JP4124166B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP4124166B2
JP4124166B2 JP2004175140A JP2004175140A JP4124166B2 JP 4124166 B2 JP4124166 B2 JP 4124166B2 JP 2004175140 A JP2004175140 A JP 2004175140A JP 2004175140 A JP2004175140 A JP 2004175140A JP 4124166 B2 JP4124166 B2 JP 4124166B2
Authority
JP
Japan
Prior art keywords
hot water
temperature sensor
water temperature
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004175140A
Other languages
Japanese (ja)
Other versions
JP2005351589A (en
Inventor
章 藤高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004175140A priority Critical patent/JP4124166B2/en
Publication of JP2005351589A publication Critical patent/JP2005351589A/en
Application granted granted Critical
Publication of JP4124166B2 publication Critical patent/JP4124166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は貯湯式のヒートポンプ給湯装置に関するものである。   The present invention relates to a hot water storage type heat pump water heater.

従来、この種のヒートポンプ給湯装置は、図5に示すものがある。図5は従来のヒートポンプ給湯機の構成図である。図5において、圧縮機1、給湯用熱交換器2、絞り装置3、蒸発器4からなる冷媒循環回路と、貯湯槽5、循環ポンプ6、前記給湯用熱交換器2、補助加熱器19を接続した給湯回路からなり、前記圧縮機1より吐出された高温高圧の過熱ガス冷媒は前記給湯用熱交換器2に流入し、ここで前記循環ポンプ6から送られてきた給湯水を加熱する。   Conventionally, this type of heat pump water heater is shown in FIG. FIG. 5 is a block diagram of a conventional heat pump water heater. In FIG. 5, a refrigerant circulation circuit including a compressor 1, a hot water supply heat exchanger 2, an expansion device 3, and an evaporator 4, a hot water storage tank 5, a circulation pump 6, the hot water supply heat exchanger 2, and an auxiliary heater 19 are provided. The high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2 and heats the hot water supplied from the circulation pump 6.

そして、凝縮液化した冷媒は前記絞り装置3で減圧され、前記蒸発器4に流入し、ここで大気熱を吸熱して蒸発ガス化し、前記圧縮機1にもどる。一方、前記給湯用熱交換器2で加熱された湯は前記貯湯槽5の上部に流入し、上から次第に貯湯されていく。そして、前記給湯用熱交換器2の入口水温が設定値に達すると水温検知器20が検知し、前記圧縮機1によるヒートポンプ運転を停止して、前記補助加熱器19の単独運転に切り換えるものである(例えば、特許文献1参照)。
特開昭60−165157号公報
The condensed and liquefied refrigerant is decompressed by the expansion device 3 and flows into the evaporator 4, where it absorbs atmospheric heat to evaporate and returns to the compressor 1. On the other hand, the hot water heated by the hot water supply heat exchanger 2 flows into the upper part of the hot water storage tank 5 and is gradually stored from above. When the inlet water temperature of the hot water supply heat exchanger 2 reaches a set value, the water temperature detector 20 detects it, stops the heat pump operation by the compressor 1, and switches to the independent operation of the auxiliary heater 19. Yes (for example, see Patent Document 1).
JP 60-165157 A

しかしながら、上記のような従来の構成では、沸き上げ運転時間の経過とともに貯湯槽5内の湯と水の接する部分で湯水混合層が生じ、その層は次第に拡大していく。これは、高温湯と低温水の熱伝導および対流により発生するものであり、高温湯から低温水へ伝熱されその境界部分で高温湯は温度低下し、逆に低温水は温度上昇する。従って、沸き上げ運転完了近くになると、前記給湯用熱交換器2に流入する水温は高くなるため、前記給湯用熱交換器2での放熱量が低下し、前記圧縮機1の吐出圧力および吐出温度が上昇して、前記圧縮機1のモータの巻線温度の上昇など前記圧縮機1の耐久性が課題となる。   However, in the conventional configuration as described above, a hot water mixed layer is formed at the portion where the hot water in the hot water tank 5 is in contact with water as the boiling operation time elapses, and the layer gradually expands. This occurs due to heat conduction and convection in high temperature hot water and low temperature water. Heat is transferred from the high temperature hot water to the low temperature water, and the temperature of the high temperature hot water decreases at the boundary portion, while the temperature of the low temperature water increases. Accordingly, when the boiling operation is almost completed, the temperature of the water flowing into the hot water supply heat exchanger 2 becomes high, so that the amount of heat dissipated in the hot water supply heat exchanger 2 decreases, and the discharge pressure and discharge of the compressor 1 decrease. As the temperature rises, durability of the compressor 1 such as an increase in the winding temperature of the motor of the compressor 1 becomes a problem.

そのため、前記給湯用熱交換器2に流入する水温が低い状態で運転を停止していたため、前記貯湯槽5の下部が低温の水の状態で運転を停止することになり、前記貯湯槽5の湯
容量を有効に利用できず、そのため、貯湯熱量は減少していた。また、貯湯熱量を増加するため、ヒートポンプ運転を停止した後、補助加熱器19の単独運転で貯湯熱量を増加する場合には、電気ヒータで加熱するため、消費電力が大きくなり、効率が悪くなっていた。
Therefore, since the operation was stopped in a state where the temperature of the water flowing into the hot water supply heat exchanger 2 was low, the operation was stopped in a state where the lower part of the hot water tank 5 was in a low temperature water state. The hot water capacity could not be used effectively, so the amount of hot water stored was decreasing. In addition, in order to increase the amount of stored hot water, after stopping the heat pump operation, when the amount of stored hot water is increased by the independent operation of the auxiliary heater 19, heating is performed by an electric heater, so that power consumption increases and efficiency decreases. It was.

本発明は前記従来の課題を解決するもので、圧縮機の吐出圧力上昇を抑え、異常温度上昇もなく、低消費電力量で貯湯槽の下部まで高温湯を貯湯し、貯湯槽の容量を有効に利用可能なヒートポンプ給湯装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, suppresses an increase in the discharge pressure of the compressor, stores no hot water to the lower part of the hot water tank with low power consumption without causing an abnormal temperature rise, and effectively uses the hot water tank capacity. It aims at providing the heat pump hot-water supply apparatus which can be used for.

前記従来の課題を解決するために、本発明のヒートポンプ給湯装置は、少なくとも圧縮機、給湯用熱交換器、第1の絞り装置、蓄熱器、第2の絞り装置、蒸発器を順次接続した冷媒回路と、少なくとも貯湯槽、前記給湯用熱交換器を順次接続した給湯回路と、前記給湯用熱交換器に流入する給湯水の温度を検知する入水温度センサーと、前記給湯用熱交換器を流出する給湯水の温度を検知する出湯温度センサーと、前記第1の絞り装置、前記第2の絞り装置の開度を制御する制御装置と備え、前記第1の絞り装置と前記第2の絞り装置は絞り開度を可変し流量を制御できるとともに、前記制御装置は、前記入水温度センサーで検知した入水温度が所定値以上で、かつ、前記出湯温度センサーで検知した出湯温度が設定値以上の場合に、前記第1の絞り装置の開度を開方向に動作させ、前記第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とするもので、沸き上げ運転完了近くになって給湯用熱交換器への入水温度が高くなった場合に、第1の絞り装置を開方向に動作させ、第2の絞り装置を閉方向に動作させて、蓄熱器に流入する冷媒圧力を高圧とすることにより、低温の蓄熱器を放熱器として作用させ、高温、高圧の冷媒から放熱させ、その熱を蓄熱することができ、冷媒回路の圧縮機の吐出圧力上昇や吐出温度の異常上昇を抑え、低消費電力量で貯湯槽の下部まで高温湯を貯湯することができる。 In order to solve the above-mentioned conventional problems, the heat pump hot water supply apparatus of the present invention is a refrigerant in which at least a compressor, a hot water heat exchanger, a first expansion device, a heat storage device, a second expansion device, and an evaporator are sequentially connected. A hot water supply circuit in which a circuit, at least a hot water storage tank and the heat exchanger for hot water supply are sequentially connected, an incoming water temperature sensor for detecting a temperature of hot water flowing into the hot water heat exchanger, and an outflow of the heat exchanger for hot water supply A hot water temperature sensor for detecting the temperature of hot water to be supplied, a control device for controlling the opening of the first throttling device and the second throttling device, and the first throttling device and the second throttling device. Is capable of controlling the flow rate by varying the throttle opening, and the control device is configured such that the incoming water temperature detected by the incoming water temperature sensor is equal to or higher than a predetermined value and the outgoing hot water temperature detected by the outgoing hot water temperature sensor is higher than a set value. In case Operates the opening degree of the throttle device in the opening direction, the opening degree of the second throttle device characterized in that control to operate in the closing direction, hot water supply is near completion heating operation When the incoming water temperature to the heat exchanger becomes high, the first expansion device is operated in the opening direction, the second expansion device is operated in the closing direction, and the refrigerant pressure flowing into the heat accumulator is increased. This allows the low-temperature heat accumulator to act as a radiator, dissipate heat from the high-temperature and high-pressure refrigerant, store the heat, suppress the rise in discharge pressure of the compressor in the refrigerant circuit and abnormal rise in discharge temperature, Hot water can be stored at the bottom of the hot water tank with low power consumption.

さらに圧縮機起動時に、第1の絞り装置を閉方向に動作させ、第2の絞り装置を開方向に動作させて、蓄熱器に流入する冷媒圧力を低温、低圧とすることにより、蓄熱器の熱を吸熱し、圧縮機吸入圧力の異常低下を防ぐとともに、圧縮機の吐出圧力や吐出温度を急速に上昇させ、低消費電力量で給湯能力の向上ができる。   Further, at the time of starting the compressor, the first expansion device is operated in the closing direction, the second expansion device is operated in the opening direction, and the refrigerant pressure flowing into the regenerator is set to low temperature and low pressure. While absorbing heat and preventing an abnormal drop in compressor suction pressure, the discharge pressure and discharge temperature of the compressor are rapidly increased, and the hot water supply capacity can be improved with low power consumption.

本発明によれば、圧縮機の吐出圧力上昇を抑え、異常温度上昇もなく、低消費電力量で貯湯槽の下部まで高温湯を貯湯し、貯湯槽の容量を有効に利用可能なヒートポンプ給湯装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the heat pump hot water supply apparatus which suppresses the discharge pressure rise of a compressor, does not have abnormal temperature rise, can store hot water to the lower part of a hot water tank with low power consumption, and can utilize the capacity | capacitance of a hot water tank effectively. Can provide.

第1の発明は、少なくとも圧縮機、給湯用熱交換器、第1の絞り装置、蓄熱器、第2の絞り装置、蒸発器を順次接続した冷媒回路と、少なくとも貯湯槽、前記給湯用熱交換器を順次接続した給湯回路と、前記給湯用熱交換器に流入する給湯水の温度を検知する入水温度センサーと、前記給湯用熱交換器を流出する給湯水の温度を検知する出湯温度センサーと、前記第1の絞り装置、前記第2の絞り装置の開度を制御する制御装置と備え、前記第1の絞り装置と前記第2の絞り装置は絞り開度を可変し流量を制御できるとともに、前記制御装置は、前記入水温度センサーで検知した入水温度が所定値以上で、かつ、前記出湯温度センサーで検知した出湯温度が設定値以上の場合に、前記第1の絞り装置の開度を開方向に動作させ、前記第2の絞り装置の開度を閉方向に動作させるように制御するもので、沸き上げ運転完了近くになって入水温度が高くなった場合にも、蓄熱器を放熱器として作用させることができるので、冷媒回路の圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。また、貯湯槽の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できる。 A first invention includes a refrigerant circuit in which at least a compressor, a hot water supply heat exchanger, a first expansion device, a heat storage device, a second expansion device, and an evaporator are sequentially connected, at least a hot water storage tank, and the hot water supply heat exchange. A hot water supply circuit in which the heaters are sequentially connected, an incoming water temperature sensor that detects the temperature of hot water flowing into the hot water heat exchanger, and a hot water temperature sensor that detects the temperature of hot water flowing out of the hot water heat exchanger, A control device for controlling the opening of the first throttling device and the second throttling device, and the first throttling device and the second throttling device can control the flow rate by varying the throttling opening. The controller opens the first throttling device when the incoming water temperature detected by the incoming water temperature sensor is equal to or higher than a predetermined value and the outgoing hot water temperature detected by the outgoing hot water temperature sensor is higher than a set value. Is moved in the opening direction and the second aperture is The opening of the device intended to control so as to operate in the closing direction, even if the incoming water temperature is higher so close operation completion boiling, it is possible to apply a heat accumulator as a radiator, a refrigerant circuit The hot water supply can be easily heated to a high temperature while reducing the discharge pressure and discharge temperature of the compressor, and the heat pump can be operated safely and efficiently. Moreover, hot water can be stored up to the bottom of the hot water tank, and the capacity of the hot water tank can be used effectively.

また、第1の絞り装置と第2の絞り装置は、絞り開度を可変し、流量を制御できることを特徴とするもので、部品点数を増やすことなく冷媒回路の圧縮機の吐出圧力や吐出温度を低減できる。 The first throttle device and the second throttle device, throttle opening degree is variable, characterized in that can control the flow rate, the discharge pressure of the compressor of the refrigerant circuit without increasing the number of parts and the discharge temperature Can be reduced.

また、冷媒回路の起動時や、入水温度が低い場合には、蓄熱器に低温低圧の冷媒が流れるため、吸熱量を多く取ることができ、ヒートポンプを高効率で運転することができる。 Further, when the refrigerant circuit is started up or when the incoming water temperature is low, a low-temperature and low-pressure refrigerant flows through the heat accumulator, so that a large amount of heat can be taken and the heat pump can be operated with high efficiency.

また、蓄熱器に流入する冷媒圧力を高圧とすることにより、蓄熱器を放熱器として作用させ、冷媒回路の圧縮機の吐出圧力を減少させることができ、ヒートポンプを安全に高効率で運転することができる。 In addition, by making the refrigerant pressure flowing into the heat accumulator high, the heat accumulator can act as a radiator and the discharge pressure of the compressor of the refrigerant circuit can be reduced, and the heat pump can be operated safely and efficiently. Can do.

第2の発明は、外気温度を検知する外気温度センサーを設け、制御装置は、入水温度センサーで検知した入水温度と、出湯温度センサーで検知した出湯温度と、前記外気温度センサーで検知した外気温度に基づいて、第1の絞り装置の開度を開方向に動作させ、第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とするもので、蓄熱器に流入する冷媒圧力を高圧とすることにより、蓄熱器を放熱器として作用させ、冷媒回路の圧縮機の吐出圧力を減少させることができ、ヒートポンプをさらに高効率で運転することができる。 The second invention, only setting the outside air temperature sensor over which detects the outside air temperature, the control device includes a water inlet temperature detected by the incoming water temperature sensor, a hot water temperature detected in a water temperature sensor output, detected by the outside air temperature sensor Based on the outside air temperature, the opening degree of the first expansion device is controlled to operate in the opening direction, and the opening amount of the second expansion device is controlled to operate in the closing direction. By making the refrigerant pressure flowing into the refrigerant high, the heat accumulator can act as a radiator, the discharge pressure of the compressor of the refrigerant circuit can be reduced, and the heat pump can be operated with higher efficiency.

第3の発明は、冷媒回路の第1の絞り装置をバイパスする第2の二方弁を介したバイパス回路を設けたもので、低コストで冷媒回路の圧縮機の吐出圧力を減少させて、安全にかつ高効率で給湯水をより高温に加熱することができ、貯湯熱量を増大できる。 The third invention is provided with a bypass circuit via a second two-way valve that bypasses the first throttle device of the refrigerant circuit, and reduces the discharge pressure of the compressor of the refrigerant circuit at a low cost, The hot water can be heated to a higher temperature safely and efficiently, and the amount of stored hot water can be increased.

第4の発明は、制御装置は、入水温度センサーで検知した入水温度が設定値以上の場合に、バイパス回路の第2の二方弁を開き、第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とするもので、入水温度が低い場合には、蓄熱器は蒸発器として作用させるため、吸熱量を多く取ることができ、低コストでヒートポンプを高効率で運転することができる。 A fourth invention is the control apparatus, when the incoming water temperature detected by the incoming water temperature sensor is equal to or higher than a set value,-out the second two-way valve of the bypass circuit open, the opening degree of the second throttle device It is characterized in that it is controlled to operate in the closing direction. When the incoming water temperature is low, the heat accumulator acts as an evaporator, so it can take a large amount of heat absorption, and the heat pump can be increased at low cost. You can drive with efficiency.

第5の発明は、制御装置は、入水温度センサーで検知した入水温度が設定値以上、かつ、出湯温度センサーで検知した出湯温度が設定値以上の場合に、バイパス回路の第2の二方弁を開き、第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とするもので、蓄熱器に流入する冷媒圧力を高圧とすることにより、蓄熱器を放熱器として作用させ、冷媒回路の圧縮機の吐出圧力を減少させることができ、低コストでヒートポンプを安全に高効率で運転することができる。 A fifth invention is the control apparatus, incoming water temperature detected by the incoming water temperature sensor set value or more, One or, if hot water temperature detected by the output water temperature sensor is equal to or higher than a set value, the bypass circuit the second The two-way valve is opened and the opening of the second expansion device is controlled so as to operate in the closing direction. The refrigerant is discharged from the heat accumulator by increasing the refrigerant pressure flowing into the heat accumulator. The discharge pressure of the compressor of the refrigerant circuit can be reduced, and the heat pump can be safely and efficiently operated at low cost.

第6の発明は、外気温度を検知する外気温度センサーを設け、制御装置は、入水温度センサーで検知した入水温度と、出湯温度センサーで検知した出湯温度と、外気温度センサーで検知した外気温度に基づいて、バイパス回路の第2の二方弁を開き、第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とするもので、蓄熱器に流入する冷媒圧力を高圧とすることにより、蓄熱器を放熱器として作用させ、冷媒回路の圧縮機の吐出圧力を減少させることができ、低コストでヒートポンプを安全に高効率で運転することができる。 6th invention provides the outside temperature sensor which detects outside temperature, and a control apparatus is the outside water temperature detected with the incoming water temperature detected with the incoming water temperature sensor, the outgoing hot water temperature detected with the outgoing water temperature sensor, and the outdoor air temperature sensor. On the basis of this, the second two-way valve of the bypass circuit is opened and the opening of the second expansion device is controlled to operate in the closing direction, and the refrigerant pressure flowing into the regenerator is increased. By doing so, the heat accumulator can act as a radiator, the discharge pressure of the compressor of the refrigerant circuit can be reduced, and the heat pump can be safely and efficiently operated at low cost.

第7の発明は、第1の絞り装置と蓄熱器との間に、圧縮機の吐出冷媒を流入させるホットガスバイパス回路を設けたことを特徴とするもので、除霜運転時にホットガスバイパス回路により、蓄熱器の蓄熱剤に蓄熱した熱を吸熱しながら、蒸発器に高温高圧の冷媒を流入させ、蒸発器の着霜を早く溶かすことができ、除霜運転時間を短縮し、効率の良い運転が可能となる。 The seventh invention is characterized in that a hot gas bypass circuit is provided between the first expansion device and the heat accumulator so as to allow the refrigerant discharged from the compressor to flow in. During the defrosting operation, the hot gas bypass circuit is provided. Therefore, while absorbing the heat stored in the heat storage agent of the heat accumulator, the high-temperature and high-pressure refrigerant can be flowed into the evaporator, and the frosting of the evaporator can be melted quickly, reducing the defrosting operation time and improving efficiency. Driving is possible.

第8の発明は、冷媒として炭酸ガスを用いたことを特徴とするもので、給湯水の高温化を高効率で実現すると共に、冷媒が外部に漏れた場合にも、地球温暖化への影響は非常に少なくなる。 The eighth invention is characterized in that carbon dioxide gas is used as a refrigerant, and it is possible to increase the temperature of hot water supply with high efficiency, and also to affect global warming even when the refrigerant leaks to the outside. Are very few.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。なお、各実施例において、同じ構成、同じ動作をする部分については同一符号を付与し、詳細な説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, in each Example, the same code | symbol is provided about the part which has the same structure and the same operation | movement, and detailed description is abbreviate | omitted.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ給湯装置の構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a heat pump water heater in the first embodiment of the present invention.

図1において、圧縮機31、給湯用熱交換器32、第1の絞り装置33、蓄熱器34、第2の絞り装置35、蒸発器36を順に環状に接続し、冷媒として炭酸ガスを封入して冷媒回路40を形成し、蒸発器36には、外気を送風するためのファン39を備えている。また、貯湯槽41、循環ポンプ42、給湯用熱交換器32を順に接続した給湯回路43を形成しており、圧縮機31より吐出された高温高圧の過熱ガス冷媒は給湯用熱交換器32に流入し、ここで循環ポンプ42から送られてきた給湯水を加熱するようになっている。また、給湯用熱交換器32に流入する入水温度を検知する入水温度センサー51と給湯用熱交換器32から流出する出湯温度を検知する出湯温度センサー52と外気温度を検知する外気温度センサー53を設けてあり、各々の温度があらかじめ設定しある温度と比較して、第1の絞り装置33と第2の絞り装置35の開閉を制御する制御装置54を設置している。   In FIG. 1, a compressor 31, a hot water supply heat exchanger 32, a first expansion device 33, a heat storage device 34, a second expansion device 35, and an evaporator 36 are sequentially connected in an annular shape, and carbon dioxide gas is sealed as a refrigerant. Thus, the refrigerant circuit 40 is formed, and the evaporator 36 is provided with a fan 39 for blowing outside air. Further, a hot water supply circuit 43 in which a hot water tank 41, a circulation pump 42, and a hot water supply heat exchanger 32 are connected in order is formed, and the high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 31 is supplied to the hot water supply heat exchanger 32. The hot water supplied from the circulation pump 42 is heated here. Also, an incoming water temperature sensor 51 for detecting the incoming water temperature flowing into the hot water supply heat exchanger 32, a hot water temperature sensor 52 for detecting the outgoing water temperature flowing out from the hot water heat exchanger 32, and an outside air temperature sensor 53 for detecting the outside air temperature are provided. A control device 54 is provided for controlling the opening and closing of the first throttling device 33 and the second throttling device 35 in comparison with a preset temperature.

以上のように構成されたヒートポンプ給湯装置について、以下その動作、作用を説明する。   About the heat pump hot-water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

通常の運転時は、第2の絞り装置35の開度は全開に動作させ、蓄熱器34には低温低圧の冷媒が流れ、蓄熱剤は低温に保たれる。この時、圧縮機31で高温高圧の超臨界状態に圧縮された冷媒(炭酸ガス)は、給湯用熱交換器32で給湯回路43を流れる水と熱交換し、自らは中温高圧の冷媒となり、第1の絞り装置33で減圧された後、蓄熱器34、蒸発器36に流入し、蒸発器36ではファン39で送風された外気と熱交換して蒸発ガス化し、圧縮機31にもどる。一方、循環ポンプ42で送られた給湯水は給湯用熱交換器32で加熱され、生成した湯は貯湯槽41の上部に流入し、上から次第に貯湯されていく。一方、沸き上げ運転時間の経過とともに貯湯槽41内の湯と水の接する部分で湯水混合層が生じ、その層は貯湯槽41の下部にに拡大し、沸き上げ運転完了近くになると、貯湯槽41下部より循環ポンプ42を経て給湯用熱交換器32に流入する水温は高くなってくる。   During normal operation, the opening of the second expansion device 35 is fully opened, low temperature and low pressure refrigerant flows through the heat accumulator 34, and the heat storage agent is kept at a low temperature. At this time, the refrigerant (carbon dioxide gas) compressed to a supercritical state of high temperature and high pressure by the compressor 31 exchanges heat with water flowing through the hot water supply circuit 43 by the hot water supply heat exchanger 32, and becomes a medium temperature and high pressure refrigerant. After the pressure is reduced by the first expansion device 33, the refrigerant flows into the heat accumulator 34 and the evaporator 36, and the evaporator 36 exchanges heat with the outside air blown by the fan 39 to evaporate and return to the compressor 31. On the other hand, the hot water sent by the circulation pump 42 is heated by the hot water heat exchanger 32, and the generated hot water flows into the upper part of the hot water storage tank 41 and is gradually stored from above. On the other hand, as the boiling operation time elapses, a hot water mixed layer is formed at the portion where the hot water in the hot water storage tank 41 comes into contact with water, and the layer expands to the lower part of the hot water storage tank 41. The water temperature flowing into the hot water supply heat exchanger 32 from the lower part 41 through the circulation pump 42 becomes higher.

この場合、給湯用熱交換器32では冷媒は流入する水温までしか放熱されないため、給湯用熱交換器32出口の冷媒の密度は低く、高圧が上昇する。この時、入水温度センサー51で検知した入水温度が制御装置54にあらかじめ設定してある温度よりも上昇すると、第1の絞り装置33を開方向に動作させ、第2の絞り装置35を閉方向に動作させる。こうすることにより、蓄熱器34に流入する冷媒圧力を高圧とすることにより、蓄熱器34を放熱器として作用させ、高温、高圧の冷媒は低温の蓄熱剤と熱交換させ中温高圧の冷媒となり、第2の絞り装置35で減圧され、低温低圧の冷媒となった後、蒸発器36に流入し、外気と熱交換して蒸発ガス化し、圧縮機31にもどる。   In this case, in the hot water supply heat exchanger 32, the refrigerant only dissipates heat up to the inflowing water temperature, so the density of the refrigerant at the outlet of the hot water supply heat exchanger 32 is low and the high pressure increases. At this time, when the incoming water temperature detected by the incoming water temperature sensor 51 rises above the temperature preset in the control device 54, the first throttle device 33 is operated in the opening direction, and the second throttle device 35 is closed. To work. In this way, by making the refrigerant pressure flowing into the heat accumulator 34 high, the heat accumulator 34 acts as a radiator, and the high-temperature and high-pressure refrigerant exchanges heat with the low-temperature heat storage agent to become a medium-temperature and high-pressure refrigerant, After being reduced in pressure by the second expansion device 35 and becoming a low-temperature and low-pressure refrigerant, it flows into the evaporator 36, exchanges heat with the outside air, evaporates, and returns to the compressor 31.

この時、蓄熱器34が放熱器として作用するため、冷媒回路40内に封入された冷媒の
内、高圧冷媒の存在できるところが給湯用熱交換器32と蓄熱器34となり体積が増加し、さらに、蓄熱器34で冷媒は放熱されるため、密度の高い冷媒が蓄熱器34に存在することとなる。また、蓄熱剤は高温となり、高温の熱が蓄熱される。そして、入水温度センサー51で検知した入水温度が制御装置54にあらかじめ設定してある温度よりも上昇すると、貯湯槽41の下部まで高温湯を貯湯できたと判断し、圧縮機31の運転を停止する。
At this time, since the heat accumulator 34 acts as a radiator, among the refrigerant sealed in the refrigerant circuit 40, the place where the high-pressure refrigerant can exist becomes the hot water supply heat exchanger 32 and the heat accumulator 34, and the volume increases. Since the refrigerant is dissipated by the heat accumulator 34, a high-density refrigerant exists in the heat accumulator 34. Moreover, a heat storage agent becomes high temperature and high temperature heat is stored. When the incoming water temperature detected by the incoming water temperature sensor 51 rises above the temperature preset in the control device 54, it is determined that hot water has been stored up to the lower part of the hot water tank 41, and the operation of the compressor 31 is stopped. .

その結果、冷媒回路40の圧縮機31の吐出圧力を減少させることができ、ヒートポンプ給湯装置を安全にかつ高効率で運転することができる。また、貯湯槽41の下部まで高温湯を貯湯でき、貯湯槽41の容量を有効に利用できる効果がある。   As a result, the discharge pressure of the compressor 31 of the refrigerant circuit 40 can be reduced, and the heat pump water heater can be operated safely and with high efficiency. Moreover, hot water can be stored up to the lower part of the hot water tank 41, and the capacity of the hot water tank 41 can be effectively used.

また、冷媒回路40の運転停止時は、蓄熱剤には高温の熱が蓄熱されているため、給湯により貯湯槽41の湯が減少し、冷媒回路40の運転が起動した時に、第1の絞り装置33を閉方向に動作させ、第2の絞り装置35を開方向に動作させて、蓄熱器34に流入する冷媒圧力を低温、低圧とすることにより、蓄熱器34の高温の蓄熱剤の熱を冷媒は吸熱し、圧縮機31の吸入圧力の異常低下を防ぐとともに、圧縮機31の吐出圧力や吐出温度を急速に上昇させ、低消費電力量で給湯能力の向上ができる。   Further, when the operation of the refrigerant circuit 40 is stopped, since the high-temperature heat is stored in the heat storage agent, the hot water in the hot water storage tank 41 is reduced by the hot water supply, and the operation of the refrigerant circuit 40 is started. The device 33 is operated in the closing direction, the second expansion device 35 is operated in the opening direction, and the refrigerant pressure flowing into the heat accumulator 34 is set to a low temperature and a low pressure. The refrigerant absorbs heat and prevents an abnormal decrease in the suction pressure of the compressor 31 and rapidly increases the discharge pressure and discharge temperature of the compressor 31 to improve the hot water supply capacity with low power consumption.

また、出湯温度が高い場合、冷媒回路40の圧縮機31の吐出温度を高くする必要があるが、そのためには圧縮機31の吐出圧力も高くする必要がある。したがって、入水温度が上昇すると、出湯温度が高いほど圧縮機31の吐出圧力は高くなる。   In addition, when the hot water temperature is high, it is necessary to increase the discharge temperature of the compressor 31 of the refrigerant circuit 40. For this purpose, it is also necessary to increase the discharge pressure of the compressor 31. Therefore, when the incoming water temperature rises, the discharge pressure of the compressor 31 increases as the hot water temperature increases.

従って、入水温度センサー51で検知した入水温度と、出湯温度センサー52で検知した出湯温度が、制御装置54にあらかじめ設定してある温度よりも上昇すると、第1の絞り装置33を開方向に動作させ、第2の絞り装置35を閉方向に動作させ、蓄熱器34に流入する冷媒圧力を高圧とし、蓄熱器34を放熱器として作用させることにより、冷媒回路40の圧縮機31の吐出圧力を減少させることができ、ヒートポンプ給湯装置をさらに安全にかつ高効率で運転することができる。   Accordingly, when the incoming water temperature detected by the incoming water temperature sensor 51 and the outgoing hot water temperature detected by the outgoing hot water temperature sensor 52 rise above the temperature preset in the control device 54, the first throttle device 33 is operated in the opening direction. Then, the second expansion device 35 is operated in the closing direction, the refrigerant pressure flowing into the heat accumulator 34 is set to a high pressure, and the heat accumulator 34 is operated as a radiator, whereby the discharge pressure of the compressor 31 of the refrigerant circuit 40 is increased. The heat pump water heater can be operated more safely and efficiently.

また、外気温度が高いと、蒸発圧力が上昇する。蒸発圧力が高いほど、圧縮機31の吸入冷媒の比容積が小さくなり、冷媒循環量が増加し給湯能力が増加する。そのため、外気温が高いほど圧縮機31の吐出圧力は高くなる。   Further, when the outside air temperature is high, the evaporation pressure increases. The higher the evaporation pressure, the smaller the specific volume of the refrigerant sucked in the compressor 31, the refrigerant circulation amount increases, and the hot water supply capacity increases. Therefore, the discharge pressure of the compressor 31 increases as the outside air temperature increases.

このように出湯温度や外気温が高く、入水温度が高くなるほど、圧縮機31の吐出圧力は高くなる傾向がある。従って、入水温度センサー51で検知した入水温度と、出湯温度センサー52で検知した出湯温度と外気温センサー53で検知した外気温により、第1の絞り装置33を開方向に動作させ、第2の絞り装置35を閉方向に動作させ、蓄熱器34に流入する冷媒圧力を高圧とし、蓄熱器34を放熱器として作用させることにより、冷媒回路40の圧縮機31の吐出圧力を減少させることができ、ヒートポンプ給湯装置をさらに安全にかつ高効率で運転することができる。   Thus, the discharge pressure of the compressor 31 tends to increase as the hot water temperature and the outside air temperature are higher and the incoming water temperature is higher. Therefore, the first throttling device 33 is operated in the opening direction by the incoming water temperature detected by the incoming water temperature sensor 51, the outgoing hot water temperature detected by the outgoing hot water temperature sensor 52, and the outside air temperature detected by the outdoor air temperature sensor 53, and the second The discharge pressure of the compressor 31 of the refrigerant circuit 40 can be reduced by operating the expansion device 35 in the closing direction, setting the refrigerant pressure flowing into the heat accumulator 34 to a high pressure, and causing the heat accumulator 34 to act as a radiator. The heat pump water heater can be operated more safely and efficiently.

さらに、低外気温時の運転により、蒸発器36に着霜する場合、外気温度センサー53で検知した外気温が制御装置54にあらかじめ設定してある温度よりも低下すると、着霜する可能性があると判断し、第1の絞り装置33を開方向に動作させ、第2の絞り装置35を閉方向に動作させる。こうすることにより、蓄熱器34に流入する冷媒圧力を高圧とすることにより、高温、高圧の冷媒は低温の蓄熱剤と熱交換させ蓄熱器34に蓄熱する。   Further, when the evaporator 36 is frosted by operation at a low outside air temperature, the frost may be formed if the outside air temperature detected by the outside air temperature sensor 53 is lower than the temperature preset in the control device 54. It is determined that there is, and the first diaphragm device 33 is operated in the opening direction, and the second diaphragm device 35 is operated in the closing direction. By doing so, the refrigerant pressure flowing into the heat accumulator 34 is set to a high pressure, so that the high-temperature and high-pressure refrigerant exchanges heat with the low-temperature heat accumulator and stores the heat in the heat accumulator 34.

その後、蒸発器36の温度が低下し、除霜運転が行われる時、第2の絞り装置35を開方向に動作させ、蒸発器36に高温高圧の冷媒を流入させ、蒸発器36の着霜を溶かす。この時、蓄熱器34から吸熱できるので、蒸発器36の着霜を早く溶かすことができ、除
霜運転時間を短縮し、効率の良い運転が可能となる。
Thereafter, when the temperature of the evaporator 36 is lowered and the defrosting operation is performed, the second expansion device 35 is operated in the opening direction, a high-temperature and high-pressure refrigerant is caused to flow into the evaporator 36, and the evaporator 36 forms frost. Melt. At this time, since heat can be absorbed from the heat accumulator 34, the frost formation of the evaporator 36 can be quickly melted, the defrosting operation time can be shortened, and an efficient operation can be performed.

なお、図2に示すように、圧縮機31の吐出冷媒を第1の絞り装置33と蓄熱器34の間に流入させる二方弁37を介したホットガスバイパス回路38を設け、除霜運転の時、二方弁37を開き、蓄熱器34の蓄熱剤に蓄熱した熱を吸熱しながら、蒸発器36に高温高圧の冷媒を流入させ、蒸発器36の着霜を溶かす様に制御しても、蒸発器36の着霜を早く溶かすことができ、除霜運転時間を短縮し、効率の良い運転が可能となる。   In addition, as shown in FIG. 2, the hot gas bypass circuit 38 through the two-way valve 37 which makes the discharge refrigerant | coolant of the compressor 31 flow in between the 1st expansion device 33 and the thermal accumulator 34 is provided, and defrost operation is carried out. At this time, the two-way valve 37 is opened, and the heat stored in the heat storage agent of the heat storage device 34 is absorbed, and a high-temperature and high-pressure refrigerant is introduced into the evaporator 36 so that the frost formation on the evaporator 36 is melted. The frosting of the evaporator 36 can be quickly melted, the defrosting operation time can be shortened, and the efficient operation can be performed.

(実施の形態2)
図3は、本発明の第2の実施の形態におけるヒートポンプ給湯装置の構成図を示すものである。
(Embodiment 2)
FIG. 3 shows a configuration diagram of a heat pump water heater in the second embodiment of the present invention.

図3において、図1と同様要素には同一の番号を付してある。ここで、図1と異なるのは、第1の絞り装置33と並列に第2の二方弁44を介したバイパス回路45と第2の二方弁44の開閉を制御する制御装置54を設けたことである。   In FIG. 3, the same elements as those in FIG. Here, the difference from FIG. 1 is that a bypass circuit 45 via a second two-way valve 44 and a control device 54 for controlling the opening and closing of the second two-way valve 44 are provided in parallel with the first throttling device 33. That is.

以上のように構成されたヒートポンプ給湯装置について、以下その動作、作用を説明する。   About the heat pump hot-water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

圧縮機31で高温高圧の超臨界状態に圧縮された冷媒(炭酸ガス)は、給湯用熱交換器32で給湯回路43を流れる水と熱交換し、自らは中温高圧の冷媒となり、第2の二方弁44は閉じられているため、第1の絞り装置33に流入し減圧された、低温低圧の冷媒となり、蓄熱器34を通り蒸発器36に流入し、蒸発器36でファン39で送風された外気と熱交換して蒸発ガス化し、圧縮機31にもどる。一方、循環ポンプ42で送られた給湯水は給湯用熱交換器32で加熱され、生成した湯は貯湯槽41の上部に流入し、上から次第に貯湯されていく。この時、蓄熱器34の蓄熱剤は低温になる。   The refrigerant (carbon dioxide gas) compressed into the supercritical state of high temperature and high pressure by the compressor 31 exchanges heat with water flowing through the hot water supply circuit 43 by the hot water supply heat exchanger 32, and becomes a medium temperature and high pressure refrigerant. Since the two-way valve 44 is closed, it flows into the first throttling device 33 and becomes a low-temperature and low-pressure refrigerant that has been reduced in pressure, flows into the evaporator 36 through the heat accumulator 34, and is blown by the fan 39 by the evaporator 36. The heat is exchanged with the outside air thus converted into evaporative gas, and the compressor 31 is returned. On the other hand, the hot water sent by the circulation pump 42 is heated by the hot water heat exchanger 32, and the generated hot water flows into the upper part of the hot water storage tank 41 and is gradually stored from above. At this time, the heat storage agent of the heat storage device 34 becomes a low temperature.

一方、沸き上げ運転時間の経過とともに貯湯槽41内の湯と水の接する部分で湯水混合層が生じ、その層は貯湯槽41の下部に拡大し、沸き上げ運転完了近くになると、貯湯槽41下部より循環ポンプ42を経て給湯用熱交換器32に流入する水温は高くなってくる。   On the other hand, as the boiling operation time elapses, a hot water mixed layer is formed at a portion where the hot water in the hot water storage tank 41 comes into contact with water, and the layer expands to the lower part of the hot water storage tank 41. The temperature of water flowing into the hot water supply heat exchanger 32 from the lower part through the circulation pump 42 becomes higher.

この場合、入水温度センサー51で検知した入水温度が制御装置54にあらかじめ設定してある温度よりも上昇した場合には、バイパス回路45の第2の二方弁44を開き、第2の絞り装置35の開度を閉方向に動作させる。こうすることにより、蓄熱器34に流入する冷媒圧力を高圧とすることにより、蓄熱器34を放熱器として作用させ、高温、高圧の冷媒は低温の蓄熱剤と熱交換させ中温高圧の冷媒となり、第2の絞り装置35で減圧され、低温低圧の冷媒となった後、蒸発器36に流入し、外気と熱交換して蒸発ガス化し、圧縮機31にもどる。   In this case, when the incoming water temperature detected by the incoming water temperature sensor 51 rises above the temperature preset in the control device 54, the second two-way valve 44 of the bypass circuit 45 is opened, and the second throttle device The opening of 35 is operated in the closing direction. In this way, by making the refrigerant pressure flowing into the heat accumulator 34 high, the heat accumulator 34 acts as a radiator, and the high-temperature and high-pressure refrigerant exchanges heat with the low-temperature heat storage agent to become a medium-temperature and high-pressure refrigerant, After being reduced in pressure by the second expansion device 35 and becoming a low-temperature and low-pressure refrigerant, it flows into the evaporator 36, exchanges heat with the outside air, evaporates, and returns to the compressor 31.

この時、蓄熱器34が放熱器として作用するため、冷媒回路40内に封入された冷媒の内、高圧冷媒の存在できるところが給湯用熱交換器32と蓄熱器34となり体積が増加し、さらに、蓄熱器34で冷媒は放熱されるため、密度の高い冷媒が蓄熱器34に存在することとなる。また、蓄熱剤は高温となり、高温の熱が蓄熱される。そして、入水温度センサー51で検知した入水温度が制御装置54にあらかじめ設定してある温度よりも上昇すると、貯湯槽41の下部まで高温湯を貯湯できたと判断し、圧縮機31の運転を停止する。   At this time, since the heat accumulator 34 acts as a radiator, among the refrigerant sealed in the refrigerant circuit 40, the place where the high-pressure refrigerant can exist becomes the hot water supply heat exchanger 32 and the heat accumulator 34, and the volume increases. Since the refrigerant is dissipated by the heat accumulator 34, a high-density refrigerant exists in the heat accumulator 34. Moreover, a heat storage agent becomes high temperature and high temperature heat is stored. When the incoming water temperature detected by the incoming water temperature sensor 51 rises above the temperature preset in the control device 54, it is determined that hot water has been stored up to the lower part of the hot water tank 41, and the operation of the compressor 31 is stopped. .

その結果、冷媒回路40の圧縮機31の吐出圧力を減少させることができ、ヒートポンプ給湯装置を安全にかつ高効率で運転することができる。また、貯湯槽41の下部まで高
温湯を貯湯でき、貯湯槽41の容量を有効に利用できる効果がある。
As a result, the discharge pressure of the compressor 31 of the refrigerant circuit 40 can be reduced, and the heat pump water heater can be operated safely and with high efficiency. Moreover, hot water can be stored up to the lower part of the hot water tank 41, and the capacity of the hot water tank 41 can be effectively used.

また、冷媒回路40の運転停止時は、蓄熱剤には高温の熱が蓄熱されているため、給湯により貯湯槽41の湯が減少し、冷媒回路40の運転が起動した時に、バイパス回路45の第2の二方弁44を閉め、第1の絞り装置33を閉方向に動作させ、第2の絞り装置35を開方向に動作させて、蓄熱器34に流入する冷媒圧力を低温、低圧とすることにより、蓄熱器34の高温の蓄熱剤の熱を冷媒は吸熱し、圧縮機31の吸入圧力の異常低下を防ぐとともに、圧縮機31の吐出圧力や吐出温度を急速に上昇させ、低消費電力量で給湯能力の向上ができる。   Further, when the operation of the refrigerant circuit 40 is stopped, since the high-temperature heat is stored in the heat storage agent, the hot water in the hot water storage tank 41 is reduced by the hot water supply, and when the operation of the refrigerant circuit 40 is started, The second two-way valve 44 is closed, the first throttling device 33 is operated in the closing direction, the second throttling device 35 is operated in the opening direction, and the refrigerant pressure flowing into the heat accumulator 34 is reduced to low temperature and low pressure. As a result, the refrigerant absorbs the heat of the high-temperature heat storage agent of the heat accumulator 34 to prevent an abnormal decrease in the suction pressure of the compressor 31, and the discharge pressure and discharge temperature of the compressor 31 are rapidly increased to reduce consumption. Hot water supply capacity can be improved by the amount of electric power.

さらに、低外気温時の運転により、蒸発器36に着霜する場合、外気温度センサー53で検知した外気温が制御装置54にあらかじめ設定してある温度よりも低下すると、着霜する可能性があると判断し、バイパス回路45の第2の二方弁44を開き、第1の絞り装置33をバイパスさせ、第2の絞り装置35を閉方向に動作させる。こうすることにより、蓄熱器34に流入する冷媒圧力を高圧とすることにより、高温、高圧の冷媒は低温の蓄熱剤と熱交換させ蓄熱器34に蓄熱する。その後、蒸発器36の温度が低下し、除霜運転が行われる時、第2の絞り装置35を開方向に動作させ、蒸発器36に高温高圧の冷媒を流入させ、蒸発器36の着霜を溶かす。この時、蓄熱器34から吸熱できるので、蒸発器36の着霜を早く溶かすことができ、除霜運転時間を短縮し、効率の良い運転が可能となる。   Further, when the evaporator 36 is frosted by operation at a low outside air temperature, the frost may be formed if the outside air temperature detected by the outside air temperature sensor 53 is lower than the temperature preset in the control device 54. When it is determined that there is, the second two-way valve 44 of the bypass circuit 45 is opened, the first throttling device 33 is bypassed, and the second throttling device 35 is operated in the closing direction. By doing so, the refrigerant pressure flowing into the heat accumulator 34 is set to a high pressure, so that the high-temperature and high-pressure refrigerant exchanges heat with the low-temperature heat accumulator and stores the heat in the heat accumulator 34. Thereafter, when the temperature of the evaporator 36 is lowered and the defrosting operation is performed, the second expansion device 35 is operated in the opening direction, a high-temperature and high-pressure refrigerant is caused to flow into the evaporator 36, and the frosting of the evaporator 36 is performed. Melt. At this time, since heat can be absorbed from the heat accumulator 34, the frost formation of the evaporator 36 can be quickly melted, the defrosting operation time can be shortened, and an efficient operation can be performed.

なお、図4に示すように、圧縮機31の吐出冷媒を第1の絞り装置33と蓄熱器34の間に流入させる二方弁37を介したホットガスバイパス回路38を設け、除霜運転の時、二方弁37を開き、蓄熱器34の蓄熱剤に蓄熱した熱を吸熱しながら、蒸発器36に高温高圧の冷媒を流入させ、蒸発器36の着霜を溶かす様に制御しても、蒸発器36の着霜を早く溶かすことができ、除霜運転時間を短縮し、効率の良い運転が可能となる。   In addition, as shown in FIG. 4, the hot gas bypass circuit 38 through the two-way valve 37 which makes the discharge refrigerant | coolant of the compressor 31 flow in between the 1st expansion device 33 and the thermal accumulator 34 is provided, and defrost operation is carried out. At this time, the two-way valve 37 is opened, and the heat stored in the heat storage agent of the heat storage device 34 is absorbed, and a high-temperature and high-pressure refrigerant is introduced into the evaporator 36 so that the frost formation on the evaporator 36 is melted. The frosting of the evaporator 36 can be quickly melted, the defrosting operation time can be shortened, and the efficient operation can be performed.

以上のように、本発明にかかるヒートポンプ給湯装置は、冷媒回路の圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができが可能となるので、高温を得るヒートポンプ給湯機や高温風を得る空調機等の用途に有用である。   As described above, the heat pump hot water supply apparatus according to the present invention can easily heat the hot water supply to a high temperature while reducing the discharge pressure and discharge temperature of the compressor of the refrigerant circuit. It is useful for applications such as a heat pump water heater to be obtained and an air conditioner to obtain high temperature air.

本発明の実施の形態1におけるヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus in Embodiment 1 of this invention 同他のヒートポンプ給湯装置の構成図Configuration diagram of other heat pump water heater 本発明の実施の形態2におけるヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus in Embodiment 2 of this invention 同他のヒートポンプ給湯装置の構成図Configuration diagram of other heat pump water heater 従来のヒートポンプ給湯装置の構成図Configuration diagram of conventional heat pump water heater

符号の説明Explanation of symbols

31 圧縮機
32 給湯用熱交換器
33 第1の絞り装置
34 蓄熱器
35 第2の絞り装置
36 蒸発器
37 二方弁
38 ホットガスバイパス回路
39 ファン
40 冷媒回路
41 貯湯槽
42 循環ポンプ
43 給湯回路
44 第2の第2の二方弁
45 バイパス回路
51 入水温度センサー
52 出湯温度センサー
53 外気温度センサー
54 制御装置
DESCRIPTION OF SYMBOLS 31 Compressor 32 Hot water supply heat exchanger 33 1st expansion device 34 Heat storage device 35 2nd expansion device 36 Evaporator 37 Two-way valve 38 Hot gas bypass circuit 39 Fan 40 Refrigerant circuit 41 Hot water tank 42 Circulation pump 43 Hot water supply circuit 44 Second second two-way valve 45 Bypass circuit 51 Incoming water temperature sensor 52 Hot water temperature sensor 53 Outside air temperature sensor 54 Control device

Claims (8)

少なくとも圧縮機、給湯用熱交換器、第1の絞り装置、蓄熱器、第2の絞り装置、蒸発器を順次接続した冷媒回路と、少なくとも貯湯槽、前記給湯用熱交換器を順次接続した給湯回路と、前記給湯用熱交換器に流入する給湯水の温度を検知する入水温度センサーと、前記給湯用熱交換器を流出する給湯水の温度を検知する出湯温度センサーと、前記第1の絞り装置、前記第2の絞り装置の開度を制御する制御装置と備え、前記第1の絞り装置と前記第2の絞り装置は絞り開度を可変し流量を制御できるとともに、前記制御装置は、前記入水温度センサーで検知した入水温度が所定値以上で、かつ、前記出湯温度センサーで検知した出湯温度が設定値以上の場合に、前記第1の絞り装置の開度を開方向に動作させ、前記第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とするヒートポンプ給湯装置。 A refrigerant circuit in which at least a compressor, a hot water heat exchanger, a first expansion device, a heat storage device, a second expansion device, and an evaporator are sequentially connected, and at least a hot water storage tank and the hot water supply heat exchanger are sequentially connected. A circuit , a water temperature sensor that detects the temperature of hot water flowing into the hot water heat exchanger, a hot water temperature sensor that detects the temperature of hot water flowing out of the hot water heat exchanger, and the first throttle Apparatus, a control device for controlling the opening of the second throttle device, the first throttle device and the second throttle device can control the flow rate by varying the throttle opening, the control device, When the incoming water temperature detected by the incoming water temperature sensor is equal to or higher than a predetermined value and the outgoing hot water temperature detected by the outgoing hot water temperature sensor is higher than a set value, the opening of the first throttling device is operated in the opening direction. , The opening of the second throttle device The heat pump water heater and controls to operate the direction. 外気温度を検知する外気温度センサーを設け、制御装置は、入水温度センサーで検知した入水温度と、出湯温度センサーで検知した出湯温度と、前記外気温度センサーで検知した外気温度に基づいて、第1の絞り装置の開度を開方向に動作させ、第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とする請求項1記載のヒートポンプ給湯装置。 Only set the outside air temperature sensor over which detects the outside air temperature, the control device includes a water inlet temperature detected by the incoming water temperature sensor, a hot water temperature detected by the water temperature sensor output, based on the outside air temperature detected by the outside air temperature sensor The heat pump hot water supply apparatus according to claim 1, wherein the opening degree of the first throttling device is controlled to operate in the opening direction, and the opening degree of the second throttling device is controlled to operate in the closing direction. 冷媒回路の第1の絞り装置をバイパスする二方弁を介したバイパス回路を設けたことを特徴とする請求項1または2記載のヒートポンプ給湯装置。 The heat pump hot-water supply apparatus according to claim 1 or 2 , further comprising a bypass circuit through a two-way valve that bypasses the first throttling device of the refrigerant circuit. 制御装置は、入水温度センサーで検知した入水温度が設定値以上の場合に、バイパス回路の二方弁を開き、第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とする請求項3記載のヒートポンプ給湯装置。 Control apparatus, when the incoming water temperature detected by the incoming water temperature sensor is equal to or higher than a set value,-out two-way valve of the bypass circuit open, the opening degree of the second throttle device is controlled so as to operate in the closing direction The heat pump hot water supply apparatus according to claim 3 . 制御装置は、入水温度センサーで検知した入水温度が設定値以上、かつ、出湯温度センサーで検知した出湯温度が設定値以上の場合に、バイパス回路の第2の二方弁を開き、第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とする請求項3記載のヒートポンプ給湯装置。 Controller, the incoming water temperature detected by the incoming water temperature sensor set value or more, One or, if hot water temperature detected by the output water temperature sensor is equal to or higher than a set value, open the second two-way valve of the bypass circuit, the 4. The heat pump hot water supply apparatus according to claim 3 , wherein the opening degree of the expansion device of 2 is controlled to operate in the closing direction. 外気温度を検知する外気温度センサーを設け、制御装置は、入水温度センサーで検知した入水温度と、出湯温度センサーで検知した出湯温度と、外気温度センサーで検知した外気温度に基づいて、バイパス回路の第2の二方弁を開き、第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とする請求項3記載のヒートポンプ給湯装置。 An outside air temperature sensor for detecting the outside air temperature is provided, and the control device is configured to control the bypass circuit based on the incoming water temperature detected by the incoming water temperature sensor, the outgoing hot water temperature detected by the outgoing hot water temperature sensor, and the outdoor air temperature detected by the outdoor air temperature sensor. The heat pump hot water supply apparatus according to claim 3 , wherein the second two-way valve is opened and the opening of the second expansion device is controlled to operate in the closing direction. 第1の絞り装置と蓄熱器との間に、圧縮機の吐出冷媒を流入させるホットガスバイパス回路を設けたことを特徴とする請求項1〜6のいずれか1項に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to any one of claims 1 to 6 , wherein a hot gas bypass circuit for allowing a refrigerant discharged from the compressor to flow in is provided between the first expansion device and the heat accumulator. 冷媒として炭酸ガスを用いたことを特徴とする請求項1〜7のいずれか1項に記載のヒートポンプ給湯装置。 The heat pump hot water supply device according to any one of claims 1 to 7 , wherein carbon dioxide gas is used as the refrigerant.
JP2004175140A 2004-06-14 2004-06-14 Heat pump water heater Expired - Fee Related JP4124166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004175140A JP4124166B2 (en) 2004-06-14 2004-06-14 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004175140A JP4124166B2 (en) 2004-06-14 2004-06-14 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2005351589A JP2005351589A (en) 2005-12-22
JP4124166B2 true JP4124166B2 (en) 2008-07-23

Family

ID=35586215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175140A Expired - Fee Related JP4124166B2 (en) 2004-06-14 2004-06-14 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4124166B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848971B2 (en) * 2007-02-13 2011-12-28 パナソニック株式会社 Heat pump water heater
CN113217988A (en) * 2021-05-31 2021-08-06 美的集团武汉暖通设备有限公司 Control method of water heater system, water heater system and storage medium

Also Published As

Publication number Publication date
JP2005351589A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
KR101192346B1 (en) Heat pump type speed heating apparatus
JP4867749B2 (en) Heat pump water heater
JP4317793B2 (en) Cooling system
JP5194492B2 (en) Heat pump water heater
JP2008082601A (en) Heat pump hot water supply device
JP5176474B2 (en) Heat pump water heater
JP4075844B2 (en) Heat pump water heater
JP4595546B2 (en) Heat pump equipment
JP3700474B2 (en) Heat pump water heater
JP5150300B2 (en) Heat pump type water heater
JP4155334B2 (en) vending machine
JP4124166B2 (en) Heat pump water heater
JP3900186B2 (en) Heat pump water heater
JP3703995B2 (en) Heat pump water heater
WO2022038869A1 (en) Battery temperature regulation system
JP4429960B2 (en) Vending machine with cooling and heating system
JP2007155296A (en) Heat pump type water heater
JP4124164B2 (en) Heat pump water heater
JP2007017013A (en) Heat pump water heater
JP4082389B2 (en) Heat pump water heater
JP2009085476A (en) Heat pump water heater
JP2006234211A (en) Heat pump water heater
JP2016114319A (en) Heating system
JP6029569B2 (en) Heat pump system and heat pump type water heater
KR101212686B1 (en) Heat pump type speed heating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees