JP4408210B2 - Method for manufacturing perpendicular magnetic recording medium - Google Patents

Method for manufacturing perpendicular magnetic recording medium Download PDF

Info

Publication number
JP4408210B2
JP4408210B2 JP2003373140A JP2003373140A JP4408210B2 JP 4408210 B2 JP4408210 B2 JP 4408210B2 JP 2003373140 A JP2003373140 A JP 2003373140A JP 2003373140 A JP2003373140 A JP 2003373140A JP 4408210 B2 JP4408210 B2 JP 4408210B2
Authority
JP
Japan
Prior art keywords
recording medium
magnetic
film
perpendicular magnetic
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003373140A
Other languages
Japanese (ja)
Other versions
JP2004335068A (en
Inventor
将弘 大森
浩史 太田
哲彌 逢坂
透 朝日
時彦 横島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Waseda University
Original Assignee
Showa Denko KK
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Waseda University filed Critical Showa Denko KK
Priority to JP2003373140A priority Critical patent/JP4408210B2/en
Publication of JP2004335068A publication Critical patent/JP2004335068A/en
Application granted granted Critical
Publication of JP4408210B2 publication Critical patent/JP4408210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

本発明は、垂直磁気記録媒体、その製造方法、及び垂直磁気記憶装置に関し、特に、基板に垂直方向に磁化容易軸が配向する磁化膜を記録層にもつ垂直磁気記録媒体に関する。   The present invention relates to a perpendicular magnetic recording medium, a method of manufacturing the same, and a perpendicular magnetic storage device, and more particularly to a perpendicular magnetic recording medium having a recording layer with a magnetization film having an easy axis oriented perpendicular to a substrate.

実用に供されている磁気記録方式は、基板面に平行な方向に磁化容易軸をもつ磁性膜を利用した長手記録方式である。しかしながら、この方式では、信号の源となる隣り合った磁区の磁化方向が反対方向となり、互いに反発し合い弱め合うので、高密度記録になるとその弊害が露呈してくる。   The magnetic recording system in practical use is a longitudinal recording system using a magnetic film having an easy magnetization axis in a direction parallel to the substrate surface. However, in this method, the magnetization directions of adjacent magnetic domains serving as signal sources are opposite to each other, and repel each other and weaken each other.

更に、高密度化を可能とするためには磁区を構成する磁性粒子を微細化することが不可欠となるが、その微細化に伴う磁性粒子の体積減少が起因となって発現する熱擾乱による減磁効果が無視できなくなり、熱安定性が劣化してくる。   Furthermore, in order to enable high density, it is indispensable to make the magnetic particles that make up the magnetic domain fine. However, the reduction due to the thermal disturbance that occurs due to the volume reduction of the magnetic particles accompanying the miniaturization. The magnetic effect cannot be ignored, and the thermal stability deteriorates.

高密度記録化に伴うその弊害を回避できる方法として、一例として、大きな磁気異方性エネルギーKuをもつ磁性体を基板面の垂直方向に磁化容易軸を配向させた磁性膜を利用した垂直磁気記録方式が試行されている。この方式では、隣り合って反対方向に向いている磁化が静磁気学エネルギー的に有利となるので安定し、高密度になればなるほどその特長が顕著になる。また、反対方向に磁化されている隣り合った磁区が静磁気学エネルギーに関して有利に安定する。   As an example of a method for avoiding the adverse effects of high-density recording, as an example, perpendicular magnetic recording using a magnetic film having a magnetic material with a large magnetic anisotropy energy Ku and an axis of easy magnetization in the direction perpendicular to the substrate surface is used. The method is being tried. In this method, the magnetizations that are adjacent to each other in the opposite direction are advantageous in terms of magnetostatic energy, so the characteristics become more stable as the density becomes higher. Also, adjacent magnetic domains magnetized in opposite directions are advantageously stabilized with respect to magnetostatic energy.

一般に、磁気記録層に信号を書き込むためには、磁気ヘッドから漏れてくる磁界により磁気記録層の磁区中の磁性粒子を飽和磁化しなければならないが、長手記録方式ではそれを完全に行うためには磁気記録層をなるべく薄くした方がよいことが知られている。   In general, in order to write a signal to the magnetic recording layer, the magnetic particles in the magnetic domain of the magnetic recording layer must be saturated and magnetized by the magnetic field leaking from the magnetic head. It is known that it is better to make the magnetic recording layer as thin as possible.

これに対して垂直磁気記録方式では、垂直磁気記録層の下に高飽和磁束密度を有する軟磁性膜を付与した重畳型媒体と単磁極ヘッドを用いれば、下地膜となる軟磁性膜が磁気ヘッドから漏洩した磁界を強力に引き込み更に磁気ヘッドに戻す役割を担うことになり、磁気記録層を薄くしなくとも磁気記録層の飽和記録が容易となる。   On the other hand, in the perpendicular magnetic recording system, if a superposition type medium in which a soft magnetic film having a high saturation magnetic flux density is provided below the perpendicular magnetic recording layer and a single pole head are used, the soft magnetic film serving as the base film is the magnetic head. The magnetic field leaked from the magnetic field is strongly drawn back and returned to the magnetic head, and saturation recording of the magnetic recording layer is facilitated without reducing the thickness of the magnetic recording layer.

上述した軟磁性膜には、高透磁率かつ高飽和磁束密度のものが好ましいが、一般的には軟磁性膜自体には磁壁が生じてしまうために磁壁移動や磁壁の揺らぎによるスパイクノイズの発生、及び外部浮遊磁界による磁壁移動に起因する記録の消磁、減磁等の記録磁化が不安定になる等の問題があった(例えば、特許文献1、特許文献2、特許文献3、特許文献4、非特許文献1、非特許文献2参照。)。   The above-mentioned soft magnetic film preferably has a high magnetic permeability and a high saturation magnetic flux density. However, since a domain wall is generally generated in the soft magnetic film itself, spike noise is generated due to domain wall movement and domain wall fluctuation. And the recording magnetization such as demagnetization and demagnetization of recording due to the domain wall movement caused by the external stray magnetic field becomes unstable (for example, Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4). Non-patent document 1 and Non-patent document 2).

さらに、特許文献5にはめっき法による縞状磁区についての記載がされており垂直磁化膜について作製方法が記載されているが、無電解めっき法により作製した薄膜においては、基板に対して垂直方向に磁化容易軸を有する薄膜作製の報告はなく、また、一般には基板に対し平行方向に磁化容易軸が形成されやすい。
尚、本発明で言う下地膜は一般的に述べられる磁性膜の下地膜のことではなく、通常、裏打ち層(膜)と称されるもののことを指す。
Further, Patent Document 5 describes a stripe magnetic domain by a plating method and a method for producing a perpendicular magnetization film. However, in a thin film produced by an electroless plating method, it is perpendicular to the substrate. There is no report on the production of a thin film having an easy magnetization axis, and in general, an easy magnetization axis is easily formed in a direction parallel to the substrate.
The under film referred to in the present invention does not refer to a generally described under film of a magnetic film, but generally refers to what is called a backing layer (film).

特開平6−187628号公報JP-A-6-187628 特開平5−81662号公報JP-A-5-81662 特開平7−105501号公報JP-A-7-105501 特開平7−220921号公報Japanese Patent Laid-Open No. 7-220921 特許第2911050号Patent No. 2911050 The Journal of Electroanalytical Chemistry,2000年,491号,p.197〜202The Journal of Electroanalytical Chemistry, 2000, No. 491, p. 197-202 第25回日本応用磁気学会学術講演概要集、2001年、26aA−225th Annual Meeting of the Japan Society of Applied Magnetics, 2001, 26aA-2

本発明は、上記事情に鑑みなされたものであり、磁壁の発生が無く、低ノイズの下地膜を有する垂直磁気記録媒体を提供することにある。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a perpendicular magnetic recording medium which has no domain wall and has a low noise underlayer.

本発明者は、上記目的を達成するため鋭意検討を重ねた結果、非磁性基板上に金属核又はシード層が形成され、その上に無電解メッキ法により形成された、例えばリン(P)またはホウ素(B)を含有する軟磁性膜であること、さらにこの軟磁性膜の磁気特性が、特に、基板の面内方向においては磁気的に等方性であること、あるいは基板の垂直方向に磁化容易軸を有するものであれば磁壁に関連する上記課題を解決する事を見い出し、本発明をなすに至った。即ち本発明は以下に関する。
(1)非磁性基板上に、少なくとも、軟磁性材料からなる軟磁性下地膜と、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性膜と、保護層が設けられた垂直磁気記録媒体の製造方法であって、
非磁性基板上に金属核又はシード層を形成し、その上に無電解メッキ法により軟磁性下地膜を形成するに際し、非磁性基板に外部から半径方向に平行磁場を印加し、平行磁場に対して平行、かつ回転させながら軟磁性下地膜を形成し、基板の円周方向における軟磁性下地膜のHs(飽和磁束密度測定時に得られる印加磁界の最低強度)と半径方向のHsの比率等方性度を、1.0±0.2以内とすることを特徴とする垂直磁気記録媒体の製造方法
(2)軟磁性下地膜の垂直磁気異方性の異方性磁界(Hk)を395A/m〜3950A/m(5Oe〜50Oe)の範囲内とすることを特徴とする請求項1に記載の垂直磁気記録媒体の製造方法
(3)軟磁性下地膜の結晶粒子径を、5nm以下の微結晶もしくはアモルファス構造とすることを特徴とする請求項1または2に記載の垂直磁気記録媒体の製造方法
(4)軟磁性下地膜の膜厚を、50nm〜5000nmの範囲内とすることを特徴とする請求項1〜3の何れか1項に記載の垂直磁気記録媒体の製造方法
(5)軟磁性下地膜の垂直磁気記録層を積層する側の平均面粗さRaを、0.8nm以下とすることを特徴とする請求項1〜4の何れか1項に記載の垂直磁気記録媒体の製造方法
(6)軟磁性下地膜が、リンを含むことを特徴とする請求項1〜5の何れか1項に記載の垂直磁気記録媒体の製造方法
(7)軟磁性下地膜が、ホウ素を含むことを特徴とする請求項1〜6の何れか1項に記載の垂直磁気記録媒体の製造方法
(8)非磁性基板がシリコン基板であることを特徴とする請求項1〜7の何れか1項に記載の垂直磁気記録媒体の製造方法。
As a result of intensive studies to achieve the above object, the present inventor has formed a metal nucleus or a seed layer on a non-magnetic substrate and formed thereon by an electroless plating method, such as phosphorus (P) or It is a soft magnetic film containing boron (B), and the magnetic properties of this soft magnetic film are magnetically isotropic especially in the in-plane direction of the substrate, or magnetized in the direction perpendicular to the substrate. If it has an easy axis | shaft, it discovered that the said subject relevant to a domain wall was solved, and came to make this invention. That is, the present invention relates to the following.
(1) On a nonmagnetic substrate, at least a soft magnetic underlayer made of a soft magnetic material, an orientation control film for controlling the orientation of the film immediately above, and a perpendicular whose easy axis is oriented perpendicularly to the substrate A method of manufacturing a perpendicular magnetic recording medium provided with a magnetic film and a protective layer ,
When a metal core or seed layer is formed on a nonmagnetic substrate and a soft magnetic underlayer is formed thereon by electroless plating, a parallel magnetic field is applied to the nonmagnetic substrate in the radial direction from the outside. The soft magnetic underlayer is formed while rotating in parallel and rotating, and the ratio of Hs of the soft magnetic underlayer in the circumferential direction of the substrate (minimum strength of the applied magnetic field obtained when measuring the saturation magnetic flux density) to Hs in the radial direction isotropic A method of manufacturing a perpendicular magnetic recording medium, wherein the property is within 1.0 ± 0.2 .
(2) The perpendicular magnetic anisotropy magnetic field (Hk ) of the soft magnetic underlayer is in the range of 395 A / m to 3950 A / m (5 Oe to 50 Oe). A method of manufacturing a perpendicular magnetic recording medium .
(3) The method for producing a perpendicular magnetic recording medium according to (1) or (2), wherein the crystal grain size of the soft magnetic underlayer is a microcrystalline or amorphous structure of 5 nm or less .
(4) The method of manufacturing a perpendicular magnetic recording medium according to any one of claims 1 to 3, wherein the thickness of the soft magnetic underlayer is in the range of 50 nm to 5000 nm .
(5) The perpendicular magnetic field according to any one of claims 1 to 4, wherein the average surface roughness Ra of the soft magnetic underlayer on the side where the perpendicular magnetic recording layer is laminated is 0.8 nm or less. A method for manufacturing a recording medium .
(6) The method for producing a perpendicular magnetic recording medium according to any one of (1) to (5 ), wherein the soft magnetic underlayer includes phosphorus .
(7) The method of manufacturing a perpendicular magnetic recording medium according to any one of (1) to (6 ), wherein the soft magnetic underlayer includes boron .
(8) The method for manufacturing a perpendicular magnetic recording medium according to any one of (1) to (7 ), wherein the nonmagnetic substrate is a silicon substrate.

本発明によれば、磁壁が観察されない下地膜を得ることが出来、これを用いることで熱安定性が高く、ノイズ特性に優れ、高密度記録が可能な垂直磁気記録媒体及び垂直磁気記憶再生装置を提供することができる。   According to the present invention, it is possible to obtain a base film in which no domain wall is observed, and by using this, a perpendicular magnetic recording medium and a perpendicular magnetic recording / reproducing apparatus having high thermal stability, excellent noise characteristics, and capable of high density recording Can be provided.

以下、本発明につき更に詳しく説明する。図1(a)(b)は、本発明の一実施例に係る磁気記録媒体を示す断面図である。図1(a)に示されている磁気記録媒体は、非磁性基板1上に軟磁性下地膜2と、配向制御膜3と、中間膜4と、垂直磁気記録膜5と、保護膜6と、潤滑膜7とが順次積層された構成となっている。以下、非磁性基板1側から順次にその構成を説明する。   Hereinafter, the present invention will be described in more detail. 1A and 1B are cross-sectional views showing a magnetic recording medium according to an embodiment of the present invention. The magnetic recording medium shown in FIG. 1A includes a soft magnetic underlayer 2, an orientation control film 3, an intermediate film 4, a perpendicular magnetic recording film 5, and a protective film 6 on a nonmagnetic substrate 1. The lubricating film 7 is sequentially laminated. Hereinafter, the configuration will be described sequentially from the nonmagnetic substrate 1 side.

本発明の軟磁性下地膜は、例えば、図1(b)に示すように非磁性基板上に金属核又はシード層8が形成され、その上に無電解メッキ法により形成された軟磁性膜からなるものであり、かつその下地膜が磁気的に等方性を示すものである。
また本発明の垂直磁気記録媒体は、軟磁性下地膜が基板の面内方向において磁気的に等方性を示すのが好ましい。
より具体的には、前記下地膜を円盤状基材に形成した際に、その円周方向のHsと半径方向のHsの比率(等方性度)が1.0±0.2以内であるのが好ましい。
As shown in FIG. 1B, the soft magnetic underlayer of the present invention is formed from, for example, a soft magnetic film in which a metal nucleus or a seed layer 8 is formed on a nonmagnetic substrate and formed thereon by an electroless plating method. And the underlying film is magnetically isotropic.
In the perpendicular magnetic recording medium of the present invention, it is preferable that the soft magnetic underlayer is magnetically isotropic in the in-plane direction of the substrate.
More specifically, when the base film is formed on the disk-shaped substrate, the ratio (isotropicity) of Hs in the circumferential direction and Hs in the radial direction is within 1.0 ± 0.2. Is preferred.

図2は、本発明である軟磁性下地膜の磁気特性の概念図を示したものである。該下地膜の磁気特性をVSM(振動資料測定型磁力計;Vibrating Sample Magnetometer)で測定し、このようなヒステリシスループを得、その飽和磁束密度(Bs)からHsを求める。   FIG. 2 is a conceptual diagram showing the magnetic characteristics of the soft magnetic underlayer according to the present invention. The magnetic properties of the base film are measured with a VSM (Vibrating Sample Magnetometer), such a hysteresis loop is obtained, and Hs is obtained from the saturation magnetic flux density (Bs).

通常、無電解メッキにおいて軟磁性膜を成膜すると配向、例えば、異方性結晶配向が生じ、これが磁壁となって現れてくるので、これまで垂直磁気記録用の下地膜に用いるにはスパイクノイズ等の発生があり十分ではなかった。   Usually, when a soft magnetic film is formed in electroless plating, an orientation, for example, an anisotropic crystal orientation occurs, which appears as a domain wall. Therefore, spike noise has not been used so far for a base film for perpendicular magnetic recording. Etc. were not enough.

本発明者らは、外部から印加された平行磁場中で軟磁性膜を無電解メッキ法により成膜することで、軟磁性膜の配向を無くし、等方性にすることを可能とし本発明に至った。まず、VSM測定において、Bsが得られた時の測定印加磁場の強さをHsと定義(図2参照)する。このHsは磁化容易方向を判断するための指標となる。Hsが小さいほどその方向に磁化容易軸をもっていることになり、90°異なる方向でのそれらの比(等方性度)は膜全体の磁気的配向性(等方性)を示すことになる。その値が1.0に近いほど磁気的に等方性と見なすことが出来る。従来の無電解メッキ法で成膜された軟磁性膜は配向があるために上記VSMで測定すると半径方向と、円周方向で同じBs値が得られるが、このBs値を得ることが出来る測定印加磁場には差が認められる。そこで、円盤状の非磁性基板上に形成された下地膜を図3のように基板ごと切出して、円周方向と半径方向でそれぞれHsを求め次式にしたがって、等方性の程度を判定した。   The inventors of the present invention can eliminate the orientation of the soft magnetic film and make it isotropic by forming the soft magnetic film by an electroless plating method in a parallel magnetic field applied from the outside. It came. First, in VSM measurement, the strength of the measurement applied magnetic field when Bs is obtained is defined as Hs (see FIG. 2). This Hs serves as an index for determining the easy magnetization direction. The smaller the Hs, the easier the magnetization axis is in that direction, and the ratio (isotropy) in directions different by 90 ° indicates the magnetic orientation (isotropy) of the entire film. The closer the value is to 1.0, the more magnetically isotropic. Since the soft magnetic film formed by the conventional electroless plating method has an orientation, the same Bs value can be obtained in the radial direction and the circumferential direction when measured by the VSM, but the measurement can obtain this Bs value. There is a difference in the applied magnetic field. Therefore, the base film formed on the disk-shaped nonmagnetic substrate is cut out together with the substrate as shown in FIG. 3, and Hs is obtained in the circumferential direction and the radial direction, respectively, and the degree of isotropicity is determined according to the following equation. .


等方性度=Hs(円周方向)/Hs(半径方向)

一般的にはBs近傍では印加磁場の変化してもBの変化は小さいので、便宜上HsをBs値の95%の様にある一定係数値のBの値から算出するHとしても何ら差しつかえない。

Isotropic degree = Hs (circumferential direction) / Hs (radial direction)

In general, even if the applied magnetic field changes in the vicinity of Bs, the change in B is small. Therefore, for convenience, Hs calculated from the value B of a certain coefficient value, such as 95% of the Bs value, may be used. .

通常の無電解メッキにより軟磁性膜を成膜すると膜は配向しているために、それぞれのBs値が得られた時のHsは異なる。例えば、円周方向に配向していれば、円周方向に磁化容易軸が向いている為にHs(半径方向)>Hs(円周方向)となる。   When a soft magnetic film is formed by ordinary electroless plating, the films are oriented, so that the Hs values when the respective Bs values are obtained are different. For example, if it is oriented in the circumferential direction, Hs (radial direction)> Hs (circumferential direction) because the easy axis of magnetization is oriented in the circumferential direction.

本発明において、基板として用いることのできるものとしては、非磁性であればよく、結晶構造としては、単結晶、多結晶又はアモルファス状のものであればよい。例えば、ガラスウェハ、シリコンウェハ、アルミディスクなどが挙げられる。特に、シリコンウエハ、ガラスウエハが好ましい。また、これらの基板に別途、Ni−Pなどの非磁性物質があらかじめ成膜されたものであっても、本発明にはいっこうに差し支えない。   In the present invention, the substrate that can be used may be non-magnetic, and the crystal structure may be single crystal, polycrystalline, or amorphous. For example, a glass wafer, a silicon wafer, an aluminum disk, etc. are mentioned. In particular, a silicon wafer and a glass wafer are preferable. In addition, even if a non-magnetic material such as Ni-P is previously formed on these substrates, there is no problem in the present invention.

本発明において、下地膜の例えば、Pを含有する軟磁性材は、無電解メッキ法により形成されるが、重要なのは無電解メッキ中に基板の面内方向に平行に外部から平行な磁場をあらかじめ印加するようにし、その平行面内でさらに基板を回転させることである。すなわち、あらかじめ常に基板の半径方向に外部から磁場が影響している状況を作りだし、その条件下でメッキを行うことにより、磁気的に等方性にすることが出来る。その平行の程度については概ね基板に対し±20°以内が好ましい。図4には、メッキ方法の概念図を示した。   In the present invention, the soft magnetic material containing P, for example, of the base film is formed by an electroless plating method. The important thing is that a magnetic field parallel to the in-plane direction of the substrate is applied in advance from the outside in parallel during the electroless plating. Applying and rotating the substrate further in its parallel plane. That is, by creating a situation in which a magnetic field is always exerted from the outside in the radial direction of the substrate in advance, plating can be performed magnetically isotropically under such conditions. The degree of parallelism is preferably within ± 20 ° with respect to the substrate. FIG. 4 shows a conceptual diagram of the plating method.

本発明で用いることの出来る、メッキ用の外部磁場の強さは基板中心付近において、磁束密度が10G〜500G(10000G=1T)程度が好ましく、さらに好ましくは25G〜150Gである。また、この磁場強度を得るために用いることが可能な磁石は、フェライト系、ネオジ−鉄−ボロン系、サマリウム−コバルト系等の永久磁石、あるいは電磁石を用いることが出来、特に制限すべきものではない。さらに本発明では、磁石が固定されて基板が回転しているが、基板を固定し磁石を回転させても本発明と全く同様の効果が得られる。あるいは、図4に示した様に平行磁界中で基板が上下に揺動しても何ら差し支えない。   The strength of the external magnetic field for plating that can be used in the present invention is preferably about 10 G to 500 G (10000 G = 1T), more preferably 25 G to 150 G, near the center of the substrate. The magnet that can be used to obtain the magnetic field strength can be a permanent magnet such as ferrite, neodymium-iron-boron, or samarium-cobalt, or an electromagnet, and is not particularly limited. . Further, in the present invention, the magnet is fixed and the substrate is rotated. However, even if the substrate is fixed and the magnet is rotated, the same effect as in the present invention can be obtained. Alternatively, as shown in FIG. 4, there is no problem even if the substrate swings up and down in a parallel magnetic field.

本発明で用いられる、例えば、Pを含有する軟磁性材としては、Co−Ni−P、Co−Fe−P、Co−Ni−Fe−Pなどが好んで用いられる、これらのうち特に高Bsを有する組成がさらに好適である。あるいはB系のCo−Ni−Fe−Bも好ましい。   As the soft magnetic material containing, for example, P used in the present invention, Co—Ni—P, Co—Fe—P, Co—Ni—Fe—P, etc. are preferably used. Further preferred is a composition having Alternatively, B-based Co—Ni—Fe—B is also preferable.

また、基板上に該軟磁性膜を成膜する前には、成膜促進のために、無電解メッキに触媒活性を有する表面を形成する必要がある。触媒活性を有する表面を形成するには、慣用の触媒化処理や基板に金属核を形成又はシード層を形成する方法が挙げられる。このような表面を形成する方法は基板により異なり、適宜選択する必要性があるが、下地膜の軟磁性膜の無電解反応を均一に開始させられるものであれば特に制限はない。   Further, before forming the soft magnetic film on the substrate, it is necessary to form a surface having catalytic activity for electroless plating in order to promote film formation. Examples of the method for forming a surface having catalytic activity include a conventional catalytic treatment and a method of forming a metal nucleus or a seed layer on a substrate. The method for forming such a surface differs depending on the substrate and needs to be selected as appropriate. However, there is no particular limitation as long as the electroless reaction of the soft magnetic film of the base film can be started uniformly.

触媒化処理としては、慣用の一液型Pd触媒化法や二液型Pd触媒化法、置換によるPd触媒化法などが挙げられる。また、活性化処理の前にリン酸処理、酸処理などの公知の前処理、酸素プラズマなどによるアッシング処理を施してもよい。上記金属核としては、例えば、表面にNi核、Cu核などの金属核が挙げられるが、Ni核やCu核を付与する方法としては、Siウェハ上に直接NiやCuを析出させる方法などで形成することが可能である。なお、上記金属核は非磁性であることが好ましい。   Examples of the catalyzing treatment include a conventional one-component Pd catalyzing method, a two-component Pd catalyzing method, and a Pd catalyzing method by substitution. Further, prior to the activation treatment, a known pretreatment such as phosphoric acid treatment or acid treatment, or an ashing treatment using oxygen plasma or the like may be performed. Examples of the metal nuclei include metal nuclei such as Ni nuclei and Cu nuclei on the surface. As a method for imparting Ni nuclei or Cu nuclei, Ni or Cu is directly deposited on a Si wafer. It is possible to form. The metal nucleus is preferably nonmagnetic.

一方、シード層を形成する場合は、後述する下地膜の無電解メッキ浴(メッキ液)中の還元剤に対して活性を有する金属で形成することが好ましく、例えば、Ni、Cu又はそれらの合金からなる好ましくは厚さ5〜100nm、特に好ましくは10〜50nmのシード層を形成することが好ましい。なお、上記シード層を形成する場合、基板とシード層との密着性を向上させるために、シード層にZnを添加することが好ましい。   On the other hand, when forming the seed layer, it is preferable to form the seed layer with a metal having activity against the reducing agent in the electroless plating bath (plating solution) of the underlayer described later, for example, Ni, Cu or alloys thereof. Preferably, a seed layer having a thickness of 5 to 100 nm, particularly preferably 10 to 50 nm is formed. When forming the seed layer, it is preferable to add Zn to the seed layer in order to improve the adhesion between the substrate and the seed layer.

シード層の形成方法としては、スパッタ、蒸着などの乾式法や、置換メッキ、無電解メッキなどの湿式法が挙げられる。なお、無電解メッキにてシード層を形成する場合は、シード層を形成する前に金属核を形成する必要がある。この場合慣用のPd活性化処理により形成することが望ましい。また、この場合も、金属核を形成する前に、リン酸処理、酸処理などの公知の前処理、酸素プラズマなどによるアッシング処理を施してもよい。   Examples of the method for forming the seed layer include dry methods such as sputtering and vapor deposition, and wet methods such as displacement plating and electroless plating. In addition, when forming a seed layer by electroless plating, it is necessary to form a metal nucleus before forming a seed layer. In this case, it is desirable to form by conventional Pd activation treatment. Also in this case, a known pretreatment such as phosphoric acid treatment or acid treatment, or ashing treatment using oxygen plasma or the like may be performed before forming the metal nucleus.

なお、上記シード層を形成する場合、基板とシード層との密着性を向上させるために、基板とシード層との間にスパッタリング等公知の方法でTi、Crなどの密着層を形成することが好ましい。この場合、上記密着層の厚さは5〜50nm、特に10〜30nmが好ましい。   When forming the seed layer, an adhesion layer such as Ti or Cr may be formed between the substrate and the seed layer by a known method such as sputtering in order to improve the adhesion between the substrate and the seed layer. preferable. In this case, the thickness of the adhesion layer is preferably 5 to 50 nm, particularly 10 to 30 nm.

本発明において、下地膜を形成するための無電解メッキ浴としては、例えば、コバルトイオン、ニッケルイオン及び鉄イオンなどの金属イオン、次亜リン酸、もしくは次亜リン酸ナトリウム等のリン系還元剤あるいはジメチルアミンボラン等のボロン系還元材、並びに上記金属イオンの錯化剤を含むものが用いられる。   In the present invention, as the electroless plating bath for forming the base film, for example, metal ions such as cobalt ions, nickel ions and iron ions, hypophosphorous acid, or phosphorus-based reducing agents such as sodium hypophosphite Alternatively, a material containing a boron-based reducing material such as dimethylamine borane and a complexing agent of the above metal ions is used.

金属イオンの供給源としては、硫酸コバルト、硫酸ニッケル、硫酸鉄等の水溶性のコバルト塩、ニッケル塩、鉄塩等が挙げられ、その組成比(コバルト、ニッケル及び鉄の組成比)は、所望の磁気特性が得られるように選択すればよく、また、メッキ浴中の金属塩の濃度も適宜選定されるが、総金属塩濃度を0.01〜3.0mol/dm3、特に0.05〜0.3mol/dm3とすることが好ましい。 Examples of the metal ion supply source include water-soluble cobalt salts such as cobalt sulfate, nickel sulfate, and iron sulfate, nickel salts, and iron salts. The composition ratio (composition ratio of cobalt, nickel, and iron) is desired. And the concentration of the metal salt in the plating bath is appropriately selected. The total metal salt concentration is 0.01 to 3.0 mol / dm 3 , particularly 0.05. It is preferable to set it to -0.3 mol / dm < 3 >.

また、還元剤の濃度も適宜選定されるが、メッキ浴中0.01〜0.5mol/dm3、特に0.01〜0.2mol/dm3とすることが好ましい。 Moreover, although the density | concentration of a reducing agent is also selected suitably, it is preferable to set it as 0.01-0.5 mol / dm < 3 > in a plating bath, especially 0.01-0.2 mol / dm < 3 >.

一方、錯化剤としては、クエン酸ナトリウム、酒石酸ナトリウム等のカルボン酸塩、硫酸アンモニウム等のアンモニウム塩など、上記金属イオンの公知の錯化剤が使用され、その濃度は、メッキ浴中0.05mol/dm3以上が好ましく、0.1〜1.0mol/dm3とすることがより好ましい。また、メッキ浴には亜リン酸等の結晶調整剤を用いることが好ましく、特に、0.01mol/dm3以上の濃度で用いることが好ましい。 On the other hand, as the complexing agent, a known complexing agent of the above metal ions such as a carboxylate such as sodium citrate and sodium tartrate, and an ammonium salt such as ammonium sulfate is used, and its concentration is 0.05 mol in the plating bath. / Dm 3 or more is preferable, and 0.1 to 1.0 mol / dm 3 is more preferable. In addition, it is preferable to use a crystal modifier such as phosphorous acid in the plating bath, and it is particularly preferable to use it at a concentration of 0.01 mol / dm 3 or more.

上記メッキ浴には、ホウ酸などのpH緩衝剤を用いてもよい。また、無電解メッキ膜の均一性を向上させるために界面活性剤を用いてもよく、界面活性剤としては、ドデシル硫酸ナトリウム、ポリエチレングリコールが好ましい。更に、膜の平滑性を向上させるために慣用の添加剤(イオウ系など)を用いてもよい。膜の平滑性を向上させるために、サッカリンなどの慣用の第1種光沢剤や、チオ尿素などの慣用の第2種光沢剤を単独もしくは複合で用いても良い。特にイオウ系光沢剤が好んで用いられる。   A pH buffer such as boric acid may be used in the plating bath. Further, a surfactant may be used to improve the uniformity of the electroless plating film, and as the surfactant, sodium dodecyl sulfate or polyethylene glycol is preferable. Further, a conventional additive (such as sulfur) may be used to improve the smoothness of the film. In order to improve the smoothness of the film, a conventional first-type brightener such as saccharin or a conventional second-type brightener such as thiourea may be used alone or in combination. In particular, a sulfur brightener is preferably used.

また、上記メッキ浴の温度、pHは、浴組成により適宜決定されるが、浴温は、50℃以上が好ましく、pHは8以上が好ましい。特に、好ましいのは70℃〜95℃、pH9前後である。更に、上記無電解メッキ浴により形成された下地膜は、軟磁気特性の向上のために熱処理してもよい。この場合、熱処理温度は、150〜300℃が好ましい。   The temperature and pH of the plating bath are appropriately determined depending on the bath composition. The bath temperature is preferably 50 ° C. or higher, and the pH is preferably 8 or higher. Particularly preferred are 70 to 95 ° C. and a pH of around 9. Furthermore, the base film formed by the electroless plating bath may be heat-treated in order to improve soft magnetic properties. In this case, the heat treatment temperature is preferably 150 to 300 ° C.

本発明の下地膜は、等方性度が1.0±0.2以内であることが好ましく、より好ましいのは1.0±0.15以内である。また、飽和磁束密度Bsは0.2T以上1.7T以下が好ましく、0.8T以上1.5T以下がより好ましい。またその厚さ(t)は50nm以上5000nm以下が好ましく、200nm以上3000nm以下がより好ましい。さらに、軟磁性下地膜の結晶粒子径は、5nm以下、より好ましくは3nm以下の微結晶、もしくはアモルファス構造であるのが好ましい。   The base film of the present invention preferably has an isotropic degree of 1.0 ± 0.2 or less, and more preferably 1.0 ± 0.15 or less. Further, the saturation magnetic flux density Bs is preferably 0.2 T or more and 1.7 T or less, and more preferably 0.8 T or more and 1.5 T or less. Further, the thickness (t) is preferably 50 nm or more and 5000 nm or less, and more preferably 200 nm or more and 3000 nm or less. Further, the crystal grain size of the soft magnetic underlayer is preferably 5 nm or less, more preferably 3 nm or less, and a fine crystal or amorphous structure.

本発明により形成された下地膜は、基板に対し垂直方向に磁化容易軸を有しても良い。垂直方向の磁化容易軸は磁壁を形成しにくくするために大変有効である。このときの垂直方向への磁化容易軸すなわち垂直磁気異方性の異方性磁界(Hk)は5〜50Oeが好ましく、10〜30Oeがより好ましい。なお、1Oeは約79A/mである。   The base film formed according to the present invention may have an easy magnetization axis in a direction perpendicular to the substrate. The easy axis of magnetization in the vertical direction is very effective for making it difficult to form a domain wall. At this time, the axis of easy magnetization in the vertical direction, that is, the anisotropic magnetic field (Hk) of perpendicular magnetic anisotropy is preferably 5 to 50 Oe, and more preferably 10 to 30 Oe. 1 Oe is about 79 A / m.

垂直磁気異方性が認められる際には、この異方性磁界(Hk)は、先述した様にVSMのヒステリシスループよりBsが得られた磁界となる(図9参照)。   When perpendicular magnetic anisotropy is recognized, this anisotropic magnetic field (Hk) is a magnetic field obtained by obtaining Bs from the hysteresis loop of the VSM as described above (see FIG. 9).

このように、下地膜の磁気特性を等方性にすることにより、磁壁が発生しなくなり、低ノイズである高性能な垂直磁気記録媒体となり、S/N比やオーバーライト特性を向上させることできる。尚、下地膜の軟磁性膜の保磁力Hcは、特に限定されないが、40Oe(1Oe=約79A/m)以下が好ましく、10Oe以下がより好ましい。   Thus, by making the magnetic properties of the underlayer isotropic, a domain wall is not generated and a high-performance perpendicular magnetic recording medium with low noise can be obtained, and the S / N ratio and the overwrite property can be improved. . The coercive force Hc of the soft magnetic film as the undercoat film is not particularly limited, but is preferably 40 Oe (1 Oe = about 79 A / m) or less, and more preferably 10 Oe or less.

本発明の下地膜を有した基材を用いてさらに常法により表面の平滑化、及び垂直磁気記録層を形成等により高性能な垂直磁気記録媒体を得ることが出来る。以下にその例を示す。   A high-performance perpendicular magnetic recording medium can be obtained by smoothing the surface and forming a perpendicular magnetic recording layer by a conventional method using the substrate having the base film of the present invention. An example is shown below.

基板表面の平滑化工程は、軟磁性下地膜の成膜後に行う方法、軟磁性膜の成膜前にシード層を平滑化して次に軟磁性下地膜を成膜し、さらに軟磁性下地膜を平滑化する方法、シード層のみを平滑化する方法、およびそれらを併用する方法などがあるが、何れの方法も本発明において好適に用いることができる。特にこれらの方法を併用し、基板表面をより高度に平滑化するのが好ましい。   The substrate surface is smoothed after the soft magnetic underlayer is formed, the seed layer is smoothed before the soft magnetic underlayer is formed, and then the soft magnetic underlayer is formed. There are a method of smoothing, a method of smoothing only the seed layer, a method of using them together, and any method can be suitably used in the present invention. In particular, it is preferable to use these methods in combination to smooth the substrate surface to a higher degree.

また、平滑化工程の直前に基板全体に加熱処理を施して、基板および膜の歪などを除去する操作をすることも好ましい。熱処理温度としては100℃〜350℃の範囲が好ましく、処理時間は10分〜60分程度が好ましい。
平滑化工程の具体的な例としてはアルミナもしくはシリカ(コロイダルシリカ)等が主成分である研磨材を含有する研磨液を用いた化学機械研磨法により行うことが好ましい。その際、表面平滑度としてはその平均高さ(Ra)が2nm〜0.05nmであることが好ましく、0.8nm〜0.05nmであることがより好ましい。
In addition, it is also preferable to perform an operation of removing the distortion of the substrate and the film by performing heat treatment on the entire substrate immediately before the smoothing step. The heat treatment temperature is preferably in the range of 100 ° C to 350 ° C, and the treatment time is preferably about 10 minutes to 60 minutes.
A specific example of the smoothing step is preferably performed by a chemical mechanical polishing method using a polishing liquid containing an abrasive mainly composed of alumina or silica (colloidal silica). In that case, as surface smoothness, it is preferable that the average height (Ra) is 2 nm-0.05 nm, and it is more preferable that it is 0.8 nm-0.05 nm.

垂直磁性膜は、その磁化容易軸が基板に対して主に垂直方向に向いた磁性膜であれば良く、特に組成が限定されるものではない。一般的には、Co系合金(例えば、CoCrPt、CoCrPtB、CoCrPt−SiO2、Co/Pd多層、CoB/PdB多層、CoSiO2/PdSiO2多層等。)などが好んで用いられる。 The perpendicular magnetic film only needs to be a magnetic film whose easy axis of magnetization is mainly perpendicular to the substrate, and the composition is not particularly limited. In general, a Co-based alloy (for example, CoCrPt, CoCrPtB, CoCrPt—SiO 2 , Co / Pd multilayer, CoB / PdB multilayer, CoSiO 2 / PdSiO 2 multilayer, etc.) is preferably used.

垂直磁性膜は、上記Co系材料からなる1層構造とすることもできるし、Co系合金材料からなる層と、Co系合金材料とは異なる材料からなる層とを含む2層以上の構造とすることもできる。   The perpendicular magnetic film may have a single-layer structure made of the Co-based material, or a structure of two or more layers including a layer made of a Co-based alloy material and a layer made of a material different from the Co-based alloy material. You can also

また、Co系合金層とPd系合金層を積層した構造や、TbFeCo等のアモルファス材料層とCoCrPt系合金材料層とを含む複層構造とすることも好ましい。   Further, a structure in which a Co-based alloy layer and a Pd-based alloy layer are stacked, or a multilayer structure including an amorphous material layer such as TbFeCo and a CoCrPt-based alloy material layer is also preferable.

垂直磁性膜の厚さは、3〜60nm(より好ましくは5〜40nm)とするのが好ましい。垂直磁性膜の厚さが上記範囲未満であると、十分な磁束が得られず、再生出力が低下する。また、垂直磁性膜の厚さが上記範囲を超えると、垂直磁性膜内の磁性粒子の粗大化が起き、記録再生特性が低下するため好ましくない。   The thickness of the perpendicular magnetic film is preferably 3 to 60 nm (more preferably 5 to 40 nm). If the thickness of the perpendicular magnetic film is less than the above range, sufficient magnetic flux cannot be obtained, and the reproduction output is lowered. On the other hand, if the thickness of the perpendicular magnetic film exceeds the above range, the magnetic particles in the perpendicular magnetic film are coarsened and the recording / reproducing characteristics are deteriorated.

垂直磁性膜の保磁力Hcは、3000Oe以上とすることが好ましい。この保磁力が3000Oe未満の磁気記録媒体は、高記録密度化に不適であり、また熱揺らぎ耐性にも劣るため好ましくない。   The coercive force Hc of the perpendicular magnetic film is preferably 3000 Oe or more. A magnetic recording medium having a coercive force of less than 3000 Oe is not preferable because it is unsuitable for increasing the recording density and inferior in thermal fluctuation resistance.

垂直磁性膜の残留磁化(Mr)と飽和磁化(Ms)の比Mr/Msは、0.9以上であることが好ましい。このMr/Msが0.9未満の磁気記録媒体は、熱揺らぎ耐性に劣るため好ましくない。   The ratio Mr / Ms between the residual magnetization (Mr) and the saturation magnetization (Ms) of the perpendicular magnetic film is preferably 0.9 or more. A magnetic recording medium having an Mr / Ms of less than 0.9 is not preferable because it is inferior in thermal fluctuation resistance.

垂直磁性膜の逆磁区核形成磁界(−Hn)は、0Oe以上2500Oe以下であることが好ましい。この逆磁区核形成磁界(−Hn)が0Oe未満の磁気記録媒体は、熱揺らぎ耐性に劣るため好ましくない。
以下、逆磁区核形成磁界(−Hn)について説明する。
The reverse magnetic domain nucleation magnetic field (-Hn) of the perpendicular magnetic film is preferably 0 Oe or more and 2500 Oe or less. A magnetic recording medium having a reverse domain nucleation magnetic field (-Hn) of less than 0 Oe is not preferable because it is inferior in thermal fluctuation resistance.
Hereinafter, the reverse magnetic domain nucleation magnetic field (-Hn) will be described.

図6に示すように、MH曲線において、磁化が飽和した状態から外部磁界を減少させる過程で外部磁界が0となる点をaとし、磁化が0になった点をbとし、点bでのMH曲線の接線と飽和磁化を示す直線との交点をcとすると、逆磁区核形成磁界(−Hn)は、点aと点cとの距離(Oe)で表すことができる。   As shown in FIG. 6, in the MH curve, a point where the external magnetic field becomes 0 in the process of decreasing the external magnetic field from a state where the magnetization is saturated is a, a point where the magnetization becomes 0 is b, and a point b If the intersection of the tangent line of the MH curve and the straight line indicating the saturation magnetization is c, the reverse domain nucleation magnetic field (-Hn) can be expressed by the distance (Oe) between the point a and the point c.

なお、逆磁区核形成磁界(−Hn)は、外部磁界が負となる領域に点cがある場合に正の値をとり(図6を参照)、逆に、外部磁界が正となる領域に点cがある場合に負の値をとる(図7を参照)。   The reverse domain nucleation magnetic field (-Hn) takes a positive value when the point c is in a region where the external magnetic field is negative (see FIG. 6), and conversely, in the region where the external magnetic field is positive. It takes a negative value when there is a point c (see FIG. 7).

この磁気記録媒体では、配向制御膜がNiを33〜80at%含み、Sc、Y、Ti、Zr、Hf、Nb、Taのうち1種または2種以上含む非磁性材料からなるものとすることにより、優れたエラーレート、熱揺らぎ耐性を得ることができる。   In this magnetic recording medium, the orientation control film is made of a nonmagnetic material containing 33 to 80 at% Ni and containing one or more of Sc, Y, Ti, Zr, Hf, Nb, and Ta. Excellent error rate and heat fluctuation resistance can be obtained.

また、本発明の下地膜を用いた磁気記録媒体を公知の複合型ヘッドと組み合わせることにより磁気記憶装置を構成することができる。この場合、複合型記録ヘッドは3.0kOe以上の書き込み磁界を発生できることが好ましい。図8に本発明の垂直磁気記録媒体を用いた垂直磁気記録再生装置の概念図を示す。   Further, a magnetic storage device can be configured by combining a magnetic recording medium using the base film of the present invention with a known composite head. In this case, it is preferable that the composite recording head can generate a writing magnetic field of 3.0 kOe or more. FIG. 8 is a conceptual diagram of a perpendicular magnetic recording / reproducing apparatus using the perpendicular magnetic recording medium of the present invention.

以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to the following Example.

平均粗さRaが0.5nm以下のガラス基板を化学洗浄した後、DCマグネトロンスパッタリング法により、膜厚10nmのTi膜からなる密着層と膜厚20nmのNi膜からなるシード層を続けて成膜した。次に、慣用の前処理を行ったのち、下記表1に示された無電解メッキ浴により下地膜として膜厚3000nmのCoNiFePの軟磁性膜を成膜した。この時、ガラス基板の半径方向に外部磁界がかかる様にメッキ槽の両側にフェライト磁石をセットした(図5参照)。図5は、本発明に用いる、メッキ装置の一例を示す説明図である。上記軟磁性膜を成膜したメッキ装置21の一例であり、メッキ液が満たされたメッキ槽28は、水槽22の中に設置され、メッキ槽28の中に、回転機構(図示せず)を備えた基板保持治具29に保持された上記シード層を成膜したガラス基板30が浸漬している。上記基板保持治具29は、基板保持治具27により上下に揺動可能に支持されている。また、上記シード層を成膜したガラス基板の半径方向に外部磁界を印加するため、メッキ槽28を挟んでN極磁石25とS極磁石26が設けられている。更に、水槽22内の水温を一定にするため、下端に撹拌翼23を備えた撹拌棒24が水槽22に設けられている。上記メッキ装置を用い、ガラス基板中心には、35Gの磁束を印加し、ガラス基板の回転数は6.5r.p.mとして、軟磁性膜をガラス基板上に成膜した。   After chemically cleaning a glass substrate having an average roughness Ra of 0.5 nm or less, an adhesion layer made of a Ti film with a thickness of 10 nm and a seed layer made of a Ni film with a thickness of 20 nm are successively formed by DC magnetron sputtering. did. Next, after performing a conventional pretreatment, a CoNiFeP soft magnetic film having a film thickness of 3000 nm was formed as a base film using an electroless plating bath shown in Table 1 below. At this time, ferrite magnets were set on both sides of the plating tank so that an external magnetic field was applied in the radial direction of the glass substrate (see FIG. 5). FIG. 5 is an explanatory view showing an example of a plating apparatus used in the present invention. The plating tank 21 is an example of the plating apparatus 21 on which the soft magnetic film is formed. A plating tank 28 filled with a plating solution is installed in a water tank 22, and a rotating mechanism (not shown) is provided in the plating tank 28. A glass substrate 30 on which the seed layer formed on the substrate holding jig 29 provided is formed is immersed. The substrate holding jig 29 is supported by the substrate holding jig 27 so as to be swingable up and down. Further, in order to apply an external magnetic field in the radial direction of the glass substrate on which the seed layer is formed, an N-pole magnet 25 and an S-pole magnet 26 are provided with a plating tank 28 interposed therebetween. Further, in order to make the water temperature in the water tank 22 constant, a stirring rod 24 having a stirring blade 23 at the lower end is provided in the water tank 22. Using the above plating apparatus, a magnetic flux of 35 G is applied to the center of the glass substrate, and the rotation speed of the glass substrate is 6.5 r. p. As m, a soft magnetic film was formed on a glass substrate.

次に、得られた下地膜に、アルミナおよびシリカを主成分とする研磨液を用いて化学機械研磨を施した。これにより、下地膜の平均粗さRaを0.6〜0.8nmとした(Veeco社製TMS2000(Texture Measurement System)で測定)。TEM観察から下地膜中の粒子サイズは2〜5nmであり、X線回折からこの粒子はアモルファス状であることが判明した。なお研磨後の下地膜の膜厚は300nm、飽和磁束密度Bsは1.3Tであった。またVSM測定により、円周方向と半径方向のHsを測定し等方性度を求めたところ1.11であった。また、前述したように垂直方向に磁化容易軸が認められヒステリシスループからもとめた垂直磁気異方性は10Oeであった。さらに、OSA(Optical Surface Analyzer)にて磁壁の有無を観察したところ、磁壁が発生していないことが判明した。   Next, chemical mechanical polishing was performed on the obtained base film using a polishing liquid mainly composed of alumina and silica. Thus, the average roughness Ra of the base film was set to 0.6 to 0.8 nm (measured with TMS2000 (Texture Measurement System) manufactured by Veeco). From TEM observation, the particle size in the underlayer was 2 to 5 nm, and X-ray diffraction revealed that the particles were amorphous. The ground film thickness after polishing was 300 nm and the saturation magnetic flux density Bs was 1.3T. Further, the isotropic degree was determined to be 1.11 by measuring Hs in the circumferential direction and the radial direction by VSM measurement. As described above, the easy axis of magnetization was recognized in the vertical direction, and the perpendicular magnetic anisotropy obtained from the hysteresis loop was 10 Oe. Furthermore, when the presence or absence of a domain wall was observed with OSA (Optical Surface Analyzer), it was found that no domain wall was generated.

次に、清浄環境下で乾燥させた下地膜の上に、DCマグネトロンスパッタリング法により膜厚5nmのSi膜と膜厚5nmのPd膜を室温にて成膜して中間層を形成した。なお、このSi膜とPd膜との積層膜は、SiとPdとが部分的に相互拡散した構造をもっている。   Next, an Si layer having a film thickness of 5 nm and a Pd film having a film thickness of 5 nm were formed at room temperature on the base film dried in a clean environment by a DC magnetron sputtering method to form an intermediate layer. The laminated film of the Si film and the Pd film has a structure in which Si and Pd are partially diffused.

次に、中間層を成膜した後、厚さ0.2nmのCo層と厚さ0.8nmのPd層を交互に10層積層させ、総膜厚10nmの垂直磁気記録層を成膜した。   Next, after forming an intermediate layer, 10 layers of Co layers having a thickness of 0.2 nm and Pd layers having a thickness of 0.8 nm were alternately stacked to form a perpendicular magnetic recording layer having a total thickness of 10 nm.

更に、垂直磁気記録層を成膜後、保護層として、膜厚5nmのC膜を成膜して磁気記録媒体を得た。得られた磁気記録媒体は、書き込み部が単磁極型ヘッド、読み込み部がシールド型磁気抵抗ヘッドにより構成される複合型ヘッドを用い電磁変換特性を測定してMF−S/N比を評価した。結果を磁壁の結果と共に表4に併記した。   Further, after forming a perpendicular magnetic recording layer, a C film having a thickness of 5 nm was formed as a protective layer to obtain a magnetic recording medium. The obtained magnetic recording medium was evaluated for MF-S / N ratio by measuring electromagnetic conversion characteristics using a composite type head in which the writing part was composed of a single magnetic pole type head and the reading part was a shield type magnetoresistive head. The results are shown in Table 4 together with the domain wall results.

実施例1において、メッキ時に外部から印加する磁場の強さを35Gから100G(ネオジム−鉄−ボロン磁石)にした以外は実施例1と同様にした。Bs、等方性度、垂直磁気異方性、MF−S/N比、磁壁の有無を表4に示した。   Example 1 was the same as Example 1 except that the strength of the magnetic field applied from the outside during plating was changed from 35 G to 100 G (neodymium-iron-boron magnet). Table 4 shows Bs, isotropic degree, perpendicular magnetic anisotropy, MF-S / N ratio, and presence / absence of a domain wall.

実施例1において、メッキ浴の組成を表2のように変更した以外は実施例1と同様にした。Bs、等方性度、垂直磁気異方性、MF−S/N比、磁壁の有無を表4に示した。   Example 1 was the same as Example 1 except that the composition of the plating bath was changed as shown in Table 2. Table 4 shows Bs, isotropic degree, perpendicular magnetic anisotropy, MF-S / N ratio, and presence / absence of a domain wall.

実施例1において、FeSO4を添加しないメッキ浴を用いた以外は、実施例1と同様にした。Bs、等方性度、垂直磁気異方性、MF−S/N比、磁壁の有無を表4に示した。 In Example 1, except for using the plating bath without the addition of FeSO 4, and in the same manner as in Example 1. Table 4 shows Bs, isotropic degree, perpendicular magnetic anisotropy, MF-S / N ratio, and presence / absence of a domain wall.

実施例1においてガラス基板の代わりに両面研磨された、平均粗さRaが0.3nm以下の1インチシリコンウエハーを基板にした以外は実施例1と同様にした。Bs、等方性度、垂直磁気異方性、MF−S/N比、磁壁の有無を表4に示した。   The same procedure as in Example 1 was performed except that a 1-inch silicon wafer having an average roughness Ra of 0.3 nm or less was used as the substrate instead of the glass substrate in Example 1. Table 4 shows Bs, isotropic degree, perpendicular magnetic anisotropy, MF-S / N ratio, and presence / absence of a domain wall.

実施例1において、メッキ浴の組成をB系の表3のように変更した以外は実施例1と同様にした。Bs、等方性度、垂直磁気異方性、MF−S/N比、磁壁の有無を表4に示した。   Example 1 was the same as Example 1 except that the composition of the plating bath was changed as shown in Table 3 for the B system. Table 4 shows Bs, isotropic degree, perpendicular magnetic anisotropy, MF-S / N ratio, and presence / absence of a domain wall.

実施例1においてガラス基板の代わりに2.5インチAl基板を用いた。定法により両面研磨、活性化処理して、シード層として膜厚12μmのNiPメッキを施した。次に250℃、30分間熱処理を行いメッキ膜の歪を取り除いた後、アルミナ系研磨材を主成分とする研磨液を用いて約2μm研磨して平均粗さRaを2nmとした。引続き実施例1と同様の条件で無電解メッキ浴により下地膜として膜厚600nmのCoNiFePの軟磁性膜を成膜した。さらに150℃、15分間の熱処理を施した後、シリカを主成分とする研磨液を用いて約300nm研磨して下地膜の平均粗さRaを0.1〜0.3nmとした。これ以降、実施例1と同じ操作を行った。Bs、等方性度、垂直磁気異方性、MF−S/N比、磁壁の有無を表4に示した。   In Example 1, a 2.5-inch Al substrate was used instead of the glass substrate. Both surfaces were polished and activated by a conventional method, and NiP plating with a film thickness of 12 μm was applied as a seed layer. Next, a heat treatment was performed at 250 ° C. for 30 minutes to remove the distortion of the plating film, and then the surface was polished by about 2 μm using a polishing liquid mainly composed of an alumina-based abrasive to obtain an average roughness Ra of 2 nm. Subsequently, a CoNiFeP soft magnetic film having a thickness of 600 nm was formed as a base film by an electroless plating bath under the same conditions as in Example 1. Further, after heat treatment at 150 ° C. for 15 minutes, the substrate was polished by about 300 nm using a polishing liquid containing silica as a main component so that the average roughness Ra of the base film was 0.1 to 0.3 nm. Thereafter, the same operation as in Example 1 was performed. Table 4 shows Bs, isotropic degree, perpendicular magnetic anisotropy, MF-S / N ratio, and presence / absence of a domain wall.

(比較例1)
実施例1において、メッキ時にフェライト磁石をセットせずに、外部平行磁場が存在しない状態で、無電解メッキを行い下地膜を成膜した以外は実施例1と同様の作業を行い、垂直磁気記録媒体を得た。Bsは1.3T、膜厚は300nmであったが、OSAにより磁壁が認められた。
(Comparative Example 1)
In Example 1, the same operation as in Example 1 was performed except that the ferrite magnet was not set at the time of plating, and the base film was formed by electroless plating in the absence of an external parallel magnetic field. A medium was obtained. Although Bs was 1.3T and the film thickness was 300 nm, the domain wall was recognized by OSA.

(比較例2)
下地膜としてスパッタリングにより膜厚100nm、飽和磁束密度Bs1.0TのNiFe軟磁性膜を形成し、平坦化処理を施さずにそのまま用いたこと以外は実施例1と同様の方法で磁気記録媒体を得た。得られた磁気記録媒体について、実施例1と同様に電磁変換特性を測定してS/N比を評価した。また、OSA測定で磁壁の有無を観察した。
(Comparative Example 2)
A magnetic recording medium was obtained in the same manner as in Example 1 except that a NiFe soft magnetic film having a film thickness of 100 nm and a saturation magnetic flux density Bs of 1.0 T was formed as a base film by sputtering and used without being flattened. It was. With respect to the obtained magnetic recording medium, the electromagnetic conversion characteristics were measured in the same manner as in Example 1 to evaluate the S / N ratio. Further, the presence or absence of a domain wall was observed by OSA measurement.

(比較例3)
比較例2においてNiFeの代わりに、CoNiFeの軟磁性膜を形成した以外は同様に行った。結果を表4に示した。
(Comparative Example 3)
In Comparative Example 2, the same procedure was performed except that a CoNiFe soft magnetic film was formed instead of NiFe. The results are shown in Table 4.

表4によれば、比較例に比べ、実施例のMF−S/N比が高く、また磁壁が発生していないことがわかる。特に、実施例1の方が高いS/N比を示したのは、下地膜のBs値が高い軟磁性膜を用いたことにより、記録ヘッドの漏洩磁界の高集束化が達成され、これに伴い再生信号が増大したためと推定される。   According to Table 4, it can be seen that the MF-S / N ratio of the example is higher than that of the comparative example, and no domain wall is generated. In particular, Example 1 showed a higher S / N ratio because the use of a soft magnetic film having a high Bs value for the base film achieved high focusing of the leakage magnetic field of the recording head. This is presumed to be due to an increase in the reproduction signal.

Figure 0004408210
Figure 0004408210

Figure 0004408210
Figure 0004408210

Figure 0004408210
Figure 0004408210

Figure 0004408210
Figure 0004408210

(a)(b)は、本発明の一実施例に係る磁気記録媒体を示す断面図である。(A) (b) is sectional drawing which shows the magnetic-recording medium based on one Example of this invention. 軟磁性下地膜の磁気特性の概念図である。It is a conceptual diagram of the magnetic characteristic of a soft-magnetic underlayer. 本発明の下地膜のVSM測定手順を示す図である。It is a figure which shows the VSM measurement procedure of the base film of this invention. 本発明のメッキ時における、外部磁場のかかり具合、基板の動きを示す概念図である。It is a conceptual diagram which shows the application | coating degree of an external magnetic field at the time of plating of this invention, and a motion of a board | substrate. 本発明に用いる、メッキ装置の一例を示す説明図である。It is explanatory drawing which shows an example of the plating apparatus used for this invention. MH曲線の一例を示すグラフである。It is a graph which shows an example of MH curve. MH曲線の他の例を示すグラフである。It is a graph which shows the other example of MH curve. 本発明の垂直磁気記録再生装置の一例を示す概略図であり、(a)は全体構成を示し、(b)は磁気ヘッドを示す。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows an example of the perpendicular magnetic recording / reproducing apparatus of this invention, (a) shows the whole structure, (b) shows a magnetic head. 本発明の垂直磁気異方性(Hk)を測定例である。図右側中央の、Hkの後ろの記号は、垂直を示している。It is a measurement example of perpendicular magnetic anisotropy (Hk) of the present invention. The symbol after Hk in the center of the right side of the figure indicates vertical.

符号の説明Explanation of symbols

1 非磁性基板
2 軟磁性下地膜
3 配向制御膜
4 中間膜
5 垂直磁性膜
6 保護膜
7 潤滑膜
8 金属核又はシード層
10 磁気記録媒体
11 媒体駆動部
12 磁気ヘッド
12a 主磁極
12b 補助磁極
12c 連結部
12d コイル
13 ヘッド駆動部
14 記録再生信号処理系
21 メッキ装置
22 水槽
23 撹拌翼
24 撹拌棒
25 N極磁石
26 S極磁石
27 基板保持治具
28 メッキ槽
29 基板保持治具
30 ガラス基板
DESCRIPTION OF SYMBOLS 1 Nonmagnetic substrate 2 Soft magnetic base film 3 Orientation control film 4 Intermediate film 5 Vertical magnetic film 6 Protective film 7 Lubricating film 8 Metal nucleus or seed layer 10 Magnetic recording medium 11 Medium drive unit 12 Magnetic head 12a Main magnetic pole 12b Auxiliary magnetic pole 12c Connecting part 12d Coil 13 Head drive part 14 Recording / reproducing signal processing system 21 Plating apparatus 22 Water tank 23 Stirring blade 24 Stirring rod 25 N pole magnet 26 S pole magnet 27 Substrate holding jig 28 Plating tank 29 Substrate holding jig 30 Glass substrate

Claims (8)

非磁性基板上に、少なくとも、軟磁性材料からなる軟磁性下地膜と、直上の膜の配向性を制御する配向制御膜と、磁化容易軸が基板に対し主に垂直に配向した垂直磁性膜と、保護層が設けられた垂直磁気記録媒体の製造方法であって、
非磁性基板上に金属核又はシード層を形成し、その上に無電解メッキ法により軟磁性下地膜を形成するに際し、非磁性基板に外部から半径方向に平行磁場を印加し、平行磁場に対して平行、かつ回転させながら軟磁性下地膜を形成し、基板の円周方向における軟磁性下地膜のHs(飽和磁束密度測定時に得られる印加磁界の最低強度)と半径方向のHsの比率等方性度を、1.0±0.2以内とすることを特徴とする垂直磁気記録媒体の製造方法。
On a nonmagnetic substrate, at least a soft magnetic underlayer made of a soft magnetic material, an orientation control film for controlling the orientation of the film immediately above, and a perpendicular magnetic film having an easy axis of magnetization oriented perpendicularly to the substrate A method for producing a perpendicular magnetic recording medium provided with a protective layer ,
When a metal core or seed layer is formed on a nonmagnetic substrate and a soft magnetic underlayer is formed thereon by electroless plating, a parallel magnetic field is applied to the nonmagnetic substrate in the radial direction from the outside. The soft magnetic underlayer is formed while rotating in parallel and rotating, and the ratio of Hs of the soft magnetic underlayer in the circumferential direction of the substrate (minimum strength of the applied magnetic field obtained when measuring the saturation magnetic flux density) to Hs in the radial direction isotropic A method of manufacturing a perpendicular magnetic recording medium, wherein the property is within 1.0 ± 0.2.
軟磁性下地膜の垂直磁気異方性の異方性磁界(Hk)を395A/m〜3950A/m(5Oe〜50Oe)の範囲内とすることを特徴とする請求項1に記載の垂直磁気記録媒体の製造方法2. The perpendicular magnetic recording according to claim 1, wherein an anisotropic magnetic field (Hk) of perpendicular magnetic anisotropy of the soft magnetic underlayer is in a range of 395 A / m to 3950 A / m (5 Oe to 50 Oe). A method for manufacturing a medium . 軟磁性下地膜の結晶粒子径を、5nm以下の微結晶もしくはアモルファス構造とすることを特徴とする請求項1または2に記載の垂直磁気記録媒体の製造方法。 3. The method of manufacturing a perpendicular magnetic recording medium according to claim 1, wherein the crystal grain size of the soft magnetic underlayer is a microcrystalline or amorphous structure of 5 nm or less. 軟磁性下地膜の膜厚を、50nm〜5000nmの範囲内とすることを特徴とする請求項1〜3の何れか1項に記載の垂直磁気記録媒体の製造方法。The method for manufacturing a perpendicular magnetic recording medium according to any one of claims 1 to 3, wherein the thickness of the soft magnetic underlayer is in the range of 50 nm to 5000 nm. 軟磁性下地膜の垂直磁気記録層を積層する側の平均面粗さRaを、0.8nm以下とすることを特徴とする請求項1〜4の何れか1項に記載の垂直磁気記録媒体の製造方法5. The perpendicular magnetic recording medium according to claim 1, wherein an average surface roughness Ra of the soft magnetic underlayer on the side where the perpendicular magnetic recording layer is laminated is 0.8 nm or less. Manufacturing method . 軟磁性下地膜が、リンを含むことを特徴とする請求項1〜5の何れか1項に記載の垂直磁気記録媒体の製造方法The method of manufacturing a perpendicular magnetic recording medium according to claim 1, wherein the soft magnetic underlayer includes phosphorus . 軟磁性下地膜が、ホウ素を含むことを特徴とする請求項1〜6の何れか1項に記載の垂直磁気記録媒体の製造方法The method for manufacturing a perpendicular magnetic recording medium according to claim 1, wherein the soft magnetic underlayer includes boron . 非磁性基板がシリコン基板であることを特徴とする請求項1〜7の何れか1項に記載の垂直磁気記録媒体の製造方法 The method of manufacturing a perpendicular magnetic recording medium according to claim 1, wherein the nonmagnetic substrate is a silicon substrate .
JP2003373140A 2002-10-31 2003-10-31 Method for manufacturing perpendicular magnetic recording medium Expired - Fee Related JP4408210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003373140A JP4408210B2 (en) 2002-10-31 2003-10-31 Method for manufacturing perpendicular magnetic recording medium

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002318811 2002-10-31
JP2002356273 2002-12-09
JP2003072996 2003-03-18
JP2003112735 2003-04-17
JP2003373140A JP4408210B2 (en) 2002-10-31 2003-10-31 Method for manufacturing perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2004335068A JP2004335068A (en) 2004-11-25
JP4408210B2 true JP4408210B2 (en) 2010-02-03

Family

ID=33514912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003373140A Expired - Fee Related JP4408210B2 (en) 2002-10-31 2003-10-31 Method for manufacturing perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JP4408210B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173403A (en) * 2004-12-16 2006-06-29 Fujitsu Ltd Soft magnetic thin film, its manufacturing method, vertical magnetic recording medium and magnetic recording and reproducing device
JP2006338837A (en) * 2005-06-06 2006-12-14 Fuji Electric Device Technology Co Ltd Plating method on glass substrate, method for manufacturing disk substrate for vertical magnetic recording medium, disk substrate for vertical magnetic recording medium, and the vertical magnetic recording medium
JP4525496B2 (en) * 2005-07-07 2010-08-18 富士電機デバイステクノロジー株式会社 Disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium
JP4928751B2 (en) 2005-07-14 2012-05-09 ダブリュディ・メディア・シンガポール・プライベートリミテッド Perpendicular magnetic recording medium
US7859792B2 (en) 2007-03-27 2010-12-28 Tdk Corporation Magnetic head with a recording element including a non-magnetic film and a magnetic pole film of an electrode and plated film formed in a depression of the magnetic pole film
US8940419B2 (en) 2010-10-07 2015-01-27 Toyo Kohan Co., Ltd. Method for production of hard disk substrate and hard disk substrate
JP5890236B2 (en) * 2012-04-10 2016-03-22 東洋鋼鈑株式会社 Manufacturing method of hard disk substrate
JP5890235B2 (en) * 2012-04-10 2016-03-22 東洋鋼鈑株式会社 Manufacturing method of hard disk substrate

Also Published As

Publication number Publication date
JP2004335068A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
US20050249984A1 (en) Perpendicular magnetic recording medium, production process thereof, and perpendicular magnetic recording and reproducing apparatus
US7238384B2 (en) Substrate for perpendicular magnetic recording hard disk medium and method for producing the same
US20050191525A1 (en) Magnetic recording medium and magnetic recording medium substrate
JP4539282B2 (en) Disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium using the same
JP4408210B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2006092721A (en) Substrate for perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording medium
TW200534246A (en) Substrate for a perpendicular magnetic recording medium and a perpendicular magnetic recording medium using the substrate
JP4023408B2 (en) Substrate for perpendicular magnetic recording medium, perpendicular magnetic recording medium, and method for producing them
JP2004146033A (en) Base plate of induction anisotropic perpendicular magnetic recording hard disk and its manufacturing method
JPWO2004061829A1 (en) Perpendicular magnetic recording medium
JP2012226792A (en) Magnetic recording medium
US20050057855A1 (en) Magnetic recording medium and substrate for magnetic recording medium
US20070111036A1 (en) Substrate for magnetic recording medium and fabrication method thereof
JP2007287216A (en) Substrate for magnetic recording medium, its manufacturing method and magnetic recording medium
KR100786664B1 (en) Perpendicular magnetic recording medium, production process thereof, and perpendicular magnetic recording and reproducing apparatus
JP2005108407A (en) Magnetic recording medium and substrate for magnetic recording medium
JP2006127624A (en) Method for manufacturing perpendicular magnetic recording medium, perpendicular magnetic recording medium, and perpendicular magnetic recording and reproducing device
JP4525496B2 (en) Disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium
Sugiyama et al. Magnetic microstructure and noise property of electrolessly deposited CoNiFeB SoftMagnetic underlayer
JP2004152367A (en) Magnetic recording medium, its manufacturing method, and magnetic storage device
US20070231607A1 (en) Substrate for magnetic recording medium, fabrication method thereof, and magnetic recording medium
US20090004510A1 (en) Substrate For Perpendicular Magnetic Recording Medium, Method Of Manufacturing The Same, And Perpendicular Magnetic Recording Medium
JP2008123633A (en) Substrate for magnetic recording medium, and magnetic recording medium
JP2007280455A (en) Substrate for magnetic recording medium, its manufacturing method, and magnetic recording medium
JP2007141309A (en) Substrate for magnetic recording medium, its manufacturing method, and magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees