JP4118499B2 - Circuit board using permanent resist - Google Patents
Circuit board using permanent resist Download PDFInfo
- Publication number
- JP4118499B2 JP4118499B2 JP2000309560A JP2000309560A JP4118499B2 JP 4118499 B2 JP4118499 B2 JP 4118499B2 JP 2000309560 A JP2000309560 A JP 2000309560A JP 2000309560 A JP2000309560 A JP 2000309560A JP 4118499 B2 JP4118499 B2 JP 4118499B2
- Authority
- JP
- Japan
- Prior art keywords
- resist layer
- circuit board
- thickness
- thermal shock
- permanent resist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000035939 shock Effects 0.000 description 20
- 239000000758 substrate Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Landscapes
- Non-Metallic Protective Coatings For Printed Circuits (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、永久レジストに係り、とくに被着材上に層として設けられる永久レジストに関する。
【0002】
【従来の技術】
プリント回路基板などの基板は、回路素子とともに種々の面での信頼性が要求されている。その一つとして熱衝撃試験に対する耐熱衝撃性があり、急激な温度変化による応力に対していかに対応できるかが重要である。
【0003】
そして回路基板としては、基板そのものと、基板上に形成されるレジスト層とがいかに協調性をもって耐熱衝撃性を示すかが問題であり、素材の選定、加工方法、構造などの改良、改善が行われている。
【0004】
【発明が解決しようとする課題】
ここで、レジスト層についてみると、耐熱衝撃性を向上させるには、基板との密着力、基板との熱膨張係数のマッチング、弾性率の低減などの材料に関する課題がある。そして、これらの要求を満たしつつ、パターンの現像性とか他の耐熱環境性を充足することは非常に困難なこととされている。
【0005】
本発明は上述の点を考慮してなされたもので、構造を改良することにより耐熱衝撃性が改善された永久レジストおよびこの永久レジストを用いた積層板、回路基板を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的達成のため、本発明では、
請求項1記載の、感光性永久レジスト層の側壁を、前記永久レジスト層の広がり方向端部における上底および下底のほぼ中央の位置から延び出した斜面として形成し、
前記レジスト層の厚みに対する前記側壁の上部に対する前記側壁下部の突出長の割合が、0.2ないし0.63の範囲にある回路基板、および
請求項2記載の、請求項1記載の回路基板において、
前記感光性永久レジスト層の厚さが、5〜75μmである回路基板、
を提供するものである。
【0007】
【発明の実施の形態】
図1(a)および(b)は、本発明の一実施例とその比較例とを示したものである。すなわち、図1(a)に示した本発明の一実施例では、基板上に形成されたレジスト層の厚み、すなわち下底から上底までの高さがtであり、その端部、すなわち広がり方向における上底が途切れた位置には、尖端までの突出長がs1であるすそ部を有する。このすそ部は、レジスト層の端部における厚み方向の、ほぼ中央の位置から延び出した斜面として形成されており、レジスト層の端部位置からすそ部の末端までの距離、つまりすそ部の突出長がs1である。
【0008】
そして、この図1(a)に示した実施例の場合、レジスト層の厚みtに対するすそ部の突出長s1の比s1/tは、約0.8程度に選ばれている。
【0009】
これに対して図1(b)に示した比較例では、レジスト層の厚みtに対するすそ部の突出長s2の比s2/tは、約0.2に選ばれている。
【0010】
すそ部の形成を変えるには、露光、現像の条件を変えればよい。すなわち露光をオーバーにするとか、現像条件をアンダーにすることによってすそ部の引き方、および引く量を調整することができる。
【0011】
一方、すそ部の斜面傾斜角が異なる場合は、次の通りである。斜面傾斜角が大、つまり端部斜面が垂直に近付くほど、すそ部の突出長が小になる傾向がある。この結果、耐熱衝撃性が小さくなるし、端部斜面の傾斜角が水平に近付くほど、すそ部の突出長が大になる傾向があるから、耐熱衝撃性が大きくなる。ただし、レジスト層の厚みに対するすそ部の突出長があまりに小さいと、レジスト層とすそ部との連結部に集中的に応力が加わって切断されることもあり、両者の一体性が保ち難くなる。
【0012】
したがって、レジスト層の厚みとすそ部の突出長とが適度の比率の範囲にあることが望ましい。そして、すそ部の斜面傾斜角が垂直と水平との中間であって、レジスト層の厚みに対するすそ部の突出長の比が所定値以上であることが望ましい。
【0013】
図2は、感光性フィルムの耐熱衝撃性を実測した結果をグラフとして示したものであり、縦軸にはレジスト層の厚みtに対するすそ部の突出長sの比を取り、横軸には耐熱衝撃性保持サイクル数、つまり耐熱衝撃性を示し続ける温度サイクル数を取っている。
【0014】
この実測結果は、次の感光性フィルム材料につき測定された。
【0015】
感光性フィルムは、所定の成分を持った溶液を適当なフィルム上に塗布し、乾燥した上で保護フィルムを貼付して形成する。
【0016】
まず溶液の成分は、次の表1に示す通りである。
【0017】
【表1】
まず、表1に示す成分を持った溶液を、基材である厚さ16μmのポリエチレン−テレフタレート・フィルム上に均一に塗布する。次いで、80−110℃の熱風対流式乾燥機中で約10分間乾燥して溶剤を除去する。これによりフィルム上に形成された感光性樹脂組成物層の厚さは、約63μmであった。この感光性樹脂組成物層の上に、厚さ約25μmのポリエチレン・フィルムを保護フィルムとして貼り合わせ、本発明に用いる感光性フィルムを構成した。
【0018】
次に、この感光性フィルムを用いて耐熱衝撃性を測定した。
【0019】
この測定の準備として、銅貼り積層板表面にラミネータを用いて感光性フィルムを積層した。ラミネート温度100℃、ラミネート速度0.5m/秒、圧着圧力2.94×105[Pa]の条件で、感光性フィルムの保護フィルムを剥がしながら積層した。
【0020】
続いて、得られた感光性フィルムを積層して形成した試料の基材である、ポリエチレン−テレフタレート・フィルムの上から試験用ネガマスク(IPC−2.4−28.1に記載)を密着させ、所定の露光量を照射した。
【0021】
そして、試料の基材であるポリエチレン−テレフタレート・フィルムを剥がし、30℃で1重量%炭酸ナトリウム水溶液を所定時間スプレーすることにより、未露光部分を除去して現像した。次いで、1J/cm2の紫外線照射を行い、さらに160℃で60分間加熱を行い、永久レジスト層が形成された基板を完成した。
【0022】
この基板を、1温度サイクルが、低温は−40℃/30分、高温は125℃/30分で構成される熱衝撃試験を繰り返した。この結果、図2に示すような実測結果が得られた。
【0023】
この場合の評価は、レジストパターンの浮き、剥がれを目視認定し、これらが発生するまでの温度サイクル数を耐熱衝撃性の指数とした。
【0024】
すなわち、レジスト層の厚みtに対するすそ部の突出長sの比s/tを強度パラメータと呼ぶこととすると、この強度パラメータが0.13、0.15、0.16、0.17および0.19と0.2以下である場合には100サイクル以下の熱衝撃性であるのに対し、上記強度パラメータが0.21では200サイクルまで耐熱衝撃性の向上が認められ、更に上記強度パラメータが0.63では約1500サイクルまで耐熱衝撃性の向上が認められる。
【0025】
そして、上記強度パラメータが0.21と0.63の中間、例えば0.25では約250サイクル、0.29では約500サイクルと、ほぼ直線的に耐熱衝撃性が上昇していく。
【0026】
上記実施例では、すそ部がほぼ同じ傾斜角で形成され、その突出長sが大きい場合と小さい場合とを示したが、傾斜角が異なる場合には突出長sが同じでも幾分異なる耐熱衝撃性を示す。そして、傾斜が水平に近い方が耐熱衝撃性は良好な傾向にある。これは、すそ部の基板に対する追従性が相対的に良くなるためと思われる。
【0027】
【発明の効果】
本発明は上述のように、露光、現像という工程によって耐熱衝撃性のあるフレキシブル回路基板を提供することができる。その場合、永久レジストの密着力、基板との熱膨張係数のマッチング、弾性率の低減などの、材料の諸特性とか組成を変える必要がない。この結果、フレキシブル回路基板の開発に対する制約が大幅に減少し、開発に要する時間をかなり削減することができた。
【図面の簡単な説明】
【図1】図1(a)は本発明の一実施例の構成を示す説明図で、図1(b)はその比較例を示す図。
【図2】感光性フィルムにおけるレジストパターンを熱衝撃試験した場合の、耐熱衝撃性実測結果を示すグラフ。
【符号の説明】
t レジストパターンの厚み
s すそ部の長さ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a permanent resist, and more particularly to a permanent resist provided as a layer on an adherend.
[0002]
[Prior art]
A board such as a printed circuit board is required to have reliability in various aspects together with circuit elements. One of them is thermal shock resistance for thermal shock tests, and how to cope with stress due to rapid temperature change is important.
[0003]
As a circuit board, the problem is how the thermal resistance of the substrate itself and the resist layer formed on the substrate shows thermal shock resistance in a coordinated manner. It has been broken.
[0004]
[Problems to be solved by the invention]
Here, regarding the resist layer, in order to improve the thermal shock resistance, there are problems regarding materials such as adhesion to the substrate, matching of the thermal expansion coefficient with the substrate, and reduction of the elastic modulus. In addition, it is considered very difficult to satisfy the requirements while satisfying the developability of the pattern and other heat resistance environments.
[0005]
The present invention has been made in view of the above points, and an object thereof is to provide a permanent resist whose thermal shock resistance is improved by improving the structure, and a laminate and a circuit board using the permanent resist. .
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention,
The side wall of the photosensitive permanent resist layer according to claim 1 is formed as an inclined surface extending from a substantially central position of an upper base and a lower base at an end portion in the spreading direction of the permanent resist layer,
A ratio of a protrusion length of the lower portion of the side wall to an upper portion of the side wall with respect to the thickness of the resist layer is in a range of 0.2 to 0.63; and
The circuit board according to claim 1, wherein:
A circuit board having a thickness of the photosensitive permanent resist layer of 5 to 75 μm ;
Is to provide.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIGS. 1A and 1B show an embodiment of the present invention and a comparative example thereof. That is, in one embodiment of the present invention shown in FIG. 1A, the thickness of the resist layer formed on the substrate, that is, the height from the lower base to the upper base is t, and its end , that is, spread. At the position where the upper base in the direction is interrupted, there is a skirt portion whose protruding length to the tip is s1. The skirt portion is formed as an inclined surface extending from a substantially central position in the thickness direction at the end of the resist layer, and the distance from the end position of the resist layer to the end of the skirt portion, that is, the protrusion of the skirt portion. The length is s1.
[0008]
In the embodiment shown in FIG. 1A, the ratio s1 / t of the protrusion length s1 of the skirt portion to the thickness t of the resist layer is selected to be about 0.8.
[0009]
On the other hand, in the comparative example shown in FIG. 1B, the ratio s2 / t of the protrusion length s2 of the skirt portion to the thickness t of the resist layer is selected to be about 0.2.
[0010]
In order to change the formation of the skirt portion, the exposure and development conditions may be changed. That is, it is possible to adjust how to draw the skirt portion and the amount to be drawn by overexposure or underdevelopment conditions.
[0011]
On the other hand, when the slope inclination angle of the bottom part is different, it is as follows. As the slope inclination angle is larger, that is, the end slope is closer to the vertical, the protrusion length of the bottom portion tends to be smaller. As a result, the thermal shock resistance is reduced, and as the inclination angle of the end slope approaches the horizontal, the protrusion length of the skirt portion tends to increase, and thus the thermal shock resistance increases. However, if the protrusion length of the skirt portion with respect to the thickness of the resist layer is too small, stress may be intensively applied to the connecting portion between the resist layer and the skirt portion, so that the integrity of the two becomes difficult to maintain.
[0012]
Therefore, it is desirable that the thickness of the resist layer and the protrusion length of the skirt portion are within a suitable ratio. It is desirable that the slope inclination angle of the skirt portion is intermediate between vertical and horizontal, and the ratio of the protrusion length of the skirt portion to the thickness of the resist layer is a predetermined value or more.
[0013]
FIG. 2 is a graph showing the results of measuring the thermal shock resistance of the photosensitive film. The vertical axis represents the ratio of the protrusion length s of the skirt portion to the thickness t of the resist layer, and the horizontal axis represents the heat resistance. The number of impact holding cycles, that is, the number of temperature cycles that continue to exhibit thermal shock resistance is taken.
[0014]
This actual measurement result was measured for the following photosensitive film materials.
[0015]
The photosensitive film is formed by applying a solution having a predetermined component onto an appropriate film, drying it, and attaching a protective film.
[0016]
First, the components of the solution are as shown in Table 1 below.
[0017]
[Table 1]
First, a solution having the components shown in Table 1 is uniformly applied onto a polyethylene terephthalate film having a thickness of 16 μm as a base material. Next, the solvent is removed by drying for about 10 minutes in a hot air convection dryer at 80-110 ° C. Thereby, the thickness of the photosensitive resin composition layer formed on the film was about 63 μm. On this photosensitive resin composition layer, a polyethylene film having a thickness of about 25 μm was bonded as a protective film to constitute a photosensitive film used in the present invention.
[0018]
Next, the thermal shock resistance was measured using this photosensitive film.
[0019]
As a preparation for this measurement, a photosensitive film was laminated on the surface of the copper-clad laminate using a laminator. Lamination was performed while peeling off the protective film of the photosensitive film under the conditions of a laminating temperature of 100 ° C., a laminating speed of 0.5 m / sec, and a pressure bonding pressure of 2.94 × 10 5 [Pa].
[0020]
Subsequently, a negative mask for testing (described in IPC-2.4-28.1) was adhered from above the polyethylene-terephthalate film, which is the base material of the sample formed by laminating the obtained photosensitive film, A predetermined exposure amount was irradiated.
[0021]
Then, the polyethylene-terephthalate film as the base material of the sample was peeled off, and a 1% by weight sodium carbonate aqueous solution was sprayed at 30 ° C. for a predetermined time to remove the unexposed portion and develop. Then, with ultraviolet irradiation of 1 J / cm 2, subjected to a heat 60 minutes further 160 ° C., to complete the substrate permanent resist layer was formed.
[0022]
This substrate was subjected to a thermal shock test in which one temperature cycle was performed at a low temperature of −40 ° C./30 minutes and a high temperature of 125 ° C./30 minutes. As a result, an actual measurement result as shown in FIG. 2 was obtained.
[0023]
In this case, the resist pattern floats and peels off visually, and the number of temperature cycles until they occur is used as an index of thermal shock resistance.
[0024]
That is, if the ratio s / t of the protrusion length s of the skirt portion to the thickness t of the resist layer is called an intensity parameter, the intensity parameter is 0.13, 0.15, 0.16, 0.17, and. When the strength parameter is 19 and 0.2 or less, the thermal shock resistance is 100 cycles or less, whereas when the strength parameter is 0.21, the thermal shock resistance is improved up to 200 cycles, and the strength parameter is 0. .63 shows an improvement in thermal shock resistance up to about 1500 cycles.
[0025]
The thermal shock resistance increases almost linearly, with the strength parameter being between 0.21 and 0.63, for example, about 250 cycles at 0.25 and about 500 cycles at 0.29.
[0026]
In the above embodiment, the bottom portion is formed with substantially the same inclination angle, and the case where the protrusion length s is large and the case where the protrusion length s is small is shown. Showing gender. The thermal shock resistance tends to be better when the inclination is closer to horizontal. This seems to be because the followability of the skirt portion to the substrate is relatively improved.
[0027]
【The invention's effect】
As described above, the present invention can provide a flexible circuit board having thermal shock resistance by the steps of exposure and development. In that case, it is not necessary to change various characteristics or composition of the material such as adhesion of the permanent resist, matching of the thermal expansion coefficient with the substrate, and reduction of the elastic modulus. As a result, restrictions on the development of flexible circuit boards have been greatly reduced, and the time required for development has been significantly reduced.
[Brief description of the drawings]
FIG. 1A is an explanatory diagram showing a configuration of one embodiment of the present invention, and FIG. 1B is a diagram showing a comparative example thereof.
FIG. 2 is a graph showing thermal shock resistance measurement results when a thermal shock test is performed on a resist pattern in a photosensitive film.
[Explanation of symbols]
t resist pattern thickness s hem length
Claims (2)
前記レジスト層の厚みに対する前記側壁の上部に対する前記側壁下部の突出長の割合が、0.2ないし0.63の範囲にある回路基板。The sidewalls of the photosensitive permanent resist layer, is formed as a slope which extends out from a substantially central position of the upper base and lower base in spreading direction end portion of the permanent resist layer,
The circuit board wherein the ratio of the protruding length of the lower side wall to the upper part of the side wall with respect to the thickness of the resist layer is in the range of 0.2 to 0.63.
前記感光性永久レジスト層の厚さが、5〜75μmである回路基板。The circuit board according to claim 1,
A circuit board having a thickness of the photosensitive permanent resist layer of 5 to 75 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000309560A JP4118499B2 (en) | 2000-10-10 | 2000-10-10 | Circuit board using permanent resist |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000309560A JP4118499B2 (en) | 2000-10-10 | 2000-10-10 | Circuit board using permanent resist |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002118348A JP2002118348A (en) | 2002-04-19 |
JP4118499B2 true JP4118499B2 (en) | 2008-07-16 |
Family
ID=18789704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000309560A Expired - Fee Related JP4118499B2 (en) | 2000-10-10 | 2000-10-10 | Circuit board using permanent resist |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4118499B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4486872B2 (en) * | 2004-12-06 | 2010-06-23 | 株式会社フジクラ | Method for manufacturing printed wiring board |
-
2000
- 2000-10-10 JP JP2000309560A patent/JP4118499B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002118348A (en) | 2002-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5248852A (en) | Resin circuit substrate and manufacturing method therefor | |
CN109836885B (en) | Liquid photosensitive ink, PCB and preparation method of PCB inner layer plate | |
JPH026960A (en) | Dry film photoresist and application thereof for printed circuit board or the like | |
JP2014106326A (en) | Photosensitive resin sheet and method for manufacturing hollow structure using the same, and electronic component having hollow structure obtained by the method | |
KR100907366B1 (en) | Photosensitive epoxy resin adhesive composition and use thereof | |
JP4118499B2 (en) | Circuit board using permanent resist | |
WO2003041465A1 (en) | Photoimageable dielectric material for circuit protection | |
JP3202774B2 (en) | Solder pattern transfer film and method of manufacturing the same | |
JP3178417B2 (en) | Semiconductor carrier and method of manufacturing the same | |
JP2002043723A (en) | Wiring board and electronic parts module using the same | |
JPH08204316A (en) | Printed wiring board and its manufacture | |
KR20170031271A (en) | Method of manufacturing printed circuit board | |
JP2006321984A (en) | Photosensitive epoxy resin adhesive composition and its use | |
JP2019158949A (en) | Photosensitive resin composition and electronic device | |
CN204948503U (en) | A kind of printed wiring board | |
JPS606558B2 (en) | Resin packaging method for electronic components | |
JP2018072814A (en) | Multilayer photosensitive film | |
EP0469973A1 (en) | Method for forming relief patterns | |
JPS6180236A (en) | Photosensitive film for forming solder resist | |
JP2004296465A (en) | Solder resist film forming circuit board and manufacturing method thereof | |
JP4013093B2 (en) | Barrier rib forming element and barrier rib manufacturing method using the same | |
KR20100107936A (en) | Manufacturing method of ultra-thin package board | |
JP2007197617A (en) | Adhesive film | |
JP6903961B2 (en) | Manufacturing method of electronic device | |
TW202043921A (en) | Dry film, and printed wiring board to prevent air bubbles from being entangled between the circuits of a printed circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050812 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051004 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080303 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080423 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130502 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140502 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |