JP4124164B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP4124164B2
JP4124164B2 JP2004170782A JP2004170782A JP4124164B2 JP 4124164 B2 JP4124164 B2 JP 4124164B2 JP 2004170782 A JP2004170782 A JP 2004170782A JP 2004170782 A JP2004170782 A JP 2004170782A JP 4124164 B2 JP4124164 B2 JP 4124164B2
Authority
JP
Japan
Prior art keywords
hot water
temperature sensor
water supply
water temperature
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004170782A
Other languages
Japanese (ja)
Other versions
JP2005351506A (en
Inventor
章 藤高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004170782A priority Critical patent/JP4124164B2/en
Publication of JP2005351506A publication Critical patent/JP2005351506A/en
Application granted granted Critical
Publication of JP4124164B2 publication Critical patent/JP4124164B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は貯湯式のヒートポンプ給湯装置に関する。   The present invention relates to a hot water storage type heat pump hot water supply apparatus.

従来、この種のヒートポンプ給湯装置は、図3に示すものがある。図3は従来のヒートポンプ給湯機の構成図である。図3において、圧縮機1、給湯用熱交換器2、絞り装置3、蒸発器4からなる冷媒循環回路と、貯湯槽5、循環ポンプ6、前記給湯用熱交換器2、補助加熱器19を接続した給湯回路からなり、前記圧縮機1より吐出された高温高圧の過熱ガス冷媒は前記給湯用熱交換器2に流入し、ここで前記循環ポンプ6から送られてきた給湯水を加熱する。   Conventionally, this type of heat pump hot water supply apparatus is shown in FIG. FIG. 3 is a configuration diagram of a conventional heat pump water heater. In FIG. 3, a refrigerant circulation circuit comprising a compressor 1, a hot water supply heat exchanger 2, an expansion device 3 and an evaporator 4, a hot water storage tank 5, a circulation pump 6, the hot water supply heat exchanger 2 and an auxiliary heater 19 are provided. The high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2 and heats the hot water supplied from the circulation pump 6.

そして、凝縮液化した冷媒は前記絞り装置3で減圧され、前記蒸発器4に流入し、ここで大気熱を吸熱して蒸発ガス化し、前記圧縮機1にもどる。一方、前記給湯用熱交換器2で加熱された湯は前記貯湯槽5の上部に流入し、上から次第に貯湯されていく。そして、前記給湯用熱交換器2の入口水温が設定値に達すると水温検知器20が検知し、前記圧縮機1によるヒートポンプ運転を停止して、前記補助加熱器19の単独運転に切り換えるものである(例えば、特許文献1参照)。
特開昭60−165157号公報
The condensed and liquefied refrigerant is decompressed by the expansion device 3 and flows into the evaporator 4, where it absorbs atmospheric heat to evaporate and returns to the compressor 1. On the other hand, the hot water heated by the hot water supply heat exchanger 2 flows into the upper part of the hot water storage tank 5 and is gradually stored from above. When the inlet water temperature of the hot water supply heat exchanger 2 reaches a set value, the water temperature detector 20 detects it, stops the heat pump operation by the compressor 1, and switches to the independent operation of the auxiliary heater 19. Yes (for example, see Patent Document 1).
JP 60-165157 A

しかしながら、上記のような従来の構成では、沸き上げ運転時間の経過とともに貯湯槽5内の湯と水の接する部分で湯水混合層が生じ、その層は次第に拡大していく。これは、高温湯と低温水の熱伝導および対流により発生するものであり、高温湯から低温水へ伝熱されその境界部分で高温湯は温度低下し、逆に低温水は温度上昇する。従って、沸き上げ運転完了近くになると、前記給湯用熱交換器2に流入する水温は高くなるため、前記圧縮機1の吐出圧力および吐出温度が上昇して、前記圧縮機1のモータの巻線温度の上昇など前記圧縮機1の耐久性が課題となる。そのため、前記給湯用熱交換器に流入する水温が低い状態で運転を停止していたため、前記貯湯槽5の下部が低温の水の状態で運転を停止することになり、前記貯湯槽5の湯容量を有効に利用できず、そのため、貯湯熱量は減少していた。   However, in the conventional configuration as described above, a hot water mixed layer is formed at the portion where the hot water in the hot water tank 5 is in contact with water as the boiling operation time elapses, and the layer gradually expands. This occurs due to heat conduction and convection in high temperature hot water and low temperature water. Heat is transferred from the high temperature hot water to the low temperature water, and the temperature of the high temperature hot water decreases at the boundary portion, while the temperature of the low temperature water increases. Accordingly, when the boiling operation is almost completed, the temperature of the water flowing into the hot water supply heat exchanger 2 becomes high, so that the discharge pressure and the discharge temperature of the compressor 1 rise, and the winding of the motor of the compressor 1 The durability of the compressor 1 such as a rise in temperature becomes a problem. Therefore, since the operation was stopped in a state where the temperature of the water flowing into the hot water supply heat exchanger was low, the operation was stopped with the lower part of the hot water tank 5 being in a state of low temperature water, and the hot water in the hot water tank 5 was The capacity could not be used effectively, so the amount of hot water stored was decreasing.

また、貯湯熱量を増加するため、ヒートポンプ運転を停止した後、補助加熱器19の単独運転で貯湯熱量を増加する場合には、電気ヒータで加熱するため、消費電力が大きくな
り、効率が悪くなっていた。
In addition, in order to increase the amount of stored hot water, after stopping the heat pump operation, when the amount of stored hot water is increased by the independent operation of the auxiliary heater 19, heating is performed by an electric heater, so that power consumption increases and efficiency decreases. It was.

また、上記のような従来の構成では、外気温度が水温より高い場合にも、外気の熱量を有効に利用する手段がなく、外気温温度が高く、水温が低い場合にも消費電力が比較的高くなっていた。   Further, in the conventional configuration as described above, there is no means for effectively using the amount of heat of the outside air even when the outside air temperature is higher than the water temperature, and the power consumption is relatively low even when the outside air temperature is high and the water temperature is low. It was high.

本発明は前記従来の課題を解決するもので、圧縮機の吐出圧力を減少させ、安全かつ高効率で運転することができるヒートポンプ給湯装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a heat pump hot water supply apparatus that can be operated safely and with high efficiency by reducing the discharge pressure of the compressor.

前記従来の課題を解決するために、本発明のヒートポンプ給湯装置は、少なくとも圧縮機、給湯用熱交換器、第1の絞り装置、第1の蒸発器、第2の絞り装置、第2の蒸発器を順次接続した冷媒回路と、少なくとも貯湯槽、前記給湯用熱交換器を接続した給湯回路と、前記給湯用熱交換器に流入する給湯水の温度を検知する入水温度センサーと、前記給湯用熱交換器を流出する給湯水の温度を検知する出湯温度センサーと、前記第1の絞り装置、前記第2の絞り装置の開度を制御する制御装置と備え、前記第1の絞り装置と前記第2の絞り装置は絞り開度を可変し流量を制御できるとともに、前記制御装置は、前記入水温度センサーで検知した入水温度が所定値以上で、かつ、前記出湯温度センサーで検知した出湯温度が設定値以上の場合に、前記第1の絞り装置の開度を開方向に動作させ、前記第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とするもので、沸き上げ運転完了近くになって入水温度が高くなった場合に、第1の絞り装置を開方向に動作させ、第2の絞り装置を閉方向に動作させて、第1の蒸発器に流入する冷媒圧力を高圧とすることにより、第1の蒸発器を放熱器として作用させ、外気および第2の蒸発器と熱交換させることができ、冷媒回路の圧縮機の吐出圧力を減少させることができる。 In order to solve the above-described conventional problems, a heat pump hot water supply apparatus of the present invention includes at least a compressor, a heat exchanger for hot water supply, a first expansion device, a first evaporator, a second expansion device, and a second evaporation. A refrigerant circuit in which the heaters are sequentially connected, at least a hot water storage tank, a hot water supply circuit to which the hot water supply heat exchanger is connected, an incoming water temperature sensor for detecting the temperature of hot water flowing into the hot water supply heat exchanger, and the hot water supply A hot water temperature sensor for detecting the temperature of hot water flowing out of the heat exchanger, a control device for controlling the opening degree of the first throttling device and the second throttling device, and the first throttling device and the The second throttle device can control the flow rate by changing the throttle opening, and the control device can detect the temperature of the hot water detected by the hot water temperature sensor and the temperature of the hot water detected by the hot water temperature sensor. When is over the set value Operating the opening of the first throttle device in the opening direction, the opening degree of the second throttle device characterized in that control to operate in the closing direction, raised become close operation completion boiling When the incoming water temperature rises, the first throttling device is operated in the opening direction, the second throttling device is operated in the closing direction, and the refrigerant pressure flowing into the first evaporator is increased. Thus, the first evaporator can act as a radiator and can exchange heat with the outside air and the second evaporator, and the discharge pressure of the compressor of the refrigerant circuit can be reduced.

本発明によれば、圧縮機の吐出圧力を減少させ、安全かつ高効率で運転することができるヒートポンプ給湯装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the discharge pressure of a compressor can be reduced and the heat pump hot-water supply apparatus which can be drive | operated safely and highly efficiently can be provided.

第1の発明は、少なくとも圧縮機、給湯用熱交換器、第1の絞り装置、第1の蒸発器、第2の絞り装置、第2の蒸発器を順次接続した冷媒回路と、少なくとも貯湯槽、前記給湯用熱交換器を接続した給湯回路と、前記給湯用熱交換器に流入する給湯水の温度を検知する入水温度センサーと、前記給湯用熱交換器を流出する給湯水の温度を検知する出湯温度センサーと、前記第1の絞り装置、前記第2の絞り装置の開度を制御する制御装置と備え、前記第1の絞り装置と前記第2の絞り装置は絞り開度を可変し流量を制御できるとともに、前記制御装置は、前記入水温度センサーで検知した入水温度が所定値以上で、かつ、前記出湯温度センサーで検知した出湯温度が設定値以上の場合に、前記第1の絞り装置の開度を開方向に動作させ、前記第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とするもので、沸き上げ運転完了近くになって入水温度が高くなった場合に、第1の絞り装置を開方向に動作させ、第2の絞り装置を閉方向に動作させて、第1の蒸発器に流入する冷媒圧力を高圧とすることにより、第1の蒸発器を放熱器として作用させ、外気および第2の蒸発器と熱交換させることができ、冷媒回路の圧縮機の吐出圧力を減少させることができる。 The first invention includes at least a compressor, a hot water heat exchanger, a first throttle device, a first evaporator, a second throttle device, a refrigerant circuit in which the second evaporator is sequentially connected, and at least a hot water storage tank A hot water supply circuit connected to the hot water heat exchanger, an incoming water temperature sensor for detecting the temperature of hot water flowing into the hot water heat exchanger, and a temperature of hot water flowing out of the hot water heat exchanger And a controller for controlling the opening of the first and second throttle devices, the first and second throttle devices varying the throttle opening. The flow rate can be controlled, and the control device is configured such that when the incoming water temperature detected by the incoming water temperature sensor is equal to or higher than a predetermined value and the outgoing hot water temperature detected by the outgoing hot water temperature sensor is higher than a set value, Operate the opening of the expansion device in the opening direction, The opening of the second throttle device characterized in that control to operate in the closing direction, when the incoming water temperature becomes close operation completed boiling becomes higher, the first throttle device opening direction And the second expansion device is operated in the closing direction to increase the pressure of the refrigerant flowing into the first evaporator, so that the first evaporator acts as a radiator, and the outside air and the second It is possible to exchange heat with the evaporator, and it is possible to reduce the discharge pressure of the compressor of the refrigerant circuit.

また、沸き上げ運転完了近くになって入水温度が高くなった場合にも、第1の蒸発器を放熱器として作用させることができるので、冷媒回路の圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。また、貯湯槽の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できる。   In addition, even when the incoming water temperature rises near the completion of the boiling operation, the first evaporator can act as a radiator, so that the discharge pressure and discharge temperature of the compressor in the refrigerant circuit are reduced. However, the hot water can be easily heated to a high temperature, and the heat pump can be operated safely and with high efficiency. Moreover, hot water can be stored up to the bottom of the hot water tank, and the capacity of the hot water tank can be used effectively.

また、部品点数を増やすことなく冷媒回路の圧縮機の吐出圧力や吐出温度を低減できる。 Moreover, the discharge pressure and discharge temperature of the compressor of the refrigerant circuit can be reduced without increasing the number of parts.

また、入水温度が低い場合には、第1の蒸発器は蒸発器として作用させるため、吸熱量を多く取ることができ、ヒートポンプを高効率で運転することができる。 Further, when the incoming water temperature is low, the first evaporator acts as an evaporator, so that a large amount of heat absorption can be obtained, and the heat pump can be operated with high efficiency.

また、出湯温度が高い場合にも、第1の蒸発器に流入する冷媒圧力を高圧とすることにより、第1の蒸発器を放熱器として作用させ、外気および第2の蒸発器と熱交換させることができ、冷媒回路の圧縮機の吐出圧力を減少させることができ、ヒートポンプを安全に高効率で運転することができる。 In addition, even when the temperature of the hot water is high, the refrigerant pressure flowing into the first evaporator is made high so that the first evaporator acts as a radiator and heat is exchanged with the outside air and the second evaporator. The discharge pressure of the compressor of the refrigerant circuit can be reduced, and the heat pump can be operated safely and with high efficiency.

第2の発明は、外気温度を検知する外気温度センサーを設け、前記制御装置は、前記入水温度センサーで検知した入水温度と、前記出湯温度センサーで検知した出湯温度と、前記外気温度センサーで検知した外気温度とに基づいて、前記第1の絞り装置の開度を開方向に動作させ、前記第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とするもので、第1の絞り装置を開方向に動作させ、第2の絞り装置を閉方向に動作させて、第1の蒸発器に流入する冷媒圧力を高圧とすることにより、第1の蒸発器を放熱器として作用させ、外気および第2の蒸発器と熱交換させることができ、冷媒回路の圧縮機の吐出圧力を減少させることができ、ヒートポンプをさらに高効率で運転することができる。 The second invention, the outside air temperature sensor for detecting the outside air temperature is provided, wherein the control device includes a water inlet temperature detected by the entering water temperature sensor, a hot water temperature detected by the hot water temperature sensor, the outside air temperature sensor And controlling the opening degree of the first throttle device in the opening direction and controlling the opening degree of the second throttle device in the closing direction based on the outside air temperature detected in step (b). The first evaporator is operated in the opening direction, the second throttle apparatus is operated in the closing direction, and the pressure of the refrigerant flowing into the first evaporator is increased, whereby the first evaporator Can act as a radiator and exchange heat with the outside air and the second evaporator, the discharge pressure of the compressor of the refrigerant circuit can be reduced, and the heat pump can be operated with higher efficiency.

第3の発明は、冷媒回路に第1の絞り装置をバイパスする二方弁を介したバイパス回路を設けるとともに、第2の絞り装置は、絞り開度を可変し流量を制御できることを特徴とするもので、低コストで冷媒回路の圧縮機の吐出圧力を減少させて、安全にかつ高効率で給湯水をより高温に加熱することができ、貯湯熱量を増大できる。 According to a third aspect of the present invention, a bypass circuit via a two-way valve that bypasses the first throttle device is provided in the refrigerant circuit, and the second throttle device can control the flow rate by varying the throttle opening. Therefore, the discharge pressure of the compressor of the refrigerant circuit can be reduced at low cost, and hot water can be heated to a higher temperature safely and efficiently, and the amount of stored hot water can be increased.

第4の発明は、前記制御装置は、前記入水温度センサーで検知した入水温度が所定値以上の場合に、前記バイパス回路の二方弁を開方向に動作させ、前記第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とするもので、入水温度センサーで検知した入水温度が設定値以上の場合に、二方弁を開方向に動作させ、第2の絞り装置の開度を閉方向に動作させるように制御するので、入水温度が低い場合には、第1の蒸発器は蒸発器として作用させるため、吸熱量を多く取ることができ、低コストでヒートポンプを高効率で運転することができる。 A fourth invention, prior Symbol control apparatus, when the incoming water temperature detected by the entering water temperature sensor is a predetermined value or more, the two-way valve of the bypass circuit is operated in the opening direction, the second throttle device The opening of the valve is controlled to operate in the closing direction. When the incoming water temperature detected by the incoming water temperature sensor is equal to or higher than a set value, the two-way valve is operated in the opening direction, Since the opening degree of the expansion device is controlled so as to operate in the closing direction, when the incoming water temperature is low, the first evaporator acts as an evaporator, so that a large amount of heat absorption can be obtained at low cost. The heat pump can be operated with high efficiency.

第5の発明は、前記制御装置は、前記入水温度センサーで検知した入水温度が所定値以上で、かつ、前記出湯温度センサーで検知した出湯温度が所定値以上の場合に、前記バイパス回路の二方弁を開方向に動作させ、前記第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とするもので、入水温度センサーで検知した入水温度が設定値以上で、かつ、出湯温度センサーで検知した出湯温度が設定値以上の場合に、バイパス回路の二方弁を開方向に動作させ、第2の絞り装置の開度を閉方向に動作させるように制御するので、第1の蒸発器に流入する冷媒圧力を高圧とすることにより、第1の蒸発器を放熱器として作用させ、外気および第2の蒸発器と熱交換させることができ、冷媒回路の圧縮機の吐出圧力を減少させることができ、低コストでヒートポンプを安全に高効率で運転することができる。 A fifth invention is, before Symbol controller in the incoming water temperature detected by the incoming water temperature sensor is more than a predetermined value, and when the hot water temperature is above a predetermined value detected by the hot water temperature sensor, the bypass circuit The two-way valve is operated in the opening direction, and the opening of the second throttle device is controlled to operate in the closing direction. The incoming water temperature detected by the incoming water temperature sensor is equal to or higher than a set value. And when the hot-water temperature detected by the hot-water temperature sensor is equal to or higher than a set value, the two-way valve of the bypass circuit is operated in the opening direction, and the opening degree of the second expansion device is controlled in the closing direction. Therefore, by setting the refrigerant pressure flowing into the first evaporator to a high pressure, the first evaporator can act as a radiator, and heat can be exchanged with the outside air and the second evaporator. Reduce the discharge pressure of the machine. Can be can be operated safely high efficiency heat pump at a low cost.

第6の発明は、外気温度を検知する外気温度センサーを設け、前記制御装置は、前記入水温度センサーで検知した入水温度と、前記出湯温度センサーで検知した出湯温度と、前記外気温度センサーで検知した外気温度とに基づいて、前記バイパス回路の二方弁を開方向に動作させ、前記第2の絞り装置の開度を閉方向に動作させるように制御することを特
徴とするもので、バイパス回路の二方弁を開方向に動作させ、第2の絞り装置の開度を閉方向に動作させるように制御するので、第1の蒸発器に流入する冷媒圧力を高圧とすることにより、第1の蒸発器を放熱器として作用させ、外気および第2の蒸発器と熱交換させることができ、冷媒回路の圧縮機の吐出圧力を減少させることができ、低コストでヒートポンプを安全に高効率で運転することができる。
A sixth invention is the outdoor air temperature sensor for detecting the outside air temperature is provided, wherein the control device includes a water inlet temperature detected by the entering water temperature sensor, a hot water temperature detected by the hot water temperature sensor, the outside air temperature sensor The two-way valve of the bypass circuit is operated in the opening direction based on the outside air temperature detected in step 1, and the opening of the second expansion device is controlled to operate in the closing direction. Since the two-way valve of the bypass circuit is operated in the opening direction and the opening of the second expansion device is controlled to operate in the closing direction, the refrigerant pressure flowing into the first evaporator is set to a high pressure. The first evaporator can act as a radiator to exchange heat with the outside air and the second evaporator, the discharge pressure of the compressor of the refrigerant circuit can be reduced, and the heat pump can be safely made at low cost Driving with high efficiency It is possible.

第7の発明は、冷媒回路の冷媒として炭酸ガスを用いたので、給湯水の高温化を高効率で実現すると共に、冷媒が外部に漏れた場合にも、地球温暖化への影響は非常に少なくなる。 Since the seventh invention uses carbon dioxide gas as the refrigerant in the refrigerant circuit, it achieves high temperature of the hot water supply with high efficiency, and even if the refrigerant leaks to the outside, the influence on global warming is extremely high Less.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

なお、各実施例において、同じ構成、同じ動作をする部分については同一符号を付与し、詳細な説明を省略する。   In addition, in each Example, the same code | symbol is provided about the part which has the same structure and the same operation | movement, and detailed description is abbreviate | omitted.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ給湯装置の構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a heat pump water heater in the first embodiment of the present invention.

図1において、圧縮機31、給湯用熱交換器32、第1の絞り装置33、第1の蒸発器34、第2の絞り装置35、第2の蒸発器36を順に環状に接続し、冷媒として炭酸ガスを封入して冷媒循環回路を形成し、第1の蒸発器34および第2の蒸発器36は一体に構成され、外気を送風するためのファン39を備えている。また、貯湯槽41、循環ポンプ42、給湯用熱交換器32を順に接続した給湯回路を形成しており、圧縮機31より吐出された高温高圧の過熱ガス冷媒は給湯用熱交換器32に流入し、ここで循環ポンプ42から送られてきた給湯水を加熱するようになっている。   In FIG. 1, a compressor 31, a hot water supply heat exchanger 32, a first expansion device 33, a first evaporator 34, a second expansion device 35, and a second evaporator 36 are sequentially connected in an annular shape to form a refrigerant. A carbon dioxide gas is enclosed to form a refrigerant circulation circuit, and the first evaporator 34 and the second evaporator 36 are integrally formed and include a fan 39 for blowing outside air. Further, a hot water supply circuit is formed in which a hot water storage tank 41, a circulation pump 42, and a hot water supply heat exchanger 32 are connected in order, and the high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 31 flows into the hot water supply heat exchanger 32. Here, the hot water supplied from the circulation pump 42 is heated.

また、給湯用熱交換器32に流入する入水温度を検知する入水温度センサー51と給湯用熱交換器32から流出する出湯温度を検知する出湯温度センサー52と外気温度を検知する外気温度センサー53を設けてあり、各々の温度があらかじめ設定しある温度と比較して、第1の絞り装置33と第2の絞り装置35の開閉を制御する制御装置54を設置している。   Also, an incoming water temperature sensor 51 for detecting the incoming water temperature flowing into the hot water supply heat exchanger 32, a hot water temperature sensor 52 for detecting the outgoing water temperature flowing out from the hot water heat exchanger 32, and an outside air temperature sensor 53 for detecting the outside air temperature are provided. A control device 54 is provided for controlling the opening and closing of the first throttling device 33 and the second throttling device 35 in comparison with a preset temperature.

以上のように構成されたヒートポンプ給湯装置について、以下その動作、作用を説明する。   About the heat pump hot-water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

通常の運転時は、第2の絞り装置の開度は全開に動作させ、第1の蒸発器34と第2の蒸発器36は蒸発器として作用する。この時、圧縮機31で高温高圧の超臨界状態に圧縮された冷媒(炭酸ガス)は、給湯用熱交換器32で給湯回路を流れる水と熱交換し、自らは中温高圧の冷媒となり、第1の絞り装置33で減圧された後、第1の蒸発器34、第2の蒸発器36に流入し、ここでファン39で送風された外気と熱交換して蒸発ガス化し、圧縮機1にもどる。一方、循環ポンプ42で送られた給湯水は給湯用熱交換器32で加熱され、生成した湯は貯湯槽41の上部に流入し、上から次第に貯湯されていく。   During normal operation, the opening of the second expansion device is fully opened, and the first evaporator 34 and the second evaporator 36 function as an evaporator. At this time, the refrigerant (carbon dioxide gas) compressed to a supercritical state of high temperature and high pressure by the compressor 31 exchanges heat with water flowing through the hot water supply circuit in the hot water supply heat exchanger 32, and becomes a medium temperature and high pressure refrigerant. After the pressure is reduced by the first expansion device 33, it flows into the first evaporator 34 and the second evaporator 36, where it exchanges heat with the outside air blown by the fan 39 to evaporate and convert it into the compressor 1. Return. On the other hand, the hot water sent by the circulation pump 42 is heated by the hot water heat exchanger 32, and the generated hot water flows into the upper part of the hot water storage tank 41 and is gradually stored from above.

一方、沸き上げ運転時間の経過とともに貯湯槽41内の湯と水の接する部分で湯水混合層が生じ、その層は貯湯槽41の下部に拡大し、沸き上げ運転完了近くになると、貯湯槽41下部より循環ポンプ42を経て給湯用熱交換器32に流入する水温は高くなってくる。   On the other hand, as the boiling operation time elapses, a hot water mixed layer is formed at a portion where the hot water in the hot water storage tank 41 comes into contact with water, and the layer expands to the lower part of the hot water storage tank 41. The temperature of water flowing into the hot water supply heat exchanger 32 from the lower part through the circulation pump 42 becomes higher.

この場合、給湯用熱交換器32では冷媒は流入する水温までしか放熱されないため、給湯用熱交換器32出口の冷媒の密度は低く、高圧が上昇する。この時、入水温度センサー51で検知した入水温度が制御装置54にあらかじめ設定してある温度よりも上昇すると、第1の絞り装置33を開方向に動作させ、第2の絞り装置35を閉方向に動作させる。こうすることにより、第1の蒸発器34に流入する冷媒圧力を高圧とすることにより、第1の蒸発器34を放熱器として作用させ、外気と熱交換させ中温高圧の冷媒となり、第2の絞り装置35で減圧され、低温低圧の冷媒となった後、第2の蒸発器36に流入し、外気と熱交換して蒸発ガス化し、圧縮機1にもどる。   In this case, in the hot water supply heat exchanger 32, the refrigerant only dissipates heat up to the inflowing water temperature, so the density of the refrigerant at the outlet of the hot water supply heat exchanger 32 is low and the high pressure increases. At this time, when the incoming water temperature detected by the incoming water temperature sensor 51 rises above the temperature preset in the control device 54, the first throttle device 33 is operated in the opening direction, and the second throttle device 35 is closed. To work. In this way, by setting the refrigerant pressure flowing into the first evaporator 34 to a high pressure, the first evaporator 34 acts as a radiator and exchanges heat with the outside air to become a medium-temperature and high-pressure refrigerant. After being reduced in pressure by the expansion device 35 and becoming a low-temperature and low-pressure refrigerant, it flows into the second evaporator 36, exchanges heat with the outside air, evaporates, and returns to the compressor 1.

この時、第1の蒸発器34が放熱器として作用するため、冷媒回路内に封入された冷媒の内、高圧冷媒の存在できるところが給湯用熱交換器32と第1の蒸発器34となり体積が増加し、さらに、第1の蒸発器34で外気によって冷媒は放熱されるため、密度の高い冷媒が第1の蒸発器に存在することとなる。   At this time, since the first evaporator 34 acts as a radiator, among the refrigerant sealed in the refrigerant circuit, the place where the high-pressure refrigerant can exist becomes the hot water supply heat exchanger 32 and the first evaporator 34 and the volume is increased. In addition, since the refrigerant is radiated by the outside air in the first evaporator 34, a high-density refrigerant exists in the first evaporator.

その結果、冷媒回路の圧縮機31の吐出圧力を減少させることができ、ヒートポンプ給湯装置を安全にかつ高効率で運転することができる。また、貯湯槽41の下部まで高温湯を貯湯でき、貯湯槽41の容量を有効に利用できる効果がある。また、出湯温度が高い場合、冷媒回路の圧縮機31の吐出温度を高くする必要があるが、そのためには圧縮機31の吐出圧力も高くする必要がある。したがって、入水温度が上昇すると、出湯温度が高いほど圧縮機31の吐出圧力は高くなる。   As a result, the discharge pressure of the compressor 31 of the refrigerant circuit can be reduced, and the heat pump water heater can be operated safely and with high efficiency. Moreover, hot water can be stored up to the lower part of the hot water tank 41, and the capacity of the hot water tank 41 can be effectively used. Moreover, when the hot water temperature is high, it is necessary to increase the discharge temperature of the compressor 31 of the refrigerant circuit. For this purpose, it is also necessary to increase the discharge pressure of the compressor 31. Therefore, when the incoming water temperature rises, the discharge pressure of the compressor 31 increases as the hot water temperature increases.

従って、入水温度センサー51で検知した入水温度と、出湯温度センサー52で検知した出湯温度が、制御装置54にあらかじめ設定してある温度よりも上昇すると、第1の絞り装置33を開方向に動作させ、第2の絞り装置35を閉方向に動作させ、第1の蒸発器34に流入する冷媒圧力を高圧とし、第1の蒸発器34を放熱器として作用させることにより、冷媒回路の圧縮機31の吐出圧力を減少させることができ、ヒートポンプ給湯装置をさらに安全にかつ高効率で運転することができる。   Accordingly, when the incoming water temperature detected by the incoming water temperature sensor 51 and the outgoing hot water temperature detected by the outgoing hot water temperature sensor 52 rise above the temperature preset in the control device 54, the first throttle device 33 is operated in the opening direction. Then, the second expansion device 35 is operated in the closing direction, the refrigerant pressure flowing into the first evaporator 34 is set to a high pressure, and the first evaporator 34 is operated as a radiator, whereby the compressor of the refrigerant circuit The discharge pressure of 31 can be reduced, and the heat pump water heater can be operated more safely and efficiently.

また、外気温度が高いと、蒸発圧力が上昇する。蒸発圧力が高いほど、圧縮機31の吸入冷媒の比容積が小さくなり、冷媒循環量が増加し給湯能力が増加する。そのため、外気温が高いほど圧縮機31の吐出圧力は高くなる。   Further, when the outside air temperature is high, the evaporation pressure increases. The higher the evaporation pressure, the smaller the specific volume of the refrigerant sucked in the compressor 31, the refrigerant circulation amount increases, and the hot water supply capacity increases. Therefore, the discharge pressure of the compressor 31 increases as the outside air temperature increases.

このように出湯温度や外気温が高く、入水温度が高くなるほど、圧縮機31の吐出圧力は高くなる傾向がある。   Thus, the discharge pressure of the compressor 31 tends to increase as the hot water temperature and the outside air temperature are higher and the incoming water temperature is higher.

従って、入水温度センサー51で検知した入水温度と、出湯温度センサー52で検知した出湯温度と外気温センサー53で検知した外気温により、第1の絞り装置33を開方向に動作させ、第2の絞り装置35を閉方向に動作させ、第1の蒸発器34に流入する冷媒圧力を高圧とし、第1の蒸発器34を放熱器として作用させることにより、冷媒回路の圧縮機31の吐出圧力を減少させることができ、ヒートポンプ給湯装置をさらに安全にかつ高効率で運転することができる。   Therefore, the first throttling device 33 is operated in the opening direction by the incoming water temperature detected by the incoming water temperature sensor 51, the outgoing hot water temperature detected by the outgoing hot water temperature sensor 52, and the outside air temperature detected by the outdoor air temperature sensor 53, and the second By operating the expansion device 35 in the closing direction, the refrigerant pressure flowing into the first evaporator 34 is set to a high pressure, and the first evaporator 34 is operated as a radiator, whereby the discharge pressure of the compressor 31 of the refrigerant circuit is reduced. The heat pump water heater can be operated more safely and efficiently.

また、低外気温時の運転により、第1の蒸発器34と第2の蒸発器36に着霜する場合、第1の蒸発器34を第2の蒸発器36の下部に設け、第1の蒸発器34を放熱器として作用させると、熱交換器の凍結防止とすることもできる。   Further, when the first evaporator 34 and the second evaporator 36 are frosted by the operation at a low outside air temperature, the first evaporator 34 is provided below the second evaporator 36, When the evaporator 34 acts as a radiator, the heat exchanger can be prevented from freezing.

(実施の形態2)
図2は、本発明の第2の実施の形態におけるヒートポンプ給湯装置の構成図を示すものである。
(Embodiment 2)
FIG. 2 shows a configuration diagram of a heat pump water heater in the second embodiment of the present invention.

図2において、図1と同様要素には同一の番号を付してある。ここで、図1と異なるのは、第1の絞り装置と並列に二方弁37を介したバイパス回路38と二方弁37の開閉を制御する制御装置54を設けたことである。   In FIG. 2, the same elements as those in FIG. Here, what is different from FIG. 1 is that a bypass circuit 38 via a two-way valve 37 and a control device 54 for controlling the opening and closing of the two-way valve 37 are provided in parallel with the first throttle device.

以上のように構成されたヒートポンプ給湯装置について、以下その動作、作用を説明する。   About the heat pump hot-water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

圧縮機31で高温高圧の超臨界状態に圧縮された冷媒(炭酸ガス)は、給湯用熱交換器32で給湯回路を流れる水と熱交換し、自らは中温高圧の冷媒となり、第1の絞り装置33で減圧された後、第1の蒸発器34に流入し、ここでファン39で送風された外気と熱交換して蒸発ガス化し、圧縮機31にもどる。一方、循環ポンプ42で送られた給湯水は給湯用熱交換器32で加熱され、生成した湯は貯湯槽41の上部に流入し、上から次第に貯湯されていく。   The refrigerant (carbon dioxide gas) compressed in the supercritical state of high temperature and high pressure by the compressor 31 exchanges heat with the water flowing through the hot water supply circuit in the hot water supply heat exchanger 32 and becomes itself a medium temperature and high pressure refrigerant. After being depressurized by the device 33, it flows into the first evaporator 34, where it exchanges heat with the outside air blown by the fan 39 to evaporate and return to the compressor 31. On the other hand, the hot water sent by the circulation pump 42 is heated by the hot water heat exchanger 32, and the generated hot water flows into the upper part of the hot water storage tank 41 and is gradually stored from above.

一方、沸き上げ運転時間の経過とともに貯湯槽41内の湯と水の接する部分で湯水混合層が生じ、その層は貯湯槽41の下部に拡大し、沸き上げ運転完了近くになると、貯湯槽41下部より循環ポンプ42を経て給湯用熱交換器32に流入する水温は高くなってくる。   On the other hand, as the boiling operation time elapses, a hot water mixed layer is formed at a portion where the hot water in the hot water storage tank 41 comes into contact with water, and the layer expands to the lower part of the hot water storage tank 41. The temperature of water flowing into the hot water supply heat exchanger 32 from the lower part through the circulation pump 42 becomes higher.

この場合、入水温度センサー51で検知した入水温度が制御装置54にあらかじめ設定してある温度よりも上昇した場合には、バイパス回路38の二方弁37を開方向に動作させ、第2の絞り装置の開度を閉方向に動作させる。こうすることにより、第1の蒸発器34に流入する冷媒圧力を高圧とすることにより、第1の蒸発器34を放熱器として作用させ、外気と熱交換させ中温高圧の冷媒となり、第2の絞り装置35で減圧され、低温低圧の冷媒となった後、第2の蒸発器36に流入し、外気と熱交換して蒸発ガス化し、圧縮機1にもどる。   In this case, when the incoming water temperature detected by the incoming water temperature sensor 51 rises above the temperature preset in the control device 54, the two-way valve 37 of the bypass circuit 38 is operated in the opening direction, and the second throttle The opening of the device is operated in the closing direction. In this way, by setting the refrigerant pressure flowing into the first evaporator 34 to a high pressure, the first evaporator 34 acts as a radiator and exchanges heat with the outside air to become a medium-temperature and high-pressure refrigerant. After being reduced in pressure by the expansion device 35 and becoming a low-temperature and low-pressure refrigerant, it flows into the second evaporator 36, exchanges heat with the outside air, evaporates, and returns to the compressor 1.

この時、第1の蒸発器34が放熱器として作用するため、冷媒回路内に封入された冷媒の内、高圧冷媒の存在できるところが給湯用熱交換器32と第1の蒸発器34となり体積が増加し、さらに、第1の蒸発器34で外気によって冷媒は放熱されるため、密度の高い冷媒が第1の蒸発器に存在することとなる。   At this time, since the first evaporator 34 acts as a radiator, among the refrigerant sealed in the refrigerant circuit, the place where the high-pressure refrigerant can exist becomes the hot water supply heat exchanger 32 and the first evaporator 34 and the volume is increased. In addition, since the refrigerant is radiated by the outside air in the first evaporator 34, a high-density refrigerant exists in the first evaporator.

その結果、冷媒回路の圧縮機31の吐出圧力を減少させることができ、ヒートポンプ給湯装置を安全にかつ高効率で運転することができる。   As a result, the discharge pressure of the compressor 31 of the refrigerant circuit can be reduced, and the heat pump water heater can be operated safely and with high efficiency.

また、低外気温時の運転により、第1の蒸発器34と第2の蒸発器36に着霜する場合、第1の蒸発器34を第2の蒸発器36の下部に設け、第1の蒸発器34を放熱器として作用させると、熱交換器の凍結防止とすることもできる。   Further, when the first evaporator 34 and the second evaporator 36 are frosted by the operation at a low outside air temperature, the first evaporator 34 is provided below the second evaporator 36, When the evaporator 34 acts as a radiator, the heat exchanger can be prevented from freezing.

以上のように、本発明にかかるヒートポンプ給湯装置は、冷媒回路の圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができが可能となるので、高温を得るヒートポンプ給湯機や高温風を得る空調機等の用途にも適用できる。   As described above, the heat pump hot water supply apparatus according to the present invention can easily heat the hot water supply to a high temperature while reducing the discharge pressure and discharge temperature of the compressor of the refrigerant circuit. It can also be applied to uses such as a heat pump water heater to be obtained and an air conditioner to obtain high temperature air.

本発明の実施の形態1におけるヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus in Embodiment 1 of this invention 本発明の実施の形態2におけるヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus in Embodiment 2 of this invention 従来のヒートポンプ給湯装置の構成図Configuration diagram of conventional heat pump water heater

符号の説明Explanation of symbols

31 圧縮機
32 給湯用熱交換器
33 第1の絞り装置
34 第1の蒸発器
35 第2の絞り装置
36 第2の蒸発器
37 二方弁
38 バイパス回路
39 ファン
41 貯湯槽
42 循環ポンプ
51 入水温度センサー
52 出湯温度センサー
53 外気温度センサー
54 制御装置
DESCRIPTION OF SYMBOLS 31 Compressor 32 Hot water supply heat exchanger 33 1st expansion device 34 1st evaporator 35 2nd expansion device 36 2nd evaporator 37 Two-way valve 38 Bypass circuit 39 Fan 41 Hot water storage tank 42 Circulation pump 51 Incoming water Temperature sensor 52 Hot water temperature sensor 53 Outside air temperature sensor 54 Control device

Claims (7)

少なくとも圧縮機、給湯用熱交換器、第1の絞り装置、第1の蒸発器、第2の絞り装置、第2の蒸発器を順次接続した冷媒回路と、少なくとも貯湯槽、前記給湯用熱交換器を接続した給湯回路と、前記給湯用熱交換器に流入する給湯水の温度を検知する入水温度センサーと、前記給湯用熱交換器を流出する給湯水の温度を検知する出湯温度センサーと、前記第1の絞り装置、前記第2の絞り装置の開度を制御する制御装置と備え、前記第1の絞り装置と前記第2の絞り装置は絞り開度を可変し流量を制御できるとともに、前記制御装置は、前記入水温度センサーで検知した入水温度が所定値以上で、かつ、前記出湯温度センサーで検知した出湯温度が設定値以上の場合に、前記第1の絞り装置の開度を開方向に動作させ、前記第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とするヒートポンプ給湯装置。 A refrigerant circuit in which at least a compressor, a hot water supply heat exchanger, a first expansion device, a first evaporator, a second expansion device, and a second evaporator are sequentially connected, at least a hot water storage tank, and the hot water supply heat exchange A hot water supply circuit connected to a hot water supply device, an incoming water temperature sensor for detecting the temperature of hot water flowing into the hot water supply heat exchanger, a hot water temperature sensor for detecting the temperature of hot water flowing out of the hot water supply heat exchanger, A control device for controlling the opening of the first throttling device and the second throttling device; the first throttling device and the second throttling device can control the flow rate by varying the throttling opening; When the incoming water temperature detected by the incoming water temperature sensor is equal to or higher than a predetermined value and the outgoing hot water temperature detected by the outgoing hot water temperature sensor is equal to or higher than a set value, the control device controls the opening degree of the first throttle device. Operating in the opening direction, the second diaphragm device The heat pump water heater, characterized in that for controlling the opening so as to operate in the closing direction. 外気温度を検知する外気温度センサーを設け、前記制御装置は、前記入水温度センサーで検知した入水温度と、前記出湯温度センサーで検知した出湯温度と、前記外気温度センサーで検知した外気温度とに基づいて、前記第1の絞り装置の開度を開方向に動作させ、前記第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とする請求項1記載のヒートポンプ給湯装置。 An outside air temperature sensor for detecting an outside air temperature is provided , and the control device converts the incoming water temperature detected by the incoming water temperature sensor, the outgoing hot water temperature detected by the outgoing hot water temperature sensor, and the outdoor air temperature detected by the outdoor air temperature sensor. 2. The heat pump hot water supply according to claim 1 , wherein the opening of the first expansion device is controlled to operate in the opening direction and the opening of the second expansion device is controlled to operate in the closing direction. apparatus. 冷媒回路に第1の絞り装置をバイパスする二方弁を介したバイパス回路を設けたことを特徴とする請求項1または2記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 1 or 2, wherein a bypass circuit via a two-way valve that bypasses the first throttling device is provided in the refrigerant circuit. 前記制御装置は、前記入水温度センサーで検知した入水温度が所定値以上の場合に、前記バイパス回路の二方弁を開方向に動作させ、前記第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とする請求項3記載のヒートポンプ給湯装置。 The control device operates the two-way valve of the bypass circuit in the opening direction when the incoming water temperature detected by the incoming water temperature sensor is equal to or higher than a predetermined value, and sets the opening of the second throttling device in the closing direction. The heat pump hot water supply apparatus according to claim 3 , wherein the heat pump hot water supply apparatus is controlled to operate. 前記制御装置は、前記入水温度センサーで検知した入水温度が所定値以上で、かつ、前記出湯温度センサーで検知した出湯温度が所定値以上の場合に、前記バイパス回路の二方弁を開方向に動作させ、前記第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とする請求項3記載のヒートポンプ給湯装置。 Wherein the control device, at a water inlet temperature detected by the incoming water temperature sensor is more than a predetermined value, and, when hot water temperature detected by the hot water temperature sensor is a predetermined value or more, the two-way valve of the bypass circuit in the opening direction The heat pump hot water supply apparatus according to claim 3 , wherein the heat pump hot water supply apparatus is operated and controlled so that the opening degree of the second expansion device is operated in a closing direction. 外気温度を検知する外気温度センサーを設け、前記制御装置は、前記入水温度センサーで検知した入水温度と、前記出湯温度センサーで検知した出湯温度と、前記外気温度センサーで検知した外気温度とに基づいて、前記バイパス回路の二方弁を開方向に動作させ、前記第2の絞り装置の開度を閉方向に動作させるように制御することを特徴とする請求項3記載のヒートポンプ給湯装置。 An outside air temperature sensor for detecting an outside air temperature is provided , and the control device converts the incoming water temperature detected by the incoming water temperature sensor, the outgoing water temperature detected by the outgoing hot water temperature sensor, and the outdoor air temperature detected by the outdoor air temperature sensor. 4. The heat pump hot water supply device according to claim 3 , wherein the two-way valve of the bypass circuit is operated in the opening direction and the opening of the second expansion device is controlled in the closing direction. 冷媒として炭酸ガスを用いたことを特徴とする請求項1〜6のいずれか1項に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to any one of claims 1 to 6 , wherein carbon dioxide gas is used as the refrigerant.
JP2004170782A 2004-06-09 2004-06-09 Heat pump water heater Expired - Fee Related JP4124164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004170782A JP4124164B2 (en) 2004-06-09 2004-06-09 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004170782A JP4124164B2 (en) 2004-06-09 2004-06-09 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2005351506A JP2005351506A (en) 2005-12-22
JP4124164B2 true JP4124164B2 (en) 2008-07-23

Family

ID=35586132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004170782A Expired - Fee Related JP4124164B2 (en) 2004-06-09 2004-06-09 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4124164B2 (en)

Also Published As

Publication number Publication date
JP2005351506A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
JP4867749B2 (en) Heat pump water heater
JP3904013B2 (en) Heat pump type water heater
JP2009264717A (en) Heat pump hot water system
JP5194492B2 (en) Heat pump water heater
JP3632645B2 (en) Heat pump water heater
JP2008082601A (en) Heat pump hot water supply device
JP5176474B2 (en) Heat pump water heater
JP4075844B2 (en) Heat pump water heater
JP2007278656A (en) Heat pump water heater
JP4595546B2 (en) Heat pump equipment
JP2005308344A (en) Heat pump water heater
JP3700474B2 (en) Heat pump water heater
JP3900186B2 (en) Heat pump water heater
JP2006017377A (en) Heat pump water heater
JP3703995B2 (en) Heat pump water heater
JP4124164B2 (en) Heat pump water heater
JP4124166B2 (en) Heat pump water heater
JP2009264714A (en) Heat pump hot water system
JP4449779B2 (en) Heat pump water heater
JP2007155296A (en) Heat pump type water heater
JP2007017013A (en) Heat pump water heater
JP2009085476A (en) Heat pump water heater
JP4848971B2 (en) Heat pump water heater
JP4082389B2 (en) Heat pump water heater
JP2007155157A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees