JP4599585B2 - Method for forming alignment film and method for manufacturing liquid crystal display device - Google Patents

Method for forming alignment film and method for manufacturing liquid crystal display device Download PDF

Info

Publication number
JP4599585B2
JP4599585B2 JP2004202638A JP2004202638A JP4599585B2 JP 4599585 B2 JP4599585 B2 JP 4599585B2 JP 2004202638 A JP2004202638 A JP 2004202638A JP 2004202638 A JP2004202638 A JP 2004202638A JP 4599585 B2 JP4599585 B2 JP 4599585B2
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment film
film
alignment
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004202638A
Other languages
Japanese (ja)
Other versions
JP2006023600A (en
Inventor
尚希 塚原
高博 中山
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2004202638A priority Critical patent/JP4599585B2/en
Publication of JP2006023600A publication Critical patent/JP2006023600A/en
Application granted granted Critical
Publication of JP4599585B2 publication Critical patent/JP4599585B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

本発明は、液晶ディスプレイパネルや液晶プロジェクタなどの液晶デバイスを製造する際に用いられる液晶用配向制御膜に関するものである。   The present invention relates to an alignment control film for liquid crystal used when manufacturing a liquid crystal device such as a liquid crystal display panel or a liquid crystal projector.

従来より、TN(Twisted Nematic)型やVA(Vertically Aligned)型の液晶表示装置には、液晶分子をある一定の方向に配向させる配向膜が用いられている。従来技術の配向膜は、例えばポリイミド樹脂のような分子配向性を有する樹脂膜を基板上に形成し、その表面をラビング(摩擦)して配向処理を行った後、配向処理された面に液晶層を配置することが一般的である。   2. Description of the Related Art Conventionally, alignment films that align liquid crystal molecules in a certain direction have been used in TN (Twisted Nematic) type and VA (Vertically Aligned) type liquid crystal display devices. The alignment film of the prior art is formed by forming a resin film having molecular orientation such as polyimide resin on a substrate, rubbing (rubbing) the surface and performing an alignment treatment, and then liquid crystal on the alignment-treated surface. It is common to arrange the layers.

しかしながら、ラビング工程では、布ロールやブラシを使用して配向膜表面をこすることから、種々の塵埃が発生しやすい。また、ラビングに使用する機械の摩耗等でも塵埃が発生してしまう。   However, in the rubbing process, since the surface of the alignment film is rubbed using a cloth roll or a brush, various dusts are likely to be generated. Also, dust is generated due to wear of a machine used for rubbing.

従って、このような塵埃を取り除くための洗浄工程も必要となる。また、ラビング工程は配向ムラの原因となるだけでなく、ラビングの際に発生する静電気がTFT素子を破壊してしまうといった問題が挙げられている。発生した静電気により、配向制御膜表面の部分的な電荷保持率の低下や、異物の焼き付きが避けられない。また、段差部と平坦部のラビング条件が異なり、配向規制力、チルト角の不均一を生じ、不均一性も問題となってしまう。   Therefore, a cleaning process for removing such dust is also required. In addition, the rubbing process causes not only uneven alignment but also a problem that static electricity generated during rubbing destroys the TFT element. Due to the generated static electricity, a partial decrease in the charge retention rate on the surface of the alignment control film and the seizure of foreign matter are inevitable. Further, the rubbing conditions of the stepped portion and the flat portion are different, resulting in nonuniformity of the alignment regulating force and tilt angle, and nonuniformity becomes a problem.

更に、上述した樹脂膜を配向膜に用いると、光の透過性が悪く、明暗のコントラストが劣る。さらに、耐熱温度が低いといった欠点も持っている。
この問題を解決するために、樹脂膜の代わりに、有機多孔質膜を用いた液晶配向制御膜(例えば特許文献1を参照)が知られているが、この配向膜は液晶分子をランダムに配向させるため、電圧無印加時には少なからずとも光漏れが生じてしまう。そのため、黒色表示が出にくく、コントラスト比が低くなってしまう。また、有機多孔質膜は、有機膜の1種であるため、耐熱性に弱いといった問題もある。
Furthermore, when the resin film described above is used for the alignment film, the light transmittance is poor and the contrast of light and dark is inferior. In addition, it has a disadvantage that the heat-resistant temperature is low.
In order to solve this problem, a liquid crystal alignment control film using an organic porous film is known instead of a resin film (see, for example, Patent Document 1). This alignment film randomly aligns liquid crystal molecules. Therefore, light leakage occurs at least when no voltage is applied. For this reason, black display is difficult to appear and the contrast ratio is lowered. Further, since the organic porous film is a kind of organic film, there is a problem that it is weak in heat resistance.

上記の課題を解決するために、例えばアルバック製の無機多孔質材料であるISM−1.5を用いた液晶用無機多孔質配向制御膜(無機配向膜)が開発されている(例えば、特許文献2を参照。)。
この無機多孔質材料はナノメートルオーダーの空孔を有しており、溶液塗布法によってこの無機多孔質材料を塗布、乾燥することで無機配向膜を形成することが可能である。つまり、従来の配向制御技術であるラビング処理を行わずして、配向膜を作製することができる。
In order to solve the above problems, for example, an inorganic porous alignment control film for liquid crystals (inorganic alignment film) using ISM-1.5, which is an inorganic porous material made by ULVAC, has been developed (for example, Patent Documents). 2).
This inorganic porous material has pores on the order of nanometers, and an inorganic alignment film can be formed by applying and drying this inorganic porous material by a solution coating method. That is, the alignment film can be manufactured without performing the rubbing process, which is a conventional alignment control technique.

ラビング処理を行わないことにより、発塵、帯電によるTFTの破壊や配向ムラといった問題が解決できる。また、無機多孔質膜の採用により、液晶パネル用ガラス基板以上の耐熱温度(400℃以上)を有しており、さらには、透過性にも優れている。しかし、この無機配向膜を用いた液晶パネルでは、熱がかかると液晶分子が配向しなくなるという問題があった。
特開平07−204513号公報 特開2004−069870号公報
By not performing the rubbing treatment, problems such as the destruction of TFT and uneven alignment due to dust generation and charging can be solved. Further, by adopting an inorganic porous film, it has a heat-resistant temperature (400 ° C. or higher) higher than that of a glass substrate for liquid crystal panels, and further has excellent permeability. However, a liquid crystal panel using this inorganic alignment film has a problem that liquid crystal molecules are not aligned when heated.
Japanese Patent Application Laid-Open No. 07-204513 JP 2004-069870 A

本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、配向規制力が高い液晶用配向膜を製造し、液晶デバイスの耐熱性を向上させることである。   The present invention has been created to solve the above-described disadvantages of the prior art, and an object of the present invention is to produce a liquid crystal alignment film having a high alignment regulating force and to improve the heat resistance of the liquid crystal device.

本発明者等が鋭意検討を行った結果、無機配向膜の空孔率が29%以上であれば、該配向膜が実用上十分な液晶配向性を示すことがわかった。更に、無機配向膜の空孔率の上限について検討したところ、無機配向膜の空孔率が70%以下であれば、液晶パネルに熱がかかった場合であっても、液晶分子の配向が維持されることがわかった。   As a result of intensive studies by the present inventors, it has been found that when the porosity of the inorganic alignment film is 29% or more, the alignment film exhibits practically sufficient liquid crystal alignment. Furthermore, when the upper limit of the porosity of the inorganic alignment film was examined, if the porosity of the inorganic alignment film was 70% or less, the alignment of the liquid crystal molecules was maintained even when the liquid crystal panel was heated. I found out that

上述の、無機多孔質材料を用いて無機配向膜(特開2004−069870)を形成したところ、その空孔率は70%〜80%程度になる。空孔率が70%以下の配向膜を形成する方法を更に検討した結果、無機含有材料1モルに対し0.01モル以上0.25モル以下の界面活性剤を含有する原料液を用いて配向膜を作製すれば、空孔率が70%以下になることがわかった。   When an inorganic alignment film (Japanese Patent Application Laid-Open No. 2004-069870) is formed using the above-described inorganic porous material, the porosity thereof is about 70% to 80%. As a result of further examination of a method of forming an alignment film having a porosity of 70% or less, an alignment film is produced using a raw material solution containing 0.01 to 0.25 mol of surfactant with respect to 1 mol of the inorganic-containing material. It was found that the porosity was 70% or less.

係る知見に基づいて成された請求項1記載の発明は、表面に液晶材料を接触させたときに、前記液晶材料中の液晶分子が配向する配向膜を形成する配向膜の形成方法であって、有機シランである無機含有材料と、アルキルトリメチルアンモニウムクロライドと、アルキルトリメチルアンモニウムブロマイドと、アルキルジメチルエチルアンモニウムクロライドと、アルキルジメチルエチルアンモニウムブロマイドとからなる群より選択されるいずれか1種類を含有する界面活性剤と、を含有し、前記界面活性剤の含有量が、前記無機含有材料1モルに対し0.01モル以上0.25モル以下にされた原料液を、前記基板表面に塗布して塗布層を形成し、前記塗布層を加熱し、前記無機含有材料を加水分解して、無機材料を主成分とする配向膜を形成する配向膜の形成方法である。
請求項2記載の発明は、請求項記載の配向膜の形成方法であって、前記有機シランは、テトラエトキシシランと、テトラメトキシシランのいずれか一方又は両方を含有する配向膜の形成方法である。
請求項3記載の発明は、請求項1又は請求項のいずれか1項記載の配向膜の形成方法であって、前記塗布層の加熱は、前記塗布層を180℃以上400℃以下に昇温させる配向膜の形成方法である。
請求項4記載の発明は、請求項乃至請求項のいずれか1項記載の配向膜の形成方法であって、前記塗布層の形成は、前記原料液を、前記塗布層の膜厚が1μm以下になるよう塗布する配向膜の形成方法である。
請求項5記載の発明は、請求項乃至請求項のいずれか1項記載の配向膜の製造方法で配向膜を形成した後、前記配向膜表面に液晶を配置し、前記液晶を配向させる液晶表示装置の製造方法である。
The invention according to claim 1 made on the basis of such knowledge is a method of forming an alignment film that forms an alignment film in which liquid crystal molecules in the liquid crystal material are aligned when the liquid crystal material is brought into contact with the surface. An interface containing any one selected from the group consisting of an inorganic-containing material which is an organic silane, alkyltrimethylammonium chloride, alkyltrimethylammonium bromide, alkyldimethylethylammonium chloride, and alkyldimethylethylammonium bromide And applying a raw material liquid containing 0.01 to 0.25 mol of the surfactant with respect to 1 mol of the inorganic-containing material to form a coating layer. The coating layer is heated to hydrolyze the inorganic-containing material to form an alignment film containing the inorganic material as a main component. A method of forming the alignment film.
Invention of Claim 2 is the formation method of the alignment film of Claim 1 , Comprising: The said organic silane is a formation method of the alignment film containing either one or both of tetraethoxysilane and tetramethoxysilane. is there.
Invention of Claim 3 is the formation method of the oriented film of any one of Claim 1 or Claim 2 , Comprising: The heating of the said coating layer raises the said coating layer to 180 degreeC or more and 400 degrees C or less. This is a method of forming an alignment film to be heated.
Invention of Claim 4 is the formation method of the oriented film of any one of Claim 1 thru | or 3 , Comprising: The formation of the said coating layer is the film thickness of the said coating layer, forming the said raw material liquid. This is a method of forming an alignment film to be applied to be 1 μm or less.
According to a fifth aspect of the invention, after forming an orientation film in the manufacturing method of the alignment film according to any one of claims 1 to 4, placing the liquid crystal on the alignment layer surface, thereby orienting the liquid crystal It is a manufacturing method of a liquid crystal display device.

本発明の配向膜は無機材料で構成されているので、配向膜が樹脂膜で構成された場合に比べて耐熱性が高くなっている。本発明の配向膜はラビング処理をしなくても液晶配向性を有するので、ラビング処理が不要な分工程数が少なくなるだけではなく、ラビング処理で発生する埃等の汚染物質が液晶表示装置に混入し難い。また、ラビング処理で配向膜が帯電することもないので、基板に設けられたTFTが破壊されることもない。原料液の塗布層を加熱する工程は、真空雰囲気だけではなく、大気雰囲気で行うことも可能であり、加熱工程を大気雰囲気で行えば、真空排気装置も必要とせず、タクト面・コスト面にも優れている。本発明の配向膜は樹脂膜からなる配向膜に比べて光透過性が高く、液晶表示装置外部に放出される光量が多くなるので、明暗のコントラストが高い。   Since the alignment film of the present invention is made of an inorganic material, the heat resistance is higher than when the alignment film is made of a resin film. Since the alignment film of the present invention has liquid crystal alignment even without rubbing treatment, not only the number of steps that do not require rubbing treatment is reduced, but also contaminants such as dust generated by rubbing treatment are added to the liquid crystal display device. Hard to mix. Further, since the alignment film is not charged by the rubbing treatment, the TFT provided on the substrate is not destroyed. The process of heating the coating layer of the raw material liquid can be performed not only in a vacuum atmosphere but also in an air atmosphere. If the heating process is performed in an air atmosphere, a vacuum exhaust device is not required, and the tact surface and cost are reduced. Is also excellent. The alignment film of the present invention has higher light transmittance than the alignment film made of a resin film, and the amount of light emitted to the outside of the liquid crystal display device increases, so that the contrast between light and dark is high.

以下、本発明の実施形態について説明する。
液状の無機含有材料であるTEOS(テトラエトキシシラン、Si(OC254)1モルに対し、陽イオン性の界面活性剤であるハロゲン化アルキルトリメチル系界面活性剤を0.01モル以上0.25モル以下添加し、更に、水と、酸又はアルカリのいずれか一方を添加して多孔質材料前駆体溶液を作製しする。その多孔質材料前駆体溶液を希釈溶媒で希釈し、原料液を作製する。
Hereinafter, embodiments of the present invention will be described.
0.01 mol or more and 0.25 mol of alkyltrimethyl halide surfactant which is a cationic surfactant per 1 mol of TEOS (tetraethoxysilane, Si (OC 2 H 5 ) 4 ) which is a liquid inorganic material The porous material precursor solution is prepared by adding water and further adding either water or acid or alkali. The porous material precursor solution is diluted with a diluent solvent to prepare a raw material liquid.

図1(a)の符号11は透明なガラス基板からなる基板を示しており、基板11表面にはITO(インジウム・錫酸化物)のような透明導電膜がパターニングされ、電極膜12が形成されている。基板11の電極膜12が配置された側の面に、上述した原料液をスピン塗布法により塗布し、膜厚1μm以下の塗布層13を形成する(図1(b))。   Reference numeral 11 in FIG. 1A denotes a substrate made of a transparent glass substrate. A transparent conductive film such as ITO (indium tin oxide) is patterned on the surface of the substrate 11 to form an electrode film 12. ing. On the surface of the substrate 11 on which the electrode film 12 is disposed, the above-described raw material liquid is applied by a spin coating method to form a coating layer 13 having a thickness of 1 μm or less (FIG. 1B).

赤外線加熱炉などを用いて、全体を180℃以上400℃以下の温度に加熱すると、無機含有材料であるTEOSが、塗布層中の酸又はアルカリと反応して加水分解され、透明な無機材料である酸化ケイ素(SiO2)が析出し、無機材料の膜が成長する。このとき、加熱によって塗布層13中の界面活性剤や水や溶媒が蒸発するので、無機材料の膜に空隙部分が生じる。 When the whole is heated to a temperature of 180 ° C. or higher and 400 ° C. or lower using an infrared heating furnace or the like, the TEOS, which is an inorganic-containing material, is hydrolyzed by reacting with an acid or alkali in the coating layer. Some silicon oxide (SiO 2 ) is deposited, and a film of an inorganic material grows. At this time, since the surfactant, water, and solvent in the coating layer 13 are evaporated by heating, voids are formed in the inorganic material film.

図1(c)の符号15は無機材料の膜からなる配向膜を示しており、配向膜15中には、細孔径がナノメートル単位の空隙が形成され、配向膜15の空孔率が29%以上70%以下になっている。   Reference numeral 15 in FIG. 1C denotes an alignment film made of an inorganic material film. In the alignment film 15, voids having a pore size of nanometer units are formed, and the porosity of the alignment film 15 is 29. % To 70%.

上述した工程で、同じ配向膜15、25が形成された状態の基板11、21を2枚作製し、配向膜15、25のラビング処理を行わずに、図2の符号10に示す液晶表示装置を作製する。   Two substrates 11 and 21 having the same alignment films 15 and 25 formed in the above-described steps are manufactured, and the alignment films 15 and 25 are not rubbed, and the liquid crystal display device indicated by reference numeral 10 in FIG. Is made.

この液晶表示装置10では、2枚の基板11、21が配向膜12、22が形成された面を互いに対向させた状態で、不図示のスペーサーによって所定距離を開けて配置されている。基板11、21の間の空間には液晶が配置され、液晶層31が構成されており、液晶層31は配向膜15、25の縁部分に配置された封止層33によって封止されている。   In the liquid crystal display device 10, the two substrates 11 and 21 are arranged at a predetermined distance with a spacer (not shown) in a state where the surfaces on which the alignment films 12 and 22 are formed face each other. Liquid crystal is disposed in the space between the substrates 11 and 21 to form a liquid crystal layer 31, and the liquid crystal layer 31 is sealed by a sealing layer 33 disposed at the edge portions of the alignment films 15 and 25. .

ここでは、液晶層31はネマティック型液晶で構成されており、対向する電極膜12、22の間に電圧が印加されていないOFF状態では、液晶層31中の液晶分子は分子長軸が基板11の表面に対して略垂直に向けられ(垂直配向)、対向する電極膜12、22の間に電圧が印加されたON状態では、液晶分子の垂直配向が崩れる。従って、ON状態では、液晶層31に入射する光は偏光されずに直進し、OFF状態では液晶層31で偏光されることになる。   Here, the liquid crystal layer 31 is composed of nematic liquid crystal, and in the OFF state in which no voltage is applied between the opposing electrode films 12 and 22, the liquid crystal molecules in the liquid crystal layer 31 have a molecular major axis of the substrate 11. In the ON state in which a voltage is applied between the opposing electrode films 12 and 22, the vertical alignment of the liquid crystal molecules is broken. Therefore, in the ON state, light incident on the liquid crystal layer 31 travels straight without being polarized, and in the OFF state, it is polarized by the liquid crystal layer 31.

基板11、21の電極膜12、22と反対側の面には偏光板17、27がそれぞれ配置されており、バックライト30の光は一方の偏光板17に照射される。
上述したように基板11、21と電極膜12、22は透明にされており、本発明により成膜された配向膜15、25もその透明性が高くなっているので、一方の偏光板17で偏光された光は、基板11と電極膜12と配向膜15を透過して液晶層31に入射され、液晶層31を通過した光は配向膜25と電極膜12と基板11を透過し他方の偏光板27に入射される。
Polarizing plates 17 and 27 are disposed on the surfaces of the substrates 11 and 21 opposite to the electrode films 12 and 22, respectively, and the light from the backlight 30 is applied to one polarizing plate 17.
As described above, the substrates 11 and 21 and the electrode films 12 and 22 are transparent, and the alignment films 15 and 25 formed according to the present invention are also highly transparent. The polarized light is transmitted through the substrate 11, the electrode film 12, and the alignment film 15 and is incident on the liquid crystal layer 31. The light that has passed through the liquid crystal layer 31 is transmitted through the alignment film 25, the electrode film 12, and the substrate 11, and Incident on the polarizing plate 27.

偏光板17、27は偏光方向が互いに直交するように向けられているので、液晶層31を直進した光は偏光板27で吸収されるが、液晶層31で偏光された光は偏光板27を通過する。従って、ON状態では液晶表示装置10外部に光が放射され、OFF状態では液晶表示装置10外部に光が放射されない。   Since the polarizing plates 17 and 27 are oriented so that the polarization directions are orthogonal to each other, the light traveling straight through the liquid crystal layer 31 is absorbed by the polarizing plate 27, but the light polarized by the liquid crystal layer 31 passes through the polarizing plate 27. pass. Accordingly, light is emitted outside the liquid crystal display device 10 in the ON state, and no light is emitted outside the liquid crystal display device 10 in the OFF state.

本発明の液晶表示装置10は、配向膜15、25が無機材料で構成されているため、従来の液晶表示装置のように配向膜が樹脂膜で構成された場合に比べ耐熱性が高くなっている。   In the liquid crystal display device 10 of the present invention, since the alignment films 15 and 25 are made of an inorganic material, the heat resistance is higher than when the alignment film is made of a resin film as in the conventional liquid crystal display device. Yes.

配向膜の配向規制力が低いと、液晶温度が高くなったときに液晶のはじきが生じ、液晶配向性が崩れることがある。本発明の液晶表示装置10は、配向膜15、25の空孔率が29%以上70%以下にされることで、配向膜15、25の配向規制力が高くなっているので、液晶表示装置10が加熱された場合であっても、液晶配向性が崩れることがない。   If the alignment regulating force of the alignment film is low, the liquid crystal may be repelled when the liquid crystal temperature is increased, and the liquid crystal alignment may be lost. In the liquid crystal display device 10 of the present invention, since the alignment films 15 and 25 have a porosity of 29% or more and 70% or less, the alignment regulating force of the alignment films 15 and 25 is increased. Even when 10 is heated, the liquid crystal orientation does not collapse.

<実施例1>
TEOS1モルに対し、界面活性剤が0.01モル以上0.25モル以下添加された多孔質材料前駆体溶液を、溶媒で10倍(重量比)にそれぞれ希釈し、界面活性剤の含有量が異なる複数種類の原料液を作製した。
<Example 1>
A porous material precursor solution to which a surfactant is added in an amount of 0.01 mol to 0.25 mol with respect to 1 mol of TEOS is diluted 10-fold (weight ratio) with a solvent, respectively. A raw material solution was prepared.

尚、実施例1と後述する実施例2〜4、比較例1、2では、界面活性剤としてCTACL(セチルトリメチルアンモニウムクロライド)を用い、溶媒としてエタノールをそれぞれ用いた。   In Example 1, Examples 2 to 4 and Comparative Examples 1 and 2 described later, CTACL (cetyltrimethylammonium chloride) was used as the surfactant, and ethanol was used as the solvent.

各原料液を、シリコン基板上に毎秒2000回転でスピン塗布し、1Paの真空中で400℃で焼成し、実施例1の多孔質膜を得た。実施例1の各多孔質膜について、屈折率と空孔率をそれぞれ測定したところ、屈折率は1.152以上1.354以下であり、空孔率は29%以上70%以下であった。   Each raw material liquid was spin-coated on a silicon substrate at 2000 revolutions per second and baked at 400 ° C. in a vacuum of 1 Pa to obtain a porous film of Example 1. When the refractive index and the porosity were measured for each porous film of Example 1, the refractive index was 1.152 to 1.354, and the porosity was 29% to 70%.

尚、空孔率Xは、空気の屈折率を1とし、ガラスの屈折率を1.5として含有率で比例配分し、それぞれの含有率をX、1−Xとして下記式(1)から求めた。
式(1):A=1・X+1.5・(1−X)
(上記式(1)のAは測定された屈折率を示している。)
The porosity X is determined from the following formula (1), where the refractive index of air is 1, the refractive index of glass is 1.5, and the proportions are proportionally distributed, and the respective contents are X and 1-X. It was.
Formula (1): A = 1 * X + 1.5 * (1-X)
(A in the above formula (1) indicates the measured refractive index.)

次に、基板11、21のITO膜が形成された側の面に上述した実施例1の多孔質膜を配向膜15、25として形成し、2枚の基板11、21の間に厚さ5μmのスペーサーを配置し、ネマティック型液晶を注入して液晶パネルを作製したところ、各液晶パネルで液晶分子の垂直配向が確認された。   Next, the porous film of Example 1 described above is formed as the alignment films 15 and 25 on the surface of the substrates 11 and 21 on which the ITO film is formed, and the thickness between the two substrates 11 and 21 is 5 μm. The liquid crystal panels were prepared by injecting nematic liquid crystal and the liquid crystal molecules were confirmed to be vertically aligned in each liquid crystal panel.

<実施例2>
実施例1で用いた多孔質材料前駆体溶液を溶媒でそれぞれ希釈し、界面活性剤の添加量が異なる複数種類の原料液を作製した。これらの原料液を実施例1と同じ条件でシリコン基板に塗布した後、常圧大気中400℃で焼成して実施例2の多孔質膜を作製し、各多孔質膜の屈折率と、空孔率を測定した。それらの測定結果を、界面活性剤の添加量と共に下記表1に記載する。
<Example 2>
The porous material precursor solution used in Example 1 was diluted with a solvent to prepare a plurality of types of raw material liquids with different amounts of surfactant added. These raw material liquids were applied to a silicon substrate under the same conditions as in Example 1, and then fired at 400 ° C. in atmospheric pressure to produce the porous film of Example 2. The refractive index of each porous film and the empty The porosity was measured. The measurement results are shown in Table 1 below together with the addition amount of the surfactant.

Figure 0004599585
Figure 0004599585

上記表1から明らかなように、実施例2の多孔質膜は空孔率が34%以上68%以下の範囲、屈折率は1.162以上1.332以下の範囲にあり、界面活性剤の添加量が多い程空孔率が高く、空孔率が高い程屈折率が低いことが確認された。
従って、界面活性剤の添加量を調整すれば、多孔質膜の空孔率を制御することで配向規制力を高めるだけではなく、屈折率を調整することができる。
As apparent from Table 1 above, the porous membrane of Example 2 has a porosity in the range of 34% to 68% and a refractive index in the range of 1.162 to 1.332, It was confirmed that the larger the amount added, the higher the porosity, and the higher the porosity, the lower the refractive index.
Therefore, if the addition amount of the surfactant is adjusted, it is possible not only to increase the orientation regulating force by controlling the porosity of the porous film but also to adjust the refractive index.

また、実施例1に用いた基板と同じ基板に実施例2の多孔質膜を配向膜として形成し、実施例1と同じ条件で液晶パネルを作製したところ、各液晶パネルで液晶分子の垂直配向が確認された。   Moreover, when the porous film of Example 2 was formed as an alignment film on the same substrate as that used in Example 1, and a liquid crystal panel was produced under the same conditions as in Example 1, the vertical alignment of the liquid crystal molecules in each liquid crystal panel. Was confirmed.

<実施例3>
上記実施例2で用いた多孔質材料前駆体溶液のうち、TEOS1モルに対する界面活性剤の添加量が0.25molにされた多孔質材料前駆体溶液を溶媒で希釈して原料液を作製し、該原料液を実施例1と同じ条件でシリコン基板上に塗布し、常圧大気中で180℃で焼成したところ、屈折率1.206を示し、空孔率59%の多孔質膜が得られた。実施例1に用いたものと同じ基板11、21に、この多孔質膜を配向膜として形成し、実施例1と同じ条件で液晶パネルを作製したところ、液晶分子の垂直配向が確認された。
<Example 3>
Of the porous material precursor solution used in Example 2 above, a porous material precursor solution in which the amount of surfactant added to 1 mol of TEOS was 0.25 mol was diluted with a solvent to prepare a raw material solution, When the raw material liquid was applied on a silicon substrate under the same conditions as in Example 1 and baked at 180 ° C. in atmospheric pressure, a porous film having a refractive index of 1.206 and a porosity of 59% was obtained. . When this porous film was formed as an alignment film on the same substrates 11 and 21 used in Example 1, and a liquid crystal panel was produced under the same conditions as in Example 1, vertical alignment of liquid crystal molecules was confirmed.

<実施例4>
界面活性剤の添加量が異なる多孔質材料前駆体溶液をエタノールで希釈し、複数種類の原料液を作製した。各原料液を回転数を変えてスピン塗布して塗布層を形成し(毎秒500〜4000回転)、常圧大気中で400℃で焼成して多孔質膜を形成した。各多孔質膜の膜厚をスピン回転数と共に図3のグラフに示す。
<Example 4>
Porous material precursor solutions with different amounts of surfactant added were diluted with ethanol to prepare a plurality of types of raw material solutions. Each raw material liquid was spin-coated at different rotation speeds to form a coating layer (500 to 4000 revolutions per second), and fired at 400 ° C. in atmospheric pressure to form a porous film. The film thickness of each porous film is shown in the graph of FIG. 3 together with the spin speed.

尚、図3中のCTACLの数値は、CTACLのモル数をTEOSのモル数で除した値に100を乗じた値あり(単位%)、図3中の希釈倍数は多孔質材料前駆体溶液を溶媒で希釈したときの希釈倍数(重量比)である。   In addition, the numerical value of CTACL in FIG. 3 is a value obtained by dividing the number of moles of CTACL by the number of moles of TEOS and multiplying by 100 (unit%), and the dilution factor in FIG. 3 indicates the porous material precursor solution. It is the dilution factor (weight ratio) when diluted with a solvent.

図3から明らかなように、実施例5の原料液を用いて作製された多孔質膜の膜厚は60nm以上350nm以下の範囲であり、スピンコートの回転数を多くすることで、配向膜15、25の膜厚を薄くできることがわかる。   As is clear from FIG. 3, the film thickness of the porous film produced using the raw material liquid of Example 5 is in the range of 60 nm to 350 nm, and the alignment film 15 is increased by increasing the number of spin coat rotations. , 25 can be reduced.

実施例1に用いた基板と同じ基板に、実施例4の多孔質膜を配向膜として形成し、実施例1と同じ条件で液晶パネルを作製したところ、各液晶パネルで液晶分子の垂直配向が確認された。   When the porous film of Example 4 was formed as an alignment film on the same substrate as that used in Example 1, and a liquid crystal panel was produced under the same conditions as in Example 1, the liquid crystal molecules were aligned vertically in each liquid crystal panel. confirmed.

<比較例1>
TEOS1モルに対する界面活性剤の添加量が0.26mol以上の多孔質材料前駆体溶液を用いて、実施例1で用いた基板上に空孔率が71%以上の配向膜を形成し、実施例1と同じ条件で比較例1の液晶パネルを作製した。
<Comparative Example 1>
An alignment film having a porosity of 71% or more is formed on the substrate used in Example 1 by using a porous material precursor solution in which the amount of surfactant added relative to 1 mol of TEOS is 0.26 mol or more. A liquid crystal panel of Comparative Example 1 was produced under the same conditions as in Example 1.

<比較例2>
TEOS1モルに対する界面活性剤の添加量が0.01mol未満の多孔質材料前駆体溶液を用いて、実施例1で用いた基板上に空孔率が29%未満の配向膜を形成し、実施例1と同じ条件で比較例2の液晶パネルを作製した。
<Comparative example 2>
An alignment film having a porosity of less than 29% is formed on the substrate used in Example 1, using a porous material precursor solution in which the amount of surfactant added relative to 1 mol of TEOS is less than 0.01 mol. A liquid crystal panel of Comparative Example 2 was produced under the same conditions as in 1.

比較例1、2の液晶パネルについて液晶の配向性を確認したところ、比較例2は、実用上不十分な程配向規制力が弱かった。
比較例1は配向規制力は実用上十分であったが、液晶パネルを加熱したところ、液晶温度が60℃になると液晶の配向性に乱れが生じた。
As a result of confirming the orientation of the liquid crystals of the liquid crystal panels of Comparative Examples 1 and 2, Comparative Example 2 had a weaker alignment regulating force than it was practically insufficient.
In Comparative Example 1, the alignment regulating force was practically sufficient, but when the liquid crystal panel was heated, the alignment of the liquid crystal was disturbed when the liquid crystal temperature reached 60 ° C.

これに対し、上述した実施例1〜4で作製された液晶パネル10は液晶の配向規制力が強く、液晶温度が60℃に昇温したときも液晶の配向性に変化が見られなかった。   On the other hand, the liquid crystal panel 10 produced in Examples 1 to 4 described above has a strong alignment regulating force for liquid crystal, and no change was observed in the liquid crystal alignment even when the liquid crystal temperature was raised to 60 ° C.

以上は、スピンコート法により原料液を塗布する場合について説明したが、本発明はこれに限定されず、膜厚1μm以下の塗布層が形成可能なものであれば、ワイヤーバーコート法、ブレードコート法等種々の塗布法を用いることができる。   The above describes the case where the raw material liquid is applied by the spin coating method. However, the present invention is not limited to this, and the wire bar coating method, the blade coating may be used as long as a coating layer having a thickness of 1 μm or less can be formed. Various coating methods such as a method can be used.

配向膜15、25の膜厚も特に限定されないが、その膜厚は1μm以下であることが好ましい。原料液を塗布したときの塗布層13の膜厚を1μm以下にすれば、配向膜15、25の膜厚を1μm以下にすることができる。   The thickness of the alignment films 15 and 25 is not particularly limited, but the thickness is preferably 1 μm or less. If the film thickness of the coating layer 13 when the raw material liquid is applied is 1 μm or less, the film thickness of the alignment films 15 and 25 can be 1 μm or less.

焼成条件は、大気中焼成に限らず真空中での焼成処理でもよい。また、基板11や電極膜12の酸化が問題になる場合には、塗布層13が形成された状態の基板11を、不活性ガス(Heガス、Arガス、N2ガス等)が供給された雰囲気において焼成処理を行ってもよい。 The firing condition is not limited to firing in the air, but may be a firing treatment in a vacuum. In addition, when oxidation of the substrate 11 and the electrode film 12 becomes a problem, an inert gas (He gas, Ar gas, N 2 gas, etc.) is supplied to the substrate 11 on which the coating layer 13 is formed. You may perform a baking process in atmosphere.

焼成条件の温度や時間に関しても溶液中の溶媒や水、空孔形成物質などを蒸発させることができる温度・時間であればよい。好ましくは、空孔形成物質やその他の有機物質が蒸発する180℃から液晶パネル用基板の耐熱温度以下である400℃までで焼成を行うのが良い。また、焼成後に得られた無機多孔質配向膜は、撥水性でも親水性でもよい。   Regarding the temperature and time of the firing conditions, any temperature and time may be used as long as the solvent, water, pore-forming substance and the like in the solution can be evaporated. Preferably, the baking is performed from 180 ° C. at which the pore-forming substance and other organic materials evaporate to 400 ° C. which is lower than the heat resistant temperature of the liquid crystal panel substrate. The inorganic porous alignment film obtained after firing may be water repellent or hydrophilic.

多孔質材料前駆体溶液として、例えば(株)アルバック社製の商品名「ISM−2」などのTEOSと界面活性剤を含有するものをベースにして、界面活性剤の添加量を0.01モル以上0.25モル以下に調整したものが挙げられるが、空孔率が29%以上70%以下となるような多孔質膜を形成可能なものであればこれに限定されるものではない。また、多孔質材料前駆体溶液を適当な溶媒で希釈して原料液を作製してもよいし、多孔質材料前駆体溶液を希釈させずに、そのまま原料液として用いてもよい。   As a porous material precursor solution, for example, based on a product containing TEOS and a surfactant, such as trade name “ISM-2” manufactured by ULVAC, Inc., the addition amount of the surfactant is 0.01 mol or more and 0.25. Although what was adjusted to the mole or less is mentioned, it will not be limited to this as long as it can form a porous film that the porosity becomes 29% or more and 70% or less. Further, the raw material liquid may be prepared by diluting the porous material precursor solution with an appropriate solvent, or the porous material precursor solution may be used as it is without being diluted.

希釈溶媒はエタノールに限定されず、イソプロピルアルコール、メタノール、ブタノール等の種々のアルコールを用いることが可能であり、それらのアルコールは単独で用いてもよいし、2種類以上を一緒に用いてもよい。なお、希釈溶媒は、反応液全体の濃度を調整するために添加されるものであり、反応液の粘性に応じて、塗布しやすいように、その量を調節して添加される。   The diluting solvent is not limited to ethanol, and various alcohols such as isopropyl alcohol, methanol, and butanol can be used. These alcohols may be used alone or in combination of two or more. . The dilution solvent is added to adjust the concentration of the entire reaction solution, and is added in an adjusted amount so that it can be easily applied according to the viscosity of the reaction solution.

無機含有材料の加水分解は、酸による加水分解であってもアルカリによる加水分解であってもよく、その加水分解のために、硝酸や塩酸などの無機酸、ギ酸などの有機酸、アンモニアなどのアルカリを用いることができる。   The hydrolysis of the inorganic-containing material may be performed by acid or alkali. For the hydrolysis, inorganic acids such as nitric acid and hydrochloric acid, organic acids such as formic acid, ammonia and the like are used. Alkali can be used.

原料液に酸又はアルカリを添加して有機シランを加水分解させる場合、有機シラン1モルに対する酸又はアルカリの添加量が0.5モル未満であると加水分解の進行が極端に遅く、1.5モルを超えると有機シランが加水分解されずに原料液が固まってしまうので、その添加量は有機シラン1モルに対して0.5モル以上1.5モル以下であることが望ましい。また、有機シラン1モルに対する水の含有量は8モル以上15モル以下であることが好ましい。   When acid or alkali is added to the raw material liquid to hydrolyze the organic silane, if the amount of acid or alkali added to 1 mol of the organic silane is less than 0.5 mol, the hydrolysis proceeds extremely slowly. If the amount exceeds mol, the organic silane is not hydrolyzed and the raw material liquid is solidified. Therefore, the amount added is preferably 0.5 mol or more and 1.5 mol or less with respect to 1 mol of the organic silane. Moreover, it is preferable that content of water with respect to 1 mol of organosilanes is 8 mol or more and 15 mol or less.

本発明に用いる界面活性剤の種類は特に限定されないが、陽イオン性の界面活性剤を用いることが好ましく、CTACL以外の界面活性剤としては、ラウリルトリメチルアンモニウムクロライド、n−ヘキサデシルトリメチルアンモニウムクロライド、アルキルトリメチルアンモニウムブロマイド、セチルトリメチルアンモニウムブロマイド、ステアリルトリメチルアンモニウムクロライド、アルキルジメチルエチルアンモニウムクロライド、アルキルジメチルエチルアンモニウムブロマイド、セチルジメチルエチルアンモニウムブロマイド、オクタデシルジメチルエチルアンモニウムブロマイド、またはメチルドデシルベンジルトリメチルアンモニウムクロライド等を用いることができる。これらの界面活性剤は単独で用いてもよいし、2種類以上を混合して用いてもよい。   Although the kind of surfactant used in the present invention is not particularly limited, it is preferable to use a cationic surfactant. Examples of surfactants other than CTACL include lauryltrimethylammonium chloride, n-hexadecyltrimethylammonium chloride, Use alkyltrimethylammonium bromide, cetyltrimethylammonium bromide, stearyltrimethylammonium chloride, alkyldimethylethylammonium chloride, alkyldimethylethylammonium bromide, cetyldimethylethylammonium bromide, octadecyldimethylethylammonium bromide, methyldodecylbenzyltrimethylammonium chloride, etc. Can do. These surfactants may be used alone or in combination of two or more.

電極膜12を構成する物質はITOに限定されず、酸化錫(SnO2)、酸化インジウム(In23)、酸化亜鉛(ZnO)、酸化カドミウム(CdO)や、あるいはこれらを1種類以上含む酸化カドミウム−酸化錫(Cd2SnO4:CTO)、酸化カドミウム−酸化亜鉛(CZT)や酸化インジウム−酸化亜鉛(IZO)等種々の透明導電性材料を用いてもよい。 The material constituting the electrode film 12 is not limited to ITO, but includes tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), zinc oxide (ZnO), cadmium oxide (CdO), or one or more of these. Various transparent conductive materials such as cadmium oxide-tin oxide (Cd 2 SnO 4 : CTO), cadmium oxide-zinc oxide (CZT), and indium oxide-zinc oxide (IZO) may be used.

無機含有材料に用いる有機シランは、加水分解可能なものであれば特に限定されるものではないが、テトラアルコキシシランを用いることが好ましい。本発明にはテトラアルコキシシランの中でもTEOSと、TMOS(テトラメトキシシラン、Si(OCH34)を用いることがより好ましく、TEOSとTMOSはそれぞれ単独で用いてもよいし、TEOSとTMOSを一緒に同じ原料液に用いてもよい。
基板11、21は透光性の高いものであればガラス基板に限定されるものではなく、透明な樹脂フィルムからなる基板を用いることもできる。
The organic silane used for the inorganic-containing material is not particularly limited as long as it can be hydrolyzed, but tetraalkoxysilane is preferably used. In the present invention, it is more preferable to use TEOS and TMOS (tetramethoxysilane, Si (OCH 3 ) 4 ) among tetraalkoxysilanes. TEOS and TMOS may be used alone, or TEOS and TMOS may be used together. The same raw material liquid may be used.
The substrates 11 and 21 are not limited to glass substrates as long as they have high translucency, and substrates made of a transparent resin film can also be used.

(a)〜(c):本発明の配向膜の製造工程の一例を説明する断面図(A)-(c): Sectional drawing explaining an example of the manufacturing process of the oriented film of this invention 本発明の液晶表示装置の一例を説明する断面図Sectional drawing explaining an example of the liquid crystal display device of this invention 配向膜の膜厚と、スピン回転数の関係を説明するグラフA graph explaining the relationship between the film thickness of the alignment film and the spin speed

符号の説明Explanation of symbols

10……液晶表示装置 11、21……基板 12、22……電極膜 13……塗布層 15、25……配向膜 31……液晶層   DESCRIPTION OF SYMBOLS 10 ... Liquid crystal display device 11, 21 ... Substrate 12, 22 ... Electrode film 13 ... Coating layer 15, 25 ... Orientation film 31 ... Liquid crystal layer

Claims (5)

表面に液晶材料を接触させたときに、前記液晶材料中の液晶分子が配向する配向膜を形成する配向膜の形成方法であって、
有機シランである無機含有材料と
アルキルトリメチルアンモニウムクロライドと、アルキルトリメチルアンモニウムブロマイドと、アルキルジメチルエチルアンモニウムクロライドと、アルキルジメチルエチルアンモニウムブロマイドとからなる群より選択されるいずれか1種類を含有する界面活性剤と、を含有し、前記界面活性剤の含有量が、前記無機含有材料1モルに対し0.01モル以上0.25モル以下にされた原料液を、前記基板表面に塗布して塗布層を形成し、
前記塗布層を加熱し、前記無機含有材料を加水分解して、無機材料を主成分とする配向膜を形成する配向膜の形成方法。
An alignment film forming method for forming an alignment film in which liquid crystal molecules in the liquid crystal material are aligned when a liquid crystal material is brought into contact with the surface,
An inorganic-containing material that is an organosilane ;
Contains an alkyl trimethyl ammonium chloride, alkyl trimethyl ammonium bromide, alkyl dimethyl ethyl ammonium chloride, a surfactant containing any one selected from the group consisting of alkyl dimethyl ethyl ammonium bromide, and the interface The raw material liquid in which the content of the activator is 0.01 mol or more and 0.25 mol or less with respect to 1 mol of the inorganic-containing material is applied to the substrate surface to form a coating layer,
A method for forming an alignment film, wherein the coating layer is heated to hydrolyze the inorganic-containing material to form an alignment film containing the inorganic material as a main component.
前記有機シランは、テトラエトキシシランと、テトラメトキシシランのいずれか一方又は両方を含有する請求項記載の配向膜の形成方法。 The organosilane, and tetraethoxysilane, a method of forming the alignment film according to claim 1, further comprising either one or both of tetramethoxysilane. 前記塗布層の加熱は、前記塗布層を180℃以上400℃以下に昇温させる請求項1又は請求項のいずれか1項記載の配向膜の形成方法。 The heating of the coated layer, forming method of claim 1 or the alignment film of any one of claims 2 to the temperature of the said coating layer below 400 ° C. 180 ° C. or higher. 前記塗布層の形成は、前記原料液を、前記塗布層の膜厚が1μm以下になるよう塗布する請求項乃至請求項のいずれか1項記載の配向膜の形成方法。 The formation of the coating layer, the raw material liquid, the method of forming the alignment film according to any one of claims 1 to 3 film thickness of the coating layer is applied so as to be 1μm or less. 請求項乃至請求項のいずれか1項記載の配向膜の製造方法で配向膜を形成した後、
前記配向膜表面に液晶を配置し、前記液晶を配向させる液晶表示装置の製造方法。
After forming an alignment film by the manufacturing method of the alignment film of any one of Claim 1 thru | or 4 ,
A method for manufacturing a liquid crystal display device, wherein a liquid crystal is arranged on a surface of the alignment film and the liquid crystal is aligned.
JP2004202638A 2004-07-09 2004-07-09 Method for forming alignment film and method for manufacturing liquid crystal display device Expired - Lifetime JP4599585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202638A JP4599585B2 (en) 2004-07-09 2004-07-09 Method for forming alignment film and method for manufacturing liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202638A JP4599585B2 (en) 2004-07-09 2004-07-09 Method for forming alignment film and method for manufacturing liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2006023600A JP2006023600A (en) 2006-01-26
JP4599585B2 true JP4599585B2 (en) 2010-12-15

Family

ID=35796895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202638A Expired - Lifetime JP4599585B2 (en) 2004-07-09 2004-07-09 Method for forming alignment film and method for manufacturing liquid crystal display device

Country Status (1)

Country Link
JP (1) JP4599585B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4685713B2 (en) * 2006-06-09 2011-05-18 セイコーエプソン株式会社 Method for manufacturing substrate for liquid crystal device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070121A (en) * 1995-11-16 1998-03-10 Texas Instr Inc <Ti> Method of low volatile solvent group for forming thin film of nano-porous aerogels on semiconductor substrate
US5807607A (en) * 1995-11-16 1998-09-15 Texas Instruments Incorporated Polyol-based method for forming thin film aerogels on semiconductor substrates
JP2005031196A (en) * 2003-07-08 2005-02-03 Seiko Epson Corp Liquid crystal device, its manufacturing method, and electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070121A (en) * 1995-11-16 1998-03-10 Texas Instr Inc <Ti> Method of low volatile solvent group for forming thin film of nano-porous aerogels on semiconductor substrate
US5807607A (en) * 1995-11-16 1998-09-15 Texas Instruments Incorporated Polyol-based method for forming thin film aerogels on semiconductor substrates
JP2005031196A (en) * 2003-07-08 2005-02-03 Seiko Epson Corp Liquid crystal device, its manufacturing method, and electronic apparatus

Also Published As

Publication number Publication date
JP2006023600A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
KR20100019922A (en) Nano porous antireflection film and its forming method
JP2008511071A (en) Antiglare coatings and articles
CN103648762B (en) Heat-insulation laminate
JP2011059692A (en) Liquid crystal display cell
WO1997049775A1 (en) Coating fluid for transparent coating, substrate with transparent coating, and use thereof
JP4599585B2 (en) Method for forming alignment film and method for manufacturing liquid crystal display device
TWI772599B (en) Coating composition, conductive film, and liquid crystal display panel
KR20190052052A (en) A liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element
JP2011207751A (en) Method for producing porous siliceous film
JP6690968B2 (en) Method for manufacturing transparent conductive substrate and lateral electric field type liquid crystal display panel with built-in touch panel function
JP5303835B2 (en) Vapor deposition film, optical path deflection element, spatial light modulation element, and projection type image display apparatus using the same
JP3914011B2 (en) Liquid crystal display cell and coating liquid for liquid crystal display cell
JPH04345126A (en) Liquid crystal display element
JP2006003571A (en) Color filter for ips and liquid crystal display device
JP4119708B2 (en) Method for producing alignment control film for liquid crystal
JP3913483B2 (en) Liquid crystal display cell
CN102566160B (en) Liquid crystal display cells
CN113677687A (en) Light absorbing composition and optical filter
JP2012103577A (en) Optical compensation plate and manufacturing method thereof, and liquid crystal display device
JP5999084B2 (en) Silicon-based liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP2003149653A (en) Liquid crystal display cell and sealing agent
JP3794731B2 (en) Electrode film having polarization function
TWI344030B (en) Liquid crystal display panel and manufacturing method thereof and liquid crystal display device incorporating the same
JP2007114267A (en) Method for manufacturing oriented film, and method for manufacturing liquid crystal display element
JP2001348531A (en) Transparent ion getter film-forming coating liquid, substrate with the formed film, and liquid crystal display cell therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4599585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250