JP4119708B2 - Method for producing alignment control film for liquid crystal - Google Patents

Method for producing alignment control film for liquid crystal Download PDF

Info

Publication number
JP4119708B2
JP4119708B2 JP2002226852A JP2002226852A JP4119708B2 JP 4119708 B2 JP4119708 B2 JP 4119708B2 JP 2002226852 A JP2002226852 A JP 2002226852A JP 2002226852 A JP2002226852 A JP 2002226852A JP 4119708 B2 JP4119708 B2 JP 4119708B2
Authority
JP
Japan
Prior art keywords
liquid crystal
film
control film
alignment control
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002226852A
Other languages
Japanese (ja)
Other versions
JP2004069870A (en
Inventor
高博 中山
裕彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002226852A priority Critical patent/JP4119708B2/en
Publication of JP2004069870A publication Critical patent/JP2004069870A/en
Application granted granted Critical
Publication of JP4119708B2 publication Critical patent/JP4119708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶用配向制御膜の作成方法に関する。
【0002】
【従来の技術】
液晶表示装置として近年の主流の一つであるTN型液晶ディスプレイパネルの構造を図1に示す。図1を参照して、このディスプレイパネルの液晶セルは、互いに対向する一対のガラス基板1a及び1bの各対向面側、即ち、内側に、それぞれ正負電極として透明導電膜2a及び2bが積層され、次に、これらの電極の内側にそれぞれ配向制御膜3a及び3bが積層され、さらに、この両配向制御膜の内側に、液晶単独または染料を混合した液晶から成る液晶層を厳重に封入して構成される。そして、ガラス基板1a及び1bにおける上記対向面とは反対側、即ち、外側に偏光板4a及び4bが積層されて、全体として液晶ディスプレイパネルを構成する。
【0003】
上記のようなTN型では誘電率の異方性が正のネマティック液晶を用い、液晶セルへの封入時には、配向制御膜3a及び3bにより液晶分子が平行配向され、さらに、この配向方向を配向制御膜3a及び3bの平行面(図1においては水平面)上で90°だけ捩っておく。即ち、上記のように平行配向された液晶分子は、配向制御膜3a近傍のものと配向制御膜3b近傍のものとで互いに直交するように、両配向制御膜間で平行面内で徐々に傾いて捩れた状態で配向される。
【0004】
このように構成された液晶ディスプレイパネルでは、両透明導電膜2a及び2b間に電圧が印加されていなければ、光源側の偏光板4aを通過した光は直線偏光となり液晶層に入射する。そして、上記の液晶層中の捩れた液晶分子で光ベクトルを回転して、偏光板4aに直交して置かれた偏光板4bを通過する。一方、一定の閾値以上の電圧を印加した場合、液晶分子がホメオトロピック配向、即ち、垂直配向となるため、偏光板4aからの入射光の光ベクトルを回転する能力を喪失しており、この入射光は偏光板4bで遮断される。
【0005】
上記のように入射光の透過及び遮断を行うのが液晶表示装置の原理であり、液晶分子の配向処理が重要である。そして、この配向処理においては、液晶分子の配向の均一性を確保することが要望される。
【0006】
このような配向処理の方法として、従来、ラビング法と呼ばれる平行配向方法が知られている。これは、例えば、有機高分子であるポリイミド樹脂系の塗料を基板上に塗布して焼き付けた後に、布ロールやブラシを使用して塗膜表面を一定方向に摩擦(ラビング)するものである。
【0007】
ところが、ラビング法は、ガラス基板と、これに付着させた透明導電膜電極と、配向制御用樹脂膜との少なくとも3層以上の積層構成に対して摩擦を行うので、摩擦作業に用いる布ロール、ブラシ及び摩擦用機械等の磨耗や、各層の構成材料の断片化により発生する塵埃が発生し易い。そして、このような塵埃による加工環境の悪化を防止するためには、除去用の洗浄工程が新たに必要となる。また、ラビング法による摩擦の際に配向ムラが発生するおそれがあることも問題である。さらに、摩擦工程の際に発生する静電気は、TFT素子の破壊の原因となるうえ、配向制御膜の表面の電荷保持率を部分的に低下させたり、静電吸着により付着した異物の焼き付きを招いたりすることがある。これら以外にも、積層形状が複雑な場合、その段差形状部分と平坦形状部分とでラビング条件が異なるため配向規制力やチルト角に偏りが生じ、この結果、配向の均一性を高い精度で得ることが困難になる。また、ラビング角度を常時一定にしてラビング工程を行うことが多いため、画素の分割配向を要するときもある。
【0008】
上記したラビング法を代替するものとして、SiO2やCrOなどの酸化物をガラス基板表面の法線と適当に傾斜した方向から蒸着してななめ配向を得る斜め蒸着法や回転二重真空蒸着法、ガラス基板の替りに長い主鎖を有する高分子を200%程度延伸したフィルムを用いてこの延伸方向の配向処理を行う高分子フィルム延伸法や、これら以外にもラングミュア膜法などがある。
【0009】
【発明が解決しようとする課題】
ところで、近年、ディスプレイの大画面化や太陽電池の大型化の進展に伴い、基板の大型化傾向が顕著である。
【0010】
しかしながら、上記した斜め蒸着法や回転二重真空蒸着法では、これらにより形成される配向制御膜の表面が繊細で傷つき易いなどの理由で量産性に難点があり、高分子フィルム延伸法においても、長い主鎖の高分子の種類が限られるという問題があり、さらに、ラングミュア法も大面積基板に対しては、大型装置を要するうえ処理速度の向上に限界があるなど、いずれも、基板の大型化への対応が完全でない。むしろ、大型基板への対応能力はラビング法に及ばないのが現状である。
【0011】
また、ラビングを行わずに多孔質や網目状等の微細構造をもつ有機ポリマー膜によって液晶分子をランダムな方向に配向させる方法(特開平6−18890号)もあるが、有機ポリマー系は耐熱温度が低いという欠点がある。
【0012】
本発明は、上記問題点に鑑み、基板の大型化に対応可能で、配向の均一性を確保し得る液晶用配向制御膜の作成方法を提供することを課題としている。
【0013】
【課題を解決するための手段】
上記課題を解決するため、本発明では液晶用配向制御膜を無機多孔質膜として形成する。無機多孔質膜として、望ましくはナノメータ程度の空孔を有するものを用い、これにより、ラビング法などの機械的手段に依らない、均一な配向処理を行うことができる。そして、このような無機多孔質膜は、成膜面積の大小を選ばず容易に形成することができるので大型基板への対応が可能である。
【0014】
そして、上記の無機多孔質膜として、ガラス基板と同程度の400℃以上の耐熱温度を有する多孔質SOG膜、即ち、Spin on Glass塗布方法を用いて形成した無機多孔質膜を好適例とすることができる。
すなわち、本発明の液晶用配向制御膜の作成方法は、透明導電膜付き基板の膜透明導電膜上に多孔質シリカ材料前駆体溶液をスピンコートにより塗布して成膜する工程と、前記工程で成膜した基板を焼成処理し、前記多孔質シリカ材料前駆体溶液に含まれる溶媒や水、触媒や界面活性剤を蒸発させながら、多孔質SOG膜から成る配向制御膜を形成する工程とを有している。
また、前記多孔質シリカ材料前駆体溶液は、撥水性を有するヘキサメチルジシロキサンやヘキサメチルジシラザンを含有してもよい。
また、前記多孔質シリカ材料前駆体溶液にアルコールや酢酸ブチルを添加物として加えてもよい。
また、前記焼成処理は、空気中で50〜350℃の温度で処理して主として溶媒を蒸発させ、次に1〜10Paの空気中で界面活性剤その他の有機物質を蒸発させることのできる200〜500℃の温度で処理することが好ましい。
また、前記空気の代わりに不活性ガスを用いてもよい。
【0015】
さらに、上記の無機多孔質膜から成る液晶用配向制御膜を介して透明導電膜付き基板と液晶層とを積層する液晶配向方法により、均一な配向処理及び大型基板対応の両方が可能となる。
【0016】
そして、互いに対向する一対の透明導電膜付き基板と、この両基板間に液晶を封入して成る液晶層との間に、それぞれ上記の無機多孔質液晶配向制御膜を介在させて液晶表示装置を構成すると、このものは、液晶分子の均一な配向を確保しつつ基板の大型化に対応した高い性能を備えるものとなる。
【0017】
【発明の実施の形態】
図1のTN型液晶ディスプレイパネルを用いて、本発明の液晶用配向制御膜の作成方法について説明する。
【0018】
あらかじめ、本液晶ディスプレイパネルの配向制御膜の形成前に、液晶素子用ガラス基板1aの表面に、陽極層または陰極層として透明導電膜2aの成膜を行う。このとき、透明導電膜2aの構成材料として、インジウム・スズ酸化物(ITO)膜を用いることができる。また、ITO膜以外にも、酸化スズ(SnO2)、酸化インジウム(In23)、酸化亜鉛(ZnO)、酸化カドミウム(CdO)や、これらを組み合わせた酸化カドミウム-酸化スズ(Cd2SnO4)、酸化カドミウム-酸化亜鉛(CZT)、酸化インジウム-酸化亜鉛(IZO)などの透明導電膜を用いることができる。また、透明導電膜には、液晶の表示形式に応じてパターニングを行ったものを用いても良い。
【0019】
そして、透明導電膜2a上に、撥水性を有するヘキサメチルジシロキサンやヘキサメチルジシラザンを含有した多孔質シリカ材料前駆体溶液(例えば株式会社アルバック製ISM-1.5)を用いて、スピン回転数1500rpmのスピンコートにより塗布して成膜を行う。ここで用いる多孔質シリカ材料前駆体溶液には、ヘキサメチルジシロキサンやヘキサメチルジシラザンのような撥水性の物質以外にも、必要に応じてアルコールや酢酸ブチルなどを添加物として加えても良い。次に、上記のスピンコート膜付きの透明電極膜2aを、これらを付着したガラス基板1aごと焼成処理して、上記多孔質シリカ材料前駆体溶液中の溶媒や水、酸またはアルカリ触媒や界面活性剤などを蒸発させながら、多孔質SOG膜から成る配向制御膜3aを形成する。このときの配向制御膜3aの膜厚は300nm程度であるが、スピンコート時の回転数を制御することにより50nm〜2μmの範囲で形成することが望ましい。
【0020】
なお、上記した焼成処理条件は、溶媒や水、酸またはアンモニアなどを蒸発させることができて、多孔質SOG膜を得ることができる条件であれば、特に制限はないが、好ましくは、空気中で50〜350℃程度の温度で処理して主として溶媒を蒸発させ、次いで、例えば1〜105Pa程度の空気中で界面活性剤その他の有機物質などを蒸発させることのできる温度(例えば、200〜500℃)で、得られる多孔質膜の構造が破壊されない時間の間熱処理すればよい。もちろん、酸化等が問題になる場合は、全てHeガス、Arガス、N2ガスなどから成る不活性ガス中にて処理する必要がある。
【0021】
このようにして形成したガラス基板1aと透明導電膜2aと配向制御膜3aとの積層構造と、これと同様の積層構造(ガラス基板1bと透明導電膜2bと配向制御膜3b)とを、透明導電膜2a及び2bが正負電極として対を成すように構成する。そして、両積層構造の基板1a及び1b間距離が50μmとなるように、液晶層5を対称軸として対称配置する。さらに、このように対称配置されて対向する積層構造1a〜3a及び1b〜3bの外側のそれぞれを、互いに直交する偏光板4a、4bにより挟持して液晶ディスプレイパネルが形成される。
【0022】
このようにして得られた液晶ディスプレイ簡易パネルの配向確認を行った。この結果、多孔質SOG膜から成る配向制御膜3a、3bは、基板1a、1bの対向面に対して垂直な方向に開孔した多孔質膜として形成され、これにより、液晶分子が基板表面の法線方向に垂直配向されることが確認された。
【0023】
【発明の効果】
以上の説明から明らかなように、本発明の液晶用配向制御膜の作成方法によれば、シリカ材料を用いた多孔質SOG膜などの無機多孔質膜を用いて形成されるため、400℃以上の耐熱温度を有する多孔質膜で、かつ、膜全体で一様な多孔構造を有し、これにより、機械的手法たるラビング法などと異なり、液晶分子の配向の均一性を確保することができる。そして、無機多孔質膜の形成は、湿式法と低真空度での焼成法との組合せにより、成膜面積の大小を問わず容易に行うことができるため、大型基板への対応が可能である。
【図面の簡単な説明】
【図1】液晶ディスプレイパネルの概略を示す斜視図
【符号の説明】
1a 1b ガラス基板
2a 2b ITO膜
3a 3b 多孔質配向制御膜
4a 4b 偏光板
5 液晶層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an alignment control film for liquid crystal.
[0002]
[Prior art]
FIG. 1 shows the structure of a TN liquid crystal display panel which is one of the mainstream liquid crystal display devices in recent years. Referring to FIG. 1, a liquid crystal cell of this display panel is formed by laminating transparent conductive films 2a and 2b as positive and negative electrodes, respectively, on each facing surface side of a pair of glass substrates 1a and 1b facing each other, that is, inside. Next, alignment control films 3a and 3b are laminated inside these electrodes, respectively, and a liquid crystal layer 5 made of liquid crystal alone or a liquid crystal mixed with a dye is tightly sealed inside these alignment control films. Composed. And the polarizing plates 4a and 4b are laminated | stacked on the opposite side to the said opposing surface in the glass substrates 1a and 1b, ie, an outer side, and comprise a liquid crystal display panel as a whole.
[0003]
In the TN type as described above, nematic liquid crystal with positive dielectric anisotropy is used, and when encapsulated in a liquid crystal cell, liquid crystal molecules are aligned in parallel by the alignment control films 3a and 3b, and the alignment direction is controlled. The film 3a and 3b is twisted by 90 ° on the parallel plane (horizontal plane in FIG. 1). That is, the liquid crystal molecules aligned in parallel as described above are gradually inclined in the parallel plane between the two alignment control films so as to be orthogonal to each other in the vicinity of the alignment control film 3a and in the vicinity of the alignment control film 3b. In a twisted state.
[0004]
In the liquid crystal display panel configured as described above, if no voltage is applied between the transparent conductive films 2a and 2b, the light passing through the polarizing plate 4a on the light source side becomes linearly polarized light and enters the liquid crystal layer. Then, the light vector is rotated by the twisted liquid crystal molecules in the liquid crystal layer and passes through the polarizing plate 4b placed orthogonal to the polarizing plate 4a. On the other hand, when a voltage higher than a certain threshold is applied, the liquid crystal molecules are in a homeotropic alignment, that is, a vertical alignment, and therefore the ability to rotate the light vector of incident light from the polarizing plate 4a is lost. The light is blocked by the polarizing plate 4b.
[0005]
It is the principle of the liquid crystal display device that transmits and blocks the incident light as described above, and the alignment treatment of the liquid crystal molecules is important. In this alignment treatment, it is desired to ensure the alignment uniformity of the liquid crystal molecules.
[0006]
Conventionally, a parallel alignment method called a rubbing method is known as such an alignment treatment method. In this method, for example, a polyimide resin-based paint, which is an organic polymer, is applied on a substrate and baked, and then the surface of the coating film is rubbed (rubbed) in a certain direction using a cloth roll or a brush.
[0007]
However, the rubbing method rubs against a laminated structure of at least three layers of a glass substrate, a transparent conductive film electrode attached to the glass substrate, and an alignment control resin film. Dust generated due to wear of brushes and friction machines and fragmentation of constituent materials of each layer is likely to occur. In order to prevent the processing environment from being deteriorated by such dust, a cleaning process for removal is newly required. Another problem is that there is a risk of orientation unevenness during rubbing. Furthermore, static electricity generated during the friction process causes damage to the TFT element, and also partially reduces the charge retention rate on the surface of the orientation control film, or causes seizure of foreign matter adhered by electrostatic adsorption. Sometimes. In addition to these, when the laminated shape is complicated, the rubbing conditions are different between the stepped shape portion and the flat shape portion, so that the orientation regulating force and the tilt angle are biased, and as a result, the uniformity of the orientation is obtained with high accuracy. It becomes difficult. Further, since the rubbing process is often performed with the rubbing angle kept constant, pixel divisional alignment may be required.
[0008]
As an alternative to the rubbing method described above, an oxide such as SiO 2 or CrO is vapor-deposited from a direction inclined with respect to the normal of the glass substrate surface, and an oblique vapor deposition method or a rotary double vacuum vapor deposition method for obtaining a tanned orientation, In place of the glass substrate, there is a polymer film stretching method in which an orientation treatment in this stretching direction is performed using a film obtained by stretching a polymer having a long main chain by about 200%, and Langmuir film method is also used.
[0009]
[Problems to be solved by the invention]
By the way, in recent years, with the progress of larger displays and larger solar cells, the trend toward larger substrates is remarkable.
[0010]
However, in the oblique deposition method and the rotary double vacuum deposition method described above, there is a difficulty in mass productivity because the surface of the orientation control film formed by these is delicate and easily damaged, and in the polymer film stretching method, There is a problem that the types of long main chain polymers are limited, and the Langmuir method also requires a large apparatus for large-area substrates and has a limitation in improving the processing speed. Response to conversion is not perfect. Rather, the ability to handle large substrates is not as good as the rubbing method.
[0011]
In addition, there is a method (Japanese Patent Laid-Open No. 6-18890) in which liquid crystal molecules are oriented in a random direction by an organic polymer film having a fine structure such as a porous or network structure without rubbing. Has the disadvantage of being low.
[0012]
In view of the above problems, an object of the present invention is to provide a method for producing an alignment control film for liquid crystal that can cope with an increase in the size of a substrate and can ensure alignment uniformity.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention , the alignment control film for liquid crystal is formed as an inorganic porous film. As the inorganic porous film, a film having pores on the order of nanometers is desirably used, whereby uniform alignment treatment can be performed without depending on mechanical means such as a rubbing method. Such an inorganic porous film can be easily formed regardless of the size of the film formation area, and thus can be applied to a large substrate.
[0014]
And as said inorganic porous film, the porous SOG film | membrane which has a heat resistant temperature of 400 degreeC or more comparable as a glass substrate, ie, the inorganic porous film formed using the Spin on Glass coating method, is made into a suitable example. be able to.
That is, the method for producing an alignment control film for liquid crystal according to the present invention includes a step of applying a porous silica material precursor solution by spin coating on a transparent conductive film of a substrate with a transparent conductive film, Baking the formed substrate, and forming an orientation control film made of a porous SOG film while evaporating the solvent , water, catalyst and surfactant contained in the porous silica material precursor solution. is doing.
The porous silica material precursor solution may contain water-repellent hexamethyldisiloxane or hexamethyldisilazane.
Also, an alcohol or butyl acetate Le may be added as an additive to the porous silica material precursor solution.
Furthermore, the calcination process may be treated at a temperature of 50 to 350 ° C. in air was mainly evaporate the solvent to evaporate the surfactant other organic matter then with 1 to 10 5 Pa in the air It is preferable to process at the temperature of 200-500 degreeC.
Further, an inert gas may be used instead of the air.
[0015]
Furthermore, the liquid crystal alignment method of laminating a substrate with a transparent conductive film and a liquid crystal layer through the above alignment control film for liquid crystal composed of an inorganic porous film enables both uniform alignment processing and large-size substrate compatibility.
[0016]
A liquid crystal display device is formed by interposing the inorganic porous liquid crystal alignment control film between a pair of substrates with a transparent conductive film facing each other and a liquid crystal layer formed by sealing liquid crystal between the two substrates. When configured, this device has high performance corresponding to an increase in the size of the substrate while ensuring uniform alignment of liquid crystal molecules.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
A method for producing an alignment control film for liquid crystal according to the present invention will be described using the TN type liquid crystal display panel of FIG.
[0018]
Prior to the formation of the alignment control film of the present liquid crystal display panel, the transparent conductive film 2a is formed as an anode layer or a cathode layer on the surface of the glass substrate 1a for liquid crystal elements. At this time, an indium tin oxide (ITO) film can be used as a constituent material of the transparent conductive film 2a. In addition to the ITO film, tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), zinc oxide (ZnO), cadmium oxide (CdO), and a combination of these cadmium oxide-tin oxide (Cd 2 SnO) 4 ) Transparent conductive films such as cadmium oxide-zinc oxide (CZT) and indium oxide-zinc oxide (IZO) can be used. The transparent conductive film may be patterned according to the liquid crystal display format.
[0019]
Then, spin rotation is performed on the transparent conductive film 2a using a porous silica material precursor solution containing hexamethyldisiloxane or hexamethyldisilazane having water repellency (for example, ISM-1.5 manufactured by ULVAC, Inc.). The film is formed by applying by spin coating at several 1500 rpm. In addition to water-repellent substances such as hexamethyldisiloxane and hexamethyldisilazane, alcohol or butyl acetate may be added as an additive to the porous silica material precursor solution used here, if necessary. . Next, the transparent electrode film 2a with the spin coat film is baked together with the glass substrate 1a to which the transparent electrode film 2a is attached, and the solvent, water, acid or alkali catalyst, or surface activity in the porous silica material precursor solution is baked. The orientation control film 3a made of a porous SOG film is formed while evaporating the agent and the like. At this time, the film thickness of the orientation control film 3a is about 300 nm, but it is desirable to form the film in the range of 50 nm to 2 μm by controlling the number of rotations during spin coating.
[0020]
The firing treatment conditions described above are not particularly limited as long as the solvent, water, acid, ammonia, or the like can be evaporated, and a porous SOG film can be obtained. At a temperature of about 50 to 350 ° C. to mainly evaporate the solvent, and then, for example, a temperature at which a surfactant or other organic substance can be evaporated in air of about 1 to 10 5 Pa (for example, 200 (~ 500 ° C) may be heat-treated for a time during which the resulting porous membrane structure is not destroyed. Of course, when oxidation or the like becomes a problem, it is necessary to treat all in an inert gas composed of He gas, Ar gas, N 2 gas or the like.
[0021]
The laminated structure of the glass substrate 1a, the transparent conductive film 2a, and the orientation control film 3a thus formed, and the same laminated structure (the glass substrate 1b, the transparent conductive film 2b, and the orientation control film 3b) are transparent. The conductive films 2a and 2b are configured to form a pair as positive and negative electrodes. Then, the liquid crystal layer 5 is arranged symmetrically with respect to the axis of symmetry so that the distance between the substrates 1a and 1b of both stacked structures is 50 μm. Further, the liquid crystal display panel is formed by sandwiching the outer sides of the laminated structures 1a to 3a and 1b to 3b arranged symmetrically in this manner and sandwiched by polarizing plates 4a and 4b orthogonal to each other.
[0022]
The orientation of the liquid crystal display simple panel thus obtained was confirmed. As a result, the orientation control films 3a and 3b made of the porous SOG film are formed as porous films opened in a direction perpendicular to the facing surfaces of the substrates 1a and 1b, whereby the liquid crystal molecules are formed on the substrate surface. It was confirmed that the film was vertically aligned in the normal direction.
[0023]
【The invention's effect】
As is apparent from the above description , according to the method for producing an alignment control film for liquid crystal of the present invention, it is formed using an inorganic porous film such as a porous SOG film using a silica material. The porous film has a heat-resistant temperature and has a uniform porous structure throughout the film, and this can ensure the uniformity of the alignment of liquid crystal molecules, unlike the rubbing method that is a mechanical method. . The formation of the inorganic porous film can be easily performed regardless of the size of the film formation area by a combination of a wet method and a low-vacuum baking method, and thus can be applied to a large substrate. .
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a liquid crystal display panel.
1a 1b glass substrate 2a 2b ITO film 3a 3b porous alignment control film 4a 4b polarizing plate 5 liquid crystal layer

Claims (5)

透明導電膜付き基板の膜透明導電膜上に多孔質シリカ材料前駆体溶液をスピンコートにより塗布して成膜する工程と、
前記工程で成膜した基板を焼成処理し、前記多孔質シリカ材料前駆体溶液に含まれる溶媒や水、触媒や界面活性剤を蒸発させながら、多孔質SOG膜から成る配向制御膜を形成する工程と
を有する液晶用配向制御膜の作成方法。
Applying a porous silica material precursor solution by spin coating on the transparent conductive film of the substrate with the transparent conductive film; and
A step of firing the substrate formed in the step and forming an orientation control film made of a porous SOG film while evaporating the solvent , water, catalyst, and surfactant contained in the porous silica material precursor solution. A method for producing an alignment control film for liquid crystal comprising:
前記多孔質シリカ材料前駆体溶液は、撥水性を有するヘキサメチルジシロキサンやヘキサメチルジシラザンを含有することを特徴とする請求項1記載の液晶用配向制御膜の作成方法。  2. The method for producing an alignment control film for liquid crystal according to claim 1, wherein the porous silica material precursor solution contains hexamethyldisiloxane or hexamethyldisilazane having water repellency. 前記多孔質シリカ材料前駆体溶液にアルコールや酢酸ブチルを添加物として加えたことを特徴とする請求項2記載の液晶用配向制御膜の作成方法。The method of creating the porous silica material precursor solution for liquid crystal alignment layer according to claim 2, characterized in that the addition of alcohol or butyl acetate Le as additives. 前記焼成処理は、空気中で50〜350℃の温度で処理して主として溶媒を蒸発させ、次に1〜10Paの空気中で界面活性剤その他の有機物質を蒸発させることのできる200〜500℃の温度で処理することを特徴とする請求項1〜請求項3のいずれか1項に記載の液晶用配向制御膜の作成方法。The calcination treatment is 200 that can be treated at a temperature of 50 to 350 ° C. in air was mainly evaporate the solvent to evaporate the surfactant other organic matter then with 1 to 10 5 Pa in the air The method for producing an alignment control film for liquid crystal according to any one of claims 1 to 3, wherein the treatment is performed at a temperature of 500 ° C. 前記空気の代わりに不活性ガスを用いることを特徴とする請求項4に記載の液晶用配向制御膜の作成方法。  The method for producing an alignment control film for liquid crystal according to claim 4, wherein an inert gas is used instead of the air.
JP2002226852A 2002-08-05 2002-08-05 Method for producing alignment control film for liquid crystal Expired - Fee Related JP4119708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226852A JP4119708B2 (en) 2002-08-05 2002-08-05 Method for producing alignment control film for liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226852A JP4119708B2 (en) 2002-08-05 2002-08-05 Method for producing alignment control film for liquid crystal

Publications (2)

Publication Number Publication Date
JP2004069870A JP2004069870A (en) 2004-03-04
JP4119708B2 true JP4119708B2 (en) 2008-07-16

Family

ID=32014049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226852A Expired - Fee Related JP4119708B2 (en) 2002-08-05 2002-08-05 Method for producing alignment control film for liquid crystal

Country Status (1)

Country Link
JP (1) JP4119708B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631334B2 (en) * 2004-07-21 2011-02-16 セイコーエプソン株式会社 Liquid crystal devices and electronic devices
JP2007163821A (en) * 2005-12-14 2007-06-28 Ulvac Japan Ltd Storage method of alignment film and fabrication method of liquid crystal device
JP5101874B2 (en) * 2006-12-25 2012-12-19 株式会社リコー Inorganic alignment film, method of forming inorganic alignment film, light deflection element, and liquid crystal device
JP5464460B2 (en) * 2007-09-11 2014-04-09 株式会社リコー Method for manufacturing liquid crystal alignment film and method for manufacturing liquid crystal device

Also Published As

Publication number Publication date
JP2004069870A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
US20090290118A1 (en) Method and system for improving ion beam alignment for liquid crystal displays by a grooving under layer
WO2012177040A2 (en) Transparent electrode having nano-structure patterns and method for manufacturing same
US8031310B2 (en) Liquid crystal display with orthogonal orientation and method of manufacturing the same
CN101916010A (en) Fast response IPS-VA liquid crystal display with high transmissivity
JP6541885B2 (en) Method of manufacturing display panel and liquid crystal display device
JP4119708B2 (en) Method for producing alignment control film for liquid crystal
KR100378390B1 (en) Liquid crystal display cell having liquid crystal molecules in verticle or substantially verticle alignment
KR101097537B1 (en) fabrication method for in-plane switching mode LCD
JP2001108995A (en) Liquid crystal display element and method of manufacture for the same
JP2000314887A (en) Liquid crystal device and its production
KR20010028670A (en) Liquid crystal display
JP6017135B2 (en) Method for producing liquid crystal molecular alignment substrate and method for producing liquid crystal display element
JP2002202509A (en) Liquid crystal display device and method of manufacturing for the same
JPH06332012A (en) Production of liquid crystal electrooptical device
JPH0553115A (en) Ferroelectric liquid crystal display element
JP3671578B2 (en) Manufacturing method of liquid crystal device
JP3197392B2 (en) Liquid crystal electro-optical device
JPH05257149A (en) Liquid crystal display element
JP6246256B2 (en) Liquid crystal molecular alignment substrate and liquid crystal display element
JP2548592B2 (en) Ferroelectric liquid crystal element
JP2007114267A (en) Method for manufacturing oriented film, and method for manufacturing liquid crystal display element
JPS61245137A (en) Orientation processing method for substrate surface of optical modulating element
JP4599585B2 (en) Method for forming alignment film and method for manufacturing liquid crystal display device
JPH02294618A (en) Liquid crystal display device
JP3153281B2 (en) Vertical alignment treatment method for liquid crystal molecules

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R150 Certificate of patent or registration of utility model

Ref document number: 4119708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees