JP4118589B2 - Composite structure of resin and brittle material and manufacturing method thereof - Google Patents

Composite structure of resin and brittle material and manufacturing method thereof Download PDF

Info

Publication number
JP4118589B2
JP4118589B2 JP2002108800A JP2002108800A JP4118589B2 JP 4118589 B2 JP4118589 B2 JP 4118589B2 JP 2002108800 A JP2002108800 A JP 2002108800A JP 2002108800 A JP2002108800 A JP 2002108800A JP 4118589 B2 JP4118589 B2 JP 4118589B2
Authority
JP
Japan
Prior art keywords
resin
brittle material
fine particles
composite structure
brittle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002108800A
Other languages
Japanese (ja)
Other versions
JP2003034003A (en
Inventor
純 明渡
広典 鳩野
正勝 清原
達郎 横山
朋和 伊藤
勝彦 森
篤史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Toto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Toto Ltd
Priority to JP2002108800A priority Critical patent/JP4118589B2/en
Publication of JP2003034003A publication Critical patent/JP2003034003A/en
Application granted granted Critical
Publication of JP4118589B2 publication Critical patent/JP4118589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂基材表面にセラミックスや半金属などの脆性材料からなる構造物を形成した複合構造物およびその作製方法に関する。
【0002】
【従来の技術】
基材表面に金属やセラミックスなどの被膜を形成する方法として、ゾルゲル法、PVDやCVDなどの蒸着法あるいは溶射法が知られている。
【0003】
また、最近では新たな被膜形成方法として、ガスデポジション法(加集誠一郎:金属 1989年1月号)や静電微粒子コーティング法(井川 他:昭和52年度精密機械学会秋季大会学術講演会前刷)が知られている。前者は金属やセラミックス等の超微粒子をガス攪拌にてエアロゾル化し、微小なノズルを通して加速せしめ、基材に衝突した際に運動エネルギーの一部が熱エネルギーに変換され、微粒子間あるいは微粒子と基材間を焼結することを基本原理としており、後者は微粒子を帯電させ電場勾配を用いて加速せしめ、この後はガスデポジション法と同様に衝突の際に発生する熱エネルギーを利用して焼結することを基本原理としている。
【0004】
また、上記のガスデポジション法あるいは静電微粒子コーティング法を改良した先行技術として、特開平8−81774号公報、特開平10−202171号公報、特開平11−21677号公報、特開平11−330577号公報或いは特開2000−212766号公報に開示されるものが知られている。
【0005】
【発明が解決しようとする課題】
上記した先行技術の多くは、被膜形成に樹脂が溶融あるいはガス化する程度の加熱を伴うため、樹脂基板の表面に脆性材料構造物を形成するには適さない。
また、上記した先行技術のうち、ガスデポジション法を改良したものの中には、加熱工程を伴わずに被膜を形成するものもあるが、脆性材料微粒子を樹脂基板に直接衝突させると、樹脂基板は一般的に無機材料に代表される脆性材料と比較して弾性に富み、また柔らかいために下記2つの不具合を生じる場合があった。
(1)不飽和ポリエステル、ナイロン、ゴム、フッ素樹脂等のように、弾性に富む場合には脆性材料微粒子が跳ね返されてうまく製膜できない。
(2)アクリル樹脂、エポキシ樹脂等のように、樹脂材料の中では比較的硬く塑性に乏しい場合には強く衝突させると樹脂基板が削られてしまう。
またポリカーボネートやポリプロピレンなどへの製膜も困難である。
【0006】
そこで、本発明者らは樹脂基板の表面にも脆性材料構造物を形成できる方法を、国際出願(PCT JP00/07076)した。この発明は以下の知見に基づいてなされた。
即ち、延展性を持たない脆性材料(セラミックス)に機械的衝撃力を付加すると、結晶子同士の界面などの劈開面に沿って結晶格子のずれを生じたり、あるいは破砕される。そして、これらの現象が起こると、ずれ面や破面には、もともと内部に存在し別の原子と結合していた原子が剥き出しの状態となった新生面が形成される。この新生面の原子一層の部分は、もともと安定した原子結合状態から外力により強制的に不安定な表面状態に晒され、表面エネルギーが高い状態となる。この活性面が隣接した脆性材料表面や同じく隣接した脆性材料の新生面あるいは基板表面と接合して安定状態に移行する。外部からの連続した機械的衝撃力の付加は、この現象を継続的に発生させ、微粒子の変形、破砕などの繰り返しにより接合の進展、緻密化が行われ、脆性材料構造物が形成される。
そして、更に上記機械的衝撃を搬送ガスにて脆性材料を基材に衝突させるようにした本発明の一態様を以後、微粒子ビーム堆積法と称する。またこの方法はエアロゾルデポジション法とも呼ばれる。
【0007】
上記の微粒子ビーム堆積法によって作製した脆性材料構造物の断面を観察したところ、噴射された微粒子または破砕した微細断片粒子が基材に突き刺さったアンカー部が存在し、その上に破砕・変形した脆性材料微粒子同士が、焼成することもなく緻密に接合して形成される構造となっていることがわかった。即ち、微粒子ビーム堆積法によってうまく脆性材料構造物が形成されるか否かは基材表面にアンカー部が存在しているか否かに大きく依存しており、一度薄いアンカー部が形成された後は、比較的容易にその上に脆性材料構造物が形成される。
【0008】
そして、上記アンカー部は、一般的に弾性係数が高いか、また樹脂の中では比較的硬くかつ塑性に乏しい樹脂基材上に直接脆性材料構造物を形成しようとすると脆性材料微粒子が樹脂基材に弾かれたり、脆性材料微粒子により樹脂基材が削られたりしてうまく形成できないが、このような樹脂基材に対しては加熱等の手段で樹脂基材表面を塑性流動可能な状態まで柔らかくしておき、この状態で硬質粒子を打ち込む等すれば、下地層が形成されるという知見を得て本発明を成したものである。
【0009】
即ち、本発明の第1の態様に属する樹脂と脆性材料との複合構造物は、樹脂基材表面にその一部が食い込む硬質材料からなる下地層が形成され、この下地層の上に多結晶で且つ実質的に結晶配向性がなく更に結晶同士の界面にガラス層からなる粒界層が実質的に存在しない脆性材料構造物が形成された構成である。
【0010】
また、下地層と脆性材料構造物とは同一材料で構成してもよいし、異なる材料で構成してもよい。例えば、下地層を構成する硬質粒子の出発原料として内部歪の小さいものを選定することで、基材に衝突した際に破砕されにくく、大きな粒子のまま基材に食い込む。尚、下地層の厚さは100nm以上が好ましい。
【0011】
上記の複合構造物を作製するには、樹脂基材表面にこの樹脂基材よりも高硬度の粒子を食い込ませて下地層を形成し、次いでこの下地層に脆性材料微粒子を高速で衝突させ、この衝突の衝撃によって前記脆性材料微粒子を変形または破砕し、この変形または破砕にて生じた活性な新生面を介して微粒子同士を再結合せしめることで、下地層の上に多結晶の脆性材料構造物を形成する。
【0012】
前記下地層を形成する手段としては、加圧または衝突による衝撃を高硬度粒子に加えることが考えられ、特に衝突による衝撃で下地層を形成する場合には、樹脂基材が削れてしまうのを防止するため硬質粒子の衝突速度を50m/s以下とすることが好ましい。
【0013】
また、樹脂基材が熱可塑性樹脂からなる場合には、この熱可塑性樹脂のガラス転移温度(Tg)以上に加熱して樹脂基材を軟化せしめ、この軟化した樹脂基材表面に硬質材料粒子を食い込ませて下地層を形成する。なお、脆性材料構造物の形成工程の温度は、前記熱可塑性樹脂のガラス転移温度(Tg)以下にするのが好ましい。
下地層を形成する際の温度の上限は樹脂基材があまり柔らかくなると硬質樹脂が完全に樹脂基材に埋没してしまうので、このような状態にならない温度範囲とする。
【0014】
一方、樹脂基材が熱硬化性樹脂からなる場合には、この熱硬化性樹脂の前駆体を半硬化状態になるまで加熱し、この半硬化状態にある基材表面に硬質材料粒子を食い込ませて下地層を形成する。なお、脆性材料構造物の形成工程は、熱硬化性樹脂が硬化した後に、常温または加熱状態で形成する。
【0015】
また、本発明の第2の態様に属する樹脂と脆性材料との複合構造物は、樹脂基材の表面に延性材料からなる下地層が形成され、この下地層の上に多結晶で且つ実質的に結晶配向性がなく更に結晶同士の界面にガラス層からなる粒界層が実質的に存在しない脆性材料構造物が形成された構成とした。
【0016】
第2の態様に属する複合構造物を作製するには、樹脂基材表面にめっき、蒸着あるいは塗布にて延性材料からなる下地層を形成し、次いでこの下地層に脆性材料微粒子を高速で衝突させ、この衝突の衝撃によって前記脆性材料微粒子を変形または破砕し、この変形または破砕にて生じた活性な新生面を介して微粒子同士を再結合せしめることで、下地層の上に多結晶の脆性材料構造物を形成する。
【0017】
ここで、本発明を理解する上で重要となる語句の解釈を以下に行う。
(下地層)
樹脂基材の最表面に無機材料や金属材料が接合された薄い層であり、基材との密着性を保つとともに、その上に脆性材料構造物を微粒子ビーム堆積法により形成した場合に、この構造物と強固に接合される層を指す。基材との接合はその一部が基材に食い込むようになっているのが望ましい。また、脆性材料構造物との接合は、脆性材料構造物粒子が衝突した際に、その一部が食い込んでアンカー部を形成するか、若しくは脆性材料構造物粒子の衝突によりその一部が破砕または変形されて新生面が形成される材料からなるのが望ましい。それら条件を満足する材料は、硬質材料であり、アンカー部を形成しやすいという観点では金属材料が、新生面を形成しやすいという観点では金属酸化物等の無機材料が好適に利用できる。この層は微粒子ビーム堆積法により形成させることができるが、めっき、PVD、CVDその他の手法を用いてもよい。
(多結晶)
本件では結晶子が接合・集積してなる構造体を指す。結晶子は実質的にそれひとつで結晶を構成しその径は通常5nm以上である。ただし、微粒子が破砕されずに構造物中に取り込まれるなどの場合がまれに生じるが、実質的には多結晶である。
(結晶配向性)
本件では多結晶である構造物中での結晶軸の配向具合を指し、配向性があるかないかは、一般には実質的に配向性のないと考えられる粉末X線回折などによって標準データとされたJCPDS(ASTM)データを指標として判断する。
構造物層中の脆性材料結晶を構成する物質をあげたこの指標における主要な回折3ピークのピーク強度を100%として、構造物層の同物質測定データ中、最も主要なピークのピーク強度をこれに揃えた場合に、他の2ピークのピーク強度が指標の値と比較して30%以内にそのずれが収まっている状態を、本件では実質的に配向性がないと称する。
(界面)
本件では結晶子同士の境界を構成する領域を指す。
(粒界層)
界面あるいは焼結体でいう粒界に位置するある厚み(通常数nm〜数μm)を持つ層で、通常結晶粒内の結晶構造とは異なるアモルファス構造をとり、また場合によっては不純物の偏析を伴う。
(内部歪)
微粒子に含まれる格子歪のことで、X線回折測定におけるHall法を用いて算出される値であり、微粒子を十分にアニールした標準物質を基準として、そのずれを百分率表示する。
【0018】
【発明の実施の態様】
以下に本発明の実施の形態を添付図面に基づいて説明する。ここで、図1〜図3は本発明に係る樹脂と脆性材料との複合構造物の第1の態様の拡大断面図、図4は第2の態様を示す拡大断面図である。
【0019】
図1に示す複合構造物は、下地層と脆性材料構造物が同質で一体となっている。この場合は、軟化状態にある樹脂基材(熱可塑性樹脂の場合は、ガラス転移温度以上、熱硬化性樹脂の場合は前駆体が半硬化の状態にある温度)に、微粒子ビーム堆積法により硬質粒子(脆性材料微粒子)を用いて基材の一部に上記硬質粒子が食い込むように打ち込んで下地層を形成した後、樹脂を硬化させ、次いで、下地層の上に微粒子ビーム堆積法により脆性材料構造物を形成した場合などにあたる。
いずれも、粒子の破壊・変形などが起こっている。図中の粒状のイメージは、形成された脆性材料構造物の結晶粒を示し、これらはお互いに強固に結合している。
【0020】
図2に示す複合構造物は、下地層と構造物が異質であることにより明確に下地層と脆性材料構造物とが分離して認識できる(境界部が認識できる)。この場合は、軟化状態にある樹脂基材に、微粒子ビーム堆積法により硬質粒子を用いて基材の一部に上記硬質粒子が食い込むように打ち込んだ下地層を形成した後、樹脂を硬化させ、次いで、下地層の上に微粒子ビーム堆積法により脆性材料構造物を形成した場合になどにあたる。下地層の材料は脆性材料や金属材料が考えられ、その粒径などはその上に形成する脆性材料構造物と同じでなくとも良い。
【0021】
図3に示す複合構造物は、下地層と構造物が同質であるが、下地層を構成する粒子の大きさが構造物の粒子の大きさよりも大きい場合である。このように大きな粒子を基材に食い込ませることで、質量効果により基材に対してしっかり密着する。
【0022】
図4に示す複合構造物は、基材の上に下地層として延性材料層が存在し、この上に脆性材料構造物が形成されている場合である。この場合は、あらかじめ樹脂基材にめっきやPVDなどにより金属などの延性材料層を形成した後、微粒子ビーム堆積法によりある種の脆性材料微粒子を打ち込む。
【0023】
次に、構造物の作製の方法に関する実施の態様を述べる。
熱可塑性樹脂基材上における脆性材料構造物の作製方法について説明する。熱可塑性樹脂材料に脆性材料を形成させる微粒子ビーム堆積装置図を図5に示す。装置の構成としては、熱可塑性樹脂材料をガラス転移温度(Tg)以上融点以下に温度制御できる加熱冷却プレート1、基材温度を測定する温度計2、基材温度を制御する温調器3、原料粉体である脆性材料微粒子を振動・攪拌する原料槽4、キャリアガスを貯留するキャリアガス貯留槽5、原料槽4とキャリアガス貯留槽5とを連結する連結管6、脆性材料微粒子をキャリアガス貯留槽5のキャリアガスによって樹脂基材7の表面に噴射させるための噴射管8、さらに、下地層を形成した樹脂基材を強制的に空冷によって冷却する噴射ノズル9により構成されている。
【0024】
動作は、基材7を噴射管8の噴射口の先方にセットし、基材温度を制御する温調器3を用いて、基材7のガラス転移温度(Tg)以上融点以下の温度にセットする。基材表面の温度は基材に設置された温度計2によって測温され、温調器3によって制御される。基材7の温度が所定の温度に達した時点で、キャリアガス貯留槽5のバルブ10を開き、キャリアガス貯留槽5内のキャリアガスを流し、原料槽4内にある脆性材料微粒子をキャリアガスと共に噴射管8を通って噴射口から噴出し、所定温度に制御された基材7の表面に衝突させる。
【0025】
この際、基材表面の温度は樹脂基材のガラス転移温度以上かつ融点以下に制御されているので軟化した状態であり、噴射口から噴射された脆性材料微粒子は、基材表面に突き刺さり基材表面に下地層を形成する。このとき基材が軟らかいため脆性材料微粒子は変形されずに基板が変形するアンカーとなる。
【0026】
下地層が形成された状態で、温調器3を用いて基材7の温度を水冷や空冷でガラス転移温度以下に下げ、基材の表面を硬化させると、樹脂基材表面には脆性材料微粒子が食い込んだ下地層が形成される。基材表面の硬化するスピードを促すために、別に設けた空冷用ノズル9からガスを吹き付ければさらに硬化スピードが増し効率的である。
【0027】
この工程を経たのち、噴射口8から再び脆性材料微粒子を下地層に向けて高速で噴射させることにより、次には脆性材料微粒子が下地層に衝突して変形あるいは破砕を起こし、変形した活性な粒子や活性な表面を持つ破砕断片粒子が再接合することにより下地層から成長するようにして脆性材料の構造物が形成される。
【0028】
上記した樹脂基材への脆性材料構造物の作製方法は、下地層形成工程から脆性材料構造物の形成工程までを連続的に行った例であるが、基本的に、下地層を形成した樹脂基材が十分に冷えてから、構造物形成工程を行うといった断続的製法にても樹脂基材上への脆性材料構造物は可能である。
【0029】
この実施の態様に示した熱可塑性樹脂材料としては、ABS、アセタール樹脂、メタクリル樹脂、酢酸セルロース、塩素化ポリエーテル、エチレン−酢酸ビニル共重合体、フッ素樹脂、アイオノマー、メチルペンテンポリマー、ナイロン、ポリカーボネート、ポリエチレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリイミド、ポリフェニレンオキサイド、ポリフェニレンスルフィド、ポリアクリレート、ポリプロピレン、ポリスチレン、ポリスルホン、酢酸ビニル樹脂、塩化ビニリデン樹脂、AS樹脂,塩化ビニル樹脂等が、脆性材料としては、Al23,NiO,TiO2,CuO,ZnO,ZrO2,SnO2,MgOなどの酸化物,WC,ダイヤモンド,SiC,B4C等の炭化物,AlN,Si34等の窒化物,Ca2F,ZrF等のフッ化物などに代表される脆性材料を用い、搬送用キャリアガスとしては、乾燥空気、窒素、ヘリウム、アルゴン、酸素、水素、酸素分圧を制御した混合ガスなどを用いることができる。
【0030】
ここで、下地層の形成工程についてであるが、上述の様に微粒子ビーム堆積法の応用により作成することは有用である。下地層の材質は脆性材料構造物の材質と必ずしも同じでなくとも良く、無機材料に限らず、金属材料でも良い。微粒子ビーム堆積法による脆性材料構造物形成は金属、無機材料上には非常に良好に適用できるからである。従って金属の場合は、これらの微粒子、たとえばAl,Cu,Ni,Ti,Pt,Au,Ag,Si等を同じようにしてノズルより噴射させて、基材に食い込んで密着性を向上させた下地層となる。この後に脆性材料微粒子をノズルより噴射させて金属下地層に脆性材料微粒子が食い込むアンカー部を形成させ、さらにこの上に構造物を成長させていく。
【0031】
さらに,樹脂基材へ下地層を形成する方法としては,高温まで加熱を必要としないようなCVD法,PVD法,ゾルゲル法さらにメッキ法も有効である。
【0032】
次に、熱硬化性樹脂基材上における脆性材料構造物の作製方法について説明する。熱硬化性樹脂材料上に脆性材料構造物を形成する微粒子ビーム堆積装置図を図6に示す。
装置の構成としては、練り合わせた熱硬化性樹脂材料を硬化温度より10℃低い温度以上硬化温度以下に制御できるような加熱プレート11、基材温度を測定する温度計12、基材温度を制御する温調器13、原料粉体である脆性材料微粒子を振動・攪拌する原料槽14、キャリアガスを貯留するキャリアガス貯留槽15、原料槽14とキャリアガス貯留槽15とを連結する連結管16、脆性材料微粒子をキャリアガス貯留槽15のキャリアガスによって樹脂基材17の表面に噴射させるための噴射管18、さらに、下地層を形成した樹脂基材を強制的に空冷によって冷却する噴射ノズル19により構成されている。
【0033】
動作は、練り合わせた熱硬化性樹脂基材17を噴射管18の噴射口の先方にセットし、基材温度を制御する温調器13を用いて、基材17を基材硬化温度より10℃低い温度以上硬化温度以下にセットする。基材表面の温度は基材に設置された温度計12によって測温され、温調器13によって制御される。基材17の温度が所定の温度に達した時点で、キャリアガス貯留槽15のバルブ20を開き、キャリアガス貯留槽15内のキャリアガスを流し、原料槽14内にある脆性材料微粒子をキャリアガスと共に噴射管18を通って噴射口から噴出し、所定温度に制御された基材17の表面に衝突させる。
【0034】
この際、基材表面の温度は樹脂材が硬化する温度以下に制御されているので硬化が完全には達成されていない軟らかい状態であるために、噴射口から噴射された脆性材料微粒子は、基材表面に突き刺さり基材表面に下地層が容易に形成される。下地層が形成された状態で、温調器13を用いて基材17の温度を基材の硬化温度以上に上げ硬化させると、樹脂基材表面には脆性材料微粒子が食い込んだ下地層の形成工程が完了する。
【0035】
この工程を経た後、噴射口18から再び脆性材料微粒子を下地層に向けて高速で噴射させることにより、次には脆性材料微粒子が下地層に衝突して変形あるいは破砕を起こし、変形した活性な粒子や活性な表面を持つ破砕断片粒子が再接合することにより下地層から成長するようにして脆性材料の構造物が形成される。上記に記した樹脂基材への脆性材料構造物の作製方法では、下地層形成工程から脆性材料構造物の形成工程までを連続的に行った例であるが、基本的に、下地層を形成した樹脂基材が十分に冷えてから、形成工程を行うといった断続的製法にても樹脂基材上への脆性材料構造物の形成は可能である。
【0036】
この実施の態様に示した熱硬化性樹脂材料としては、アルキド樹脂、アリル樹脂、アミノ樹脂、メラミン樹脂、エポキシ樹脂,ユリア樹脂,フェノール樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、ポリウレタン等が使用される。下地層の材質、脆性材料構造物の材質は前述した実施の態様と同じものが適用できる。
【0037】
次にキャリアガス流速を制御して樹脂基材上における脆性材料構造物を作製する方法について説明する。キャリアガス流速を制御して樹脂材料に脆性材料構造物を形成する微粒子ビーム堆積装置図を図7に示す。
装置の構成としては、基材固定プレート21、原料粉体である脆性材料微粒子を振動・攪拌する原料槽24、キャリアガスを貯留するキャリアガス貯留槽25、原料槽24とキャリアガス貯留槽25とを連結する連結管26、原料槽24の脆性材料微粒子をキャリアガス貯留槽25のキャリアガスによって樹脂基材27の表面に噴射させるための噴射管28、さらに、下地層を形成するための脆性材料微粒子を振動・攪拌する原料槽29、キャリアガスを貯留するキャリアガス貯留槽30、原料槽29とキャリアガス貯留槽30とを連結する連結管31、噴射口32により構成されている。
【0038】
動作は、基材27を噴射口32、噴射管28の噴射口の前方にセットし、まず、キャリアガス貯留槽30のバルブ33、34を開き、キャリアガス貯留槽30内のキャリアガスを流し、原料槽29内にある脆性材料微粒子をキャリアガスと共に噴射管を通って噴射口32から噴出し、50m/s以下のゆっくりした微粒子速度にて基材27の表面に衝突させる。これにより、樹脂基材上を削ることなく、表層部には脆性材料微粒子が突き刺さった下地層を形成することができる。下地層形成が終了後、キャリアガス貯留槽30のバルブ33、34を閉じ、キャリアガス貯留槽30内のキャリアガスを止める。次に、キャリアガス貯留槽25のバルブ35、36を開き、キャリアガス貯留槽25内のキャリアガスを流し、原料槽24内にある脆性材料微粒子をキャリアガスと共に噴射管28を通って噴射口から噴出し、下地層が形成された樹脂基材27の表面に衝突させ、破砕・変形が生じた脆性材料微粒子は、活性が高く、粒子が持っている運動エネルギーレベルで、瞬時に脆性材料同士の結合を起こし、下地層を形成した樹脂基材上に脆性材料構造物が形成される。
【0039】
上記に記した樹脂基材への脆性材料構造物の作製方法では、下地層形成工程と脆性材料構造物の形成工程までを2つの噴射口を用いて行った例であるが、この方法を用いれば、下地層形成の材料とその上に形成する脆性材料構造物の組成や材質を変えることや、原料粉体である脆性材料微粒子の粒径を変えることによって、より効率的に複合構造物を形成することが可能になる。
【0040】
樹脂上に形成する脆性材料構造物は、ガス流量を制御することによって、基本的には、1つの噴射口を用いて下地層形成工程、構造物形成工程を行うといった連続的製造も可能である。
樹脂材料としては、熱可塑性樹脂材料、熱硬化性樹脂材料のどちらでも適応できる。下地層、脆性材料構造物の材質も前述のものが同様に適用できる。
【0041】
更に、本発明者らは同じ粒径の脆性材料を用いた場合でも、形成される構造物の形成速度、達成膜厚に相違があり、これは粒子の内部歪に起因するとの結論を得た。
そこで、内部歪と同一の形成時間で達成された構造物の膜厚の関係について実験した結果を図8に示す。実験は、純度99.6%の酸化アルミニウム微粒子に遊星ミルを用いて粉砕処理を行い、微粒子のキャラクタリゼーションを変化させた後、超微粒子ビーム堆積法によりアルミニウム基板上に構造物を形成した。微粒子の内部歪はX線回折により測定し、歪量は同微粒子に熱エージングを施して内部歪を除去したものを0%として基準にした。
また、図8中のポイントA,B,Cにおける微粒子のSEM写真(日立製インレンズSEM S−5000)を図9、図10及び図11に示す。
【0042】
図8から1μmの膜厚を得るには0.01〜2.50%の内部歪があれば十分であることが分るが、安定した膜厚を得るには0.1〜2.0%の内部歪が好ましい。クラックと内部歪との関係は、内部歪がない場合には図9に示すようにクラックは発生しないが、内部歪が一定値以上、本件の場合には2.0%以上となると完全にクラックが形成されてしまい、さらには脱落した断片が表面に付着して図11に示すような再凝集状態となってしまう。
【0043】
このように微粒子に歪を与える粉砕処理は、微粒子にかかる粉砕のための衝撃を大きく与えることのできる粉砕手段を用いるのが好ましい。微粒子に比較的一様に大きな歪を付与することができるからである。このような粉砕手段としては、セラミックスの粉砕処理によく用いられるボールミルに比べて大きな重力加速度を与えることの出来る振動ミルやアトライタ、遊星ミルを用いるのが好ましく、とりわけボールミルに比べて格段に大きな重力加速度を与えることの出来る遊星ミルを用いることが最も好ましい。微粒子の状態に着目すれば、クラックは内部歪をキャンセルするものであるので、最も好ましいのは、クラックが生じる直前まで内部歪が高まっている微粒子ということになる。図10に示す状態は若干のクラックが生じているが、十分に内部歪が残されている。
【0044】
微粒子ビーム堆積法を用いてプラスチック材料上へ実際に構造物形成を試みた例について以下に説明する。
(参考例)
参考例では、プラスチック基板上に微粒子ビーム堆積法にて純度99%以上のサブミクロン粒径の酸化アルミニウム微粒子を吹き付けて構造物形成を試みた例である。基材としてABS、ポリプロピレン、アクリル樹脂、ポリエチレンテレフタレート、ポリカーボネート、ポリスチレン、ポリイミド、エポキシ樹脂ARALDITE XD911を用いた。構造物形成装置は図6に準じるようなもので基板の加熱は行わない。従って基板を空冷するための噴射ノズルは保有していない。噴射管である微粒子を噴射するノズルは17mm×0.4mmの開口を持ち、ここから酸化アルミニウム微粒子を窒素ガスに混合させたエアロゾルを7L/minの流量で吹き付けた。また構造物形成を行うチャンバーは真空ポンプにて1kPa以下に調整した。面積17mm×5mmで形成を行い、時間は10分とした。表1に構造物の形成の有無と形成された場合の膜厚を示す。膜厚の測定は日本真空技術株式会社製触針式表面形状測定器Dektak3030を用いた。
【0045】
【表1】

Figure 0004118589
【0046】
(実施例1)
つぎに熱可塑性樹脂としてポリエチレンテレフタレート基板に、参考例で用いた酸化アルミニウム微粒子を用いて下地層を形成し、この上に構造物の形成を行った例について説明する。まず酸化アルミニウム微粒子をエタノールに分散させたスラリーをポリエチレンテレフタレート基板上に滴下して、乾燥させて基板上に微粒子の付着層を形成させた後、表面を押圧状態にして基材が軟らかくなる温度として100℃1時間保持して微粒子を基板に食い込ませて、付着層を下地層として基板上に固定した。こののち基板に超音波洗浄を施して、固定化されなかった微粒子を除去した。次に参考例と同様の方法で微粒子ビーム堆積法にて構造物形成を行った。この結果下地層の上に51.5μmの構造物の膜が形成された。参考例の場合と比較して構造物形成がなされたことがわかる。
【0047】
(実施例2)
次に熱硬化性樹脂としてエポキシ樹脂ARALDITE XD911基板に、参考例で用いた酸化アルミニウム微粒子を用いて層を形成し、この上に構造物の形成を行った例について説明する。まずSUS304基材上に未硬化のエポキシ樹脂を流し込み表面をフラットにした上に、酸化アルミニウム微粒子をエタノールに分散させたスラリーを滴下して、室温にて乾燥させて基板上に微粒子の付着層を形成させた後、樹脂の硬化温度である120℃1時間の硬化処理を行い、付着層を下地層として基板上に固定した。こののち基板に超音波洗浄を施して、固定化されなかった微粒子を除去した。次に参考例と同様の方法で微粒子ビーム堆積法にて構造物形成を行った。この結果、膜厚が1μm程度の薄膜であったが、参考例で見られたような基板の削れは見られず、構造物が形成されることがわかった。
【0048】
(実施例3)
次に樹脂基板表面に金属下地層を形成した後に構造物を形成した例について述べる。基材として構造物形成が達成されなかったポリカーボネート基板に銅、ニッケル、クロムの多層めっきを施し、これに参考例と同様の方法で微粒子ビーム堆積法にて構造物形成を行った。この結果下地層表面に膜厚4μmの構造物の形成が確認された。
【0049】
【発明の効果】
以上に説明したように本発明によれば、従来では困難であった柔らかい樹脂基材表面への脆性材料構造物を下地層を介在させることで形成することができる。
【図面の簡単な説明】
【図1】本発明の第1の態様に係る樹脂と脆性材料との複合構造物の拡大断面図
【図2】別実施の態様を示す図1と同様の図
【図3】別実施の態様を示す図1と同様の図
【図4】本発明の第2の態様に属する複合構造物を示す図1と同様の図
【図5】本発明に係る樹脂と脆性材料との複合構造物の作製装置の概略図
【図6】作製装置の別実施の態様を示す概略図
【図7】作製装置の別実施の態様を示す概略図
【図8】脆性材料微粒子の内部歪と膜厚との関係を示すグラフ
【図9】図8のポイントAにおける微粒子のSEM写真
【図10】図8のポイントBにおける微粒子のSEM写真
【図11】図8のポイントCにおける微粒子のSEM写真[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite structure in which a structure made of a brittle material such as ceramics or a semimetal is formed on the surface of a resin substrate, and a method for manufacturing the same.
[0002]
[Prior art]
As a method for forming a film of metal or ceramic on the surface of the substrate, a sol-gel method, a vapor deposition method such as PVD or CVD, or a thermal spraying method is known.
[0003]
Recently, as new film formation methods, the gas deposition method (Seiichiro Kashu: Metals, January 1989 issue) and electrostatic fine particle coating method (Igawa et al .: Preprint of the academic conference of the Japan Society for Precision Machinery Fall 1977 )It has been known. In the former, ultrafine particles such as metals and ceramics are aerosolized by gas agitation and accelerated through a minute nozzle. When they collide with a substrate, part of the kinetic energy is converted into thermal energy, and between particles or between the particles and the substrate. The latter is based on the basic principle. The latter is charged with fine particles and accelerated using an electric field gradient. After that, similar to the gas deposition method, the latter is sintered using thermal energy generated at the time of collision. The basic principle is to do.
[0004]
Further, as prior arts improved from the above-described gas deposition method or electrostatic fine particle coating method, JP-A-8-81774, JP-A-10-202171, JP-A-11-21777, JP-A-11-330577 are disclosed. And those disclosed in Japanese Patent Application Laid-Open No. 2000-212766.
[0005]
[Problems to be solved by the invention]
Many of the above-described prior arts are not suitable for forming a brittle material structure on the surface of a resin substrate because the film formation involves heating to such an extent that the resin is melted or gasified.
Among the above-described prior arts, some of the improved gas deposition methods form a film without a heating step. However, when the brittle material fine particles directly collide with the resin substrate, the resin substrate In general, it is rich in elasticity compared to brittle materials typified by inorganic materials, and since it is soft, the following two problems may occur.
(1) When it is rich in elasticity, such as unsaturated polyester, nylon, rubber, fluororesin, etc., brittle material fine particles are rebounded and film formation cannot be performed well.
(2) If the resin material is relatively hard and poor in plasticity, such as an acrylic resin or an epoxy resin, the resin substrate will be scraped if it is strongly collided.
Also, it is difficult to form a film on polycarbonate or polypropylene.
[0006]
Therefore, the present inventors made an international application (PCT JP00 / 07076) for a method capable of forming a brittle material structure on the surface of a resin substrate. This invention was made based on the following findings.
That is, when a mechanical impact force is applied to a brittle material (ceramics) that does not have spreadability, the crystal lattice shifts along the cleaved surface such as the interface between crystallites or is crushed. When these phenomena occur, a new surface is formed on the slipping surface or fracture surface, in which atoms originally present inside and bonded to other atoms are exposed. The part of the atomic layer on the new surface is exposed to an unstable surface state by an external force from a stable atomic bond state, and the surface energy is high. The active surface joins the adjacent brittle material surface, the newly formed brittle material surface, or the substrate surface, and shifts to a stable state. The addition of a continuous mechanical impact force from the outside continuously generates this phenomenon, and the joining is progressed and densified by repeated deformation and crushing of fine particles, thereby forming a brittle material structure.
Further, an embodiment of the present invention in which the above-described mechanical impact is caused to cause the brittle material to collide with the substrate with the carrier gas is hereinafter referred to as a fine particle beam deposition method. This method is also called an aerosol deposition method.
[0007]
When the cross section of the brittle material structure prepared by the fine particle beam deposition method was observed, there was an anchor part where the injected fine particles or crushed fine fragment particles pierced the base material, and the brittleness that was crushed and deformed on it It was found that the material fine particles had a structure formed by closely bonding without firing. That is, whether or not a brittle material structure is successfully formed by the fine particle beam deposition method depends largely on whether or not the anchor portion exists on the surface of the substrate. Once the thin anchor portion is formed, A brittle material structure is formed on it relatively easily.
[0008]
The anchor portion generally has a high elastic modulus, and when an attempt is made to directly form a brittle material structure on a resin base material that is relatively hard and poor in plasticity, the brittle material fine particles are formed on the resin base material. The resin base material is scraped by the brittle material fine particles and cannot be formed well. However, such a resin base material is softened to a state where the resin base material can be plastically flowed by means such as heating. In addition, the present invention has been achieved by obtaining the knowledge that, if hard particles are implanted in this state, an underlayer is formed.
[0009]
That is, in the composite structure of the resin and the brittle material belonging to the first aspect of the present invention, a base layer made of a hard material partially digging into the resin base material surface is formed, and the polycrystalline layer is formed on the base layer. In addition, a brittle material structure having substantially no crystal orientation and having substantially no grain boundary layer composed of a glass layer at the interface between crystals is formed.
[0010]
Further, the underlayer and the brittle material structure may be made of the same material or different materials. For example, by selecting a material having a small internal strain as a starting material for the hard particles constituting the base layer, it is difficult to be crushed when it collides with the base material, and bites into the base material as a large particle. Note that the thickness of the underlayer is preferably 100 nm or more.
[0011]
In order to produce the above composite structure, particles having a hardness higher than that of the resin substrate are formed on the resin substrate surface to form a foundation layer, and then the brittle material fine particles collide with the foundation layer at a high speed. The brittle material fine particles are deformed or crushed by the impact of the collision, and the fine particles are recombined with each other through the active new surface generated by the deformation or crushing, so that the polycrystalline brittle material structure is formed on the underlying layer. Form.
[0012]
As a means for forming the underlayer, it is conceivable to apply impact due to pressurization or collision to the high-hardness particles. In particular, when the underlayer is formed by impact due to collision, the resin base material may be scraped. In order to prevent this, the collision speed of the hard particles is preferably 50 m / s or less.
[0013]
When the resin base material is made of a thermoplastic resin, the resin base material is softened by heating to a temperature higher than the glass transition temperature (Tg) of the thermoplastic resin, and hard material particles are applied to the surface of the softened resin base material. A base layer is formed by biting. In addition, it is preferable that the temperature of the formation process of a brittle material structure shall be below the glass transition temperature (Tg) of the said thermoplastic resin.
The upper limit of the temperature when forming the base layer is set to a temperature range in which such a state is not caused because the hard resin is completely buried in the resin substrate when the resin substrate becomes too soft.
[0014]
On the other hand, when the resin substrate is made of a thermosetting resin, the precursor of the thermosetting resin is heated until it is in a semi-cured state, and the hard material particles are digged into the surface of the substrate in the semi-cured state. To form an underlayer. In addition, the formation process of a brittle material structure is formed at room temperature or in a heated state after the thermosetting resin is cured.
[0015]
In the composite structure of the resin and the brittle material belonging to the second aspect of the present invention, a base layer made of a ductile material is formed on the surface of the resin base material, and is polycrystalline and substantially on the base layer. In this structure, a brittle material structure having no crystal orientation and having substantially no grain boundary layer composed of a glass layer at the interface between crystals is formed.
[0016]
In order to produce the composite structure belonging to the second aspect, a base layer made of a ductile material is formed on the surface of the resin base material by plating, vapor deposition or coating, and then brittle material fine particles collide with the base layer at a high speed. The brittle material fine particles are deformed or crushed by the impact of the collision, and the fine brittle material structure is formed on the underlayer by recombining the fine particles with each other through the active new surface generated by the deformation or crushing. Form things.
[0017]
Here, the interpretation of the words that are important for understanding the present invention will be described below.
(Underlayer)
This is a thin layer in which an inorganic material or a metal material is bonded to the outermost surface of the resin base material. This maintains the adhesion to the base material, and when a brittle material structure is formed on it by a fine particle beam deposition method. A layer that is firmly bonded to a structure. It is desirable that a part of the bonding with the base material bites into the base material. Further, in the joining with the brittle material structure, when the brittle material structure particles collide, a part thereof bites in to form an anchor portion, or a part of the brittle material structure particles is crushed or collided by the collision of the brittle material structure particles. It is desirable to be made of a material that is deformed to form a new surface. A material that satisfies these conditions is a hard material, and a metal material can be suitably used from the viewpoint of easily forming an anchor portion, and an inorganic material such as a metal oxide can be suitably used from the viewpoint of easily forming a new surface. This layer can be formed by a fine particle beam deposition method, but plating, PVD, CVD, or other methods may be used.
(Polycrystalline)
In this case, it refers to a structure in which crystallites are joined and integrated. The crystallite is essentially one crystal, and its diameter is usually 5 nm or more. However, the case where the fine particles are taken into the structure without being crushed rarely occurs, but is substantially polycrystalline.
(Crystal orientation)
In this case, it refers to the degree of orientation of crystal axes in a polycrystal structure, and whether or not there is orientation is standard data by powder X-ray diffraction, which is generally considered to have substantially no orientation. JCPDS (ASTM) data is used as an index.
The peak intensity of the three major diffraction peaks in this index, which is the material constituting the brittle material crystal in the structure layer, is defined as 100%. In the present case, the state in which the deviation of the peak intensity of the other two peaks is within 30% of the index value is referred to as having substantially no orientation.
(interface)
In this case, it refers to the region that forms the boundary between crystallites.
(Grain boundary layer)
It is a layer with a certain thickness (usually several nm to several μm) located at the grain boundary in the interface or sintered body. It usually has an amorphous structure different from the crystal structure in the crystal grain, and in some cases, segregates impurities. Accompany.
(Internal distortion)
The lattice strain contained in the fine particles is a value calculated by using the Hall method in the X-ray diffraction measurement, and the deviation is expressed as a percentage with reference to a standard material in which the fine particles are sufficiently annealed.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 to FIG. 3 are enlarged sectional views of the first aspect of the composite structure of resin and brittle material according to the present invention, and FIG. 4 is an enlarged sectional view showing the second aspect.
[0019]
In the composite structure shown in FIG. 1, the base layer and the brittle material structure are the same and integrated. In this case, the resin substrate in a softened state (in the case of a thermoplastic resin, the glass transition temperature or higher, in the case of a thermosetting resin, the temperature at which the precursor is in a semi-cured state) is hardened by a fine particle beam deposition method. The base layer is formed by using particles (brittle material fine particles) so that the hard particles penetrate into a part of the base material, and then the resin is cured, and then the brittle material is formed on the base layer by a fine particle beam deposition method. This is the case when a structure is formed.
In both cases, destruction and deformation of particles are occurring. The granular image in the figure shows the crystal grains of the brittle material structure formed, which are firmly bonded to each other.
[0020]
In the composite structure shown in FIG. 2, since the underlayer and the structure are different, the underlayer and the brittle material structure can be clearly separated and recognized (a boundary portion can be recognized). In this case, on the resin base material in the softened state, after forming a base layer in which the hard particles bite into a part of the base material using hard particles by a fine particle beam deposition method, the resin is cured, Next, it corresponds to a case where a brittle material structure is formed on the underlayer by a fine particle beam deposition method. The material for the underlayer may be a brittle material or a metal material, and the particle size thereof may not be the same as that of the brittle material structure formed thereon.
[0021]
In the composite structure shown in FIG. 3, the base layer and the structure are the same, but the size of the particles constituting the base layer is larger than the size of the particles of the structure. By letting such large particles bite into the base material, it adheres firmly to the base material due to the mass effect.
[0022]
The composite structure shown in FIG. 4 is a case where a ductile material layer exists as a base layer on a base material and a brittle material structure is formed thereon. In this case, after a ductile material layer such as metal is formed on a resin base material in advance by plating or PVD, certain brittle material fine particles are implanted by a fine particle beam deposition method.
[0023]
Next, an embodiment relating to a method of manufacturing a structure will be described.
A method for producing a brittle material structure on a thermoplastic resin substrate will be described. FIG. 5 shows a diagram of a fine particle beam deposition apparatus for forming a brittle material on a thermoplastic resin material. The configuration of the apparatus includes a heating / cooling plate 1 that can control the temperature of the thermoplastic resin material to a glass transition temperature (Tg) or higher and a melting point or lower, a thermometer 2 that measures the substrate temperature, a temperature controller 3 that controls the substrate temperature, A raw material tank 4 that vibrates and stirs brittle material fine particles as raw material powder, a carrier gas storage tank 5 that stores carrier gas, a connecting pipe 6 that connects the raw material tank 4 and the carrier gas storage tank 5, and brittle material fine particles as a carrier An injection pipe 8 for injecting the surface of the resin base material 7 with the carrier gas in the gas storage tank 5 and an injection nozzle 9 for forcibly cooling the resin base material on which the base layer is formed by air cooling are configured.
[0024]
The operation is performed by setting the base material 7 at the tip of the injection port of the injection pipe 8 and using the temperature controller 3 for controlling the base material temperature to a temperature not lower than the melting point of the glass transition temperature (Tg) of the base material 7. To do. The temperature of the substrate surface is measured by a thermometer 2 installed on the substrate and controlled by a temperature controller 3. When the temperature of the base material 7 reaches a predetermined temperature, the valve 10 of the carrier gas storage tank 5 is opened, the carrier gas in the carrier gas storage tank 5 is flowed, and the brittle material fine particles in the raw material tank 4 are transferred to the carrier gas. At the same time, it is ejected from the ejection port through the ejection tube 8 and collides with the surface of the substrate 7 controlled to a predetermined temperature.
[0025]
At this time, the temperature of the base material surface is controlled to be higher than the glass transition temperature and lower than the melting point of the resin base material, so that it is in a softened state, and the brittle material fine particles injected from the injection port pierce the base material surface. An underlayer is formed on the surface. At this time, since the base material is soft, the brittle material fine particles are not deformed and become anchors for deforming the substrate.
[0026]
When the temperature of the substrate 7 is lowered to the glass transition temperature or lower by water cooling or air cooling using the temperature controller 3 with the base layer formed, and the surface of the substrate is cured, a brittle material is formed on the resin substrate surface. A base layer in which the fine particles have eroded is formed. In order to accelerate the curing speed of the substrate surface, if a gas is blown from a separately provided air cooling nozzle 9, the curing speed is further increased and efficient.
[0027]
After this step, the brittle material fine particles are again sprayed from the injection port 8 toward the underlayer at a high speed, and then the brittle material fine particles collide with the underlayer to cause deformation or crushing. A brittle material structure is formed such that the particles and crushed fragment particles having an active surface re-join and grow from the underlayer.
[0028]
The above-described method for producing a brittle material structure on a resin base material is an example in which the process from the base layer formation process to the brittle material structure formation process is continuously performed. A brittle material structure on the resin substrate can be obtained even by an intermittent manufacturing method in which the structure forming step is performed after the substrate is sufficiently cooled.
[0029]
The thermoplastic resin material shown in this embodiment includes ABS, acetal resin, methacrylic resin, cellulose acetate, chlorinated polyether, ethylene-vinyl acetate copolymer, fluororesin, ionomer, methylpentene polymer, nylon, polycarbonate. , Polyethylene, polyethylene terephthalate, polybutylene terephthalate, polyimide, polyphenylene oxide, polyphenylene sulfide, polyacrylate, polypropylene, polystyrene, polysulfone, vinyl acetate resin, vinylidene chloride resin, AS resin, vinyl chloride resin, etc. 2 O Three , NiO, TiO 2 , CuO, ZnO, ZrO 2 , SnO 2 , MgO and other oxides, WC, diamond, SiC, B Four Carbide such as C, AlN, Si Three N Four Nitride such as Ca 2 A brittle material typified by fluoride such as F and ZrF is used, and as a carrier gas for conveyance, dry air, nitrogen, helium, argon, oxygen, hydrogen, a mixed gas with controlled oxygen partial pressure, or the like is used. it can.
[0030]
Here, regarding the formation process of the underlayer, it is useful to create it by applying the fine particle beam deposition method as described above. The material of the underlayer is not necessarily the same as the material of the brittle material structure, and is not limited to an inorganic material but may be a metal material. This is because the formation of a brittle material structure by the fine particle beam deposition method can be applied to metals and inorganic materials very well. Therefore, in the case of a metal, these fine particles, for example, Al, Cu, Ni, Ti, Pt, Au, Ag, Si, etc. are sprayed from the nozzle in the same manner, and are eroded into the base material to improve adhesion. It becomes a stratum. Thereafter, brittle material fine particles are sprayed from a nozzle to form an anchor portion into which the brittle material fine particles bite into the metal underlayer, and a structure is further grown thereon.
[0031]
Further, as a method for forming the base layer on the resin base material, a CVD method, a PVD method, a sol-gel method and a plating method which do not require heating to a high temperature are also effective.
[0032]
Next, a method for producing a brittle material structure on a thermosetting resin substrate will be described. FIG. 6 shows a fine particle beam deposition apparatus for forming a brittle material structure on a thermosetting resin material.
As a configuration of the apparatus, a heating plate 11 capable of controlling the kneaded thermosetting resin material at a temperature 10 ° C. lower than the curing temperature to a curing temperature or less, a thermometer 12 for measuring the substrate temperature, and the substrate temperature are controlled. A temperature controller 13, a raw material tank 14 for vibrating and stirring the brittle material fine particles as raw material powder, a carrier gas storage tank 15 for storing carrier gas, a connecting pipe 16 for connecting the raw material tank 14 and the carrier gas storage tank 15, By an injection pipe 18 for injecting fine particles of brittle material onto the surface of the resin base material 17 by the carrier gas in the carrier gas storage tank 15, and by an injection nozzle 19 for forcibly cooling the resin base material on which the base layer is formed by air cooling. It is configured.
[0033]
The operation is performed by setting the kneaded thermosetting resin base material 17 at the tip of the injection port of the injection pipe 18 and using the temperature controller 13 for controlling the base material temperature, the base material 17 is 10 ° C. from the base material curing temperature. Set at a low temperature or higher and below a curing temperature. The temperature of the substrate surface is measured by a thermometer 12 installed on the substrate and controlled by a temperature controller 13. When the temperature of the base material 17 reaches a predetermined temperature, the valve 20 of the carrier gas storage tank 15 is opened, the carrier gas in the carrier gas storage tank 15 is flowed, and the brittle material fine particles in the raw material tank 14 are transferred to the carrier gas. At the same time, it is ejected from the ejection port through the ejection pipe 18 and collides with the surface of the base material 17 controlled to a predetermined temperature.
[0034]
At this time, since the temperature of the substrate surface is controlled to be equal to or lower than the temperature at which the resin material is cured, the brittle material fine particles ejected from the ejection port are based on a soft state in which curing is not completely achieved. The base layer is easily formed on the surface of the substrate by sticking into the surface of the material. When the temperature of the base material 17 is raised to a temperature higher than the curing temperature of the base material using the temperature controller 13 in a state where the base layer is formed, formation of the base layer in which brittle material fine particles have digged into the surface of the resin base material. The process is complete.
[0035]
After passing through this step, the brittle material fine particles are again sprayed from the injection port 18 toward the underlayer at a high speed, and then the brittle material fine particles collide with the underlayer to cause deformation or crushing. A brittle material structure is formed such that the particles and crushed fragment particles having an active surface re-join and grow from the underlayer. In the above-described method for producing a brittle material structure on a resin base material, the process from the base layer formation process to the brittle material structure formation process is performed continuously. The brittle material structure can be formed on the resin base material even by an intermittent manufacturing method in which the forming step is performed after the resin base material is sufficiently cooled.
[0036]
As the thermosetting resin material shown in this embodiment, alkyd resin, allyl resin, amino resin, melamine resin, epoxy resin, urea resin, phenol resin, unsaturated polyester resin, silicone resin, polyurethane, etc. are used. . The same material as that of the above-described embodiment can be applied to the material of the underlayer and the material of the brittle material structure.
[0037]
Next, a method for producing a brittle material structure on a resin substrate by controlling the carrier gas flow rate will be described. FIG. 7 shows a fine particle beam deposition apparatus for controlling the carrier gas flow rate to form a brittle material structure in the resin material.
The configuration of the apparatus includes a base material fixing plate 21, a raw material tank 24 that vibrates and stirs brittle material fine particles as raw material powder, a carrier gas storage tank 25 that stores a carrier gas, a raw material tank 24 and a carrier gas storage tank 25, A connecting pipe 26 for connecting the particles, brittle material fine particles in the raw material tank 24 to the surface of the resin base material 27 by the carrier gas in the carrier gas storage tank 25, and a brittle material for forming a base layer A raw material tank 29 that vibrates and stirs fine particles, a carrier gas storage tank 30 that stores carrier gas, a connecting pipe 31 that connects the raw material tank 29 and the carrier gas storage tank 30, and an injection port 32 are included.
[0038]
In operation, the base material 27 is set in front of the injection port 32 and the injection port of the injection pipe 28, first, the valves 33 and 34 of the carrier gas storage tank 30 are opened, and the carrier gas in the carrier gas storage tank 30 flows. The brittle material fine particles in the raw material tank 29 are ejected from the ejection port 32 through the ejection pipe together with the carrier gas, and collide with the surface of the base material 27 at a slow particulate velocity of 50 m / s or less. Thereby, it is possible to form an underlayer in which brittle material fine particles are pierced on the surface layer portion without cutting the resin base material. After the formation of the underlayer is completed, the valves 33 and 34 of the carrier gas storage tank 30 are closed, and the carrier gas in the carrier gas storage tank 30 is stopped. Next, the valves 35 and 36 of the carrier gas storage tank 25 are opened, the carrier gas in the carrier gas storage tank 25 is allowed to flow, and the brittle material fine particles in the raw material tank 24 pass through the injection pipe 28 together with the carrier gas from the injection port. The brittle material fine particles that are ejected and collided with the surface of the resin base material 27 on which the base layer is formed, and are crushed and deformed, have high activity, and the kinetic energy level possessed by the particles instantaneously increases A brittle material structure is formed on the resin base material on which bonding has occurred and the underlayer is formed.
[0039]
The above-described method for producing a brittle material structure on a resin base material is an example in which the base layer forming step and the brittle material structure forming step are performed using two injection ports, but this method is used. For example, the composite structure can be made more efficient by changing the composition and material of the material for forming the underlying layer and the brittle material structure formed thereon, or by changing the particle size of the brittle material fine particles that are the raw material powder. It becomes possible to form.
[0040]
The brittle material structure formed on the resin can basically be manufactured continuously by controlling the gas flow rate to perform the underlayer forming process and the structure forming process using one injection port. .
As the resin material, either a thermoplastic resin material or a thermosetting resin material can be applied. The above-mentioned materials can be similarly applied to the material of the underlayer and the brittle material structure.
[0041]
Furthermore, the present inventors have concluded that even when brittle materials having the same particle size are used, there is a difference in the formation speed and the achieved film thickness of the structure to be formed, which is caused by the internal strain of the particles. .
FIG. 8 shows the result of an experiment on the relationship between the film thickness of the structure and the internal strain achieved in the same formation time. In the experiment, aluminum oxide fine particles having a purity of 99.6% were pulverized using a planetary mill to change the characterization of the fine particles, and then a structure was formed on the aluminum substrate by an ultrafine particle beam deposition method. The internal strain of the fine particles was measured by X-ray diffraction, and the amount of strain was determined based on 0% obtained by subjecting the fine particles to thermal aging to remove the internal strain.
Moreover, the SEM photograph (Hitachi in-lens SEM S-5000) of the microparticles | fine-particles in point A, B, C in FIG. 8 is shown in FIG.9, FIG10 and FIG.11.
[0042]
It can be seen from FIG. 8 that 0.01 to 2.50% of internal strain is sufficient to obtain a film thickness of 1 μm, but 0.1 to 2.0% to obtain a stable film thickness. Is preferable. As shown in FIG. 9, when there is no internal strain, the crack does not occur when there is no internal strain. However, when the internal strain exceeds a certain value, in this case, 2.0% or more, the crack is completely cracked. 11 is formed, and the dropped pieces adhere to the surface, resulting in a re-aggregation state as shown in FIG.
[0043]
Thus, it is preferable to use a pulverizing means capable of giving a large impact for the pulverization applied to the fine particles in the pulverization treatment for distorting the fine particles. This is because a large strain can be imparted to the fine particles relatively uniformly. As such a pulverizing means, it is preferable to use a vibration mill, an attritor, or a planetary mill that can give a large acceleration of gravity compared to a ball mill often used for pulverizing ceramics. Most preferably, a planetary mill that can provide acceleration is used. Focusing on the state of the fine particles, since the crack cancels the internal strain, the most preferable is the fine particle whose internal strain is increased until just before the crack is generated. In the state shown in FIG. 10, some cracks are generated, but sufficient internal strain remains.
[0044]
An example of actually trying to form a structure on a plastic material using the fine particle beam deposition method will be described below.
(Reference example)
In the reference example, an aluminum oxide fine particle having a submicron particle diameter of 99% or more is sprayed on a plastic substrate by a fine particle beam deposition method to try to form a structure. ABS, polypropylene, acrylic resin, polyethylene terephthalate, polycarbonate, polystyrene, polyimide, and epoxy resin ARALDITE XD911 were used as the base material. The structure forming apparatus conforms to FIG. 6 and does not heat the substrate. Therefore, it does not have an injection nozzle for air-cooling the substrate. A nozzle for injecting fine particles, which is an injection tube, has an opening of 17 mm × 0.4 mm, and an aerosol in which aluminum oxide fine particles were mixed with nitrogen gas was sprayed at a flow rate of 7 L / min. The chamber for forming the structure was adjusted to 1 kPa or less with a vacuum pump. Formation was performed with an area of 17 mm × 5 mm, and the time was 10 minutes. Table 1 shows the presence or absence of the structure and the film thickness when it is formed. The film thickness was measured using a stylus type surface shape measuring device Dektak 3030 manufactured by Nippon Vacuum Technology Co., Ltd.
[0045]
[Table 1]
Figure 0004118589
[0046]
(Example 1)
Next, an example in which a base layer is formed on a polyethylene terephthalate substrate as a thermoplastic resin using the aluminum oxide fine particles used in the reference example, and a structure is formed thereon will be described. First, a slurry in which aluminum oxide fine particles are dispersed in ethanol is dropped on a polyethylene terephthalate substrate and dried to form a fine particle adhesion layer on the substrate, and then the surface is pressed to make the substrate soft The fine particles were bitten into the substrate by maintaining at 100 ° C. for 1 hour, and the adhesion layer was fixed on the substrate as a base layer. Thereafter, the substrate was subjected to ultrasonic cleaning to remove fine particles that were not immobilized. Next, a structure was formed by a fine particle beam deposition method in the same manner as in the reference example. As a result, a film having a structure of 51.5 μm was formed on the underlayer. It can be seen that the structure was formed as compared with the reference example.
[0047]
(Example 2)
Next, an example will be described in which a layer is formed on the epoxy resin ARALDITE XD911 substrate as a thermosetting resin using the aluminum oxide fine particles used in the reference example, and a structure is formed thereon. First, an uncured epoxy resin is poured onto a SUS304 base material to flatten the surface, and a slurry in which aluminum oxide fine particles are dispersed in ethanol is dropped and dried at room temperature to form a fine particle adhesion layer on the substrate. After the formation, a curing treatment at 120 ° C. for 1 hour, which is the curing temperature of the resin, was performed, and the adhesion layer was fixed on the substrate as a base layer. Thereafter, the substrate was subjected to ultrasonic cleaning to remove fine particles that were not immobilized. Next, a structure was formed by a fine particle beam deposition method in the same manner as in the reference example. As a result, although it was a thin film with a film thickness of about 1 μm, it was found that the substrate was not scraped as in the reference example, and a structure was formed.
[0048]
(Example 3)
Next, an example in which a structure is formed after forming a metal underlayer on the surface of the resin substrate will be described. A polycarbonate substrate on which a structure was not formed as a base material was subjected to multilayer plating of copper, nickel, and chromium, and a structure was formed by a fine particle beam deposition method in the same manner as in the reference example. As a result, it was confirmed that a structure having a film thickness of 4 μm was formed on the surface of the underlayer.
[0049]
【The invention's effect】
As described above, according to the present invention, it is possible to form a brittle material structure on the surface of a soft resin substrate, which has been difficult in the past, by interposing an underlayer.
[Brief description of the drawings]
FIG. 1 is an enlarged sectional view of a composite structure of a resin and a brittle material according to a first embodiment of the present invention.
FIG. 2 is a view similar to FIG. 1 showing another embodiment.
FIG. 3 is a view similar to FIG. 1 showing another embodiment.
FIG. 4 is a view similar to FIG. 1 showing a composite structure belonging to the second aspect of the present invention.
FIG. 5 is a schematic view of an apparatus for producing a composite structure of a resin and a brittle material according to the present invention.
FIG. 6 is a schematic view showing another embodiment of the manufacturing apparatus.
FIG. 7 is a schematic view showing another embodiment of a manufacturing apparatus.
FIG. 8 is a graph showing the relationship between internal strain and film thickness of brittle material fine particles.
9 is an SEM photograph of fine particles at point A in FIG.
10 is an SEM photograph of fine particles at point B in FIG.
11 is an SEM photograph of fine particles at point C in FIG.

Claims (11)

樹脂基材表面にその一部が食い込む硬質材料からなる下地層が形成され、この下地層の上に多結晶で且つ結晶同士の界面にガラス層からなる粒界層が実質的に存在しない脆性材料構造物がエアロゾルデポジション法により形成され、前記下地層を構成する硬質粒子の平均粒径は脆性材料構造物を構成する粒子の平均粒径よりも大きいことを特徴とする樹脂と脆性材料との複合構造物。  A brittle material in which a base layer made of a hard material that partially penetrates on the surface of the resin base material is formed, and there is substantially no grain boundary layer made of a glass layer at the interface between crystals on the base layer. A structure is formed by an aerosol deposition method, and the average particle size of the hard particles constituting the underlayer is larger than the average particle size of the particles constituting the brittle material structure. Composite structure. 請求項1に記載の樹脂と脆性材料との複合構造物において、前記下地層の厚みは100nm以上であることを特徴とする樹脂と脆性材料との複合構造物。 The composite structure of a resin and a brittle material according to claim 1, wherein the underlayer has a thickness of 100 nm or more. 請求項1に記載の樹脂と脆性材料との複合構造物において、前記脆性材料構造物を構成する粒子の衝突により前記下地層を構成する材料の一部を破砕又は変形せしめて新生面を生じることにより、前記脆性材料構造物と前記下地層とが接合されていることを特徴とする樹脂と脆性材料との複合構造物。 The composite structure of the resin according to claim 1 and a brittle material, wherein a part of the material constituting the foundation layer is crushed or deformed by collision of particles constituting the brittle material structure, thereby generating a new surface. A composite structure of a resin and a brittle material, wherein the brittle material structure and the base layer are joined. 請求項1に記載の樹脂と脆性材料との複合構造物において、前記脆性材料構造物の一部が前記下地層に食い込んでアンカー部を形成していることを特徴とする樹脂と脆性材料との複合構造物。 The composite structure of the resin and the brittle material according to claim 1, wherein a part of the brittle material structure bites into the underlayer to form an anchor portion, and the resin and the brittle material Composite structure. 樹脂基材表面にこの樹脂基材よりも高硬度の粒子を食い込ませて下地層を形成し、次いでこの下地層に脆性材料微粒子を高速で衝突させ、この衝突の衝撃によって前記脆性材料微粒子を変形または破砕し、この変形または破砕にて生じた活性な新生面を介して微粒子同士を再結合せしめることで、下地層の上に多結晶の脆性材料構造物を形成する樹脂と脆性材料との複合構造物の作製方法において、前記樹脂基材は熱可塑性樹脂からなるものとし、この熱可塑性樹脂のガラス転移温度(Tg)以上に加熱して樹脂基材を軟化せしめ、この軟化した樹脂基材表面に硬質材料粒子を食い込ませて下地層を形成することを特徴とする樹脂と脆性材料との複合構造物の作製方法。  A base layer is formed by causing particles with a hardness higher than that of the resin base to penetrate the surface of the resin base material, and then the brittle material fine particles collide with the base layer at a high speed, and the brittle material fine particles are deformed by the impact of the collision. Or a composite structure of a resin and a brittle material that forms a polycrystalline brittle material structure on an underlayer by crushing and recombining fine particles with each other through an active new surface generated by this deformation or crushing In the manufacturing method of the product, the resin base material is made of a thermoplastic resin, and the resin base material is softened by heating above the glass transition temperature (Tg) of the thermoplastic resin. A method for producing a composite structure of a resin and a brittle material, characterized in that a base layer is formed by biting hard material particles. 請求項5に記載の樹脂と脆性材料との複合構造物の作製方法において、前記脆性材料構造物の形成工程の温度を前記熱可塑性樹脂のガラス転移温度(Tg)以下とすることを特徴とする樹脂と脆性材料との複合構造物の作製方法。 6. The method for producing a composite structure of a resin and a brittle material according to claim 5, wherein a temperature of the brittle material structure forming step is set to be equal to or lower than a glass transition temperature (Tg) of the thermoplastic resin. A method for manufacturing a composite structure of a resin and a brittle material. 樹脂基材表面にこの樹脂基材よりも高硬度の粒子を食い込ませて下地層を形成し、次いでこの下地層に脆性材料微粒子を高速で衝突させ、この衝突の衝撃によって前記脆性材料微粒子を変形または破砕し、この変形または破砕にて生じた活性な新生面を介して微粒子同士を再結合せしめることで、下地層の上に多結晶の脆性材料構造物を形成する樹脂と脆性材料との複合構造物の作製方法において、前記樹脂基材は熱硬化性樹脂からなるものとし、この熱硬化性樹脂の前駆体を半硬化状態になるまで加熱し、この半硬化状態にある基材表面に硬質材料粒子を食い込ませて下地層を形成することを特徴とする樹脂と脆性材料との複合構造物の作製方法。  A base layer is formed by causing particles with a hardness higher than that of the resin base to penetrate the surface of the resin base material, and then the brittle material fine particles collide with the base layer at a high speed, and the brittle material fine particles are deformed by the impact of the collision. Or a composite structure of a resin and a brittle material that forms a polycrystalline brittle material structure on an underlayer by crushing and recombining fine particles with each other through an active new surface generated by this deformation or crushing In the manufacturing method of the product, the resin base material is made of a thermosetting resin, the precursor of the thermosetting resin is heated to a semi-cured state, and a hard material is applied to the surface of the base material in the semi-cured state. A method for producing a composite structure of a resin and a brittle material, characterized by forming a base layer by entraining particles. 請求項7に記載の樹脂と脆性材料との複合構造物の作製方法において、前記脆性材料構造物の形成工程は、熱硬化性樹脂が硬化した後に形成することを特徴とする樹脂と脆性材料との複合構造物の作製方法。 8. The method of manufacturing a composite structure of a resin and a brittle material according to claim 7, wherein the brittle material structure forming step is performed after the thermosetting resin is cured. A method for producing a composite structure. 樹脂基材の表面にめっき或いは蒸着にて金属下地層が形成され、この金属下地層の上にエアロゾルデポジション法により多結晶で且つ実質的に結晶配向性がなく更に結晶同士の界面にガラス層からなる粒界層が実質的に存在しない脆性材料構造物が形成されていることを特徴とする樹脂と脆性材料との複合構造物。A metal underlayer is formed on the surface of the resin base material by plating or vapor deposition , and a glass layer is formed on the metal underlayer by an aerosol deposition method so as to be polycrystalline and substantially free of crystal orientation. A composite structure of a resin and a brittle material, in which a brittle material structure substantially free of a grain boundary layer is formed. 請求項9に記載の樹脂と脆性材料との複合構造物において、前記脆性材料構造物の一部が前記金属下地層に食い込んでアンカー部を形成していることを特徴とする樹脂と脆性材料との複合構造物。A composite structure of a resin and a brittle material according to claim 9, wherein a part of the brittle material structure bites into the metal underlayer to form an anchor portion, and a brittle material, Composite structure. 樹脂基材表面にめっき或いは着に金属材料からなる金属下地層を形成して前記樹脂基材と前記金属材料を接合させ、次いで前記金属下地層にエアロゾルデポジション法により脆性材料微粒子を高速で衝突させ、前記金属下地層表面に前記脆性材料微粒子を食い込ませてアンカー部を形成させて前記脆性材料微粒子と前記金属材料を接合させ、この衝突の衝撃によって前記脆性材料微粒子を変形または破砕し、この変形または破砕にて生じた活性な新生面を介して微粒子同士を再結合せしめることで、前記金属下地層の上に多結晶の脆性材料構造物を形成することを特徴とする樹脂と脆性材料との複合構造物の作製方法。 Forming a metal backing layer on the plating or vapor deposition on the resin substrate surface Te made of a metallic material is bonded to the metal material and the resin base material, then fast brittle material fine particles by aerosol deposition on the metal base layer And causing the brittle material fine particles to bite into the surface of the metal underlayer to form anchor portions to join the brittle material fine particles and the metal material, and the brittle material fine particles are deformed or crushed by the impact of the collision. A resin and a brittle material, characterized in that a polycrystalline brittle material structure is formed on the metal underlayer by recombining fine particles with each other through an active new surface generated by the deformation or crushing. And a method for producing a composite structure.
JP2002108800A 2001-04-12 2002-04-11 Composite structure of resin and brittle material and manufacturing method thereof Expired - Lifetime JP4118589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002108800A JP4118589B2 (en) 2001-04-12 2002-04-11 Composite structure of resin and brittle material and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-113862 2001-04-12
JP2001113862 2001-04-12
JP2002108800A JP4118589B2 (en) 2001-04-12 2002-04-11 Composite structure of resin and brittle material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003034003A JP2003034003A (en) 2003-02-04
JP4118589B2 true JP4118589B2 (en) 2008-07-16

Family

ID=26613491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002108800A Expired - Lifetime JP4118589B2 (en) 2001-04-12 2002-04-11 Composite structure of resin and brittle material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4118589B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194064A1 (en) 2017-04-21 2018-10-25 国立研究開発法人産業技術総合研究所 Laminate and method for producing same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4258188B2 (en) * 2002-08-30 2009-04-30 Toto株式会社 Manufacturing method of composite structure and composite structure
US7179718B2 (en) 2003-10-17 2007-02-20 Fuji Photo Film Co., Ltd. Structure and method of manufacturing the same
JP4776885B2 (en) * 2004-03-11 2011-09-21 株式会社不二製作所 Method for forming a film with flakes
JP4849432B2 (en) * 2004-03-30 2012-01-11 ブラザー工業株式会社 Piezoelectric film manufacturing method, laminated structure of substrate and piezoelectric film, piezoelectric actuator, and manufacturing method thereof
JP2006289683A (en) * 2005-04-07 2006-10-26 Toto Ltd Composite structure and its manufacturing method
JP2007260886A (en) * 2006-03-30 2007-10-11 Mitsubishi Materials Corp Cmp conditioner and manufacturing method therefor
JP5401805B2 (en) * 2008-02-29 2014-01-29 富士通株式会社 Deposition method
JP2009235427A (en) * 2008-03-25 2009-10-15 Institute Of National Colleges Of Technology Japan Method for embedding particles in substance surface, and method for surface-oxidizing and surface-nitriding particle and substance
JP2010106346A (en) * 2008-10-31 2010-05-13 Keio Gijuku Surface treatment apparatus
JP5428302B2 (en) * 2008-11-21 2014-02-26 株式会社Ihi Resin structure manufacturing method and resin structure manufacturing apparatus
WO2012128592A2 (en) * 2011-03-24 2012-09-27 한국기계연구원 Method for coating a metal substrate with ceramic, metal substrate coated with ceramic, method for producing a substrate coated with a catalyst layer, substrate coated with a catalyst layer, and catalyst structure
KR101409295B1 (en) 2011-03-24 2014-07-01 한국기계연구원 Coating method for ceramic on metal substrate and ceramic coated metal substrate
JP2013139643A (en) * 2013-04-15 2013-07-18 Institute Of National Colleges Of Technology Japan Method for forming electronic device, sensor or wiring
KR101482412B1 (en) * 2013-06-25 2015-01-13 주식회사 포스코 Powder spray coating apparatus
JP6176713B2 (en) * 2013-07-11 2017-08-09 独立行政法人国立高等専門学校機構 Inductor manufacturing apparatus and inductor manufacturing method
WO2017199968A1 (en) 2016-05-16 2017-11-23 国立研究開発法人産業技術総合研究所 Multilayer structure and method for producing same
TW201825292A (en) * 2016-09-14 2018-07-16 日商Toto股份有限公司 Composite structure
JP2019038208A (en) * 2017-08-28 2019-03-14 積水化学工業株式会社 Laminate, solar cell and method for manufacturing laminate and solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194064A1 (en) 2017-04-21 2018-10-25 国立研究開発法人産業技術総合研究所 Laminate and method for producing same
KR20190138791A (en) 2017-04-21 2019-12-16 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Laminate and its manufacturing method
US11338545B2 (en) 2017-04-21 2022-05-24 National Institute Of Advanced Industrial Science And Technology Laminate and method of producing same

Also Published As

Publication number Publication date
JP2003034003A (en) 2003-02-04

Similar Documents

Publication Publication Date Title
JP4118589B2 (en) Composite structure of resin and brittle material and manufacturing method thereof
US7255934B2 (en) Composite structure body and method and apparatus for manufacturing thereof
JP3265481B2 (en) Low temperature molding of brittle material ultrafine particles
AU740235B2 (en) Method of forming shaped body of brittle ultra fine particle with mechanical impact force and without heating the shaped body
JP3500393B2 (en) Composite structure and manufacturing method thereof
EP1231294B1 (en) Composite structured material and method for preparation thereof and apparatus for preparation thereof
US6896933B2 (en) Method of maintaining a non-obstructed interior opening in kinetic spray nozzles
JP2002235181A (en) Composite structure, its manufacturing method and fabricating device
JP2003277948A (en) Composite structure and method for manufacturing the same
JP3716913B2 (en) Brittle material composite structure and manufacturing method thereof
JP4552067B2 (en) Adhesive tape and method for producing the same, electronic device
JP2003277949A (en) Composite structure and method and apparatus for forming the same
JP2005161703A (en) Composite structure in which fragile material structure is mounted on resin substrate having backing layer and method for producing the structure
JP4711242B2 (en) Composite structure and manufacturing method thereof
JP4258188B2 (en) Manufacturing method of composite structure and composite structure
JP4075745B2 (en) Composite structure manufacturing equipment
JP2004256920A (en) Composite structure, and method and device for producing the same
JP4380187B2 (en) Composite structure and manufacturing method thereof
JP2002320879A (en) Nozzle for forming composite structure, composite structure forming device and composite structure forming method
Sarobol et al. Underlying Mechanisms for Room Temperature Solid-State Deposition of Ceramic Coatings.
JP2002312910A (en) Magnetic mead and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080423

R150 Certificate of patent or registration of utility model

Ref document number: 4118589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term