JP4118439B2 - Method for producing porous film - Google Patents

Method for producing porous film Download PDF

Info

Publication number
JP4118439B2
JP4118439B2 JP06559499A JP6559499A JP4118439B2 JP 4118439 B2 JP4118439 B2 JP 4118439B2 JP 06559499 A JP06559499 A JP 06559499A JP 6559499 A JP6559499 A JP 6559499A JP 4118439 B2 JP4118439 B2 JP 4118439B2
Authority
JP
Japan
Prior art keywords
rolling
porous film
stretching
strength
preferable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06559499A
Other languages
Japanese (ja)
Other versions
JP2000264988A (en
Inventor
豊 岸井
新一 大泉
智昭 市川
茂 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP06559499A priority Critical patent/JP4118439B2/en
Publication of JP2000264988A publication Critical patent/JP2000264988A/en
Application granted granted Critical
Publication of JP4118439B2 publication Critical patent/JP4118439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Cell Separators (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は多孔質フィルムの製造方法に関する。さらに詳しくは、電池の正極負極間に配置されてこれらを隔離させる電池用セパレーター等として好適に用いられる多孔質フィルムの製造方法に関する。
【0002】
【従来の技術】
近年、電子器機のコードレス化等に対応するため、電池として軽量で、高起電力、高エネルギーが得られ、しかも自己放電が少ないリチウム電池が注目を集めている。このリチウム電池の正極負極の間には、正極負極の短絡防止のために、セパレーターが設けられているが、このセパレーターとしては正極負極間のイオンの透過性を確保するために多数の微細孔が形成された多孔質フィルムが使用されている。
【0003】
このような多孔質フィルムの製造方法として、従来、超高分子量ポリオレフィンなどを溶媒中で加熱溶解した液からゲル状シートをつくり、延伸前後で脱溶媒処理を行い、延伸処理し、残存溶媒を除去することによる方法が種々提案されている。これら多孔質フィルムには、高強度と高イオン透過性を両立させることが要求されているが、より高いイオン透過性が要求される電気自動車用電池セパレーターでは必然的に多孔質フィルムの空孔率を大きくする必要がある。しかし、空孔率を大きくすると、反面、多孔質フィルムの強度が低下するため、高イオン透過性を維持したまま高強度を有する電池用セパレーターとして使用可能な多孔質フィルムを製造するのは容易でないのが実情である。
【0004】
高強度及び高イオン透過性を達成するには高倍率の延伸を行うことが必要である。そのためには延伸を行う前に、圧延によりあらかじめある程度の薄膜化を行う必要がある。例えば、特開平6−93130号公報では、圧延はロール圧延によって行われているが、この方法ではシートの縦方向の配向が強くなり、得られる圧延シートの強度に異方性(縦方向の強度が高く、横方向の強度が小さい)が生じる。そのため、続く二軸延伸工程で横方向に延伸する際、面内の各々の部分に延伸ムラが生じ、所定の延伸倍率に全面を延伸することができず、厚みが均質な多孔質フィルムを得ることができない。また、このように異方性を有する圧延シートを均質に延伸するには該樹脂の融点付近で延伸する必要があるが、融点付近で延伸すると強度の低下及び多孔質フィルムの孔構造の不均質性が増し、電池用セパレーターとして適用可能な多孔質フィルムを得ることができない。
【0005】
また、プレス機により圧延処理を行う方法も考えられる。しかし、かかるプレス機を用いる場合、プレス面を常に清浄な状態に維持するという手間を要する。例えば、プレス面に製造時に付着した溶剤の洗浄を怠ると、得られるシートの強度の異方性が変化し、品質の安定性の低下をもたらす。
【0006】
【発明が解決しようとする課題】
従って、本発明の目的は、電池用セパレーターとして高イオン透過性、高強度及び厚みの均一性を保持するため、強度の異方性が少なく厚みの均一な圧延シートを作製し、これを延伸処理して多孔質フィルムを製造する方法に関するものである。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明者らは鋭意検討した結果、特定の形状のシート成形用ダイス中で圧延処理を行うことにより、意外にも強度の異方性の少ない圧延前成型物が作製できること、そして続く延伸処理などの工程後に高イオン透過性、高強度及び厚みの均一性に優れた多孔質フィルムを製造できることを見出し、本発明を完成するに至った。
【0008】
即ち、本発明の要旨は、ポリオレフィン樹脂を含有する樹脂組成物の圧延前成形物を圧延処理及び延伸処理して多孔質フィルムを製造する方法において、前記圧延処理を該樹脂組成物の融点の−50℃〜融点の温度範囲で、ダイス内部で行い、圧延処理後のシートの縦横引張破壊強さの比(縦方向の引張破壊強さ/横方向の引張破壊強さ)を0.5〜2.0とすることを特徴とする多孔質フィルムの製造方法に関するものである。
【0009】
【発明の実施の形態】
本発明で用いる高分子樹脂を含有する樹脂組成物は、高分子樹脂と溶媒を混合して得られる組成物であり、これを混練りして圧延前成型物を製造する工程に供する。
【0010】
本発明に用いることのできる高分子樹脂としては、従来より多孔質フィルムの製造に用いられているものを特に限定されることなく使用することができる。例えば、ポリオレフィン樹脂等が挙げられる。かかるポリオレフィン樹脂としては、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン等のオレフィンの単独重合体、共重合体、及びこれらのブレンド物等が挙げられる。なかでも、得られる多孔質フィルムの高強度化の観点から、重量平均分子量が5×105 以上の超高分子量ポリエチレン等の結晶性高分子樹脂を用いることが好ましい。
【0011】
本発明に用いることのできる溶媒としては、高分子樹脂の溶解性に優れたものであれば、通常用いられる公知のものを限定されることなく用いることができる。例えば、ノナン、デカン、ウンデカン、ドデカン、デカリン、流動パラフィン等の脂肪族又は環式の炭化水素、沸点がこれらの炭化水素と同程度の鉱油留分等が挙げられる。これらのうち、流動パラフィン等の不揮発性溶媒が好ましく、特に混練物の微細な孔構造を維持する観点から40℃における動粘度が65cst以下の溶媒が好ましい。
【0012】
高分子樹脂と溶媒の混合割合としては、例えば、高分子樹脂が樹脂組成物の5〜30重量%であることが好ましく、8〜20重量%であることがより好ましい。また、溶媒は樹脂組成物の70〜95重量%であることが好ましく、80〜92重量%であることがより好ましい。充分な皮膜強度を得る観点から高分子樹脂の含量は5重量%以上が好ましく、所望の空孔率の多孔質フィルムを得る観点から高分子樹脂の含量は30重量%以下が好ましい。また、多孔質フィルムの強度を確保する観点から、高分子樹脂の成分として、重量平均分子量が5×105 以上の結晶性高分子樹脂が樹脂組成物の少なくとも5重量%以上を占める態様が好ましい。
【0013】
得られる樹脂組成物を混練りして圧延前成型物に成形する工程は、通常用いられる公知の方法により行うことができる。例えば、ヘンシェルミキサー等を用いて調製した樹脂組成物を、バンバリーミキサー、ニーダー等を用いてバッチ式で混練りし、次いでダイスにて成型する方法、重量式フィーダーや液添ポンプを使用して直接二軸押出機や連続式混練機中で溶解混練を行い、混練機先端につけたダイスで成型する方法等が挙げられる。
【0014】
樹脂組成物の混練りは適当な温度条件下でよく、特に限定されないが、好ましくは溶媒が高分子樹脂を溶解し始める温度(溶解開始温度)〜+60℃の範囲で、より好ましくは溶解開始温度+30℃〜+50℃の範囲で行うのが、続く成型化工程で成型化に適した構造を得る観点から好ましい。
【0015】
成型化に際しては、押出機などから出てくる圧延前成形物をさらに急冷しても良い。この時、冷却速度が20℃/min以上になる条件で急冷することがより好ましい。急冷操作を行うことにより、皮膜強度をより高めることができる。
【0016】
このようにして、高分子樹脂を含有する樹脂組成物の圧延前成型物を得ることができる。本発明で用いることのできる圧延前成型物の形状としては、シート状、丸棒状及びチューブ状等の形状が例示できる。シート状成形物又はチューブ状成形物の厚みとしては特に限定されないが、3〜30mmのものが好ましく、5〜20mmのものがより好ましい。続く圧延処理及び延伸処理などにより得られる多孔質フィルムの強度の観点から3mm以上が好ましく、圧延工程での効率化を図る観点から30mm以下が好ましい。
【0017】
また丸棒状成形物の場合、その直径は特に限定されないが、例えば10〜100mmが好ましく、20〜80mmがより好ましい。高強度の多孔質フィルムを得る観点から10mm以上が好ましく、形状保持の観点から100mm以下が好ましい。
【0018】
次に、前記圧延前成型物の圧延処理が行われる。本発明において、圧延処理とは強度の異方性が少なく厚みの均一な圧延シートを作製する処理を意味し、圧延処理をダイス内部で行うことに特徴を有する。
【0019】
圧延工程に用いるダイスは圧延前成型物の形状に合わせて選択すれば良い。シート状成形物の場合はフィッシュテールダイスが好ましい。丸棒状成形物の場合はフィッシュテールダイス及びチューブダイスが適用できる。チューブ状成形物はチューブダイスが適用できる。チューブダイスを使用する場合は圧延前成型物を引取方向から引張り、縦横強度比を調整するのが好ましい。かかるダイスをラム押出機等の公知の押出機に装着して圧延処理に用いる。
【0020】
圧延処理時の温度は特に限定されるものではないが、樹脂組成物の融点の−50℃〜融点の温度範囲で行うのが好ましい。電池用セパレーターとして使用する際の強度及び厚みの均質性を確保する観点から、融点以下の温度が好ましい。また、圧延による薄膜化を容易に行う観点から、該融点の−50℃以上の温度が好ましい。本明細書において、「樹脂組成物の融点」とは、DSC測定における昇温過程での樹脂組成物の吸熱ピーク温度を言う。
【0021】
圧延処理の総加圧時間は特に限定されるものではなく適宜選択される。例えば、1〜5分間が好ましい。所望の厚みの圧延処理後のシート(圧延シート)を得る観点から1分間以上が好ましく、生産性の観点から5分間以下が好ましい。本発明においては、圧延処理は一回でもよく、複数回でも良い。
【0022】
また、圧延処理の圧延比(圧延前の成型物の厚み/圧延後のシートの厚み)としては特に限定されるものではないが、続く延伸工程での厚みの均一性の観点から3以上が好ましく、5以上がより好ましく、10以上がさらに好ましい。また、圧延後の厚み方向の弾性回復が大きく、成形時間が長くなり、生産性が劣るのを防ぐ観点から、500以下が好ましく、400以下がより好ましく、300以下がさらに好ましい。
【0023】
このように、ダイス内部で圧延を行うことにより、強度の異方性が少なく厚みの均一な圧延シートを得ることができる。強度の異方性の程度は、圧延処理後のシートの縦横引張破壊強さの比(縦方向の引張破壊強さ/横方向の引張破壊強さ)で表示することができる。本発明により得られた圧延シートの縦横引張破壊強さの比は、0.5〜2.0が好ましく、1.0〜1.5がより好ましく、また、1.0〜1.2がさらに好ましい。ここで、縦横の関係は、「縦方向」をプレス機においてシートが送りこまれる機械方向と規定したものである。
【0024】
また、得られた圧延シートの厚みは、特に限定されるものではないが、0.2〜3.0mmが好ましく、0.2〜2mmがより好ましい。続く延伸処理によりさらなる薄膜化を実施する観点から0.2mm以上が好ましく、また延伸処理により得られる多孔質フィルムの厚みムラを抑える観点から3.0mm以下が好ましい。
【0025】
次に、前記圧延処理により得られた圧延シートの延伸処理が行われる。本発明において、延伸処理とは圧延後のシートを所望の厚さに延ばす工程を意味し、延伸方式は特に限定されるものではない。例えば、一軸延伸、二軸延伸等いずれの方式をも適用することができる。なかでも、二軸延伸方式がより好ましい。というのは、本発明の圧延処理により得られた圧延シートは縦横強度がほぼ均一であるため、強度に異方性が生じる従来法のロール圧延による圧延シートの延伸処理とは異なり、逐次又は同時二軸延伸時における縦横の延伸倍率の設定を比較的容易に行うことができるからである。
【0026】
延伸時の温度は、高分子樹脂の融点+5℃以下の温度が好ましい。その他の条件は、通常用いられる公知の条件を採用することができる。
【0027】
また、本発明においては、さらに脱溶媒処理により孔形成を行って多孔質フィルムを製造するが、この脱溶媒処理は、延伸前後に適宜行えばよい。例えば、圧延処理により得られた圧延シートを脱溶媒処理してから延伸処理に供してもよく、また圧延シートをそのまま延伸処理してから脱溶媒処理を行ってもよい。あるいは、延伸処理前に脱溶媒処理を行い、延伸処理後に再度脱溶媒処理を行って残存溶媒を除去する態様であってもよい。
【0028】
本発明においては、上記のようにして得られた多孔質フィルムを必要に応じてさらにヒートーセット処理等により形状固定しても良い。
【0029】
このようにして得られる多孔質フィルムの物性としては、以下のものが好ましい。厚みは1〜60μmが好ましく、5〜45μmがより好ましい。空孔率は35〜75%が好ましく、50〜70%がより好ましい。針貫通強度は400gf以上が好ましい。
【0030】
【実施例】
以下、実施例及び比較例を挙げてさらに詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
【0031】
なお、各種特性については下記要領にて測定を行う。
(厚み)
1/10000mmシックネスゲージにより、及び多孔質フィルムの断面の1万倍走査電子顕微鏡写真から測定する。
【0032】
(空孔率)
水銀ポロシメーター(オートスキャン33、ユアサアイオニクス社製)を使用し、細孔容積(mL/g)を求め、樹脂組成物の密度を0.95(g/mL)とし、以下の式に基づき算出する。
【0033】
【数1】

Figure 0004118439
【0034】
(融点)
セイコー電子工業社製のDSC200を使用し、室温から200℃まで10℃/minの割合で昇温させ、この昇温過程での吸熱ピーク温度を融点とする。
【0035】
(引張破壊強さ)
JIS K7127に準拠した方法でシートの縦方向(機械方向)及び横方向について測定する。引張破壊強さは1号型試験片を使用し、標線間距離20mm、引張速度50mm/secにて測定する。
【0036】
(針貫通強度)
カトーテック(株)製ハンディー圧縮試験機KES−G5を用いて行う。針は直径1.0mm、先端形状R0.5mmのものを使用し、ホルダー径11.3mm、押し込み速度2mm/秒にて測定する。フィルムが破れるまでの最大荷重を針貫通強度とする。値は全て25μmに換算する。
【0037】
実施例1
重量平均分子量が200万の超高分子ポリエチレン5重量部、重量平均分子量が20万の高密度ポリエチレン10重量部、さらに溶媒である流動パラフィン(40℃における動粘度が59cStの溶媒)85重量部からなる樹脂組成物を二軸押出機(シリンダー径40mm、L/D=42)に供給し、160℃の温度で溶解混練りして混合物を得た。次いで、二軸押出機先端に取り付けられた円筒ダイス(内径50mm)を用いて、160℃で混合物を丸棒状に成形し、水浴により急冷して丸棒状成形物を得た。得られた丸棒状成形物を115℃に予備加熱後、フィッシュテールダイス(リップ厚み1mm、幅150mm)を装着したラム押出機(ダイス手前内径20mm)を使用して成形温度115℃、圧力500kgf/cm2 で押出し、厚み約1.2mmの圧延シートを得た。その後、バッチ式同時二軸延伸機にて温度115℃でこの圧延シートを縦横4×4倍に延伸処理後、ヘプタンにて脱溶媒処理を行った。次いで、120℃にてヒートセット処理を行い、平均厚み40μmで空孔率65%の多孔質フィルムを得た。
なお、本実施例で用いた超高分子ポリエチレン、高密度ポリエチレン、樹脂組成物の融点はそれぞれ136℃、131℃、120℃であった。
【0038】
実施例2
実施例1と同様の方法で得た丸棒状成形物を115℃に予備加熱後、フィッシュテールダイス(リップ厚み1mm、幅150mm)を装着したラム押出機(ダイス手前内径30mm)を使用して成形温度115℃、圧力350kgf/cm2 で押出し、厚み約1.2mmの圧延シートを得た。その後、バッチ式同時二軸延伸機にて温度115℃で縦横4×4倍に延伸処理後、ヘプタンにて脱溶媒処理を行った。次いで、120℃にてヒートセット処理を行い、平均厚み38μmで空孔率67%の多孔質フィルムを得た。
【0039】
比較例1
実施例1と同様の方法で得た樹脂組成物を二軸押出機(シリンダー径40mm、L/D=42)に供給し、160℃の温度で溶解混練りして混合物を得た。次いで、二軸押出機先端に取り付けられたTダイ(幅300mm、リップ厚み10mm)を用いて、160℃で混合物をシート状に成形し、厚み約10mmのシート状成形物を得た。このシート状成形物を液体窒素により急冷固化した。その後温度115℃にてカレンダーロールを使用してロール圧延(線圧250kg/cm)を行い、厚み約0.5mmの圧延シートを得た。その後、バッチ式同時二軸延伸機にて温度115℃で縦横4×4倍に延伸処理後、ヘプタンにて脱溶媒処理を行った。次いで、120℃にてヒートセット処理を行い、平均厚み35μmで空孔率60%の多孔質フィルムを得た。
【0040】
実施例及び比較例において得られた、圧延シートの引張破壊強さ、多孔質フィルムの針貫通強度、及び延伸処理時の延伸状態を表1に示す。
【0041】
【表1】
Figure 0004118439
【0042】
本発明の方法により得られた圧延シートは強度の異方性が少ないものであり、これを延伸処理及び脱溶媒処理して得られた多孔質フィルムは高強度であることから、電池用セパレーターとして好ましい性質を有するものであることが分かった。一方、圧延をロール圧延により行った比較例1においては、得られた圧延シートに強度の異方性が強く、これを延伸処理して得られた多孔質フィルムには延伸ムラが見られ、その針貫通強度は劣っていた。
【0043】
【発明の効果】
本発明の製造方法によれば、強度の異方性が少ない圧延シートを作製して、これを延伸処理して多孔質フィルムを製造するため、強度の高い優れた多孔質フィルムを容易に製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a porous film. More specifically, the present invention relates to a method for producing a porous film that is preferably used as a battery separator or the like that is disposed between positive and negative electrodes of a battery to isolate them.
[0002]
[Prior art]
In recent years, lithium batteries that are lightweight as batteries, have high electromotive force and high energy, and have low self-discharge are attracting attention in order to deal with cordless electronic devices. A separator is provided between the positive electrode and the negative electrode of this lithium battery to prevent a short circuit of the positive electrode and the negative electrode. As this separator, a large number of micropores are provided to ensure the permeability of ions between the positive electrode and the negative electrode. The formed porous film is used.
[0003]
As a method for producing such a porous film, conventionally, a gel-like sheet is made from a solution obtained by heating and dissolving ultra-high molecular weight polyolefin in a solvent, desolvation treatment is performed before and after stretching, stretching treatment is performed, and residual solvent is removed. Various methods have been proposed. These porous films are required to have both high strength and high ion permeability, but in the case of battery separators for electric vehicles that require higher ion permeability, the porosity of the porous film is inevitably required. Need to be larger. However, when the porosity is increased, the strength of the porous film is decreased, so that it is not easy to produce a porous film that can be used as a battery separator having high strength while maintaining high ion permeability. Is the actual situation.
[0004]
In order to achieve high strength and high ion permeability, it is necessary to stretch at a high magnification. For this purpose, it is necessary to reduce the film thickness to some extent by rolling before stretching. For example, in Japanese Patent Application Laid-Open No. 6-93130, rolling is performed by roll rolling, but in this method, the orientation of the sheet in the longitudinal direction becomes strong, and the strength of the resulting rolled sheet becomes anisotropic (strength in the longitudinal direction). Is high and the lateral strength is small). Therefore, when stretching in the transverse direction in the subsequent biaxial stretching step, stretching unevenness occurs in each part in the plane, and the entire surface cannot be stretched at a predetermined stretching ratio, and a porous film having a uniform thickness is obtained. I can't. Further, in order to uniformly stretch a rolled sheet having such anisotropy, it is necessary to stretch in the vicinity of the melting point of the resin. However, stretching in the vicinity of the melting point results in a decrease in strength and inhomogeneous pore structure of the porous film. Therefore, a porous film applicable as a battery separator cannot be obtained.
[0005]
Moreover, the method of performing a rolling process with a press machine is also considered. However, when using such a press, it takes time and effort to keep the press surface clean. For example, if washing of the solvent adhering to the press surface during production is neglected, the anisotropy of the strength of the resulting sheet changes, resulting in a decrease in quality stability.
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to produce a rolled sheet having a uniform thickness with little anisotropy of strength in order to maintain high ion permeability, high strength, and uniformity of thickness as a battery separator. And a method for producing a porous film.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have intensively studied, and as a result, by rolling in a sheet-forming die having a specific shape, a pre-rolling molded product with surprisingly low strength anisotropy is produced. It has been found that a porous film excellent in high ion permeability, high strength and uniformity in thickness can be produced after the subsequent steps such as stretching treatment, and the present invention has been completed.
[0008]
That is, the gist of the present invention is a method for producing a porous film by rolling and stretching a pre-rolled molded product of a resin composition containing a polyolefin resin, wherein the rolling treatment is performed at a melting point of the resin composition − in a temperature range of 50 ° C. ~ melting point, are performed by the internal die, 0.5 aspect tensile breaking strength ratio of the sheet after rolling treatment (longitudinal tensile breaking strength / transverse tensile breaking strength) It is related with the manufacturing method of the porous film characterized by setting it as 2.0 .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The resin composition containing the polymer resin used in the present invention is a composition obtained by mixing a polymer resin and a solvent, and is used for the step of kneading this to produce a pre-rolled molded product.
[0010]
As the polymer resin that can be used in the present invention, those conventionally used for producing porous films can be used without any particular limitation. For example, polyolefin resin etc. are mentioned. Examples of the polyolefin resin include homopolymers and copolymers of olefins such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, and 1-hexene, and blends thereof. Among these, from the viewpoint of increasing the strength of the resulting porous film, it is preferable to use a crystalline polymer resin such as ultrahigh molecular weight polyethylene having a weight average molecular weight of 5 × 10 5 or more.
[0011]
As the solvent that can be used in the present invention, a known solvent that is usually used can be used without limitation as long as it is excellent in solubility of the polymer resin. Examples thereof include aliphatic or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, decalin, and liquid paraffin, and mineral oil fractions having boiling points similar to those of these hydrocarbons. Among these, a non-volatile solvent such as liquid paraffin is preferable, and a solvent having a kinematic viscosity at 40 ° C. of 65 cst or less is particularly preferable from the viewpoint of maintaining the fine pore structure of the kneaded product.
[0012]
As a mixing ratio of the polymer resin and the solvent, for example, the polymer resin is preferably 5 to 30% by weight of the resin composition, and more preferably 8 to 20% by weight. Moreover, it is preferable that a solvent is 70 to 95 weight% of a resin composition, and it is more preferable that it is 80 to 92 weight%. From the viewpoint of obtaining sufficient film strength, the content of the polymer resin is preferably 5% by weight or more, and from the viewpoint of obtaining a porous film having a desired porosity, the content of the polymer resin is preferably 30% by weight or less. Further, from the viewpoint of securing the strength of the porous film, a mode in which a crystalline polymer resin having a weight average molecular weight of 5 × 10 5 or more occupies at least 5% by weight or more of the resin composition is preferable as a component of the polymer resin. .
[0013]
The step of kneading the resulting resin composition to form a molded product before rolling can be performed by a commonly used known method. For example, a resin composition prepared using a Henschel mixer or the like is kneaded batch-wise using a Banbury mixer, kneader, etc., and then molded using a die, directly using a weight-type feeder or liquid pump Examples include a method of performing melt kneading in a twin-screw extruder or continuous kneader and molding with a die attached to the tip of the kneader.
[0014]
The kneading of the resin composition may be performed under an appropriate temperature condition, and is not particularly limited, but is preferably in the range of the temperature at which the solvent starts to dissolve the polymer resin (dissolution start temperature) to + 60 ° C., more preferably the dissolution start temperature. Performing in the range of + 30 ° C. to + 50 ° C. is preferable from the viewpoint of obtaining a structure suitable for molding in the subsequent molding step.
[0015]
At the time of molding, the molded product before rolling that comes out of an extruder or the like may be further rapidly cooled. At this time, it is more preferable to perform rapid cooling under conditions where the cooling rate is 20 ° C./min or more. By performing the quenching operation, the film strength can be further increased.
[0016]
In this manner, a molded product before rolling of the resin composition containing the polymer resin can be obtained. Examples of the shape of the molded product before rolling that can be used in the present invention include sheet shapes, round bar shapes, and tube shapes. Although it does not specifically limit as thickness of a sheet-like molded object or a tube-shaped molded object, The thing of 3-30 mm is preferable and the thing of 5-20 mm is more preferable. 3 mm or more is preferable from the viewpoint of the strength of the porous film obtained by the subsequent rolling treatment and stretching treatment, and 30 mm or less is preferable from the viewpoint of increasing efficiency in the rolling process.
[0017]
In the case of a round bar-shaped molded product, the diameter is not particularly limited, but is preferably 10 to 100 mm, and more preferably 20 to 80 mm. 10 mm or more is preferable from the viewpoint of obtaining a high-strength porous film, and 100 mm or less is preferable from the viewpoint of shape retention.
[0018]
Next, the rolling process of the molded product before rolling is performed. In the present invention, the rolling process means a process for producing a rolled sheet having a small thickness anisotropy and a uniform thickness, and is characterized in that the rolling process is performed inside a die.
[0019]
The die used for the rolling process may be selected according to the shape of the molded product before rolling. In the case of a sheet-like molded product, a fishtail die is preferable. In the case of a round bar shaped product, a fishtail die and a tube die can be applied. A tube die can be applied to the tubular molded product. When a tube die is used, it is preferable to adjust the longitudinal / lateral strength ratio by pulling the molded product before rolling from the drawing direction. Such a die is mounted on a known extruder such as a ram extruder and used for the rolling process.
[0020]
Although the temperature at the time of a rolling process is not specifically limited, It is preferable to carry out in the temperature range of -50 degreeC-melting | fusing point of a resin composition. From the viewpoint of ensuring strength and thickness uniformity when used as a battery separator, a temperature below the melting point is preferred. In addition, from the viewpoint of facilitating thinning by rolling, a temperature of the melting point of −50 ° C. or higher is preferable. In the present specification, the “melting point of the resin composition” refers to the endothermic peak temperature of the resin composition in the temperature rising process in DSC measurement.
[0021]
The total pressing time of the rolling process is not particularly limited and is appropriately selected. For example, 1 to 5 minutes is preferable. 1 minute or more is preferable from the viewpoint of obtaining a sheet (rolled sheet) after the rolling treatment with a desired thickness, and 5 minutes or less is preferable from the viewpoint of productivity. In the present invention, the rolling process may be performed once or a plurality of times.
[0022]
Further, the rolling ratio of the rolling treatment (thickness of the molded product before rolling / thickness of the sheet after rolling) is not particularly limited, but is preferably 3 or more from the viewpoint of uniformity of thickness in the subsequent stretching step. 5 or more is more preferable, and 10 or more is more preferable. Further, from the viewpoint of preventing the elastic recovery in the thickness direction after rolling, increasing the molding time, and preventing the productivity from being deteriorated, 500 or less is preferable, 400 or less is more preferable, and 300 or less is more preferable.
[0023]
Thus, by rolling inside the die, a rolled sheet having a small thickness and little anisotropy in strength can be obtained. The degree of strength anisotropy can be expressed by a ratio of longitudinal and transverse tensile fracture strength of the sheet after the rolling treatment (longitudinal tensile fracture strength / lateral tensile fracture strength). The ratio of the longitudinal and transverse tensile fracture strength of the rolled sheet obtained by the present invention is preferably 0.5 to 2.0, more preferably 1.0 to 1.5, and further preferably 1.0 to 1.2. preferable. Here, the vertical / horizontal relationship defines the “longitudinal direction” as the machine direction in which the sheet is fed in the press.
[0024]
Moreover, although the thickness of the obtained rolled sheet is not specifically limited, 0.2-3.0 mm is preferable and 0.2-2 mm is more preferable. The thickness is preferably 0.2 mm or more from the viewpoint of further reducing the film thickness by the subsequent stretching treatment, and is preferably 3.0 mm or less from the viewpoint of suppressing the thickness unevenness of the porous film obtained by the stretching treatment.
[0025]
Next, the rolled sheet obtained by the rolling process is stretched. In the present invention, the stretching treatment means a step of extending the rolled sheet to a desired thickness, and the stretching method is not particularly limited. For example, any method such as uniaxial stretching or biaxial stretching can be applied. Of these, the biaxial stretching method is more preferable. This is because the rolled sheet obtained by the rolling treatment of the present invention has substantially uniform longitudinal and transverse strengths, and therefore, unlike the conventional rolling method of roll rolling by roll rolling, which causes anisotropy in strength, either sequentially or simultaneously. This is because the longitudinal and lateral stretch ratios during biaxial stretching can be set relatively easily.
[0026]
The stretching temperature is preferably a melting point of the polymer resin + 5 ° C or lower. As other conditions, known conditions that are usually used can be adopted.
[0027]
Further, in the present invention, a porous film is produced by further forming a hole by desolvation treatment, and this desolvation treatment may be appropriately performed before and after stretching. For example, the rolled sheet obtained by the rolling treatment may be subjected to a solvent removal treatment and then subjected to a stretching treatment, or the rolled sheet may be stretched as it is before the solvent removal treatment. Alternatively, a mode in which the solvent removal treatment is performed before the stretching treatment, and the solvent removal treatment is performed again after the stretching treatment to remove the residual solvent may be employed.
[0028]
In the present invention, the shape of the porous film obtained as described above may be further fixed by a heat set treatment or the like, if necessary.
[0029]
As the physical properties of the porous film thus obtained, the following are preferable. The thickness is preferably 1 to 60 μm, more preferably 5 to 45 μm. The porosity is preferably 35 to 75%, more preferably 50 to 70%. The needle penetration strength is preferably 400 gf or more.
[0030]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are given and demonstrated further in detail, this invention is not limited at all by these Examples.
[0031]
Various characteristics are measured as follows.
(Thickness)
It is measured with a 1/10000 mm thickness gauge and from a 10,000 times scanning electron micrograph of the cross section of the porous film.
[0032]
(Porosity)
Using a mercury porosimeter (Autoscan 33, manufactured by Yuasa Ionics Co., Ltd.), the pore volume (mL / g) was obtained, and the density of the resin composition was 0.95 (g / mL). To do.
[0033]
[Expression 1]
Figure 0004118439
[0034]
(Melting point)
A DSC 200 manufactured by Seiko Denshi Kogyo Co., Ltd. is used, and the temperature is raised from room temperature to 200 ° C. at a rate of 10 ° C./min. The endothermic peak temperature in this temperature raising process is taken as the melting point.
[0035]
(Tensile fracture strength)
Measure in the longitudinal direction (machine direction) and lateral direction of the sheet by a method according to JIS K7127. Tensile fracture strength is measured using a No. 1 type test piece at a distance between marked lines of 20 mm and a tensile speed of 50 mm / sec.
[0036]
(Needle penetration strength)
This is performed using a handy compression tester KES-G5 manufactured by Kato Tech Co., Ltd. A needle having a diameter of 1.0 mm and a tip shape R of 0.5 mm is used, and measurement is performed at a holder diameter of 11.3 mm and an indentation speed of 2 mm / second. The maximum load until the film is broken is defined as the needle penetration strength. All values are converted to 25 μm.
[0037]
Example 1
From 5 parts by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2 million, 10 parts by weight of high density polyethylene having a weight average molecular weight of 200,000, and 85 parts by weight of liquid paraffin (a solvent having a kinematic viscosity at 40 ° C. of 59 cSt) The resulting resin composition was supplied to a twin screw extruder (cylinder diameter 40 mm, L / D = 42), and melted and kneaded at a temperature of 160 ° C. to obtain a mixture. Next, the mixture was formed into a round bar shape at 160 ° C. using a cylindrical die (inner diameter: 50 mm) attached to the tip of the twin screw extruder, and quenched in a water bath to obtain a round bar shaped product. The obtained round bar shaped product was preheated to 115 ° C., and then a molding temperature of 115 ° C. and a pressure of 500 kgf / pressure was used using a ram extruder equipped with a fishtail die (lip thickness 1 mm, width 150 mm). Extrusion was performed at cm 2 to obtain a rolled sheet having a thickness of about 1.2 mm. Thereafter, the rolled sheet was stretched 4 × 4 times in length and width at a temperature of 115 ° C. with a batch simultaneous biaxial stretching machine, and then the solvent was removed with heptane. Subsequently, heat setting was performed at 120 ° C. to obtain a porous film having an average thickness of 40 μm and a porosity of 65%.
The melting points of the ultra-high molecular polyethylene, high-density polyethylene, and resin composition used in this example were 136 ° C., 131 ° C., and 120 ° C., respectively.
[0038]
Example 2
A round bar-shaped product obtained in the same manner as in Example 1 was preheated to 115 ° C., and then molded using a ram extruder equipped with a fishtail die (lip thickness 1 mm, width 150 mm) (inner diameter 30 mm before the die). Extrusion was performed at a temperature of 115 ° C. and a pressure of 350 kgf / cm 2 to obtain a rolled sheet having a thickness of about 1.2 mm. Thereafter, the film was stretched 4 × 4 times in length and width at a temperature of 115 ° C. with a batch simultaneous biaxial stretching machine, and then the solvent was removed with heptane. Subsequently, heat setting was performed at 120 ° C. to obtain a porous film having an average thickness of 38 μm and a porosity of 67%.
[0039]
Comparative Example 1
The resin composition obtained by the same method as in Example 1 was supplied to a twin screw extruder (cylinder diameter 40 mm, L / D = 42), and melted and kneaded at a temperature of 160 ° C. to obtain a mixture. Next, the mixture was formed into a sheet at 160 ° C. using a T-die (width 300 mm, lip thickness 10 mm) attached to the tip of the twin-screw extruder to obtain a sheet-like molded product having a thickness of about 10 mm. The sheet-like molding was rapidly cooled and solidified with liquid nitrogen. Thereafter, roll rolling (linear pressure 250 kg / cm) was performed using a calender roll at a temperature of 115 ° C. to obtain a rolled sheet having a thickness of about 0.5 mm. Thereafter, the film was stretched 4 × 4 times in length and width at a temperature of 115 ° C. with a batch simultaneous biaxial stretching machine, and then the solvent was removed with heptane. Subsequently, heat setting was performed at 120 ° C. to obtain a porous film having an average thickness of 35 μm and a porosity of 60%.
[0040]
Table 1 shows the tensile fracture strength of the rolled sheet, the needle penetration strength of the porous film, and the stretched state during the stretching treatment, which were obtained in Examples and Comparative Examples.
[0041]
[Table 1]
Figure 0004118439
[0042]
The rolled sheet obtained by the method of the present invention has little strength anisotropy, and the porous film obtained by subjecting it to stretching and desolvation treatment has high strength, so as a battery separator. It was found to have favorable properties. On the other hand, in Comparative Example 1 in which the rolling was performed by roll rolling, the obtained rolled sheet had strong strength anisotropy, and the porous film obtained by stretching this showed uneven stretching, The needle penetration strength was inferior.
[0043]
【The invention's effect】
According to the production method of the present invention, a rolled sheet having a low strength anisotropy is produced, and this is stretched to produce a porous film. Therefore, an excellent porous film having a high strength is easily produced. be able to.

Claims (4)

ポリオレフィン樹脂を含有する樹脂組成物の圧延前成形物を圧延処理及び延伸処理して多孔質フィルムを製造する方法において、前記圧延処理を該樹脂組成物の融点の−50℃〜融点の温度範囲で、ダイス内部で行い、圧延処理後のシートの縦横引張破壊強さの比(縦方向の引張破壊強さ/横方向の引張破壊強さ)を0.5〜2.0とすることを特徴とする多孔質フィルムの製造方法。 In the method for producing a porous film by rolling and stretching a pre-rolling molded product of a resin composition containing a polyolefin resin, the rolling treatment is performed at a temperature range of −50 ° C. to the melting point of the resin composition. , characterized in that the die internally have rows and vertical and horizontal tensile breaking strength ratio of the sheet after the rolling process (longitudinal direction of the tensile breaking strength / transverse tensile breaking strength) and 0.5 to 2.0 A method for producing a porous film. 圧延処理をフィッシュテールダイス又はチューブダイスで行う請求項1記載の製造方法。  The manufacturing method of Claim 1 which performs a rolling process with a fishtail die or a tube die. 樹脂組成物が、重量平均分子量が5×10 5 以上の超高分子量ポリエチレンを含有する、請求項1又は2記載の製造方法。The manufacturing method of Claim 1 or 2 in which a resin composition contains the ultra high molecular weight polyethylene whose weight average molecular weight is 5x10 < 5 > or more . 延伸処理を二軸延伸で行う、請求項1〜3いずれか記載の製造方法。The production method according to claim 1 , wherein the stretching treatment is performed by biaxial stretching .
JP06559499A 1999-03-11 1999-03-11 Method for producing porous film Expired - Lifetime JP4118439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06559499A JP4118439B2 (en) 1999-03-11 1999-03-11 Method for producing porous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06559499A JP4118439B2 (en) 1999-03-11 1999-03-11 Method for producing porous film

Publications (2)

Publication Number Publication Date
JP2000264988A JP2000264988A (en) 2000-09-26
JP4118439B2 true JP4118439B2 (en) 2008-07-16

Family

ID=13291512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06559499A Expired - Lifetime JP4118439B2 (en) 1999-03-11 1999-03-11 Method for producing porous film

Country Status (1)

Country Link
JP (1) JP4118439B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6657055B2 (en) * 2015-11-30 2020-03-04 住友化学株式会社 Non-aqueous electrolyte secondary battery separator
CN110369494A (en) * 2019-07-30 2019-10-25 辽宁科技大学 A kind of anisotropic Finish Machining System of reduction metal material and method

Also Published As

Publication number Publication date
JP2000264988A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
JP4583532B2 (en) Porous membrane
CN105263998A (en) Process for producing cellulose-nanofiber-filled microporous stretched polyolefin film, microporous cellulose-nanofiber composite film, and separator for non-aqueous secondary battery
JP6548430B2 (en) METHOD FOR PRODUCING POLYOLEFIN MICROPOROUS FILM, SEPARATOR FOR BATTERY, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP4177929B2 (en) Porous film and method for producing the same
JP3886124B2 (en) Method for producing porous film
JP3699562B2 (en) Polyolefin microporous membrane and method for producing the same
JP2017088836A (en) Low heat shrinkable polyolefin microporous film and manufacturing method therefor
JP3699561B2 (en) Polyolefin microporous membrane and method for producing the same
JP5235487B2 (en) Method for producing inorganic particle-containing microporous membrane
JP2017088837A (en) Low heat shrinkable polyolefin microporous film and manufacturing method therefor
JP4118439B2 (en) Method for producing porous film
JP4008516B2 (en) Polyolefin porous membrane, method for producing the same, and battery separator using the same
JPH11269290A (en) Polyoelfin fine porous membrane
JP3856268B2 (en) Method for producing porous film
JP4312302B2 (en) Method for producing porous film
JP6598911B2 (en) Manufacturing method of polyolefin microporous membrane, battery separator, and non-aqueous electrolyte secondary battery
JP2002047372A (en) Porous film and method of preparing the same and battery using the same
JP6347801B2 (en) Manufacturing method of polyolefin microporous membrane, battery separator, and non-aqueous electrolyte secondary battery
JP2015136809A (en) Method for producing polyolefin microporous film, battery separator and nonaqueous electrolyte secondary battery
JP4092029B2 (en) Method for producing porous film
JP4577857B2 (en) Method for producing porous film
JP3982943B2 (en) Method for producing porous film
JPH093228A (en) Production of polyolefin finely porous membrane
JP4017307B2 (en) Method for producing porous film
JP4641206B2 (en) Method for producing porous film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term