JP2004069870A - Orientation control film for liquid crystal, method for orienting liquid crystal using the same, and liquid crystal display device - Google Patents

Orientation control film for liquid crystal, method for orienting liquid crystal using the same, and liquid crystal display device Download PDF

Info

Publication number
JP2004069870A
JP2004069870A JP2002226852A JP2002226852A JP2004069870A JP 2004069870 A JP2004069870 A JP 2004069870A JP 2002226852 A JP2002226852 A JP 2002226852A JP 2002226852 A JP2002226852 A JP 2002226852A JP 2004069870 A JP2004069870 A JP 2004069870A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
control film
display device
orientation control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002226852A
Other languages
Japanese (ja)
Other versions
JP4119708B2 (en
Inventor
Takahiro Nakayama
中山 高博
Hirohiko Murakami
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002226852A priority Critical patent/JP4119708B2/en
Publication of JP2004069870A publication Critical patent/JP2004069870A/en
Application granted granted Critical
Publication of JP4119708B2 publication Critical patent/JP4119708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an orientation control film for a liquid crystal, which permits upsizing of a substrate and ensures uniform orientation, to provide a method for orienting the liquid crystal using the control film, and a liquid crystal display device. <P>SOLUTION: The liquid crystal display device is constructed by using an inorganic porous film composed of a porous SOG film as the orientation control film 3a for the liquid crystal, using the method for orienting the liquid crystal, which comprises laminating a glass substrate 1a with a transparent conductive film 2a attached thereon and a liquid crystal layer 5 via the orientation control film 3a for the liquid crystal and disposing the respective inorganic porous orientation control film 3a or 3b for the liquid crystal between a pair of the mutually opposing glass substrates 1a and 1b with the transparent conductive film 2a or 2b attached thereon and the liquid crystal layer 5 with the liquid crystal incorporated between the glass substrates 1a and 1b. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、液晶用配向制御膜に関し、さらに、この配向制御膜を用いる液晶配向方法及び液晶表示装置に関する。
【0002】
【従来の技術】
液晶表示装置として近年の主流の一つであるTN型液晶ディスプレイパネルの構造を図1に示す。図1を参照して、このディスプレイパネルの液晶セルは、互いに対向する一対のガラス基板1a及び1bの各対向面側、即ち、内側に、それぞれ正負電極として透明導電膜2a及び2bが積層され、次に、これらの電極の内側にそれぞれ配向制御膜3a及び3bが積層され、さらに、この両配向制御膜の内側に、液晶単独または染料を混合した液晶から成る液晶層を厳重に封入して構成される。そして、ガラス基板1a及び1bにおける上記対向面とは反対側、即ち、外側に偏光板4a及び4bが積層されて、全体として液晶ディスプレイパネルを構成する。
【0003】
上記のようなTN型では誘電率の異方性が正のネマティック液晶を用い、液晶セルへの封入時には、配向制御膜3a及び3bにより液晶分子が平行配向され、さらに、この配向方向を配向制御膜3a及び3bの平行面(図1においては水平面)上で90°だけ捩っておく。即ち、上記のように平行配向された液晶分子は、配向制御膜3a近傍のものと配向制御膜3b近傍のものとで互いに直交するように、両配向制御膜間で平行面内で徐々に傾いて捩れた状態で配向される。
【0004】
このように構成された液晶ディスプレイパネルでは、両透明導電膜2a及び2b間に電圧が印加されていなければ、光源側の偏光板4aを通過した光は直線偏光となり液晶層に入射する。そして、上記の液晶層中の捩れた液晶分子で光ベクトルを回転して、偏光板4aに直交して置かれた偏光板4bを通過する。一方、一定の閾値以上の電圧を印加した場合、液晶分子がホメオトロピック配向、即ち、垂直配向となるため、偏光板4aからの入射光の光ベクトルを回転する能力を喪失しており、この入射光は偏光板4bで遮断される。
【0005】
上記のように入射光の透過及び遮断を行うのが液晶表示装置の原理であり、液晶分子の配向処理が重要である。そして、この配向処理においては、液晶分子の配向の均一性を確保することが要望される。
【0006】
このような配向処理の方法として、従来、ラビング法と呼ばれる平行配向方法が知られている。これは、例えば、有機高分子であるポリイミド樹脂系の塗料を基板上に塗布して焼き付けた後に、布ロールやブラシを使用して塗膜表面を一定方向に摩擦(ラビング)するものである。
【0007】
ところが、ラビング法は、ガラス基板と、これに付着させた透明導電膜電極と、配向制御用樹脂膜との少なくとも3層以上の積層構成に対して摩擦を行うので、摩擦作業に用いる布ロール、ブラシ及び摩擦用機械等の磨耗や、各層の構成材料の断片化により発生する塵埃が発生し易い。そして、このような塵埃による加工環境の悪化を防止するためには、除去用の洗浄工程が新たに必要となる。また、ラビング法による摩擦の際に配向ムラが発生するおそれがあることも問題である。さらに、摩擦工程の際に発生する静電気は、TFT素子の破壊の原因となるうえ、配向制御膜の表面の電荷保持率を部分的に低下させたり、静電吸着により付着した異物の焼き付きを招いたりすることがある。これら以外にも、積層形状が複雑な場合、その段差形状部分と平坦形状部分とでラビング条件が異なるため配向規制力やチルト角に偏りが生じ、この結果、配向の均一性を高い精度で得ることが困難になる。また、ラビング角度を常時一定にしてラビング工程を行うことが多いため、画素の分割配向を要するときもある。
【0008】
上記したラビング法を代替するものとして、SiOやCrOなどの酸化物をガラス基板表面の法線と適当に傾斜した方向から蒸着してななめ配向を得る斜め蒸着法や回転二重真空蒸着法、ガラス基板の替りに長い主鎖を有する高分子を200%程度延伸したフィルムを用いてこの延伸方向の配向処理を行う高分子フィルム延伸法や、これら以外にもラングミュア膜法などがある。
【0009】
【発明が解決しようとする課題】
ところで、近年、ディスプレイの大画面化や太陽電池の大型化の進展に伴い、基板の大型化傾向が顕著である。
【0010】
しかしながら、上記した斜め蒸着法や回転二重真空蒸着法では、これらにより形成される配向制御膜の表面が繊細で傷つき易いなどの理由で量産性に難点があり、高分子フィルム延伸法においても、長い主鎖の高分子の種類が限られるという問題があり、さらに、ラングミュア法も大面積基板に対しては、大型装置を要するうえ処理速度の向上に限界があるなど、いずれも、基板の大型化への対応が完全でない。むしろ、大型基板への対応能力はラビング法に及ばないのが現状である。
【0011】
また、ラビングを行わずに多孔質や網目状等の微細構造をもつ有機ポリマー膜によって液晶分子をランダムな方向に配向させる方法(特開平6−18890号)もあるが、有機ポリマー系は耐熱温度が低いという欠点がある。
【0012】
本発明は、上記問題点に鑑み、基板の大型化に対応可能で、配向の均一性を確保し得る液晶用配向制御膜、並びに、この制御膜を用いた液晶配向方法及び液晶表示装置を提供することを課題としている。
【0013】
【課題を解決するための手段】
上記課題を解決するため、本発明の液晶用配向制御膜を無機多孔質膜として形成する。無機多孔質膜として、望ましくはナノメータ程度の空孔を有するものを用い、これにより、ラビング法などの機械的手段に依らない、均一な配向処理を行うことができる。そして、このような無機多孔質膜は、成膜面積の大小を選ばず容易に形成することができるので大型基板への対応が可能である。
【0014】
そして、上記の無機多孔質膜として、ガラス基板と同程度の400℃以上の耐熱温度を有する多孔質SOG膜、即ち、Spin on Glass塗布方法を用いて形成した無機多孔質膜を好適例とすることができる。
【0015】
さらに、上記の無機多孔質膜から成る液晶用配向制御膜を介して透明導電膜付き基板と液晶層とを積層する液晶配向方法により、均一な配向処理及び大型基板対応の両方が可能となる。
【0016】
そして、互いに対向する一対の透明導電膜付き基板と、この両基板間に液晶を封入して成る液晶層との間に、それぞれ上記の無機多孔質液晶配向制御膜を介在させて液晶表示装置を構成すると、このものは、液晶分子の均一な配向を確保しつつ基板の大型化に対応した高い性能を備えるものとなる。
【0017】
【発明の実施の形態】
図1のTN型液晶ディスプレイパネルを用いて、本発明の無機多孔質配向制御膜を備える液晶表示装置の製造方法を説明する。
【0018】
あらかじめ、本液晶ディスプレイパネルの配向制御膜の形成前に、液晶素子用ガラス基板1aの表面に、陽極層または陰極層として透明導電膜2aの成膜を行う。このとき、透明導電膜2aの構成材料として、インジウム・スズ酸化物(ITO)膜を用いることができる。また、ITO膜以外にも、酸化スズ(SnO)、酸化インジウム(In)、酸化亜鉛(ZnO)、酸化カドミウム(CdO)や、これらを組み合わせた酸化カドミウム−酸化スズ(CdSnO)、酸化カドミウム−酸化亜鉛(CZT)、酸化インジウム−酸化亜鉛(IZO)などの透明導電膜を用いることができる。また、透明導電膜には、液晶の表示形式に応じてパターニングを行ったものを用いても良い。
【0019】
そして、透明導電膜2a上に、撥水性を有するヘキサメチルジシロキサンやヘキサメチルジシラザンを含有した多孔質シリカ材料前駆体溶液(例えば株式会社アルバック製ISM−1.5)を用いて、スピン回転数1500rpmのスピンコートにより塗布して成膜を行う。ここで用いる多孔質シリカ材料前駆体溶液には、ヘキサメチルジシロキサンやヘキサメチルジシラザンのような撥水性の物質以外にも、必要に応じてアルコールや酢酸ブチルなどを添加物として加えても良い。次に、上記のスピンコート膜付きの透明電極膜2aを、これらを付着したガラス基板1aごと焼成処理して、上記多孔質シリカ材料前駆体溶液中の溶媒や水、酸またはアルカリ触媒や界面活性剤などを蒸発させながら、多孔質SOG膜から成る配向制御膜3aを形成する。このときの配向制御膜3aの膜厚は300nm程度であるが、スピンコート時の回転数を制御することにより50nm〜2μmの範囲で形成することが望ましい。
【0020】
なお、上記した焼成処理条件は、溶媒や水、酸またはアンモニアなどを蒸発させることができて、多孔質SOG膜を得ることができる条件であれば、特に制限はないが、好ましくは、空気中で50〜350℃程度の温度で処理して主として溶媒を蒸発させ、次いで、例えば1〜10Pa程度の空気中で界面活性剤その他の有機物質などを蒸発させることのできる温度(例えば、200〜500℃)で、得られる多孔質膜の構造が破壊されない時間の間熱処理すればよい。もちろん、酸化等が問題になる場合は、全てHeガス、Arガス、Nガスなどから成る不活性ガス中にて処理する必要がある。
【0021】
このようにして形成したガラス基板1aと透明導電膜2aと配向制御膜3aとの積層構造と、これと同様の積層構造(ガラス基板1bと透明導電膜2bと配向制御膜3b)とを、透明導電膜2a及び2bが正負電極として対を成すように構成する。そして、両積層構造の基板1a及び1b間距離が50μmとなるように、液晶層5を対称軸として対称配置する。さらに、このように対称配置されて対向する積層構造1a〜3a及び1b〜3bの外側のそれぞれを、互いに直交する偏光板4a、4bにより挟持して液晶ディスプレイパネルが形成される。
【0022】
このようにして得られた液晶ディスプレイ簡易パネルの配向確認を行った。この結果、多孔質SOG膜から成る配向制御膜3a、3bは、基板1a、1bの対向面に対して垂直な方向に開孔した多孔質膜として形成され、これにより、液晶分子が基板表面の法線方向に垂直配向されることが確認された。
【0023】
【発明の効果】
以上の説明から明らかなように、本発明の液晶用配向制御膜は、シリカ材料を用いた多孔質SOG膜などの無機多孔質膜を用いて形成されるため、400℃以上の耐熱温度を有する多孔質膜で、かつ、膜全体で一様な多孔構造を有し、これにより、機械的手法たるラビング法などと異なり、液晶分子の配向の均一性を確保することができる。そして、無機多孔質膜の形成は、湿式法と低真空度での焼成法との組合せにより、成膜面積の大小を問わず容易に行うことができるため、大型基板への対応が可能である。
【図面の簡単な説明】
【図1】液晶ディスプレイパネルの概略を示す斜視図
【符号の説明】
1a 1b ガラス基板
2a 2b ITO膜
3a 3b 多孔質配向制御膜
4a 4b 偏光板
5     液晶層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an alignment control film for liquid crystal, and further relates to a liquid crystal alignment method and a liquid crystal display device using the alignment control film.
[0002]
[Prior art]
FIG. 1 shows the structure of a TN type liquid crystal display panel, which is one of the mainstream liquid crystal display devices in recent years. Referring to FIG. 1, in the liquid crystal cell of this display panel, transparent conductive films 2a and 2b as positive and negative electrodes are respectively laminated on respective opposing surfaces of a pair of glass substrates 1a and 1b opposing each other, that is, inside. Next, alignment control films 3a and 3b are laminated on the inside of these electrodes, respectively, and a liquid crystal layer composed of a liquid crystal alone or a liquid crystal mixed with a dye is strictly sealed inside the two alignment control films. Is done. Then, the polarizing plates 4a and 4b are laminated on the glass substrates 1a and 1b on the side opposite to the facing surface, that is, on the outside, to constitute a liquid crystal display panel as a whole.
[0003]
In the above-mentioned TN type, a nematic liquid crystal having a positive dielectric anisotropy is used. When the liquid crystal cell is sealed, liquid crystal molecules are aligned in parallel by the alignment control films 3a and 3b. Twist 90 ° on the parallel plane (horizontal plane in FIG. 1) of the membranes 3a and 3b. That is, the liquid crystal molecules aligned in parallel as described above gradually tilt in a parallel plane between the two alignment control films so that the liquid crystal molecules near the alignment control film 3a and the liquid crystal molecules near the alignment control film 3b are orthogonal to each other. It is oriented in a twisted state.
[0004]
In the liquid crystal display panel configured as described above, if no voltage is applied between the transparent conductive films 2a and 2b, light passing through the polarizing plate 4a on the light source side becomes linearly polarized light and enters the liquid crystal layer. Then, the light vector is rotated by the twisted liquid crystal molecules in the liquid crystal layer, and passes through the polarizing plate 4b placed orthogonal to the polarizing plate 4a. On the other hand, when a voltage equal to or higher than a certain threshold value is applied, the liquid crystal molecules are homeotropically aligned, that is, vertically aligned, and thus lose the ability to rotate the light vector of the incident light from the polarizing plate 4a. Light is blocked by the polarizing plate 4b.
[0005]
The principle of the liquid crystal display device is to transmit and block incident light as described above, and the alignment treatment of liquid crystal molecules is important. In this alignment treatment, it is required to ensure uniformity of alignment of liquid crystal molecules.
[0006]
As a method for such an alignment treatment, a parallel alignment method called a rubbing method has been conventionally known. In this method, for example, a coating of a polyimide resin, which is an organic polymer, is applied on a substrate and baked, and then the surface of the coating is rubbed in a certain direction using a cloth roll or a brush.
[0007]
However, in the rubbing method, friction is applied to a laminated structure of at least three layers of a glass substrate, a transparent conductive film electrode adhered to the glass substrate, and an alignment control resin film. Dust generated by abrasion of brushes and friction machines and fragmentation of constituent materials of each layer is likely to be generated. In order to prevent the processing environment from deteriorating due to such dust, a cleaning step for removal is newly required. There is also a problem that uneven alignment may occur during friction by the rubbing method. Furthermore, the static electricity generated during the friction process causes the destruction of the TFT element, partially lowers the charge retention rate on the surface of the alignment control film, and causes the sticking of foreign substances adhered by electrostatic adsorption. I sometimes go. In addition to these, when the lamination shape is complicated, the rubbing conditions are different between the step-shaped portion and the flat-shaped portion, so that the alignment regulating force and the tilt angle are biased, and as a result, the alignment uniformity is obtained with high accuracy. It becomes difficult. In addition, since the rubbing step is often performed with the rubbing angle always constant, the pixel may need to be divided and aligned.
[0008]
As an alternative to the above-mentioned rubbing method, oblique evaporation method or rotary double vacuum evaporation method in which an oxide such as SiO 2 or CrO is evaporated from a direction appropriately inclined with respect to the normal to the surface of the glass substrate to obtain a slant orientation, Instead of a glass substrate, a polymer film stretching method in which a polymer having a long main chain is stretched by about 200% to perform orientation treatment in the stretching direction, and a Langmuir film method besides these methods.
[0009]
[Problems to be solved by the invention]
By the way, in recent years, as the size of the display screen and the size of the solar cell increase, the tendency of the substrate to increase in size is remarkable.
[0010]
However, in the above-described oblique evaporation method and the rotary double vacuum evaporation method, there is a problem in mass productivity because the surface of the alignment control film formed by these is delicate and easily damaged, and even in the polymer film stretching method, There is a problem in that the types of long main chain polymers are limited.In addition, the Langmuir method requires large equipment for large-area substrates and has a limitation in improving the processing speed. The response to the change is not perfect. Rather, the ability to cope with a large-sized substrate is at present less than that of the rubbing method.
[0011]
There is also a method of aligning liquid crystal molecules in a random direction by using an organic polymer film having a fine structure such as a porous or mesh-like structure without performing rubbing (Japanese Patent Laid-Open No. 6-18890). Has the disadvantage of being low.
[0012]
In view of the above problems, the present invention provides a liquid crystal alignment control film capable of coping with an increase in the size of a substrate and ensuring uniformity of alignment, a liquid crystal alignment method using the control film, and a liquid crystal display device. The challenge is to do that.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, the alignment control film for liquid crystal of the present invention is formed as an inorganic porous film. As the inorganic porous film, a film having pores of about nanometers is desirably used, so that a uniform orientation treatment can be performed without using a mechanical means such as a rubbing method. In addition, such an inorganic porous film can be easily formed regardless of the size of the film formation area, so that it can be applied to a large substrate.
[0014]
A preferred example of the inorganic porous film is a porous SOG film having a heat resistance temperature of about 400 ° C. or higher, which is about the same as that of a glass substrate, that is, an inorganic porous film formed using a Spin on Glass coating method. be able to.
[0015]
Furthermore, the liquid crystal alignment method in which the substrate with the transparent conductive film and the liquid crystal layer are laminated via the liquid crystal alignment control film made of the inorganic porous film makes it possible to perform both uniform alignment processing and large-sized substrates.
[0016]
Then, the above-mentioned inorganic porous liquid crystal alignment control film is interposed between a pair of substrates with a transparent conductive film opposed to each other and a liquid crystal layer formed by enclosing liquid crystal between the two substrates, thereby forming a liquid crystal display device. When configured, this device has high performance corresponding to an increase in the size of the substrate while ensuring uniform alignment of liquid crystal molecules.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
A method for manufacturing a liquid crystal display device including the inorganic porous alignment control film of the present invention will be described using the TN type liquid crystal display panel of FIG.
[0018]
Before forming the alignment control film of the present liquid crystal display panel, a transparent conductive film 2a is formed as an anode layer or a cathode layer on the surface of the liquid crystal element glass substrate 1a. At this time, an indium tin oxide (ITO) film can be used as a constituent material of the transparent conductive film 2a. In addition to the ITO film, tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), zinc oxide (ZnO), cadmium oxide (CdO), and cadmium oxide-tin oxide (Cd 2 SnO 2 ) combining these materials 4 ) A transparent conductive film such as cadmium oxide-zinc oxide (CZT) or indium oxide-zinc oxide (IZO) can be used. Further, a transparent conductive film that has been patterned according to the display format of the liquid crystal may be used.
[0019]
Then, spin rotation is performed on the transparent conductive film 2a using a porous silica material precursor solution containing hexamethyldisiloxane or hexamethyldisilazane having water repellency (for example, ISM-1.5 manufactured by ULVAC, Inc.). The film is formed by applying by spin coating at several 1500 rpm. To the porous silica material precursor solution used here, in addition to a water-repellent substance such as hexamethyldisiloxane or hexamethyldisilazane, alcohol or butyl acetate may be added as an additive as necessary. . Next, the above-mentioned transparent electrode film 2a with the spin coat film is fired together with the glass substrate 1a to which these are adhered, so that the solvent, water, acid or alkali catalyst or surface activity in the above-mentioned porous silica material precursor solution is obtained. While evaporating the agent and the like, an orientation control film 3a made of a porous SOG film is formed. At this time, the thickness of the orientation control film 3a is about 300 nm, but it is desirable to form the orientation control film 3a in the range of 50 nm to 2 μm by controlling the number of revolutions during spin coating.
[0020]
The baking conditions described above are not particularly limited as long as they can evaporate a solvent, water, acid, ammonia, or the like, and can obtain a porous SOG film. At a temperature of about 50 to 350 ° C. to mainly evaporate the solvent, and then to a temperature at which the surfactant or other organic substance can be evaporated in air of, for example, about 1 to 10 5 Pa (for example, 200 500500 ° C.) for a period of time during which the structure of the resulting porous membrane is not destroyed. Of course, when oxidation or the like becomes a problem, it is necessary to perform treatment in an inert gas composed of He gas, Ar gas, N 2 gas, or the like.
[0021]
The thus-formed laminated structure of the glass substrate 1a, the transparent conductive film 2a, and the alignment control film 3a, and a similar laminated structure (the glass substrate 1b, the transparent conductive film 2b, and the alignment control film 3b) are transparent. The conductive films 2a and 2b are configured to form a pair as positive and negative electrodes. Then, the liquid crystal layer 5 is arranged symmetrically with respect to the axis of symmetry so that the distance between the substrates 1a and 1b of both laminated structures becomes 50 μm. Furthermore, the liquid crystal display panel is formed by sandwiching the outer sides of the symmetrically arranged and opposed laminated structures 1a to 3a and 1b to 3b by polarizing plates 4a and 4b orthogonal to each other.
[0022]
The orientation of the thus obtained liquid crystal display simple panel was confirmed. As a result, the orientation control films 3a and 3b made of the porous SOG film are formed as porous films opened in a direction perpendicular to the opposing surfaces of the substrates 1a and 1b, whereby the liquid crystal molecules are removed from the surface of the substrate. It was confirmed that the film was vertically oriented in the normal direction.
[0023]
【The invention's effect】
As is clear from the above description, since the alignment control film for liquid crystal of the present invention is formed using an inorganic porous film such as a porous SOG film using a silica material, it has a heat resistance temperature of 400 ° C. or more. It is a porous film and has a uniform porous structure throughout the film, so that uniformity of alignment of liquid crystal molecules can be ensured, unlike a rubbing method or the like as a mechanical method. In addition, the formation of the inorganic porous film can be easily performed regardless of the size of the film formation area by a combination of a wet method and a firing method at a low degree of vacuum, so that it can be applied to a large substrate. .
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a liquid crystal display panel.
1a 1b Glass substrate 2a 2b ITO film 3a 3b Porous alignment control film 4a 4b Polarizer 5 Liquid crystal layer

Claims (4)

無機多孔質膜から成ることを特徴とする液晶用配向制御膜。An alignment control film for a liquid crystal, comprising an inorganic porous film. 前記無機多孔質膜が多孔質SOG膜から成ることを特徴とする請求項1に記載の液晶用配向制御膜。2. The liquid crystal alignment control film according to claim 1, wherein the inorganic porous film is formed of a porous SOG film. 前記無機多孔質膜から成る液晶用配向制御膜を介して透明導電膜付き基板と液晶層とを積層することを特徴とする液晶配向方法。A liquid crystal alignment method, comprising laminating a substrate with a transparent conductive film and a liquid crystal layer via an alignment control film for liquid crystal comprising the inorganic porous film. 互いに対向する一対の透明導電膜付き基板と、該両基板間に液晶を封入して成る液晶層との間に、それぞれ前記無機多孔質液晶配向制御膜を介在させることを特徴とする液晶表示装置。A liquid crystal display device, wherein the inorganic porous liquid crystal alignment control film is interposed between a pair of substrates with a transparent conductive film facing each other and a liquid crystal layer in which liquid crystal is sealed between the two substrates. .
JP2002226852A 2002-08-05 2002-08-05 Method for producing alignment control film for liquid crystal Expired - Fee Related JP4119708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226852A JP4119708B2 (en) 2002-08-05 2002-08-05 Method for producing alignment control film for liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226852A JP4119708B2 (en) 2002-08-05 2002-08-05 Method for producing alignment control film for liquid crystal

Publications (2)

Publication Number Publication Date
JP2004069870A true JP2004069870A (en) 2004-03-04
JP4119708B2 JP4119708B2 (en) 2008-07-16

Family

ID=32014049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226852A Expired - Fee Related JP4119708B2 (en) 2002-08-05 2002-08-05 Method for producing alignment control film for liquid crystal

Country Status (1)

Country Link
JP (1) JP4119708B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030843A (en) * 2004-07-21 2006-02-02 Seiko Epson Corp Liquid crystal device and electronic equipment
JP2007163821A (en) * 2005-12-14 2007-06-28 Ulvac Japan Ltd Storage method of alignment film and fabrication method of liquid crystal device
JP2008158267A (en) * 2006-12-25 2008-07-10 Ricoh Co Ltd Inorganic alignment layer, method of forming inorganic alignment layer, optical deflecting element, and liquid crystal device
JP2009069227A (en) * 2007-09-11 2009-04-02 Ricoh Co Ltd Liquid crystal alignment layer and liquid crystal device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030843A (en) * 2004-07-21 2006-02-02 Seiko Epson Corp Liquid crystal device and electronic equipment
JP4631334B2 (en) * 2004-07-21 2011-02-16 セイコーエプソン株式会社 Liquid crystal devices and electronic devices
JP2007163821A (en) * 2005-12-14 2007-06-28 Ulvac Japan Ltd Storage method of alignment film and fabrication method of liquid crystal device
JP2008158267A (en) * 2006-12-25 2008-07-10 Ricoh Co Ltd Inorganic alignment layer, method of forming inorganic alignment layer, optical deflecting element, and liquid crystal device
JP2009069227A (en) * 2007-09-11 2009-04-02 Ricoh Co Ltd Liquid crystal alignment layer and liquid crystal device

Also Published As

Publication number Publication date
JP4119708B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JPS6327817A (en) Liquid crystal display device
JP4119708B2 (en) Method for producing alignment control film for liquid crystal
JPS62192724A (en) Ferroelectric liquid crystal element and its production
KR100637115B1 (en) Liquid crystal display
KR20010061965A (en) Liquid crystal display cell having liquid crystal molecules in verticle or substantially verticle alignment
JP2000314887A (en) Liquid crystal device and its production
JP6017135B2 (en) Method for producing liquid crystal molecular alignment substrate and method for producing liquid crystal display element
KR20110099939A (en) Liquid crystal device and its method for homeotropic alignment by using liquid crystal and photocurable monomer composite system through light irradiation
JP2002202509A (en) Liquid crystal display device and method of manufacturing for the same
JPH0553115A (en) Ferroelectric liquid crystal display element
JPH06332012A (en) Production of liquid crystal electrooptical device
JP6246256B2 (en) Liquid crystal molecular alignment substrate and liquid crystal display element
JPH0695133A (en) Liquid crystal electrooptical device
JP2799022B2 (en) Liquid crystal display device
JP4220816B2 (en) Liquid crystal light modulator, manufacturing method thereof, and liquid crystal display device
JP2007114267A (en) Method for manufacturing oriented film, and method for manufacturing liquid crystal display element
JPH01303412A (en) Liquid crystal element
JPH04225325A (en) Production of liquid crystal molecule oriented body
JPS63200124A (en) Liquid crystal element
JPH06273773A (en) Ferroelectric liquid crystal display device
JPH01172817A (en) Ferroelectric liquid crystal element
JPH02294618A (en) Liquid crystal display device
JP3212976B2 (en) Liquid crystal electro-optical device
JPH10253962A (en) Manufacture of liquid crystal device
JPH04130415A (en) Liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R150 Certificate of patent or registration of utility model

Ref document number: 4119708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees