JP2005351538A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2005351538A
JP2005351538A JP2004172148A JP2004172148A JP2005351538A JP 2005351538 A JP2005351538 A JP 2005351538A JP 2004172148 A JP2004172148 A JP 2004172148A JP 2004172148 A JP2004172148 A JP 2004172148A JP 2005351538 A JP2005351538 A JP 2005351538A
Authority
JP
Japan
Prior art keywords
temperature
hot water
refrigerant
compressor
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004172148A
Other languages
Japanese (ja)
Inventor
Kazuo Nakatani
和生 中谷
Noriho Okaza
典穂 岡座
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004172148A priority Critical patent/JP2005351538A/en
Publication of JP2005351538A publication Critical patent/JP2005351538A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump water heater capable of storing the hot water of high temperature even at a lower part of a hot water storage tank with high efficiency without rising a discharge pressure of a compressor, effectively utilizing a capacity of the hot water storage tank, and preparing the hot water of high temperature for supplying the hot water with high efficiency even when an outside air temperature is high. <P>SOLUTION: This heat pump water heater comprises an auxiliary heat exchanger 38 constituted by successively connecting a compressor 31, a heat radiator 32, a main throttling device 33 and an evaporator 34, and exchanging the heat between a refrigerant between the heat radiator 32 and the main throttling device 33 and a refrigerant between the evaporator 34 and the compressor 31, an opening/closing valve 39 or a sub-throttling device mounted between the auxiliary heat exchanger 38 and the compressor 31, and a connecting part 40 for connecting the evaporator 34 and the compressor 31 in a state of bypassing the auxiliary heat exchanger 38. Thus the heat exchanging quantity in the auxiliary heat exchanger 38 can be increased and decreased, the discharge pressure and a discharge temperature of the compressor 31 can be controlled, and the operation of high efficiency appropriate for the temperature of produced hot water can be performed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はヒートポンプ給湯装置に関するものである。   The present invention relates to a heat pump hot water supply apparatus.

従来、この種のヒートポンプ給湯装置は、図3に示すものがある。図3は従来のヒートポンプ給湯機のサイクル構成図である。図3において、圧縮機1、給湯用熱交換器2、絞り装置3、蒸発器4からなる冷媒循環回路と、貯湯槽5、循環ポンプ6、前記給湯用熱交換器2、補助加熱器19を接続した給湯回路からなり、前記圧縮機1より吐出された高温高圧の過熱ガス冷媒は前記給湯用熱交換器2に流入し、ここで前記循環ポンプ6から送られてきた給湯水を加熱する。   Conventionally, this type of heat pump hot water supply apparatus is shown in FIG. FIG. 3 is a cycle configuration diagram of a conventional heat pump water heater. In FIG. 3, a refrigerant circulation circuit comprising a compressor 1, a hot water supply heat exchanger 2, an expansion device 3 and an evaporator 4, a hot water storage tank 5, a circulation pump 6, the hot water supply heat exchanger 2 and an auxiliary heater 19 are provided. The high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2 and heats the hot water supplied from the circulation pump 6.

そして、凝縮液化した冷媒は前記絞り装置3で減圧され、前記蒸発器4に流入し、ここで大気熱を吸熱して蒸発ガス化し、前記圧縮機1にもどる。一方、前記給湯用熱交換器2で加熱された湯は前記貯湯槽5の上部に流入し、上から次第に貯湯されていく。そして、前記給湯用熱交換器2の入口水温が設定値に達すると水温検知器20が検知し、前記圧縮機1によるヒートポンプ運転を停止して、前記補助加熱器19の単独運転に切り換えるものである(たとえば特許文献1参照)。
特開昭60−164157号公報
The condensed and liquefied refrigerant is decompressed by the expansion device 3 and flows into the evaporator 4, where it absorbs atmospheric heat to evaporate and returns to the compressor 1. On the other hand, the hot water heated by the hot water supply heat exchanger 2 flows into the upper part of the hot water storage tank 5 and is gradually stored from above. When the inlet water temperature of the hot water supply heat exchanger 2 reaches a set value, the water temperature detector 20 detects it, stops the heat pump operation by the compressor 1, and switches to the independent operation of the auxiliary heater 19. Yes (see, for example, Patent Document 1).
JP 60-164157 A

しかしながら、上記のような従来の構成では、沸き上げ運転時間の経過とともに貯湯槽5内の湯と水の接する部分で湯水混合層が生じ、その層は次第に拡大していく。これは、高温湯と低温水の熱伝導および対流により発生するものであり、高温湯から低温水へ伝熱されその境界部分で高温湯は温度低下し、逆に低温水は温度上昇する。従って、沸き上げ運転完了近くになると、前記給湯用熱交換器2に流入する水温は高くなるため、前記圧縮機1の吐出圧力が上昇して、前記圧縮機1の耐久性が課題となる。   However, in the conventional configuration as described above, a hot water mixed layer is formed at the portion where the hot water in the hot water tank 5 is in contact with water as the boiling operation time elapses, and the layer gradually expands. This occurs due to heat conduction and convection in high temperature hot water and low temperature water. Heat is transferred from the high temperature hot water to the low temperature water, and the temperature of the high temperature hot water decreases at the boundary portion, while the temperature of the low temperature water increases. Accordingly, when the boiling operation is nearly completed, the temperature of the water flowing into the hot water supply heat exchanger 2 becomes high, so that the discharge pressure of the compressor 1 rises and the durability of the compressor 1 becomes a problem.

そのため、前記給湯用熱交換器に流入する水温が低い状態で運転を停止していたため、前記貯湯槽5の下部が低温の水の状態で運転を停止することになり、前記貯湯槽5の湯容量を有効に利用できず、そのため、貯湯熱量は減少していた。また、貯湯熱量を増加するため、ヒートポンプ運転を停止した後、補助加熱器19の単独運転で貯湯熱量を増加する場合には、電気ヒータで加熱するため、消費電力が大きくなり、効率が悪くなっていた。   Therefore, since the operation was stopped in a state where the temperature of the water flowing into the hot water supply heat exchanger was low, the operation was stopped with the lower part of the hot water tank 5 being in a state of low temperature water, and the hot water in the hot water tank 5 was The capacity could not be used effectively, so the amount of hot water stored was decreasing. In addition, in order to increase the amount of stored hot water, after stopping the heat pump operation, when the amount of stored hot water is increased by the independent operation of the auxiliary heater 19, heating is performed by an electric heater, so that power consumption increases and efficiency decreases. It was.

さらにまた、外気温度が高い場合、給湯水温を高く維持するためには、前記圧縮機1の吐出温度を高く維持する必要があるが、外気温度が高いため、蒸発温度が上昇し、前記圧縮機1の圧縮比が小さくなって吐出温度が上昇しないため、高温の給湯水温を得ることができなかった。また、この場合、従来は、絞り装置の開度を小さくして、冷媒を流れにくくし、圧縮機の吐出圧力を上昇、吸入圧力を低下させて圧縮比を大きくして吐出温度を上昇させていたので、効率の悪い運転となっていた。   Furthermore, when the outside air temperature is high, in order to keep the hot water supply water temperature high, it is necessary to keep the discharge temperature of the compressor 1 high. However, since the outside air temperature is high, the evaporation temperature rises, and the compressor Since the compression ratio of 1 was small and the discharge temperature did not rise, a high hot water supply water temperature could not be obtained. In this case, conventionally, the opening of the expansion device is reduced to make it difficult for the refrigerant to flow, the discharge pressure of the compressor is increased, the suction pressure is decreased to increase the compression ratio, and the discharge temperature is increased. As a result, the operation was inefficient.

本発明は前記従来の課題を解決するものであり、圧縮機の吐出圧力上昇もなく、高効率で貯湯槽の下部まで高温湯を貯湯し、貯湯槽の容量を有効に利用可能であり、また、高外気温時にも、高効率で高温の給湯水温を生成することができるヒートポンプ給湯装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and does not increase the discharge pressure of the compressor, stores hot water to the lower part of the hot water tank with high efficiency, and can effectively use the capacity of the hot water tank. An object of the present invention is to provide a heat pump hot water supply apparatus that can generate a hot water supply water temperature with high efficiency and high temperature even at high outside temperatures.

前記従来の課題を解決するために、本発明のヒートポンプ給湯装置は、少なくとも圧縮機、放熱器、主絞り装置、蒸発器を順次接続した冷媒回路を備え、前記冷媒回路に、前記放熱器と前記主絞り装置の間の冷媒と前記蒸発器と前記圧縮機の間の冷媒とを熱交換する補助熱交換器と、前記蒸発器と前記補助熱交換器との間、または、前記補助熱交換器と前記圧縮機との間に開閉弁または副絞り装置と、前記補助熱交換器をバイパスするように前記蒸発器と前記圧縮機とを接続する接続部とを設けたことを特徴とするもので、前記補助熱交換器での熱交換量を増減でき、圧縮機の吐出圧力と吐出温度を制御して、生成する給湯水温度に適した高効率な運転が可能となる。   In order to solve the conventional problems, a heat pump water heater of the present invention includes a refrigerant circuit in which at least a compressor, a radiator, a main throttle device, and an evaporator are sequentially connected, and the refrigerant circuit includes the radiator and the radiator. An auxiliary heat exchanger for exchanging heat between the refrigerant between the main expansion devices and the refrigerant between the evaporator and the compressor, and between the evaporator and the auxiliary heat exchanger, or the auxiliary heat exchanger And an on-off valve or a sub-throttle device, and a connecting portion for connecting the evaporator and the compressor so as to bypass the auxiliary heat exchanger. The amount of heat exchange in the auxiliary heat exchanger can be increased or decreased, and the discharge pressure and discharge temperature of the compressor can be controlled to enable highly efficient operation suitable for the temperature of hot water to be generated.

本発明によれば、圧縮機の吐出圧力上昇もなく、高効率で貯湯槽の下部まで高温湯を貯湯し、貯湯槽の容量を有効に利用可能であり、また、高外気温時にも、高効率で高温の給湯水温を生成することができるヒートポンプ給湯装置を提供できる。   According to the present invention, there is no increase in the discharge pressure of the compressor, high-temperature hot water is stored at the lower part of the hot water tank with high efficiency, and the capacity of the hot water tank can be effectively used. It is possible to provide a heat pump hot water supply apparatus that can efficiently generate a hot water supply water temperature.

第1の発明は、少なくとも圧縮機、放熱器、主絞り装置、蒸発器を順次接続した冷媒回路を備え、前記冷媒回路に、前記放熱器と前記主絞り装置の間の冷媒と前記蒸発器と前記圧縮機の間の冷媒とを熱交換する補助熱交換器と、前記蒸発器と前記補助熱交換器との間、または、前記補助熱交換器と前記圧縮機との間に開閉弁または副絞り装置と、前記補助熱交換器をバイパスするように前記蒸発器と前記圧縮機とを接続する接続部とを設けたことを特徴とするもので、前記補助熱交換器での熱交換量を増減でき、蒸発器入口の冷媒乾き度と圧縮機吸入ガス温度とを制御して、圧縮機の吐出圧力と吐出温度を制御することが可能となり、高効率な運転が可能となる。   A first invention includes a refrigerant circuit in which at least a compressor, a radiator, a main throttle device, and an evaporator are sequentially connected, and the refrigerant circuit includes a refrigerant between the radiator and the main throttle device, and the evaporator. An auxiliary heat exchanger for exchanging heat with the refrigerant between the compressors, an on-off valve or an auxiliary valve between the evaporator and the auxiliary heat exchanger, or between the auxiliary heat exchanger and the compressor. A throttling device and a connecting portion for connecting the evaporator and the compressor so as to bypass the auxiliary heat exchanger are provided, and the amount of heat exchange in the auxiliary heat exchanger is It is possible to increase / decrease, control the refrigerant dryness at the inlet of the evaporator and the compressor intake gas temperature, and control the discharge pressure and discharge temperature of the compressor, thereby enabling highly efficient operation.

第2の発明は、少なくとも貯湯槽、放熱器を順次接続した給湯回路を備え、前記貯湯槽より前記放熱器に流入する給湯水の温度を検知する入水温度センサーと、前記入水温度センサーの検知温度と予め設定された入水温度値とを比較して、前記開閉弁の開閉または前記副絞り装置の開度を制御する制御装置とを設けたことを特徴とするもので、前記入水温度に応じて、前記補助熱交換器での熱交換量を増減でき、蒸発器入口の冷媒乾き度と圧縮機吸入ガス温度とを制御して、圧縮機の吐出圧力と吐出温度を制御することが可能となり、生成する給湯水温度に適した高効率な運転が可能となる。   A second aspect of the invention includes a hot water supply circuit in which at least a hot water storage tank and a radiator are sequentially connected, an incoming water temperature sensor that detects the temperature of hot water flowing into the radiator from the hot water storage tank, and detection of the incoming water temperature sensor And a control device that controls the opening / closing of the on-off valve or the opening of the sub-throttle device by comparing the temperature with a preset water-in temperature value. Accordingly, the amount of heat exchange in the auxiliary heat exchanger can be increased or decreased, and it is possible to control the discharge pressure and discharge temperature of the compressor by controlling the refrigerant dryness at the evaporator inlet and the compressor intake gas temperature. Thus, high-efficiency operation suitable for the temperature of the hot water to be generated becomes possible.

また、沸き上げ運転完了近くになって入水温度が高くなった場合にも、圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。また、貯湯槽の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できる。   In addition, even when the incoming water temperature rises near the completion of the boiling operation, the hot water supply can be easily heated to a high temperature while reducing the discharge pressure and discharge temperature of the compressor, making the heat pump safe. And it can be operated with high efficiency. Moreover, hot water can be stored up to the bottom of the hot water tank, and the capacity of the hot water tank can be used effectively.

第3の発明は、制御装置は、入水温度センサーの検知温度と予め設定された入水温度値とを比較して、前記入水温度センサーの検知温度が、予め設定された入水温度値より高い場合に、前記開閉弁を開放または前記副絞り装置の開度を大きくすることを特徴とするもので、入水温度が高く高温給湯が必要な場合に、前記補助熱交換器に流入する吸入ガス冷媒循環量を多くして熱交換量を増加でき、蒸発器入口の乾き度を低くして、そこでの冷媒ホールド量を多くでき、圧縮機の吐出圧力を低く維持したまま高温給湯を高効率で生成することができる。   In the third aspect of the invention, the control device compares the detected temperature of the incoming water temperature sensor with a preset incoming water temperature value, and the detected temperature of the incoming water temperature sensor is higher than the preset incoming water temperature value. In addition, the on-off valve is opened or the opening degree of the sub-throttle device is increased, and the intake gas refrigerant circulation flowing into the auxiliary heat exchanger when the incoming water temperature is high and high-temperature hot water supply is required The amount of heat exchange can be increased by increasing the amount, the degree of dryness at the inlet of the evaporator can be lowered, the amount of refrigerant held there can be increased, and hot water can be generated with high efficiency while keeping the discharge pressure of the compressor low. be able to.

第4の発明は、放熱器出口の冷媒温度を検知する冷媒温度センサーと、前記冷媒温度センサーの検知温度と予め設定された冷媒温度値とを比較して、前記開閉弁の開閉または前記副絞り装置の開度を制御する制御装置とを設けたことを特徴とするもので、前記放熱器出口冷媒温度に応じて、前記補助熱交換器での熱交換量を増減でき、蒸発器入口の冷媒乾き度と圧縮機吸入ガス温度とを制御して、圧縮機の吐出圧力と吐出温度を制御することが
可能となり、生成する給湯水温度に適した高効率な運転が可能となる。
According to a fourth aspect of the present invention, a refrigerant temperature sensor for detecting a refrigerant temperature at a radiator outlet is compared with a detection temperature of the refrigerant temperature sensor and a preset refrigerant temperature value, and the opening / closing of the on-off valve or the sub-throttle And a control device for controlling the opening degree of the device, wherein the amount of heat exchange in the auxiliary heat exchanger can be increased / decreased according to the refrigerant temperature at the radiator outlet, and the refrigerant at the evaporator inlet It is possible to control the discharge pressure and the discharge temperature of the compressor by controlling the dryness and the compressor intake gas temperature, and it is possible to perform a highly efficient operation suitable for the temperature of the hot water to be generated.

また、沸き上げ運転完了近くになって入水温度が高くなった場合にも、圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。また、貯湯槽の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できる。   In addition, even when the incoming water temperature rises near the completion of the boiling operation, the hot water supply can be easily heated to a high temperature while reducing the discharge pressure and discharge temperature of the compressor, making the heat pump safe. And it can be operated with high efficiency. Moreover, hot water can be stored up to the bottom of the hot water tank, and the capacity of the hot water tank can be used effectively.

第5の発明は、制御装置は、冷媒温度センサーの検知温度が、予め設定された冷媒温度値より高い場合に、前記開閉弁を開放または前記副絞り装置の開度を大きくすることを特徴とするもので、入水温度が高く、高温給湯が必要な場合に、前記補助熱交換器に流入する吸入ガス冷媒循環量を多くして熱交換量を増加でき、蒸発器入口の乾き度を低くして、そこでの冷媒ホールド量を多くでき、圧縮機の吐出圧力を低く維持したまま、高温給湯を高効率で生成することができる。   The fifth invention is characterized in that the control device opens the on-off valve or increases the opening of the sub-throttle device when the temperature detected by the refrigerant temperature sensor is higher than a preset refrigerant temperature value. Therefore, when the incoming water temperature is high and high-temperature hot water supply is required, the amount of refrigerant circulating into the auxiliary heat exchanger can be increased to increase the heat exchange amount, and the dryness of the evaporator inlet can be lowered. Thus, the refrigerant hold amount can be increased, and high-temperature hot water supply can be generated with high efficiency while keeping the discharge pressure of the compressor low.

第6の発明は、圧縮機より吐出される冷媒温度を検知する吐出温度センサーと、前記吐出温度センサーの検知温度と予め設定された吐出温度値とを比較して、前記開閉弁の開閉または前記副絞り装置の開度を制御する制御装置とを設けたことを特徴とするもので、前記開閉弁の開閉、または前記副絞り装置の開度を増減することにより、前記補助熱交換器での熱交換量を制御でき、給湯温度に適した吐出温度に制御することが可能となる。   According to a sixth aspect of the present invention, a discharge temperature sensor for detecting a refrigerant temperature discharged from a compressor is compared with a detection temperature of the discharge temperature sensor and a preset discharge temperature value, and the opening / closing of the on-off valve or the A control device for controlling the opening degree of the sub-throttle device, and opening / closing the on-off valve or increasing / decreasing the opening degree of the sub-throttle device, The amount of heat exchange can be controlled, and it becomes possible to control the discharge temperature suitable for the hot water supply temperature.

第7の発明は、制御装置は、吐出温度センサーの検知温度が、予め設定された吐出温度値より低い場合に、前記開閉弁を開放または前記副絞り装置の開度を大きくすることを特徴とするもので、外気温度が高く、高温給湯が必要な場合に、前記補助熱交換器での熱交換量を増加でき、圧縮機の吸入温度を高くすることにより、吐出温度を高くすることができ、高温給湯に適した運転が可能となる。   The seventh invention is characterized in that the control device opens the on-off valve or increases the opening of the sub-throttle device when the detected temperature of the discharge temperature sensor is lower than a preset discharge temperature value. Therefore, when the outside air temperature is high and high temperature hot water supply is required, the heat exchange amount in the auxiliary heat exchanger can be increased, and the discharge temperature can be increased by increasing the suction temperature of the compressor. The operation suitable for hot water supply becomes possible.

第8の発明は、冷媒として炭酸ガスを用いたもので、給湯水の高温化を高効率で実現すると共に、冷媒が外部に漏れた場合にも、地球温暖化への影響は非常に少なくなる。   The eighth aspect of the invention uses carbon dioxide as a refrigerant, and realizes high temperature of hot water supply with high efficiency, and even when the refrigerant leaks to the outside, the influence on global warming is very small. .

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。なお、各実施の形態において、同じ構成、同じ動作をする部分については同一符号を付与し、詳細な説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments. In each embodiment, portions having the same configuration and the same operation are denoted by the same reference numerals, and detailed description thereof is omitted.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ給湯装置とその制御方法の構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a heat pump hot water supply apparatus and a control method thereof according to the first embodiment of the present invention.

図1において、圧縮機31、放熱器32、主絞り装置33、蒸発器34を順に環状に接続し、冷媒として炭酸ガスを封入して冷媒循環回路を形成し、蒸発器34は外気を送風するためのファン35を備えている。また、貯湯槽36、循環ポンプ37、放熱器32を順に接続した給湯回路を形成しており、圧縮機31より吐出された高温高圧の過熱ガス冷媒は放熱器32に流入し、ここで循環ポンプ37から送られてきた給湯水を加熱するようになっている。さらに、放熱器32と主絞り装置33の間の配管と、蒸発器34と圧縮機31との間の配管は、補助熱交換器38を介して間接的に熱交換するようにしている。また、蒸発器34と補助熱交換器38の間には開閉弁39が設けられ、また、補助熱交換器38をバイパスするように、蒸発器34と圧縮機31を直接接続する配管40が設けられている。   In FIG. 1, a compressor 31, a radiator 32, a main throttle device 33, and an evaporator 34 are sequentially connected in an annular form, and carbon dioxide gas is sealed as a refrigerant to form a refrigerant circulation circuit. The evaporator 34 blows outside air. Fan 35 is provided. Further, a hot water supply circuit in which the hot water tank 36, the circulation pump 37, and the radiator 32 are connected in order is formed, and the high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 31 flows into the radiator 32, where the circulation pump The hot water supplied from 37 is heated. Furthermore, the piping between the radiator 32 and the main throttle device 33 and the piping between the evaporator 34 and the compressor 31 are indirectly heat-exchanged via an auxiliary heat exchanger 38. Further, an open / close valve 39 is provided between the evaporator 34 and the auxiliary heat exchanger 38, and a pipe 40 that directly connects the evaporator 34 and the compressor 31 is provided so as to bypass the auxiliary heat exchanger 38. It has been.

さらに、循環ポンプ37より放熱器32に流入する給湯水の入水温度を検知する入水温度センサー41と、その温度を検知し開閉弁37の開閉を制御する制御装置42が設けら
れている。この制御装置42は、入水温度センサー41の温度と、予め設定された温度とを比較して、入水温度が設定温度より高い場合に開閉弁39を開放するように制御する。また、冷媒としては炭酸ガスが封入されている。
Furthermore, an incoming water temperature sensor 41 that detects the incoming temperature of hot water flowing into the radiator 32 from the circulation pump 37 and a control device 42 that detects the temperature and controls the opening and closing of the on-off valve 37 are provided. The control device 42 compares the temperature of the incoming water temperature sensor 41 with a preset temperature and controls to open the on-off valve 39 when the incoming water temperature is higher than the set temperature. Further, carbon dioxide gas is sealed as the refrigerant.

以上のように構成されたヒートポンプ給湯装置とその制御方法について、以下その動作、作用を説明する。   About the heat pump hot water supply apparatus comprised as mentioned above and its control method, the operation | movement and an effect | action are demonstrated below.

圧縮機31で高温高圧の超臨界状態に圧縮された冷媒(炭酸ガス)は、放熱器32で給湯回路を流れる水と熱交換し、自らは中温高圧の冷媒となり、補助熱交換器38を通過して、主絞り装置33で減圧された後、蒸発器34に流入し、ここでファン35で送風された外気と熱交換して蒸発ガス化する。   The refrigerant (carbon dioxide gas) compressed to a supercritical state of high temperature and high pressure by the compressor 31 exchanges heat with water flowing in the hot water supply circuit by the radiator 32 and becomes a medium temperature and high pressure refrigerant and passes through the auxiliary heat exchanger 38. Then, after being decompressed by the main throttle device 33, it flows into the evaporator 34, where it exchanges heat with the outside air blown by the fan 35, thereby evaporating gas.

通常の場合、循環ポンプ37で送られた給湯水の入水温度は低く、その場合には開閉弁39は閉止している。そのため、冷媒は補助熱交換器38を通ることなく、すべて配管40を通って圧縮機31にもどる通常のヒートポンプサイクルで運転される。   In normal cases, the incoming temperature of the hot water supplied by the circulation pump 37 is low, and in this case, the on-off valve 39 is closed. Therefore, the refrigerant is operated in a normal heat pump cycle in which all the refrigerant passes through the pipe 40 and returns to the compressor 31 without passing through the auxiliary heat exchanger 38.

一方、循環ポンプ37で送られた給湯水は放熱器32で加熱され、生成した湯は貯湯槽36の上部に流入し、上から次第に貯湯されていく。   On the other hand, the hot water supplied by the circulation pump 37 is heated by the radiator 32, and the generated hot water flows into the upper part of the hot water storage tank 36 and is gradually stored from above.

一方、沸き上げ運転時間の経過とともに貯湯槽36内の湯と水の接する部分で湯水混合層が生じ、その層は貯湯槽36の下部に拡大し、沸き上げ運転完了近くになると、貯湯槽36下部より循環ポンプ37を経て、放熱器32に流入する水温は高くなってくる。この場合、入水温度センサー41で検知した入水温度が制御装置42にあらかじめ設定してある温度よりも上昇した場合には、開閉弁39を開放する方向に動作させる。こうすることにより、蒸発器34を出た比較的低温の冷媒の一部は開閉弁39を通って補助熱交換器38に流入する。   On the other hand, as the boiling operation time elapses, a hot water mixed layer is formed at a portion where the hot water in the hot water storage tank 36 is in contact with water, and the layer expands to the lower part of the hot water storage tank 36. The temperature of the water flowing into the radiator 32 from the lower part through the circulation pump 37 becomes higher. In this case, when the incoming water temperature detected by the incoming water temperature sensor 41 rises above the temperature preset in the control device 42, the on-off valve 39 is operated in the opening direction. In this way, a part of the relatively low temperature refrigerant that has left the evaporator 34 flows into the auxiliary heat exchanger 38 through the on-off valve 39.

一方、圧縮機31より吐出した高温高圧の冷媒は、放熱器32で高温の給湯水と熱交換した後、補助熱交換器38に流入し、ここで、蒸発器34を出た比較的低温の冷媒の一部と熱交換して、その温度が低下してエンタルピーが減少する。   On the other hand, the high-temperature and high-pressure refrigerant discharged from the compressor 31 exchanges heat with high-temperature hot water in the radiator 32 and then flows into the auxiliary heat exchanger 38 where the relatively low-temperature refrigerant discharged from the evaporator 34 is discharged. By exchanging heat with a part of the refrigerant, its temperature decreases and enthalpy decreases.

このように入水温度が高い場合、通常のヒートポンプサイクルの場合、放熱器32の出口温度も上昇し、放熱器32および蒸発器34の冷媒ホールド量が減少するため高圧が上昇する傾向にあるが、本発明のように、補助熱交換器38で蒸発器34を出た低温の冷媒と熱交換して、放熱器32を出た冷媒を冷却することにより、冷媒エンタルピーが減少してその密度が増加し、また、蒸発器34入口の乾き度も減少して蒸発器34の冷媒ホールドが増加するため、高圧は上昇することなくヒートポンプサイクルを安全に運転できる。したがって、入水温度が高くなっても連続運転ができるので、貯湯槽36の下部まで高温湯を貯湯でき、貯湯槽36の容量を有効に利用できる効果がある。   Thus, when the incoming water temperature is high, in the case of a normal heat pump cycle, the outlet temperature of the radiator 32 also rises, and the refrigerant hold amount of the radiator 32 and the evaporator 34 decreases, so the high pressure tends to rise. As in the present invention, the auxiliary heat exchanger 38 exchanges heat with the low-temperature refrigerant exiting the evaporator 34 and cools the refrigerant exiting the radiator 32, thereby reducing the refrigerant enthalpy and increasing its density. In addition, since the dryness at the inlet of the evaporator 34 is reduced and the refrigerant hold of the evaporator 34 is increased, the heat pump cycle can be safely operated without increasing the high pressure. Therefore, since continuous operation can be performed even when the incoming water temperature becomes high, hot water can be stored up to the lower part of the hot water tank 36, and the capacity of the hot water tank 36 can be effectively used.

また、開閉弁39を開放することにより、蒸発器34から圧縮機31までの冷媒通路面積が拡大して、その間の圧力損失が減少し、圧縮機31の吸入圧力が上昇して圧縮機31での圧縮比が低減され、圧縮動力が減少するので、高効率な運転が可能となる。   Moreover, by opening the on-off valve 39, the refrigerant passage area from the evaporator 34 to the compressor 31 is expanded, the pressure loss therebetween is reduced, the suction pressure of the compressor 31 is increased, and the compressor 31 The compression ratio is reduced and the compression power is reduced, so that highly efficient operation is possible.

一方、入水温度センサー41で検知した入水温度が制御装置42にあらかじめ設定してある温度よりも低下した場合には、開閉弁39を閉止する方向に動作させる。こうすることにより、蒸発器34を出た冷媒は開閉弁39を通って補助熱交換器38には流れず、すべて配管39を通って圧縮機31に吸入される通常の高効率なヒートポンプサイクルで運転される。なお、入水温度が低い通常運転時に、開閉弁39を開放のまま運転した場合には、圧縮機31の吸入ガス温度が、最適な状態とはならないため、本発明のように入水温
度が高い場合に開閉弁39を開放することが望ましい。、
また、開閉弁39は副絞り装置としても同様な効果があり、この場合には、入水温度センサー41で検知した入水温度が制御装置42にあらかじめ設定してある温度よりも上昇した場合には、副絞り装置の開度を大きくする(開く)方向に動作させる。こうすることにより、同じく、蒸発器34を出た比較的低温の冷媒の一部が副絞り装置を通って補助熱交換器38に流入し、同様な作用により、入水温度が高くなっても、安全に、かつ高効率な運転ができる。
On the other hand, when the incoming water temperature detected by the incoming water temperature sensor 41 is lower than the temperature preset in the control device 42, the on-off valve 39 is operated in the closing direction. By doing so, the refrigerant that has left the evaporator 34 does not flow to the auxiliary heat exchanger 38 through the on-off valve 39, but is all sucked into the compressor 31 through the pipe 39 in a normal high-efficiency heat pump cycle. Driven. In the normal operation where the incoming water temperature is low, when the on-off valve 39 is operated while being opened, the intake gas temperature of the compressor 31 is not in an optimal state, and therefore the incoming water temperature is high as in the present invention. It is desirable to open the on-off valve 39. ,
Further, the on-off valve 39 has the same effect as a sub-throttle device. In this case, when the incoming water temperature detected by the incoming water temperature sensor 41 is higher than the temperature preset in the control device 42, Operate in a direction to increase (open) the opening of the sub-throttle device. In this way, similarly, a part of the relatively low temperature refrigerant that has left the evaporator 34 flows into the auxiliary heat exchanger 38 through the sub-throttle device, and even if the incoming water temperature increases due to the same action, Safe and efficient operation is possible.

なお、ここにおいては、補助熱交換器38は、管と管をロー付してある構成や、二重管の構成などの形態でもよく、これらは、すべて本発明に含まれる。
また、開閉弁39は、補助熱交換器38と圧縮機31の間に設けても同様な効果を有し、これらも本発明に含まれる。
Here, the auxiliary heat exchanger 38 may have a configuration in which a tube and a tube are brazed, a configuration of a double tube, and the like, which are all included in the present invention.
Moreover, even if the on-off valve 39 is provided between the auxiliary heat exchanger 38 and the compressor 31, it has the same effect, and these are also included in the present invention.

さらに、入水温度センサー41に代わって、放熱器32の出口冷媒温度としても良い。すなわち、入水温度が高い場合には、放熱器出口冷媒温度も高くなり、温度の上昇下降の傾向は同様になるため、これらも本発明に含まれる。   Furthermore, instead of the incoming water temperature sensor 41, the outlet refrigerant temperature of the radiator 32 may be used. That is, when the incoming water temperature is high, the radiator outlet refrigerant temperature is also high, and the tendency of temperature rise and fall is the same, and these are also included in the present invention.

(実施の形態2)
図2は、本発明の第2の実施の形態におけるヒートポンプ給湯装置の構成図を示すものである。図2において、実施の形態1で示した図1と同様の構成で同様の機能を有する部品については同一の番号を付してある。
(Embodiment 2)
FIG. 2 shows a configuration diagram of a heat pump hot-water supply apparatus in the second embodiment of the present invention. In FIG. 2, components having the same functions as those in FIG. 1 shown in the first embodiment have the same numbers.

本実施の形態においては、圧縮機31の吐出ガス温度を検知する吐出温度センサー51と、その温度を検知し副絞り装置52の開度を制御する制御装置53が設けられている。この、制御装置53は、吐出温度センサー51の温度と、予め設定された吐出温度とを比較して、吐出温度が設定温度より低い場合に副絞り装置52の開度を大きくするように制御する。また、冷媒としては炭酸ガスが封入されている。   In the present embodiment, a discharge temperature sensor 51 that detects the discharge gas temperature of the compressor 31 and a control device 53 that detects the temperature and controls the opening degree of the sub-throttle device 52 are provided. The control device 53 compares the temperature of the discharge temperature sensor 51 with a preset discharge temperature and controls to increase the opening of the sub-throttle device 52 when the discharge temperature is lower than the set temperature. . Further, carbon dioxide gas is sealed as the refrigerant.

以上のように構成されたヒートポンプ給湯装置について、以下その動作、作用を説明する。   About the heat pump hot-water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

圧縮機31で高温高圧の超臨界状態に圧縮された冷媒(炭酸ガス)は、放熱器32で給湯回路を流れる水と熱交換し、自らは中温高圧の冷媒となり、補助熱交換器38を通過して、主絞り装置33で減圧された後、蒸発器34に流入し、ここでファン35で送風された外気と熱交換して蒸発ガス化する。   The refrigerant (carbon dioxide gas) compressed to a supercritical state of high temperature and high pressure by the compressor 31 exchanges heat with water flowing in the hot water supply circuit by the radiator 32 and becomes a medium temperature and high pressure refrigerant and passes through the auxiliary heat exchanger 38. Then, after being decompressed by the main throttle device 33, it flows into the evaporator 34, where it exchanges heat with the outside air blown by the fan 35, thereby evaporating gas.

外気温度が比較的低い場合、蒸発器34での蒸発温度も低いため、圧縮機31の吸入圧力は低下し、圧縮機31での圧縮比が大きくとれるので、圧縮機31の吐出温度は高くなり、高温の給湯が容易に生成できる。   When the outside air temperature is relatively low, since the evaporation temperature in the evaporator 34 is also low, the suction pressure of the compressor 31 is reduced, and the compression ratio in the compressor 31 can be increased, so that the discharge temperature of the compressor 31 is increased. High temperature hot water supply can be easily generated.

一方、外気温度が高い場合には、蒸発器34での蒸発温度も高くなるため、圧縮機31の吸入圧力は上昇し、圧縮機31での圧縮比が小さくなるので、圧縮機31の吐出温度は高くできず、高温の給湯が生成できない。そのため、従来は、主絞り装置33の開度をさらに小さくして、冷媒を流れにくくして、圧縮機31の吐出圧力を上昇、吸入圧力を低下させて圧縮比を大きくして吐出温度を上昇させていた。   On the other hand, when the outside air temperature is high, the evaporation temperature in the evaporator 34 also increases, so the suction pressure of the compressor 31 increases and the compression ratio in the compressor 31 decreases, so the discharge temperature of the compressor 31 Cannot be made high, and hot water cannot be generated. Therefore, conventionally, the opening of the main throttle device 33 is further reduced to make it difficult for the refrigerant to flow, the discharge pressure of the compressor 31 is increased, the suction pressure is decreased, the compression ratio is increased, and the discharge temperature is increased. I was letting.

本発明では、吐出温度センサー51の温度と、予め設定された吐出温度とを比較して、吐出温度が設定温度より低い場合に副絞り装置52の開度を大きくするように制御する。そうすることにより、蒸発器34を出た比較的低温の冷媒の一部は開閉弁39を通って補助熱交換器38に流入する。   In the present invention, the temperature of the discharge temperature sensor 51 is compared with a preset discharge temperature, and when the discharge temperature is lower than the set temperature, control is performed so that the opening degree of the sub-throttle device 52 is increased. By doing so, a part of the relatively low-temperature refrigerant that has left the evaporator 34 flows into the auxiliary heat exchanger 38 through the on-off valve 39.

一方、圧縮機31より吐出した高温高圧の冷媒は、放熱器32で給湯水と熱交換した後、補助熱交換器38に流入し、ここで、蒸発器34を出た比較的低温の冷媒の一部と熱交換して、蒸発器34を出たの冷媒温度を上昇させ、過熱度が高くなった状態で圧縮機31に吸入される。こうすることにより、主絞り装置33の開度を小さくして、圧縮機31の吐出圧力を上昇、吸入圧力を低下させて圧縮比を大きくすることなく、吐出温度を上昇させることができるので、高効率な運転で高温の給湯水が生成できる。したがって、外気温が高い場合にも、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転でき、貯湯槽の容量を有効に利用できる効果がある。   On the other hand, the high-temperature and high-pressure refrigerant discharged from the compressor 31 exchanges heat with hot water in the radiator 32 and then flows into the auxiliary heat exchanger 38 where the relatively low-temperature refrigerant discharged from the evaporator 34 Heat is exchanged with a part of the refrigerant, and the temperature of the refrigerant that has left the evaporator 34 is raised. By doing so, the opening temperature of the main throttle device 33 can be reduced, the discharge pressure of the compressor 31 can be increased, and the discharge temperature can be increased without decreasing the suction pressure and increasing the compression ratio. Hot water can be generated at high efficiency. Therefore, even when the outside air temperature is high, hot water can be easily heated to a high temperature, the heat pump can be operated safely and with high efficiency, and the capacity of the hot water tank can be effectively used.

また、副絞り装置52を開放することにより、蒸発器34から圧縮機31までの冷媒通路面積が拡大して、その間の圧力損失が減少し、圧縮機31の吸入圧力が上昇して圧縮機31での圧縮比がさらに低減され、圧縮動力が減少するので、高効率な運転が可能となる。   Further, by opening the sub-throttle device 52, the refrigerant passage area from the evaporator 34 to the compressor 31 is expanded, the pressure loss therebetween is reduced, the suction pressure of the compressor 31 is increased, and the compressor 31 is increased. Since the compression ratio is further reduced and the compression power is reduced, high-efficiency operation is possible.

一方、吐出温度センサー51の温度と、予め設定された吐出温度とを比較して、吐出温度が設定温度より高い場合には、副絞り装置52の開度を小さくするように制御する。こうすることにより、蒸発器34を出た冷媒は開閉弁39を通って補助熱交換器38には流れず、ほとんどの冷媒が配管39を通って圧縮機31に吸入されるため、吸入ガス冷媒が過度に温度上昇することはなくなり、通常の高効率なヒートポンプサイクルで運転される。   On the other hand, the temperature of the discharge temperature sensor 51 is compared with a preset discharge temperature, and when the discharge temperature is higher than the set temperature, the opening of the sub-throttle device 52 is controlled to be small. By doing so, the refrigerant that has left the evaporator 34 does not flow to the auxiliary heat exchanger 38 through the open / close valve 39, and most of the refrigerant is sucked into the compressor 31 through the pipe 39. The temperature does not increase excessively and is operated with a normal high-efficiency heat pump cycle.

また、副絞り装置39は開閉弁としても同様な効果があり、この場合には、吐出温度センサー51の温度と、予め設定された吐出温度とを比較して、吐出温度が設定温度より低い場合に開閉弁を開放するように制御する。こうすることにより、主絞り装置33の開度を小さくして、圧縮機31の吐出圧力を上昇、吸入圧力を低下させて圧縮比を大きくすることなく、吐出温度を上昇させることができるので、高効率な運転で高温の給湯水が生成できる。   The sub-throttle device 39 has the same effect as an on-off valve. In this case, the discharge temperature sensor 51 is compared with a preset discharge temperature, and the discharge temperature is lower than the set temperature. Control to open the on-off valve. By doing so, the opening temperature of the main throttle device 33 can be reduced, the discharge pressure of the compressor 31 can be increased, and the discharge temperature can be increased without decreasing the suction pressure and increasing the compression ratio. Hot water can be generated at high efficiency.

なお、ここにおいては、補助熱交換器38は、管と管をロー付してある構成や、二重管の構成などの形態でもよく、これらは、すべて本発明に含まれる。また、副絞り装置52は、補助熱交換器38と圧縮機31の間に設けても同様な効果を有し、これらも本発明に含まれる。   Here, the auxiliary heat exchanger 38 may have a configuration in which a tube and a tube are brazed, a configuration of a double tube, and the like, which are all included in the present invention. Further, even if the sub-throttle device 52 is provided between the auxiliary heat exchanger 38 and the compressor 31, it has the same effect, and these are also included in the present invention.

以上のように、本発明にかかるヒートポンプ給湯装置は、冷媒回路の圧縮機の吐出圧力を低減しながら、給湯水を容易に高温に加熱することができが可能となるので、高温を得るヒートポンプ給湯機や高温風を得る空調機等に有用である。   As described above, the heat pump hot water supply apparatus according to the present invention can easily heat the hot water supply to a high temperature while reducing the discharge pressure of the compressor of the refrigerant circuit. It is useful for an air conditioner that obtains high temperature air.

本発明の実施の形態1におけるヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus in Embodiment 1 of this invention 本発明の実施の形態2におけるヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus in Embodiment 2 of this invention 従来のヒートポンプ給湯装置の構成図Configuration diagram of conventional heat pump water heater

符号の説明Explanation of symbols

31 圧縮機
32 放熱器
33 主絞り装置
34 蒸発器
35 ファン
36 貯湯槽
37 循環ポンプ
38 補助熱交換器
39 開閉弁
40 配管
41 入水温度センサー
42、53 制御装置
51 吐出温度センサー
52 副絞り装置







DESCRIPTION OF SYMBOLS 31 Compressor 32 Radiator 33 Main throttle device 34 Evaporator 35 Fan 36 Hot water storage tank 37 Circulation pump 38 Auxiliary heat exchanger 39 On-off valve 40 Piping 41 Water inlet temperature sensor 42, 53 Control device 51 Discharge temperature sensor 52 Sub throttle device







Claims (8)

少なくとも圧縮機、放熱器、主絞り装置、蒸発器を順次接続した冷媒回路を備え、前記冷媒回路に、前記放熱器と前記主絞り装置の間の冷媒と前記蒸発器と前記圧縮機の間の冷媒とを熱交換する補助熱交換器と、前記蒸発器と前記補助熱交換器との間、または、前記補助熱交換器と前記圧縮機との間に開閉弁または副絞り装置と、前記補助熱交換器をバイパスするように前記蒸発器と前記圧縮機とを接続する接続部とを設けたことを特徴とするヒートポンプ給湯装置。 A refrigerant circuit in which at least a compressor, a radiator, a main throttle device, and an evaporator are sequentially connected; and the refrigerant circuit includes a refrigerant between the radiator and the main throttle device, and between the evaporator and the compressor. An auxiliary heat exchanger for exchanging heat with the refrigerant, an on-off valve or a sub-throttle device between the evaporator and the auxiliary heat exchanger, or between the auxiliary heat exchanger and the compressor, and the auxiliary A heat pump hot water supply apparatus comprising a connecting portion for connecting the evaporator and the compressor so as to bypass the heat exchanger. 少なくとも貯湯槽、放熱器を順次接続した給湯回路を備え、前記貯湯槽より前記放熱器に流入する給湯水の温度を検知する入水温度センサーと、前記入水温度センサーの検知温度と予め設定された入水温度値とを比較して、前記開閉弁の開閉または前記副絞り装置の開度を制御する制御装置とを設けたことを特徴とする請求項1記載のヒートポンプ給湯装置。 At least a hot water storage circuit including a hot water storage tank and a radiator connected in sequence, a water temperature sensor for detecting the temperature of hot water flowing into the radiator from the hot water storage tank, and a detection temperature of the water temperature sensor are set in advance. The heat pump hot-water supply device according to claim 1, further comprising a control device that controls the opening / closing of the on-off valve or the opening of the sub-throttle device by comparing with an incoming water temperature value. 制御装置は、入水温度センサーの検知温度と予め設定された入水温度値とを比較して、前記入水温度センサーの検知温度が、予め設定された入水温度値より高い場合に、前記開閉弁を開放または前記副絞り装置の開度を大きくすることを特徴とする請求項2記載のヒートポンプ給湯装置。 The control device compares the detected temperature of the incoming water temperature sensor with a preset incoming water temperature value, and when the detected temperature of the incoming water temperature sensor is higher than the preset incoming water temperature value, 3. The heat pump hot water supply apparatus according to claim 2, wherein the opening of the opening or the sub-throttle device is increased. 放熱器出口の冷媒温度を検知する冷媒温度センサーと、前記冷媒温度センサーの検知温度と予め設定された冷媒温度値とを比較して、前記開閉弁の開閉または前記副絞り装置の開度を制御する制御装置とを設けたことを特徴とする請求項1記載のヒートポンプ給湯装置。 The refrigerant temperature sensor for detecting the refrigerant temperature at the outlet of the radiator and the detected temperature of the refrigerant temperature sensor and a preset refrigerant temperature value are compared to control the opening / closing of the on-off valve or the opening of the sub-throttle device The heat pump hot-water supply apparatus of Claim 1 provided with the control apparatus which performs. 制御装置は、冷媒温度センサーの検知温度が、予め設定された冷媒温度値より高い場合に、前記開閉弁を開放または前記副絞り装置の開度を大きくすることを特徴とする請求項4記載のヒートポンプ給湯装置。 5. The control device according to claim 4, wherein when the detected temperature of the refrigerant temperature sensor is higher than a preset refrigerant temperature value, the control device opens the on-off valve or increases the opening of the sub-throttle device. Heat pump water heater. 圧縮機より吐出される冷媒温度を検知する吐出温度センサーと、前記吐出温度センサーの検知温度と予め設定された吐出温度値とを比較して、前記開閉弁の開閉または前記副絞り装置の開度を制御する制御装置とを設けたことを特徴とする請求項1記載のヒートポンプ給湯装置。 Comparing the discharge temperature sensor for detecting the refrigerant temperature discharged from the compressor with the detected temperature of the discharge temperature sensor and a preset discharge temperature value, the opening / closing of the on-off valve or the opening of the sub-throttle device The heat pump hot-water supply apparatus of Claim 1 provided with the control apparatus which controls this. 制御装置は、吐出温度センサーの検知温度が、予め設定された吐出温度値より低い場合に、前記開閉弁を開放または前記副絞り装置の開度を大きくすることを特徴とする請求項6記載のヒートポンプ給湯装置。 7. The control device according to claim 6, wherein when the detected temperature of the discharge temperature sensor is lower than a preset discharge temperature value, the control valve opens the opening / closing valve or increases the opening of the sub-throttle device. Heat pump water heater. 冷媒として炭酸ガスを用いたことを特徴とする請求項1〜7のいずれか1項に記載のヒートポンプ給湯装置。 The heat pump hot water supply device according to any one of claims 1 to 7, wherein carbon dioxide gas is used as the refrigerant.
JP2004172148A 2004-06-10 2004-06-10 Heat pump water heater Pending JP2005351538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004172148A JP2005351538A (en) 2004-06-10 2004-06-10 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004172148A JP2005351538A (en) 2004-06-10 2004-06-10 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2005351538A true JP2005351538A (en) 2005-12-22

Family

ID=35586166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004172148A Pending JP2005351538A (en) 2004-06-10 2004-06-10 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2005351538A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070019A (en) * 2006-09-13 2008-03-27 Matsushita Electric Ind Co Ltd Heat storage type water heater
JP2013204968A (en) * 2012-03-29 2013-10-07 Mitsubishi Heavy Ind Ltd Control device for heat pump, heat pump, and control method for heat pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070019A (en) * 2006-09-13 2008-03-27 Matsushita Electric Ind Co Ltd Heat storage type water heater
JP2013204968A (en) * 2012-03-29 2013-10-07 Mitsubishi Heavy Ind Ltd Control device for heat pump, heat pump, and control method for heat pump

Similar Documents

Publication Publication Date Title
JP4317793B2 (en) Cooling system
JP2007163071A (en) Heat pump type cooling/heating system
CN1707197B (en) Thermal pump hot water supply device
JP2008082601A (en) Heat pump hot water supply device
JP2009092258A (en) Refrigerating cycle device
JP4595546B2 (en) Heat pump equipment
JP5176474B2 (en) Heat pump water heater
JP5194492B2 (en) Heat pump water heater
JP4665736B2 (en) Control method for refrigeration cycle apparatus and refrigeration cycle apparatus using the same
JP2005308344A (en) Heat pump water heater
JP5150300B2 (en) Heat pump type water heater
JP2006017377A (en) Heat pump water heater
JP2004340419A (en) Heat pump type water-heater
JP4082389B2 (en) Heat pump water heater
JP4857903B2 (en) Water heater
JP2005351538A (en) Heat pump water heater
JP2009085476A (en) Heat pump water heater
JP2011043273A (en) Heat pump type heating liquid system
JP2007017013A (en) Heat pump water heater
JP4124166B2 (en) Heat pump water heater
JP4848971B2 (en) Heat pump water heater
JP3841051B2 (en) Heat pump water heater
JP2005351588A (en) Heat pump water heater
JP2006234211A (en) Heat pump water heater
JP4124164B2 (en) Heat pump water heater