膜である。本発明者らが以前出願しためっき軟磁性膜のみであれば、磁場中めっきにより異方性を付与することができる。しかし、本発明の多層磁性裏打ち層は反強磁性膜を含むため、磁場中めっきだけでは層全体を異方性化できない。したがって、異方性化はめっき後の磁場中熱処理により行われる。
磁場中熱処理は、多層磁性裏打ち層の反強磁性膜ネール点の少し上の温度から開始し(例えば10〜100℃)、徐々に冷却することにより層全体に周方向ないし径方向異方性を付与することが可能となる。磁場は100エルステッド(Oe)以上で数kOe程度まで印加すればよい。
The soft magnetic underlayer of the present invention is a film having an anisotropy in which the surface inner diameter or circumferential direction is in the direction of easy magnetization. If only the plated soft magnetic film previously filed by the present inventors is used, anisotropy can be imparted by plating in a magnetic field. However, since the multilayer magnetic backing layer of the present invention includes an antiferromagnetic film, the entire layer cannot be made anisotropic only by plating in a magnetic field. Therefore, anisotropy is performed by heat treatment in a magnetic field after plating.
The heat treatment in a magnetic field starts from a temperature slightly above the antiferromagnetic film nail point of the multilayer magnetic backing layer (for example, 10 to 100 ° C.), and gradually cools to give circumferential or radial anisotropy to the entire layer. It becomes possible to grant. The magnetic field may be applied to 100 oersted (Oe) or more up to several kOe.

磁場を印加する磁気回路としては、例えば、図3(a)および図4(a)のような磁気回路を用いることができる。磁極面84、94と直交する磁石側面同士を対向させて形成される空隙が磁場印加空間となっている。該磁気回路では、対向する磁石側面の対角線の交点同士を結ぶ直線上、2つの対向面から等距離にある位置において、永久磁石82、92の磁化方向81、91と逆向きの磁場を発生することができる。
図の2種類の磁気回路の使い分けにより、被処理基板83、93の磁場印加方向を選択できる。図3(a)は径方向磁場、図4(a)は周方向磁場印加となる。径方向と周方向との中間の方向に磁場を印加する場合は、該中間の方向に磁化方向が向くように永久磁石を配置すればよい。
図3(b)、図4(b)のように、非磁性支持板88を用い対の磁石82、92を複数スタックし、空隙を複数設けることにより、処理空隙の狭い点をカバーできる。一方、被処理基板83、93の近傍に磁気回路を設けるため、該磁気回路は相対的に小さくてよい。
As the magnetic circuit for applying the magnetic field, for example, magnetic circuits as shown in FIGS. 3A and 4A can be used. A gap formed by opposing the magnet side surfaces perpendicular to the magnetic pole surfaces 84 and 94 is a magnetic field application space. In the magnetic circuit, a magnetic field opposite to the magnetization directions 81 and 91 of the permanent magnets 82 and 92 is generated at a position equidistant from the two opposing surfaces on a straight line connecting the intersections of diagonal lines of opposing magnet side surfaces. be able to.
The magnetic field application direction of the substrates to be processed 83 and 93 can be selected by properly using the two types of magnetic circuits shown in the figure. FIG. 3A shows a radial magnetic field, and FIG. 4A shows a circumferential magnetic field application. When a magnetic field is applied in the intermediate direction between the radial direction and the circumferential direction, the permanent magnet may be arranged so that the magnetization direction is in the intermediate direction.
As shown in FIGS. 3 (b) and 4 (b), a plurality of pairs of magnets 82 and 92 are stacked using a nonmagnetic support plate 88, and a plurality of gaps are provided to cover a narrow point of the processing gap. On the other hand, since the magnetic circuit is provided in the vicinity of the substrates 83 and 93 to be processed, the magnetic circuit may be relatively small.

径方向に磁場を発生させる場合には、試料の1面に、径方向磁化を有する永久磁石を1個または複数個(2〜40個)を配置することができる。複数個を配置する場合は、均等に配置することが好ましい。
周方向に磁場を形成させる場合には、試料の1面に、周方向磁化を有する永久磁石を1個または複数個(2〜6個)配置することができる。複数個配置する場合は、図4(a)に示すように、それぞれの磁石が干渉されないように、または、磁石間でショートしないように、同一試料面上、間隔をあけて配置することが望ましい。上記間隔は均等であることが好ましい。
When a magnetic field is generated in the radial direction, one or a plurality (2 to 40) of permanent magnets having radial magnetization can be disposed on one surface of the sample. When arranging a plurality, it is preferable to arrange them evenly.
When forming a magnetic field in the circumferential direction, one or a plurality (2 to 6) of permanent magnets having circumferential magnetization can be arranged on one surface of the sample. When a plurality of magnets are arranged, as shown in FIG. 4A, it is desirable that the magnets are arranged at intervals on the same sample surface so as not to interfere with each other or to short-circuit between the magnets. . The intervals are preferably uniform.

径方向または周方向に磁場を発生させるために、径方向磁化または周方向磁化を有する永久磁石を1個配置する場合、例えば、図5(a)および図5(b)に示す磁気回路を用いることができる。図5(a)および図5(b)において、磁気回路の仮想中心軸87と、予め設定しておいた未処理試料93の中心位置を貫通し固定する支持棒86とを一致させて、相対的に回転96することにより、時間平均でみた場合、未処理試料の同心円周上のどの点においても軸対称磁場を印加することができる。なお、磁石側面を95で示す。
「磁気回路の仮想中心軸」は、中心点から放射状の位置に磁石を形成した磁気回路の中心をいう。
When one permanent magnet having radial magnetization or circumferential magnetization is arranged to generate a magnetic field in the radial direction or circumferential direction, for example, the magnetic circuit shown in FIGS. 5A and 5B is used. be able to. 5 (a) and 5 (b), the virtual center axis 87 of the magnetic circuit and the support rod 86 that penetrates and fixes the center position of the unprocessed sample 93 set in advance are matched, By rotating 96, the axisymmetric magnetic field can be applied to any point on the concentric circumference of the untreated sample when viewed in terms of time average. The magnet side surface is indicated by 95.
The “virtual central axis of the magnetic circuit” refers to the center of the magnetic circuit in which magnets are formed at radial positions from the center point.

上記磁場中での回転96は、熱処理とともに行われ、該熱処理工程は、通常、5分以上数時間かけてゆっくり行われるので、相対的に5rpm以上500rpm以下の回転速度で回転していれば、軸対称磁場印加したものとみなせる。5rpm未満の回転速度では時間平均の軸対称性が得られない場合があり、500rpmを超える回転速度では回転機構が複雑かつ難しくなる場合がある。回転速度の好ましい下限は、10rpm、好ましい上限は、150rpmである。
上記回転は、被処理基板、磁気回路のどちらか一方を回転しても、両方を互いに反対方向に回転してもよいが、作業性の点で、未処理試料を回転することが好ましい。
The rotation 96 in the magnetic field is performed together with the heat treatment, and the heat treatment step is usually performed slowly over 5 minutes to several hours. Therefore, if the rotation is relatively performed at a rotational speed of 5 rpm to 500 rpm, It can be considered that an axially symmetric magnetic field was applied. If the rotational speed is less than 5 rpm, the time-average axial symmetry may not be obtained, and if the rotational speed exceeds 500 rpm, the rotational mechanism may be complicated and difficult. The preferable lower limit of the rotation speed is 10 rpm, and the preferable upper limit is 150 rpm.
In the above rotation, either the substrate to be processed or the magnetic circuit may be rotated, or both may be rotated in opposite directions, but it is preferable to rotate the untreated sample from the viewpoint of workability.

上記磁場中での回転によって磁気異方性の付与を行う場合、配置する永久磁石は、図5(a)に示すように、切り欠け部85を設けたものであってよい。
切り欠け部85を設けることにより、未処理試料に支持棒86を挿入したのち、該支持棒86を磁気回路の仮想中心軸87と一致するようにセッティングすることができ、作業性を向上することができる。
上記回転を用いた磁気異方性の付与を行う場合、同一試料面上に配置する永久磁石の数は、1個であってもよいし、複数個であってもよい。
When magnetic anisotropy is imparted by rotation in the magnetic field, the permanent magnet to be arranged may be provided with a notch 85 as shown in FIG.
By providing the cutout portion 85, the support rod 86 can be set to coincide with the virtual central axis 87 of the magnetic circuit after the support rod 86 is inserted into the untreated sample, thereby improving workability. Can do.
When magnetic anisotropy is imparted using the above rotation, the number of permanent magnets arranged on the same sample surface may be one or plural.

従来、磁場中熱処理は、電磁石、永久磁石からなる磁気回路、超伝導マグネット等で構成された磁場発生手段を設けた内部に、非磁性炉部品で構成された熱処理炉を設け、該熱処理炉空間内に一方向磁場を発生させることにより行われてきたが、磁場発生手段はどの装置を用いるにしろ大型になり、熱処理炉も複雑な構成になりやすいという問題がある。
そこで、磁場中熱処理装置として、熱処理炉内部に磁気回路を配設する都合、耐熱性を有する磁気回路を用いればよい。
磁場中熱処理の温度は、被処理基板の材質等により異なるが、概ね150℃以上350℃以下で行われることが多い。磁気回路も、該温度範囲でほとんど熱減磁しない、つまり、不可逆減磁(初期減磁)が好ましくは、5%以下、より好ましくは、1%以下である。
磁場中熱処理の炉内は、通常、Ar、He、窒素等の不活性ガス雰囲気とする。
本明細書において、上記不可逆減磁(初期減磁)は、保持初期に減磁されることをいい、熱をかけて1時間保持の点での磁場強度の減少割合を表すものであり、ガウスメータを用いて測定される値である。
Conventionally, heat treatment in a magnetic field is performed by providing a heat treatment furnace made up of non-magnetic furnace parts inside a magnetic field generation means made up of a magnetic circuit composed of an electromagnet, a permanent magnet, a superconducting magnet, etc. However, there is a problem that the magnetic field generating means becomes large regardless of which apparatus is used, and the heat treatment furnace tends to have a complicated configuration.
Therefore, as a heat treatment apparatus in a magnetic field, a heat resistant magnetic circuit may be used for the convenience of disposing a magnetic circuit inside the heat treatment furnace.
The temperature of the heat treatment in the magnetic field varies depending on the material of the substrate to be processed, but is generally approximately 150 ° C. or higher and 350 ° C. or lower. The magnetic circuit also hardly thermally demagnetizes in this temperature range, that is, irreversible demagnetization (initial demagnetization) is preferably 5% or less, more preferably 1% or less.
The inside of the furnace for heat treatment in a magnetic field is usually an inert gas atmosphere such as Ar, He, or nitrogen.
In the present specification, the irreversible demagnetization (initial demagnetization) refers to demagnetization at the initial stage of holding, and represents the reduction rate of the magnetic field strength at the point of holding for 1 hour by applying heat. Is a value measured using.

図6のような永久磁石磁気回路を炉の中に挿入し、磁石間空隙に本発明の軟磁性膜裏打ち層形成基板を保持し、該基板を回転しながら熱処理を行う。基板に対する磁場印加の方向により、径方向と周方向異方性を作り分けることができる。   A permanent magnet magnetic circuit as shown in FIG. 6 is inserted into the furnace, the soft magnetic film backing layer-formed substrate of the present invention is held in the gap between the magnets, and heat treatment is performed while rotating the substrate. Depending on the direction of magnetic field application to the substrate, radial and circumferential anisotropy can be created separately.

磁気記録層は、軟磁性裏打ち層の上に直接形成してもよいが、結晶粒径及び磁気特性の整合をとる等のために、必要に応じて、種々の中間膜を設け、この中間膜上に形成するようにしてもよい。
中間膜としては、例えばRu膜、Re膜等が用いられる。また、中間膜を複数層積層 させるようにしてもよい。
中間膜の厚みは、好ましくは2〜25nmである。
The magnetic recording layer may be formed directly on the soft magnetic underlayer, but various intermediate films are provided as necessary for the purpose of matching the crystal grain size and the magnetic characteristics. You may make it form on top.
As the intermediate film, for example, a Ru film, a Re film, or the like is used. Further, a plurality of interlayer films may be laminated.
The thickness of the intermediate film is preferably 2 to 25 nm.

軟磁性裏打ち層の上に設けられる磁気記録層は、垂直磁化記録を行うための硬磁性材料からなる。
磁気記録層の組成は、層面に垂直な方向に磁化容易な磁区を形成可能な硬磁性材料であれば特別な制限はない。スパッタ法成膜する場合には、たとえば、Co−Cr系合金膜、Fe−Pt合金膜、CoCrPt−SiOxグラニュール膜、Co/Pd多層膜等を用いることができる。
磁気記録層の厚みは、5〜100nm程度が好ましく、より好ましくは10〜50nm程度である。また、磁気記録層は、その保磁力が、好ましくは2〜10kOeとなるように成膜され、より好ましくは3〜6kOeとなるように成膜される。
The magnetic recording layer provided on the soft magnetic backing layer is made of a hard magnetic material for performing perpendicular magnetization recording.
The composition of the magnetic recording layer is not particularly limited as long as it is a hard magnetic material capable of forming a magnetic domain easily magnetized in a direction perpendicular to the layer surface. When the sputtering method is used, for example, a Co—Cr alloy film, an Fe—Pt alloy film, a CoCrPt—SiOx granule film, a Co / Pd multilayer film, or the like can be used.
The thickness of the magnetic recording layer is preferably about 5 to 100 nm, more preferably about 10 to 50 nm. The magnetic recording layer is formed so that its coercive force is preferably 2 to 10 kOe, more preferably 3 to 6 kOe.

磁気記録層の上面に設けられる保護層は、従来の磁気記録媒体に用いられてきた材料で形成することができる。たとえば、スパッタ法やCVD法により形成される非晶質カーボン系の保護膜をはじめ、アルミナ(Al23)等の結晶質の保護膜を用いることができる。保護層の厚みは、例えば2〜10nm程度とされる。 The protective layer provided on the top surface of the magnetic recording layer can be formed of a material that has been used in conventional magnetic recording media. For example, a crystalline protective film such as alumina (Al 2 O 3 ) as well as an amorphous carbon protective film formed by sputtering or CVD can be used. The thickness of the protective layer is, for example, about 2 to 10 nm.

保護層の上面には、潤滑層が設けられる。潤滑層もまた、従来の磁気記録媒体に用いられてきた材料を塗布して形成することができ、その剤種及び塗布方法についての制限は特にない。たとえば、フッ素系油脂を塗布して単分子膜を形成する等により潤滑層を形成する。潤滑層の厚みは、例えば2〜10nm程度とされる。   A lubricating layer is provided on the upper surface of the protective layer. The lubricating layer can also be formed by applying a material used for a conventional magnetic recording medium, and there is no particular limitation on the type of agent and the application method. For example, the lubricating layer is formed by applying a fluorinated oil or fat to form a monomolecular film. The thickness of the lubricating layer is, for example, about 2 to 10 nm.

以下に、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1〜4
本実施例では、非磁性基板として単結晶Si基板を用いた。CZ法で結晶育成された直径200mm(8インチ)のSi単結晶から、コア抜き、芯取り、及びラッピングを行い、外径48mm内径12mmの(100)Si単結晶の板(Pドープのn型)を得た。このSi単結晶の板を、平均粒径15nmのコロイダルシリカを含有するスラリーを用いて両面研磨し、表面粗さ(Rms)4nmのSi基板を得た。なお、Rmsは平方平均粗さであり、AFM(原子間力顕微鏡)を用いて測定した。
このSi基板を、2質量%の苛性ソーダ水溶液(液温45℃)に3分間浸漬して基板表面の薄い表面酸化膜を除去するとともに、極表面のSiをエッチングする表面活性化処理を行った。引き続いて核付け膜成膜のため、0.1Nの硫酸ニッケル水溶液に硫酸アンモニウムを0.5N添加した下地めっき浴を調合して液温80℃に保持した浴中に5分間浸漬して下地Niめっき層を得た。もしくは、非磁性核付け膜を以下手順で成膜した。0.5モル/L苛性ソーダと1モル/LのH22を含有する水溶液(液温45℃)に10分間浸漬して基板表面を親水化処理する。十分に洗浄後、引き続いて非磁性核付け膜成膜のため、0.1M硫酸ニッケルと0.5M硫酸アンモニウムと0.1Mクエン酸ナトリウムの混合浴を調合して、還元材として0.1M次亜りん酸Naを添加し、液温80℃、pH7〜7.5に保持した浴中に基板を2分間浸漬して非磁性核付け膜を得た。
Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples.
Examples 1-4
In this example, a single crystal Si substrate was used as the nonmagnetic substrate. From a single crystal of 200 mm (8 inches) in diameter grown by the CZ method, core removal, centering, and lapping are performed, and a (100) Si single crystal plate having an outer diameter of 48 mm and an inner diameter of 12 mm (P-doped n-type) ) This Si single crystal plate was polished on both sides using a slurry containing colloidal silica having an average particle size of 15 nm to obtain a Si substrate having a surface roughness (Rms) of 4 nm. In addition, Rms is a square average roughness, and was measured using AFM (atomic force microscope).
The Si substrate was immersed in a 2% by weight aqueous caustic soda solution (liquid temperature: 45 ° C.) for 3 minutes to remove the thin surface oxide film on the substrate surface, and surface activation treatment for etching Si on the extreme surface was performed. Subsequently, in order to form a nucleation film, a base plating bath prepared by adding 0.5N of ammonium sulfate to a 0.1N nickel sulfate aqueous solution was prepared and immersed for 5 minutes in a bath maintained at a liquid temperature of 80 ° C. A layer was obtained. Alternatively, a nonmagnetic nucleation film was formed by the following procedure. The substrate surface is hydrophilized by immersing in an aqueous solution (liquid temperature: 45 ° C.) containing 0.5 mol / L sodium hydroxide and 1 mol / L H 2 O 2 for 10 minutes. After washing thoroughly, a mixed bath of 0.1M nickel sulfate, 0.5M ammonium sulfate, and 0.1M sodium citrate was prepared for subsequent formation of a non-magnetic nucleation film, and 0.1M hypochlorous acid as a reducing material was prepared. Na phosphate was added and the substrate was immersed in a bath maintained at a liquid temperature of 80 ° C. and a pH of 7 to 7.5 for 2 minutes to obtain a nonmagnetic nucleation film.

次に、軟磁性膜成膜のため、硫酸アンモニウム0.2N、硫酸ニッケル0.02N、硫酸コバルト0.1N、硫酸鉄0.01N、還元剤としてジメチルアミンボラン0.04N含むめっき液を調合し、この液温を65℃となるように加熱・保持した。なお、液温を65℃としたのは、軟磁性膜を無電解めっきする際の膜成長速度を0.1μm/分とするためである。該Si基板を60rpmで自転させながら各々10分間のめっきを行って、下地めっき層より上に、Co−Ni−Fe系軟磁性膜を得た。もしくは、0.07M硫酸ニッケルと0.03M硫酸鉄と0.5M硫酸アンモニウムと1Mクエン酸ナトリウムの混合浴を調合して、還元材として0.05Mジメチルアミンボランを添加し、液温65℃、pH7〜8に保持した浴中に、基板を60rpmで自転させながら15分間浸漬してNi-Fe系軟磁性膜を得た。得られた組成は、概ねCo70Ni13Fe17、又はNi80Fe20(原子比)で、還元剤より由来するS、C及びBを1〜2at%含有していた。多層軟磁性膜では各膜層分だけ厚みが足された。 Next, for forming a soft magnetic film, a plating solution containing ammonium sulfate 0.2N, nickel sulfate 0.02N, cobalt sulfate 0.1N, iron sulfate 0.01N, and dimethylamine borane 0.04N as a reducing agent was prepared. The liquid temperature was heated and maintained at 65 ° C. The reason for setting the liquid temperature to 65 ° C. is that the film growth rate when the soft magnetic film is electrolessly plated is 0.1 μm / min. While the Si substrate was rotated at 60 rpm, plating was performed for 10 minutes each to obtain a Co—Ni—Fe soft magnetic film above the underlying plating layer. Alternatively, a mixed bath of 0.07M nickel sulfate, 0.03M iron sulfate, 0.5M ammonium sulfate, and 1M sodium citrate is prepared, 0.05M dimethylamine borane is added as a reducing material, the liquid temperature is 65 ° C., pH 7 The substrate was immersed in a bath maintained at ˜8 for 15 minutes while rotating at 60 rpm to obtain a Ni—Fe-based soft magnetic film. The obtained composition was approximately Co 70 Ni 13 Fe 17 or Ni 80 Fe 20 (atomic ratio) and contained 1 to 2 at% of S, C and B derived from the reducing agent. In the multilayer soft magnetic film, the thickness was added for each film layer.

反強磁性膜成膜のため、0.5M塩化クロムと0.05M塩化マンガンと1M硫酸アンモニウムと1Mグリシンと0.5Mホウ酸の混合浴を調合して、液温30℃、pH2〜3に保持した浴中に、基板を陰極に設置し、20A/dm2の電流密度で電析することにより15nmのCr−Mnを主成分とする反強磁性膜を得た。また、0.5M塩化クロムと0.01M塩化ルテニウムと1M硫酸アンモニウムと1Mグリシンと0.5Mホウ酸の混合浴を調合して、液温30℃、pH2〜3に保持した浴中に、基板を陰極に設置し、10A/dm2の電流密度で電析することにより15nmのCr−Ruを主成分とする反強磁性膜を得た。 To form an antiferromagnetic film, a mixed bath of 0.5M chromium chloride, 0.05M manganese chloride, 1M ammonium sulfate, 1M glycine and 0.5M boric acid is prepared and kept at a liquid temperature of 30 ° C. and pH 2-3. In this bath, the substrate was placed on the cathode and electrodeposited at a current density of 20 A / dm 2 to obtain an antiferromagnetic film mainly composed of 15 nm of Cr—Mn. A mixed bath of 0.5 M chromium chloride, 0.01 M ruthenium chloride, 1 M ammonium sulfate, 1 M glycine and 0.5 M boric acid was prepared, and the substrate was placed in a bath maintained at a liquid temperature of 30 ° C. and a pH of 2 to 3. It was placed on the cathode and electrodeposited at a current density of 10 A / dm 2 to obtain an antiferromagnetic film mainly composed of 15 nm Cr—Ru.

軟磁性裏打ち層が形成されたSi基板を、1キロエルステッド(kOe)の径方向静磁場を印加し、ネール温度より20℃から70℃上の温度(200℃から250℃)で1時間保持後、0.5℃/分の速度で100℃まで連続的に磁場中冷却を行った。得られた軟磁性層の最上層軟磁性膜をコロイダルシリカにて研磨し、軟磁性裏打ち層全体として100〜500nm厚まで調厚した。該研磨膜について、カー効果で磁化曲線を測定した結果を表1に纏めた。また、得られた研磨面をカー効果で磁区観察を行ったが、明瞭な磁区は観察されなかった。図7に径方向異方性膜のノイズ測定結果の一例を示す。ただし本例では、内径保持治具の影響で内径側に一部磁壁が観察されているが、これは治具の改良によりなくすことができた。面内径方向の磁化飽和磁場強度(Hd)と面内周方向の磁化飽和磁場強度(Hc)との差(δH=Hd−Hc)が10エルステッド以上(概ね15〜20エルステッド程度)の異方性が得られている。なお、保磁力は何れの軟磁性膜においても略5エルステッド(Oe)以下の良好な軟磁気特性を示した。 A Si substrate with a soft magnetic backing layer formed thereon is applied with a static magnetic field in the radial direction of 1 kilo-Oersted (kOe) and held at a temperature 20 ° C. to 70 ° C. (200 ° C. to 250 ° C.) for 1 hour. And cooling in a magnetic field continuously to 100 ° C. at a rate of 0.5 ° C./min. The uppermost soft magnetic film of the obtained soft magnetic layer was polished with colloidal silica, and the thickness of the entire soft magnetic backing layer was adjusted to 100 to 500 nm. The results of measuring the magnetization curve by the Kerr effect for the polishing film are summarized in Table 1. In addition, magnetic domain observation was performed on the obtained polished surface by the Kerr effect, but no clear magnetic domain was observed. FIG. 7 shows an example of the noise measurement result of the radial anisotropic film. However, in this example, a part of the domain wall was observed on the inner diameter side due to the influence of the inner diameter holding jig, but this could be eliminated by improving the jig. The difference in magnetization saturation magnetic field strength of the surface radially inwards and (H d) in-plane circumferential direction of the magnetization saturation magnetic field strength (H c) (δH = H d -H c) is 10 Oe or more (generally about 15 to 20 oersteds) Anisotropy of is obtained. The coercive force exhibited good soft magnetic characteristics of about 5 Oersted (Oe) or less in any soft magnetic film.

表1中、Subは基板、NLは核付け膜、FM−は強磁性−、NM−は非磁性−、SoftFM−は軟磁性−、SULは軟磁性裏打ち膜、AFLは反強磁性膜を表す。基板の上に、膜構成に記載されている順にしたがって積層した。膜構成中の後ろの数字は膜厚(nm)を表す。   In Table 1, Sub represents a substrate, NL represents a nucleation film, FM- represents a ferromagnetic film, NM- represents a non-magnetic film, Soft FM- represents a soft magnetic film, SUL represents a soft magnetic backing film, and AFL represents an antiferromagnetic film. . Lamination was performed on the substrate in the order described in the film configuration. The number after the film structure represents the film thickness (nm).

製造例1
実施例1で得られた軟磁性裏打ち層上に垂直磁気記録層をスパッタ成膜した。スパッタリング条件は、基板温度を180℃に維持した状態で、先ずRu膜を8nm形成し、このRu膜上に、Co:Cr:Pt=76:19:5(質量%)とSiO2の同時スパッタにより、の組成の磁性膜を厚み12nm成膜して磁気記録層を得た。この磁気記録層の保磁力は、膜面と垂直な方向の保磁力が4キロエルステッド(kOe)であった。この磁気記録層上に厚み8nmのアモルファスカーボンを被覆し、さらにディップ法によりフッ素潤滑膜を塗布して垂直磁気記録媒体を得た。
この垂直磁気記録媒体をスピンスタンドに設置してDCイレーズを実施した後、浮上高10nmのナノスライダーヘッドにより書き込みを実施して再生信号のノイズレベル測定を行った結果、エンベローブパターン中にスパイクノイズは認められなかった(図7)。また、そのS/N比の平均レベルは24dBと良好であった。反強磁性膜が挿入されていない場合はスパイクノイズが見られるが、本発明の構成によって抑制できることが分かった。
Production Example 1
A perpendicular magnetic recording layer was formed by sputtering on the soft magnetic backing layer obtained in Example 1. As the sputtering conditions, a Ru film was first formed with a thickness of 8 nm while maintaining the substrate temperature at 180 ° C., and Co: Cr: Pt = 76: 19: 5 (mass%) and SiO 2 were simultaneously sputtered on this Ru film. Thus, a magnetic film having a composition of 12 nm was formed to obtain a magnetic recording layer. The coercive force of this magnetic recording layer was 4 kilooersted (kOe) in the direction perpendicular to the film surface. A perpendicular magnetic recording medium was obtained by coating the magnetic recording layer with amorphous carbon having a thickness of 8 nm and further applying a fluorine lubricating film by dipping.
After this perpendicular magnetic recording medium was placed on a spin stand and DC erase was performed, writing was performed with a nano slider head with a flying height of 10 nm and the noise level of the reproduced signal was measured. As a result, spike noise was found in the envelope pattern. It was not recognized (FIG. 7). The average level of the S / N ratio was as good as 24 dB. When the antiferromagnetic film is not inserted, spike noise is observed, but it has been found that it can be suppressed by the configuration of the present invention.

実施例5〜11
本実施例では、非磁性基板として単結晶Si基板を用いた。CZ法で結晶育成された直径200mm(8インチ)のSi単結晶から、コア抜き、芯取り、及びラッピングを行い、外径48mm内径12mmの(100)Si単結晶の板(Pドープのn型)を得た。このSi単結晶の板を、平均粒径15nmのコロイダルシリカを含有するスラリーを用いて両面研磨し、表面粗さ(Rms)4nmのSi基板を得た。なお、Rmsは平方平均粗さであり、AFM(原子間力顕微鏡)を用いて測定した。
このSi基板を、2質量%の苛性ソーダ水溶液(液温45℃)に3分間浸漬して基板表面の薄い表面酸化膜を除去するとともに、極表面のSiをエッチングする表面活性化処理を行った。引き続いて核付け膜成膜のため、0.1Nの硫酸ニッケル水溶液に硫酸アンモニウムを0.5N添加した下地めっき浴を調合して液温80℃に保持した浴中に5分間浸漬して下地Niめっき層を得た。もしくは、非磁性核付け膜を以下手順で成膜した。0.5モル/Lの苛性ソーダと1モル/LのH22を含有する水溶液(液温45℃)に10分間浸漬して基板表面を親水化処理した。十分に洗浄後、引き続いて非磁性核付け膜成膜のため、0.1M硫酸ニッケルと0.5M硫酸アンモニウムと0.1Mクエン酸ナトリウムの混合浴を調合して、還元材として0.1M次亜りん酸Naを添加し、液温80℃、pH7〜7.5に保持した浴中に基板を2分間浸漬してNiP非磁性核付け膜を得た。
Examples 5-11
In this example, a single crystal Si substrate was used as the nonmagnetic substrate. From a single crystal of 200 mm (8 inches) in diameter grown by the CZ method, core removal, centering, and lapping are performed, and a (100) Si single crystal plate having an outer diameter of 48 mm and an inner diameter of 12 mm (P-doped n-type) ) This Si single crystal plate was polished on both sides using a slurry containing colloidal silica having an average particle size of 15 nm to obtain a Si substrate having a surface roughness (Rms) of 4 nm. In addition, Rms is a square average roughness, and was measured using AFM (atomic force microscope).
The Si substrate was immersed in a 2% by weight aqueous caustic soda solution (liquid temperature: 45 ° C.) for 3 minutes to remove the thin surface oxide film on the substrate surface, and surface activation treatment for etching Si on the extreme surface was performed. Subsequently, in order to form a nucleation film, a base plating bath prepared by adding 0.5N of ammonium sulfate to a 0.1N nickel sulfate aqueous solution was prepared and immersed for 5 minutes in a bath maintained at a liquid temperature of 80 ° C. A layer was obtained. Alternatively, a nonmagnetic nucleation film was formed by the following procedure. The substrate surface was hydrophilized by immersing in an aqueous solution (liquid temperature: 45 ° C.) containing 0.5 mol / L of caustic soda and 1 mol / L of H 2 O 2 for 10 minutes. After washing thoroughly, a mixed bath of 0.1M nickel sulfate, 0.5M ammonium sulfate, and 0.1M sodium citrate was prepared for subsequent formation of a non-magnetic nucleation film, and 0.1M hypochlorous acid as a reducing material was prepared. NaP was added, and the substrate was immersed in a bath maintained at a liquid temperature of 80 ° C. and a pH of 7 to 7.5 for 2 minutes to obtain a NiP nonmagnetic nucleation film.

次に、軟磁性膜成膜のため、硫酸アンモニウム0.2N、硫酸ニッケル0.02N、硫酸コバルト0.1N、硫酸鉄0.01N、還元剤としてジメチルアミンボラン0.04N含むめっき液を調合し、この液温を65℃となるように加熱・保持した。なお、液温を65℃としたのは、軟磁性膜を無電解めっきする際の膜成長速度を0.1μm/分とするためである。該Si基板を60rpmで自転させながら各々10分間のめっきを行って、下地めっき層より上に、Co−Ni−Fe系軟磁性膜を得た。得られた組成は概ねCo70Ni13Fe17(原子比)で、還元剤より由来するS、C、Bを1〜2at%含有していた。多層軟磁性膜では各膜層分だけ厚みが足された。
もしくは、0.07M硫酸ニッケルと0.03M硫酸鉄と0.5M硫酸アンモニウムと0.1Mクエン酸ナトリウムの混合浴を調合して、還元剤として0.05Mジメチルアミンボランを添加し、液温65℃、pH7〜8に保持した浴中に、基板を60rpmで自転させながら15分間浸漬してNi-Fe系軟磁性膜を得た。得られた組成は概ねNi80Fe20(原子比)で、還元剤より由来するS、C、Bを1〜2at%含有していた。多層軟磁性膜では各膜層分だけ厚みが足された。
Next, for forming a soft magnetic film, a plating solution containing ammonium sulfate 0.2N, nickel sulfate 0.02N, cobalt sulfate 0.1N, iron sulfate 0.01N, and dimethylamine borane 0.04N as a reducing agent was prepared. The liquid temperature was heated and maintained at 65 ° C. The reason for setting the liquid temperature to 65 ° C. is that the film growth rate when the soft magnetic film is electrolessly plated is 0.1 μm / min. While the Si substrate was rotated at 60 rpm, plating was performed for 10 minutes each to obtain a Co—Ni—Fe soft magnetic film above the underlying plating layer. The obtained composition was approximately Co 70 Ni 13 Fe 17 (atomic ratio) and contained 1 to 2 at% of S, C, and B derived from the reducing agent. In the multilayer soft magnetic film, the thickness was added for each film layer.
Alternatively, a mixed bath of 0.07 M nickel sulfate, 0.03 M iron sulfate, 0.5 M ammonium sulfate and 0.1 M sodium citrate is prepared, 0.05 M dimethylamine borane is added as a reducing agent, and the liquid temperature is 65 ° C. The substrate was immersed in a bath maintained at pH 7 to 8 for 15 minutes while rotating at 60 rpm to obtain a Ni—Fe based soft magnetic film. The resulting composition was generally Ni80Fe20 (atomic ratio) and contained 1-2 at% of S, C, and B derived from the reducing agent. In the multilayer soft magnetic film, the thickness was added for each film layer.

反強磁性膜成膜のため湿式か乾式でそれぞれ酸化膜を形成した。
湿式成膜は、軟磁性膜成膜後に水洗し、更にH22添加温水中に10分間前後浸漬して該軟磁性膜表面を酸化し、H22添加量と温度を変化させて、概ね10〜15nmの酸化膜を形成した。必要に応じ、更に軟磁性膜を成膜し、多層化を行った。
乾式成膜では、軟磁性膜をめっき後、水洗・乾燥を行い、該めっき基板を酸化雰囲気もしくはオゾン雰囲気中で加熱酸化(180〜250℃)させて酸化膜を形成した。酸化膜厚の制御は、酸化ガス量と熱処理温度で制御し、概ね10nm〜15nmの酸化膜とした。
高い平滑度が要求される場合は、軟磁性膜を研磨加工後に前記酸化処理を行った。
Oxide films were formed either wet or dry for the formation of antiferromagnetic films.
Wet deposition is washed with water after the soft magnetic film forming, further H 2 O 2 added to before and after immersion for 10 minutes in warm water to oxidize the soft magnetic layer surface, by changing the H 2 O 2 amount and temperature An oxide film having a thickness of about 10 to 15 nm was formed. If necessary, a soft magnetic film was further formed and multilayered.
In the dry film formation, the soft magnetic film was plated, washed with water and dried, and the plated substrate was heated and oxidized (180 to 250 ° C.) in an oxidizing atmosphere or an ozone atmosphere to form an oxide film. The oxide film thickness was controlled by the amount of oxidizing gas and the heat treatment temperature, and the oxide film was approximately 10 nm to 15 nm.
When high smoothness was required, the oxidation treatment was performed after polishing the soft magnetic film.

軟磁性裏打ち層が形成されたSi基板を、1kOeの静磁場を印加し、ネール温度より20℃上の温度で1時間保持後、0.5℃/分の速度で100℃まで連続的に磁場中冷却を行った。得られた軟磁性膜をコロイダルシリカにて研磨し、軟磁性裏打ち層全体として100〜500nm厚まで調厚した。該研磨膜について、カー効果で磁化曲線を測定した結果を表1に纏めた。また、得られた研磨面をカー効果で磁区観察を行ったが、何れも明瞭な磁区は観察されなかった。図8に周方向異方性膜の磁区測定結果の一例を示す。ただし本例では、内径保持治具の影響で内径側に一部磁壁が観察されているが、これは治具の改良によりなくすことができた。面内径方向の磁化飽和磁場強度(Hd)と面内周方向の磁化飽和磁場強度(Hc)との差(δH=Hd−Hc)が概ね10エルステッド(Oe)以上の異方性が得られている。なお、保磁力は何れの軟磁性膜においても略5エルステッド以下の良好な軟磁気特性を示した。 A 1 kOe static magnetic field is applied to the Si substrate on which the soft magnetic underlayer has been formed, held for 1 hour at a temperature 20 ° C. above the Neel temperature, and then continuously magnetic at a rate of 0.5 ° C./min up to 100 ° C. Medium cooling was performed. The obtained soft magnetic film was polished with colloidal silica, and the thickness of the soft magnetic backing layer was adjusted to 100 to 500 nm. The results of measuring the magnetization curve by the Kerr effect for the polishing film are summarized in Table 1. Further, magnetic domain observation was performed on the obtained polished surface by the Kerr effect, but no clear magnetic domain was observed. FIG. 8 shows an example of the magnetic domain measurement result of the circumferentially anisotropic film. However, in this example, a part of the domain wall was observed on the inner diameter side due to the influence of the inner diameter holding jig, but this could be eliminated by improving the jig. Magnetization saturation magnetic field strength surface inner diameter direction (H d) in-plane circumferential direction of the difference between the magnetization saturation magnetic field strength (H c) (δH = H d -H c) is approximately 10 oersted (Oe) or more anisotropic Is obtained. The coercive force showed good soft magnetic characteristics of about 5 oersted or less in any soft magnetic film.

表2中、Subは基板、NLは核付け膜、FM−は強磁性−、NM−は非磁性−、SoftFM−は軟磁性−、SULは軟磁性裏打ち膜、AFLは反強磁性膜を表す。基板の上に、膜構成に記載されている順にしたがって積層した。膜構成中の後ろの数字は膜厚(nm)を表す。   In Table 2, Sub represents a substrate, NL represents a nucleation film, FM- represents a ferromagnetic film, NM- represents a non-magnetic film, Soft FM- represents a soft magnetic film, SUL represents a soft magnetic backing film, and AFL represents an antiferromagnetic film. . Lamination was performed on the substrate in the order described in the film configuration. The number after the film structure represents the film thickness (nm).

製造例2
実施例7で得られた軟磁性裏打ち層上に垂直磁気記録層をスパッタ成膜した。スパッタリング条件は、基板温度を180℃に維持した状態で、先ずRu膜を8nm形成し、このRu膜上に、Co:Cr:Pt=76:19:5(質量%)とSiO2の同時スパッタにより、の組成の磁性膜を厚み12nm成膜して磁気記録層を得た。この磁気記録層の保磁力(VSM)は、膜面と垂直な方向の保磁力が4kOeであった。この磁気記録層上に厚み8nmのアモルファスカーボンを被覆し、さらにディップ法によりフッ素潤滑膜を塗布して垂直磁気記録媒体を得た。
この垂直磁気記録媒体をスピンスタンドに設置してDCイレーズを実施した後、浮上高10nmのナノスライダーヘッドにより書き込みを実施して再生信号の測定を行った。エンベローブパターン中にスパイクノイズは認められなかった。また、そのS/N比の平均レベルは23dBと良好であった。その他の軟磁性裏打ち層上に同じ成膜を行った場合も、スパイクノイズは観察されなかった。
Production Example 2
A perpendicular magnetic recording layer was formed by sputtering on the soft magnetic backing layer obtained in Example 7. As the sputtering conditions, a Ru film was first formed with a thickness of 8 nm while maintaining the substrate temperature at 180 ° C., and Co: Cr: Pt = 76: 19: 5 (mass%) and SiO 2 were simultaneously sputtered on this Ru film. Thus, a magnetic film having a composition of 12 nm was formed to obtain a magnetic recording layer. The coercive force (VSM) of this magnetic recording layer was 4 kOe in the direction perpendicular to the film surface. A perpendicular magnetic recording medium was obtained by coating the magnetic recording layer with amorphous carbon having a thickness of 8 nm and further applying a fluorine lubricating film by dipping.
The perpendicular magnetic recording medium was placed on a spin stand and subjected to DC erase, and then the reproduction signal was measured by writing with a nano slider head having a flying height of 10 nm. No spike noise was observed in the envelope pattern. Moreover, the average level of the S / N ratio was as good as 23 dB. No spike noise was observed when the same film was formed on other soft magnetic underlayers.

比較製造例1
実施例7の膜構成で、反強磁性膜NiOの代わりにCrを反強磁性膜として同じ10nm成膜をスパッタ法で行った。Crのネール温度は312K(38℃)であり、ネール温度が低いため十分な交換結合力が得られず、記録膜を成膜したメディアでスパイクノイズが観察された。
Comparative production example 1
In the film configuration of Example 7, the same 10 nm film was formed by sputtering using Cr as an antiferromagnetic film instead of the antiferromagnetic film NiO. The Neel temperature of Cr was 312K (38 ° C.), and since the Neel temperature was low, a sufficient exchange coupling force could not be obtained, and spike noise was observed in the media on which the recording film was formed.

本発明は、低ノイズで良好な信号再生特性を有する垂直磁気記録媒体の製造に適する基板及びその製造方法を提供する。   The present invention provides a substrate suitable for the manufacture of a perpendicular magnetic recording medium having low noise and good signal reproduction characteristics, and a method for manufacturing the same.

非磁性基板としてSi基板を用い、核付け膜を設けた、本発明の垂直二層式磁気記録媒体の基本的な層構造を説明するための断面概略図である。1 is a schematic cross-sectional view for explaining a basic layer structure of a perpendicular two-layer magnetic recording medium of the present invention using a Si substrate as a nonmagnetic substrate and provided with a nucleation film. 本発明の磁気記録媒体用基板に設けられる、各種の多層軟磁性裏打ち層の概念図である。It is a conceptual diagram of the various multilayer soft-magnetic backing layer provided in the board | substrate for magnetic recording media of this invention. (a)は、磁石間の空隙における磁場方向が、径方向に軸対称になるように永久磁石を配置した本発明の磁気回路の一態様を示す模式的斜視図、(b)は、未処理試料を支持棒に通し磁気回路にセットした状態での(a)に示す磁気回路のB−B断面での断面図である。(A) is a schematic perspective view showing an embodiment of the magnetic circuit of the present invention in which permanent magnets are arranged so that the magnetic field direction in the gap between the magnets is axially symmetric in the radial direction, and (b) is unprocessed. It is sectional drawing in the BB cross section of the magnetic circuit shown to (a) in the state which set the sample to the magnetic circuit through the support rod. (a)は、磁石間の空隙における磁場方向が、周方向に軸対称になるように永久磁石を配置した本発明の磁気回路の一態様を示す模式的斜視図、(b)は、未処理試料を支持棒に通し磁気回路にセットした状態での(a)に示す磁気回路のB−B断面での断面図である。(A) is a schematic perspective view showing one embodiment of the magnetic circuit of the present invention in which permanent magnets are arranged so that the magnetic field direction in the gap between the magnets is axially symmetric in the circumferential direction, and (b) is unprocessed. It is sectional drawing in the BB cross section of the magnetic circuit shown to (a) in the state which set the sample to the magnetic circuit through the support rod. 試料を回転することにより(a)径方向、または、(b)周方向に軸対称な異方性を付与することができる本発明の磁気回路の一態様を示す模式的斜視図である。It is a typical perspective view which shows the one aspect | mode of the magnetic circuit of this invention which can provide an axially symmetric anisotropy to (a) radial direction or (b) circumferential direction by rotating a sample. 本発明の磁気記録媒体用基板の磁場中熱処理に用いられる磁気回路例である。It is an example of the magnetic circuit used for the heat processing in the magnetic field of the board | substrate for magnetic recording media of this invention. 本発明の磁気記録媒体用基板の軟磁性裏打ち層ノイズ測定例(径方向異方性軟磁性裏打ち層の1トラック分のデータ)である。It is an example of soft magnetic underlayer noise measurement of the magnetic recording medium substrate of the present invention (data for one track of the radially anisotropic soft magnetic underlayer). 本発明の磁気記録媒体用基板のカー効果による磁区観察例(周方向異方性)を示す。An example of magnetic domain observation (circumferential anisotropy) by the Kerr effect of the magnetic recording medium substrate of the present invention is shown. 水平磁気記録方式ハードディスクの一般的な積層構造を説明する断面概略図である。It is the cross-sectional schematic explaining the general laminated structure of a horizontal magnetic recording system hard disk. 軟磁性裏打ち層の上に垂直磁気記録のための記録層を設けた垂直二層式磁気記録媒体の基本的な層構造を説明するための断面概略図である。1 is a schematic cross-sectional view for explaining the basic layer structure of a perpendicular double-layer magnetic recording medium in which a recording layer for perpendicular magnetic recording is provided on a soft magnetic underlayer.

符号の説明Explanation of symbols

1、101、111 非磁性基板
2 102、112 核付け膜
3、103、113 軟磁性裏打ち層
4 中間膜
5、105、115 磁気記録層
6、106、116 保護層
7、107、117 潤滑層
81a,81b、91 磁化方向
82、92 永久磁石
83、93 被処理基板
84、94 磁極面
85 切り欠け部
86 支持棒
87 磁気回路の仮想中心軸
88 非磁性支持板
95 磁石側面
96 試料回転方向
1, 101, 111 Non-magnetic substrate 2 102, 112 Nucleation film 3, 103, 113 Soft magnetic backing layer 4 Intermediate film 5, 105, 115 Magnetic recording layer 6, 106, 116 Protective layer 7, 107, 117 Lubricating layer 81a , 81b, 91 Magnetization direction 82, 92 Permanent magnet 83, 93 Processed substrate 84, 94 Magnetic pole surface 85 Notch 86 Support rod 87 Virtual center axis 88 of magnetic circuit Nonmagnetic support plate 95 Magnet side surface 96 Sample rotation direction

Claims (8)

直径90mm以下で中心穴を有した円板形状の非磁性基板の上に軟磁性裏打ち層を有する磁気記録媒体用基板であって、該軟磁性裏打ち層が、順序を問わない、めっき法を用いて形成された少なくとも一つの軟磁性膜と、少なくとも一つの反強磁性膜から構成され、周もしくは径方向磁気異方性を有する磁気記録媒体用基板。   A magnetic recording medium substrate having a soft magnetic backing layer on a disc-shaped nonmagnetic substrate having a diameter of 90 mm or less and having a center hole, wherein the soft magnetic backing layer uses a plating method in any order. And a magnetic recording medium substrate having at least one soft magnetic film and at least one antiferromagnetic film, and having circumferential or radial magnetic anisotropy. 上記反強磁性膜の少なくとも一つが、Cr又はMnを含有する合金の膜又は自然酸化以外の金属酸化膜であり、上記軟磁性膜と交換結合しており、ネール温度が100℃以上で、膜厚が5nm以上50nm以下である請求項1に記載の磁気記録媒体用基板。   At least one of the antiferromagnetic films is a film of an alloy containing Cr or Mn or a metal oxide film other than natural oxidation, exchange coupled with the soft magnetic film, and having a Neel temperature of 100 ° C. or higher. The magnetic recording medium substrate according to claim 1, wherein the thickness is 5 nm or more and 50 nm or less. 上記金属酸化膜が、上記軟磁性膜の少なくとも一つを表面酸化した膜である請求項2に記載の磁気記録媒体用基板。   The magnetic recording medium substrate according to claim 2, wherein the metal oxide film is a film obtained by surface-oxidizing at least one of the soft magnetic films. 直径90mm以下で中心穴を有した円板形状の非磁性基板の上に軟磁性裏打ち層を有する磁気記録媒体用基板の製造方法であって、どちらを先に行ってもよい、めっき法を用いて軟磁性膜を形成する段階を少なくとも一つと、反強磁性膜を形成する段階を少なくとも一つとを含む軟磁性裏打ち層の形成工程と、該軟磁性裏打ち層に周もしくは径方向磁気異方性を付与する工程を含んでなる磁気記録媒体用基板の製造方法。   A method for manufacturing a substrate for a magnetic recording medium having a soft magnetic backing layer on a disk-shaped nonmagnetic substrate having a diameter of 90 mm or less and having a center hole, either of which can be performed first, using a plating method Forming a soft magnetic backing layer comprising at least one step of forming a soft magnetic film and at least one step of forming an antiferromagnetic film, and circumferential or radial magnetic anisotropy in the soft magnetic backing layer The manufacturing method of the board | substrate for magnetic recording media including the process of providing. 上記反磁性膜を形成する段階の少なくとも一つが、めっき法を用いて行われる請求項4に記載の磁気記録媒体用基板の製造方法。   5. The method for manufacturing a magnetic recording medium substrate according to claim 4, wherein at least one of the steps of forming the diamagnetic film is performed using a plating method. 上記反強磁性膜を形成する段階の少なくとも一つが、上記めっき法を用いて形成された軟磁性膜の表面を酸化させることを含む請求項4に記載の磁気記録媒体用基板の製造方法。   5. The method for manufacturing a substrate for a magnetic recording medium according to claim 4, wherein at least one of the steps of forming the antiferromagnetic film includes oxidizing the surface of the soft magnetic film formed by using the plating method. 上記めっき法を用いて形成された軟磁性膜の表面の酸化が、酸化剤溶液中、又は酸化雰囲気下で行われる請求項6に記載の磁気記録媒体用基板の製造方法。   The method for producing a substrate for a magnetic recording medium according to claim 6, wherein the surface of the soft magnetic film formed by using the plating method is oxidized in an oxidizing agent solution or in an oxidizing atmosphere. 請求項1〜3のいずれかに記載の磁気記録媒体用基板を用いた垂直記録媒体。   A perpendicular recording medium using the magnetic recording medium substrate according to claim 1.
JP2007008074A 2007-01-17 2007-01-17 Substrate for magnetic recording medium, manufacturing method, and magnetic recording medium Pending JP2008176846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008074A JP2008176846A (en) 2007-01-17 2007-01-17 Substrate for magnetic recording medium, manufacturing method, and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008074A JP2008176846A (en) 2007-01-17 2007-01-17 Substrate for magnetic recording medium, manufacturing method, and magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2008176846A true JP2008176846A (en) 2008-07-31

Family

ID=39703758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008074A Pending JP2008176846A (en) 2007-01-17 2007-01-17 Substrate for magnetic recording medium, manufacturing method, and magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2008176846A (en)

Similar Documents

Publication Publication Date Title
US7238384B2 (en) Substrate for perpendicular magnetic recording hard disk medium and method for producing the same
JP2006127681A (en) Magnetic recording medium and its manufacturing method, and magnetic recording and reproducing device
US20050191525A1 (en) Magnetic recording medium and magnetic recording medium substrate
JP2005056555A (en) Inclination medium for hard disk drive
JP4539282B2 (en) Disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium using the same
JP2006092721A (en) Substrate for perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording medium
JP4408210B2 (en) Method for manufacturing perpendicular magnetic recording medium
KR100644177B1 (en) Perpendicular magnetic recording medium
JP2004146033A (en) Base plate of induction anisotropic perpendicular magnetic recording hard disk and its manufacturing method
JP5112533B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP4172412B2 (en) Substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium using the same
JP5127950B2 (en) Magnetic recording medium
JP4220475B2 (en) Magnetic recording medium and method for manufacturing the same, magnetic recording apparatus and magnetic recording method
JP5112534B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP2007287216A (en) Substrate for magnetic recording medium, its manufacturing method and magnetic recording medium
US20070111036A1 (en) Substrate for magnetic recording medium and fabrication method thereof
JP2008176846A (en) Substrate for magnetic recording medium, manufacturing method, and magnetic recording medium
JP2005108407A (en) Magnetic recording medium and substrate for magnetic recording medium
JP4525496B2 (en) Disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium
JP2007141309A (en) Substrate for magnetic recording medium, its manufacturing method, and magnetic recording medium
KR100738169B1 (en) Magnetic recording medium and its manufacturing method, magnetic recorder, and magnetic recording method
JP2008123633A (en) Substrate for magnetic recording medium, and magnetic recording medium
JP2007272999A (en) Substrate for magnetic recording medium, its manufacturing method and magnetic recording medium
JP2015097137A (en) Perpendicular magnetic recording medium and magnetic recording reproducing device
JP2007164963A (en) Substrate for magnetic recording medium, fabrication method thereof and magnetic recording medium