JP4117876B2 - Write-once optical recording medium and recording / reproducing method thereof - Google Patents

Write-once optical recording medium and recording / reproducing method thereof Download PDF

Info

Publication number
JP4117876B2
JP4117876B2 JP2002220490A JP2002220490A JP4117876B2 JP 4117876 B2 JP4117876 B2 JP 4117876B2 JP 2002220490 A JP2002220490 A JP 2002220490A JP 2002220490 A JP2002220490 A JP 2002220490A JP 4117876 B2 JP4117876 B2 JP 4117876B2
Authority
JP
Japan
Prior art keywords
layer
deformation
recording
recording medium
write
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002220490A
Other languages
Japanese (ja)
Other versions
JP2004086932A (en
Inventor
登 笹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002220490A priority Critical patent/JP4117876B2/en
Publication of JP2004086932A publication Critical patent/JP2004086932A/en
Application granted granted Critical
Publication of JP4117876B2 publication Critical patent/JP4117876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、追記型(WORM:Write Once Read Many)光記録媒体に係わり、特に350〜500nm程度の青色レーザ波長でも高密度の記録が可能な追記型光記録媒体に関する。
【0002】
【従来の技術】
◎青色レーザ対応の追記型光記録媒体について
超高密度の記録が可能となる青色レーザの開発は急速に進んでおり、それに対応した追記型光記録媒体の開発が行われている。
従来の追記型光記録媒体では、有機材料からなる記録層にレーザ光を照射し、主に有機材料の分解・変質による屈折率変化を生じさせることで記録ピットを形成させており、記録層に用いられる有機材料の光学定数や分解挙動が、良好な記録ピットを形成させるための重要な要素となっている。
従って、記録層に用いる有機材料としては、青色レーザ波長に対する光学的性質や分解挙動の適切な材料を選択する必要がある。即ち、未記録時の反射率を高め、またレーザの照射によって有機材料が分解し大きな屈折率変化が生じるようにするため(これによって大きな変調度が得られる)、記録再生波長は大きな吸収帯の長波長側の裾に位置するように選択される。
【0003】
何故ならば、有機材料の大きな吸収帯の長波長側の裾は、適度な吸収係数を有し且つ大きな屈折率が得られる波長領域となるためである。
しかしながら、青色レーザ波長に対する光学的性質が従来並みの値を有する有機材料は未だ見出されていない。これは、青色レーザ波長近傍に吸収帯を持つ有機材料を得るためには、分子骨格を小さくするか又は共役系を短くする必要があるが、そうすると吸収係数の低下、即ち屈折率の低下を招くためである。
つまり、青色レーザ波長近傍に吸収帯を持つ有機材料は多数存在し、吸収係数を制御することは可能となるが、大きな屈折率を持たないため、大きな変調度を得ることができなくなる。
【0004】
青色レーザ対応の有機材料としては、例えば、特開2001−181524号、特開2001−158865号、特開2000−343824号、特開2000−343825号、特開2000−335110号各公報に記載がある。
しかし、これらの公報では、実施例を見ても溶液と薄膜のスペクトルを測定しているのみで、記録再生に関する記載はない。
特開平11−221964号、特開平11−334206号、特開2000−43423号各公報では、実施例に記録の記載があるものの、記録波長は488nmであり、また記録条件や記録密度に関する記載はなく、良好な記録ピットが形成できた旨の記載があるのみである。
特開平11−58955号公報では、実施例に記録の記載があるものの、記録波長は430nmであり、また記録条件や記録密度に関する記載はなく、良好な変調度が得られた旨の記載があるのみである。
【0005】
特開2001−39034号、特開2000−149320号、特開2000−113504号、特開2000−108513号、特開2000−222772号、特開2000−218940号、特開2000−222771号、特開2000−158818号、特開2000−280621号、特開2000−280620号各公報では、実施例に記録波長430nm、NA0.65での記録例があるが、最短ピットが0.4μmという低記録密度条件(DVDと同等の記録密度)である。
特開2001−146074号公報では、記録再生波長は405〜408nmであるが、記録密度に関する具体的な記載がなく、14T−EFM信号の記録という低記録密度条件である。
【0006】
また、従来のCD、DVD系光記録媒体と異なる層構成及び記録方法に関して、以下のような技術が公開されている。
特開平7−304258号公報には、基板/可飽和吸収色素含有層/反射層という層構成で、可飽和吸収色素の消衰係数(本発明でいう吸収係数)の変化により記録を行う技術が開示されている。
特開平8−83439号公報には、基板/金属蒸着層/光吸収層/保護シ−トという層構成で、光吸収層によって発生した熱によって、金属蒸着層を変色又は変形させることで記録を行う技術が開示されている。
特開平8−138245号公報には、基板/誘電体層/光吸収体を含む記録層/反射層という層構成で、記録層の膜厚を変えることにより溝部の深さを変えて記録を行う技術が開示されている。
特開平8−297838号公報には、基板/光吸収体を含む記録層/金属反射層という層構成で、記録層の膜厚を10〜30%変化させることにより記録を行う技術が開示されている。
【0007】
特開平9−198714号公報には、基板/有機色素を含有する記録層/金属反射層/保護層という層構成で、基板の溝幅を未記録部に対して20〜40%広くすることにより記録を行う技術が開示されている。
特許第2506374号公報には、基板/中間層/金属薄膜という層構成で、金属薄膜が変形しバブルを形成することにより記録を行う技術が開示されている。
特許第2591939号公報には、基板/光吸収層/記録補助層/光反射層という層構成で、記録補助層を凹状に変形させると共に、記録補助層の変形に沿って光反射層を凹状に変形させることで記録を行う技術が開示されている。
特許第2591940号公報には、基板/光吸収層/多孔質な記録補助層/光反射層、或いは、基板/多孔質な記録補助層/光吸収層/光反射層という層構成で、記録補助層を凹状に変形させると共に、記録補助層の変形に沿って光反射層を凹状に変形させることで記録を行う技術が開示されている。
特許第2591941号公報には、基板/多孔質な光吸収層/光反射層という層構成で、光吸収層を凹状に変形させると共に、光吸収層の変形に沿って光反射層を凹状に変形させることで記録を行う技術が開示されている。
【0008】
特許第2982925号公報には、基板/有機色素を含む記録層/記録補助層という層構成で、記録補助層と有機色素が相溶して、有機色素の吸収スペクトルを短波長側へシフトさせることで記録を行う技術が開示されている。
特開平9−265660号公報には、基板上に反射層と記録層の機能を有する複合機能層、保護層を順次形成した層構成で、基板と複合機能層がバンプを形成することで記録を行う技術が開示されている。なお、複合機能層としては、ニッケル、クロム、チタン等の金属、又はそれらの合金との規定がある。
特開平10−134415号公報には、基板上に金属薄膜層、変形可能な緩衝層、反射層、保護層を順次形成した層構成で、基板と金属薄膜層を変形させ、同時にこの変形部での緩衝層膜厚を薄くさせることで記録を行う技術が開示されている。なお、金属薄膜層としては、ニッケル、クロム、チタン等の金属、又はそれらの合金との規定がある。また、緩衝層としては、変形し易く適当な流動性を持つ樹脂が用いられ、変形を促進させるために色素を含有させても良いとの記載がある。
【0009】
特開平11−306591号公報には、基板上に金属薄膜層、緩衝層、反射層を順次積層した層構成で、基板と金属薄膜層を変形させ、同時にこの変形部での緩衝層膜厚と光学定数とを変化させることで記録を行う技術が開示されている。なお、金属薄膜層としては、ニッケル、クロム、チタン等の金属、又はそれらの合金が好ましいとの記載がある。また、緩衝層は色素と有機高分子の混合物からなり、記録再生波長近傍に大きな吸収帯を有する色素が用いられる。
特開平10−124926号公報には、基板上に金属記録層、バッファ層、反射層を順次積層した層構成で、基板と金属記録層を変形させ、同時にこの変形部でのバッファ層膜厚と光学定数とを変化させることで記録を行う技術が開示されている。なお、金属記録層としては、ニッケル、クロム、チタン等の金属、又はそれらの合金が好ましいとの記載がある。また、バッファ層は色素と樹脂の混合物からなり、記録再生波長近傍に大きな吸収帯を有する色素が用いられる。
【0010】
以上のように、上記諸々の従来技術は、青色レーザ波長領域での光記録媒体の実現を狙ったものではなく、青色レーザ波長領域で有効となる層構成や記録方法ではない。
特に現在実用化されている青色半導体レーザの発振波長の中心である405nm近傍においては、従来の追記型光記録媒体の記録層に要求される光学定数と同程度の光学定数を有する有機材料が殆んど存在しない。また、405nm近傍で記録条件を明確にし、DVDよりも高記録密度で記録された例はない。
更に、上記従来技術における実施例の多くは、従来のディスク構成(図26参照)での実験であり、また、従来のディスク構成と異なる構成も提案されてはいるが、そこに用いられる色素は従来と同じ光学特性と機能が要求されており、青色レーザ波長領域で、有機材料からなる追記型光記録媒体を容易に実現できる層構成や記録原理、記録方式についての有効な提案はない。
【0011】
また、従来の有機材料を用いた追記型光記録媒体では、変調度と反射率の確保の点から、記録再生波長に対し大きな屈折率と比較的小さな吸収係数(0.05〜0.07程度)を持つ有機材料しか使用することができない。
即ち、有機材料は記録光に対して十分な吸収能を持たないため、有機材料の膜厚を薄膜化することが不可能であり、従って、深い溝を持った基板を使用する必要があった(有機材料は通常スピンコート法によって形成されるため、有機材料を深い溝に埋めて厚膜化していた)。そのため、深い溝を有する基板の形成が非常に難しくなり、光記録媒体としての品質を低下させる要因になっていた。
更に、従来の有機材料を用いた追記型光記録媒体では、記録再生波長近傍に有機材料の主吸収帯が存在するため、有機材料の光学定数の波長依存性が大きくなり(波長によって光学定数が大きく変動する)、レーザの個体差や環境温度の変化等による記録再生波長の変動に対し、記録感度、変調度、ジッタ、エラー率といったような記録特性や、反射率等が大きく変化するという問題があった。
【0012】
【発明が解決しようとする課題】
本発明は、次のa)〜e)の特性を満足する追記型光記録媒体及びその記録再生方法の提供を目的とする。
a)単純層構成で、安価に製造可能である。
b)記録再生波長に大きな制限がなく、記録特性の波長依存性が少ない。
c)有機材料を用いる場合でも、有機材料に対して従来のような厳しい光学的条件が不要である。
d)変形を主体とする記録原理を用いているにも関わらず、良好なジッタと広い記録パワーマージンを実現できる。
e)表面記録、或いは高NAレンズによる記録に対応でき、高密度化が達成できる。
【0013】
【課題を解決するための手段】
上記課題は、次の1)〜22)の発明(以下、本発明1〜22という)によって解決される。
1) 記録によって変形を起す変形層が、変形層の変形形状を補償する変形形状補償層と、変形層の変形を受容する変形受容層とに挟まれた構造を有し、該変形形状補償層が、記録による分解、爆発及び昇華のうちの少なくとも一つの状態変化により変形層側に向かって圧力を発生させる有機材料からなることを特徴とする追記型光記録媒体。
2) 前記有機材料が色素であることを特徴とする1)記載の追記型光記録媒体。
3) 記録によって変形を起す変形層が、変形層の変形形状を補償する変形形状補償層と、変形層の変形を受容する変形受容層とに挟まれた構造を有し、記録極性がHigh to Lowであることを特徴とする追記型光記録媒体。
4) 変形層と変形受容層の界面を主反射界面とし、再生が変形受容層側から行われることを特徴とする1)〜3)の何れかに記載の追記型光記録媒体。
5) 変形層の変形受容層側への変形により記録部が形成されることを特徴とする4)記載の追記型光記録媒体。
6) 変形受容層に隣接して反射層が設けられた構造を有し、該変形受容層と反射層の界面を主反射界面とし、再生が変形形状補償層側から行われることを特徴とする1)又は2)記載の追記型光記録媒体。
7) 変形層の変形受容層側への変形により記録部が形成されることを特徴とする6)記載の追記型光記録媒体。
8) 変形層の光吸収機能によって変形層に変形部が形成されることを特徴とする1)〜7)の何れかに記載の追記型光記録媒体。
9) 変形形状補償層の光吸収機能によって変形層に変形部が形成されることを特徴とする1)〜7)の何れかに記載の追記型光記録媒体。
10) 変形層と変形形状補償層とが記録光に対する光吸収機能を有し、両者の光吸収機能によって変形層に変形部が形成され、記録によって変形形状補償層の光吸収機能が低下又は消失することを特徴とする1)〜7)の何れかに記載の追記型光記録媒体。
11) 変形受容層が高分子化合物からなることを特徴とする1)〜10)の何れかに記載の追記型光記録媒体。
12) 変形層がSi又はGeを含有すること特徴とする1)〜11)の何れかに記載の追記型光記録媒体。
13) 350〜500nmのレーザ波長範囲で記録再生が可能であることを特徴とする12)記載の追記型光記録媒体。
14) 記録によって変形を起す変形層が、変形層の変形形状を補償する変形形状補償層と、変形層の変形を受容する変形受容層とに挟まれた構造を有し、該変形形状補償層が、記録による分解、爆発及び昇華のうちの少なくとも一つの状態変化により変形層側に向かって圧力を発生させる有機材料からなる追記型光記録媒体への記録方法であって、記録によって変形層を変形受容層側へ変形させることを特徴とする追記型光記録媒体の記録方法。
15) 有機材料が色素であることを特徴とする14)記載の追記型光記録媒体の記録方法。
16) 記録によって変形を起す変形層が、変形層の変形形状を補償する変形形状補償層と、変形層の変形を受容する変形受容層とに挟まれた構造を有する追記型光記録媒体への記録方法であって、記録によって変形層を変形受容層側へ変形させ、記録極性をHigh to Lowとすることを特徴とする追記型光記録媒体の記録方法。
17) 記録によって変形を起す変形層が、変形層の変形形状を補償する変形形状補償層と、変形層の変形を受容する変形受容層とに挟まれた構造を有し、該変形層と変形受容層の界面を主反射界面とし、再生が変形受容層側から行われる追記型光記録媒体への記録方法であって、記録によって変形層を変形受容層側へ変形させることを特徴とする追記型光記録媒体の記録方法。
18) 変形層の変形形状を補償する変形形状補償層、記録によって変形を起す変形層、変形層の変形を受容する変形受容層、反射層が順次設けられた構造を有し、該変形受容層と反射層の界面を主反射界面とし、再生が変形形状補償層側から行われる追記型光記録媒体への記録方法であって、記録によって変形層を変形受容層側へ変形させることを特徴とする追記型光記録媒体の記録方法。
19) 変形層の変形受容層側への変形を、変形層の膨張力及び/又は変形形状補償層の状態変化に伴う圧力によって生じさせることを特徴とする14)〜18)の何れかに記載の追記型光記録媒体の記録方法。
20) 変形層の変形受容層側への変形を、記録光の照射による変形層の光吸収機能及び/又は変形形状補償層の光吸収機能によって生じさせることを特徴とする14)〜18)の何れかに記載の追記型光記録媒体の記録方法。
21) 変形層の変形受容層側への変形を、記録光の照射による変形層の光吸収機能と変形形状補償層の光吸収機能とによって生じさせ、記録光の照射後に、変形形状補償層の光吸収機能を低下又は消失させることを特徴とする14)〜18)の何れかに記載の追記型光記録媒体の記録方法。
22) 変形層がSi又はGeを含有する材料から構成され、波長が350〜500nmのレーザ光により記録再生を行うことを特徴とする14)〜21)の何れかに記載の追記型光記録媒体の記録方法。
【0014】
以下、上記本発明について詳しく説明する。
本発明者は、基板上に変形層を設けただけの追記型光記録媒体では十分な記録再生特性が得られないことを見出した。即ち、基板上に変形層を設けた追記型光記録媒体において、例えば変形層に光吸収機能を持たせた場合、記録光の照射によって変形層を変形させることができ、ある程度の記録再生特性を得ることはできるが、CD−RやDVD−R並みのジッタ特性を得ることはできないことを見出した。
その原因は、検討の結果、変形層の変形形状において、記録マークの中央部を中心とした記録光の走査方向に対する対称性(以下、単に変形形状の対称性と言う)が悪化することにあることが分った〔図1(a)参照。なお、図1(b)は理想的な変形形状例である〕。
この変形形状の対称性の悪化は、マーク長が長くなる場合や変形層の変形に関する物性(膜厚、硬度等)が最適でない場合に生じ易い。
【0015】
そこで、本発明者は、上記問題点の解決方法について検討した結果、図1(a)で示すような変形形状の歪みを補正するため、変形層に隣接して変形形状補償層を設け、この変形形状補償層の状態変化による圧力を用いることを着想し、その有効性を確認した。
即ち、ジッタ特性を改善するには、変形層の変形形状を対称性の良好な形状とすることが重要であることを見出したものであり、本発明では変形層に隣接して変形形状補償層を設けて変形形状の歪みを補償(補正)する。
一方、本発明者は、記録パワーマージン(記録パワー変化に対するジッタ変動のマージン)を広げるためには、変形量を制御することが重要であることを見出した。
本発明では、記録パワーの変動に対する変形層の変形量の変動を小さくするため、変形層が変形を起す方向側の隣接層に、変形受容層を設ける構造とした。
この変形受容層の硬度、膜厚等を変えることで、変形量と変形増減量を制御することが可能となり、記録パワーマージンを広げることが可能になる。
【0016】
本発明では、変形層とその隣接層の界面が主反射界面となる場合には、変形層を入射光側に変形させることが好ましい。これは、変形層が反入射光側に変形すると、記録極性のLow to High(ロー・トゥー・ハイ)化、記録マーク長や記録パワーによる記録極性変化、或いは、再生信号波形の微分化が発生し易いためである。
なお、一般的にマーク長記録では、記録マークを再生した場合には図2(a)のような再生信号(RF信号)となるのに対し、図2(b)や(c)のように、記録マークの前後エッジ近傍と記録マークの中心近傍で変極点を持つような信号となる場合を、本発明では微分波形(微分波形化)と言う。
また、本発明で言う主反射界面とは、記録再生光の照射による光記録媒体からの反射光への寄与が一番大きな反射界面を指し、通常は最も反射係数の大きな反射界面となる。
【0017】
本発明で用いる変形層は、記録によって変形さえすれば何ら制限はない。この変形は、変形層の膨張、或いは他の層からの圧力により生じる。
本発明では、記録再生特性を向上させるため、変形層として、隣接層との複素屈折率差の大きな材料を用いることが好ましい。
例えば、一般的に屈折率(複素屈折率実部)の小さな金属として、Au、Ag、Al、Cr、Ni、Al、Fe、Sn等が挙げられる。また、一般的に屈折率(複素屈折率実部)の大きな材料として、Si又はGeを含有する材料(例えばSi、Ge、SiGe1−x、MgGe、MgSi、SiC等);Nb、Ta、Be、V等の金属、又はそれらの金属酸化物(例えばTa、Nb等);AlSb、AlGa1−xAs、CdSe、GaSb、Hg1−xCdTe、Se、Te、ZnTe、ZnS、PbS、InP、GaP等の半導体等が挙げられる。
【0018】
また、変形層の隣接層が比較的低屈折率である場合(例えば1.8程度以下)には、変形層の材料として、Al、MgO、BeO、ZrO、UO、ThOなどの単純酸化物系の酸化物;SiO、2MgO・SiO、MgO・SiO、CaO・SiO、ZrO・SiO、3Al・2SiO、2MgO・2Al・5SiO、LiO・Al・4SiOなどのケイ酸塩系の酸化物;AlTiO、MgAl、Ca10(PO(OH)、BaTiO、LiNbO、PZT、PLZT(PbTiO−PbZrO系酸化物)、フェライトなどの複酸化物系の酸化物;Si、Si6−ZAl8−Z、AlN、BN、TiNなどの窒化物系の非酸化物;SiC、BC、TiC、WCなどの炭化物系の非酸化物;LaB、TiB、ZrBなどのホウ化物系の非酸化物;CdS、MoSなどの硫化物系の非酸化物;MoSiなどのケイ化物系の非酸化物;アモルファス炭素、黒鉛、ダイアモンド等の炭素系の非酸化物;或いはそれらの含有物などを使用することができる。
【0019】
変形層に光吸収機能を付与する場合、変形層は、記録波長に対して比較的大きな吸収係数(ここで言う吸収係数は複素屈折率の虚部であり、例えば0.2以上が好ましい)を有する材料であれば何ら制限はない。その例としては、Si又はGeを含有する材料(例えば、Si、Ge、SiGe1−x、MgGe、MgSi、SiC等);Nb、Ta、Be、V等の金属、又はそれらの金属酸化物(例えばTa,Nb等);AlSb、AlGa1−xAs、CdSe、GaSb、Hg1−xCdTe、Se、Te、ZnTe、ZnS、PbS、InP、GaP等の半導体等;或いはAg等に比べて熱伝導率の低いNi、Cr、Ti、Ta、Fe等の金属やCu/Al、Ni/Fe等の合金などを用いることができる。
【0020】
変形層とその隣接層の界面が主反射界面となる場合、本発明では、変形層を入射光側に変形させるため、この変形層の変形形状を補償する(変形形状の対称性を改善する)ための変形形状補償層を、入射光側から見て変形層の奥側の隣接層とすることが好ましい。
何故ならば、本発明では、変形層の変形形状を補償するために、変形形状補償層を構成する材料の状態変化に基づく圧力、例えば膨張、分解、爆発、昇華等に伴う圧力を利用するためである(変形形状補償層を入射光側から見て変形層の手前側の隣接層とすると、変形形状補償層を構成する材料の状態変化に伴う圧力によって、変形層が入射光とは反対側に変形し易くなり、記録極性のLow toHigh化、記録マーク長や記録パワーによる記録極性変化、或いは、再生信号波形の微分化を引き起す)。
変形形状補償層を構成する材料の状態変化に基づく圧力の中では、特に分解、爆発、昇華等に伴う圧力を利用することが好ましい。
【0021】
変形形状補償層は、上述のように変形層側に向かって圧力を発生させる材料から構成される必要があり、有機材料を用いることが好ましい。何故ならば、有機材料は適度な記録パワー範囲で、分解、爆発、昇華等を起すためである。
好ましい有機材料としては、ポリメチン系、ナフタロシアニン系、フタロシアニン系、スクアリリウム系、クロコニウム系、ピリリウム系、ナフトキノン系、アントラキノン(インダンスレン)系、キサンテン系、トリフェニルメタン系、アズレン系、テトラヒドロコリン系、フェナンスレン系、トリフェノチアジン系各色素、及び金属錯体化合物などが挙げられる。
色素層の形成は、蒸着、スパッタリング、CVD、溶剤塗布などの通常の手段によって行なうことができる。塗布法を用いる場合には、上記色素などを有機溶剤に溶解し、スプレー、ローラーコーティング、ディッピング、スピンコーティングなどの慣用のコーティング法で塗布すれよい。
【0022】
用いられる有機溶剤としては、一般にメタノール、エタノール、イソプロパノールなどアルコール類;アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類;N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミドなどのアミド類;ジメチルスルホキシドなどのスルホキシド類;テトラヒドロフラン、ジオキサン、ジエチルエーテル、エチレングリコールモノメチルエーテルなどのエーテル類;酢酸メチル、酢酸エチルなどのエステル類;クロロホルム、塩化メチレン、ジクロルエタン、四塩化炭素、トリクロルエタンなどの脂肪族ハロゲン化炭素類;ベンゼン、キシレン、モノクロルベンゼン、ジクロルベンゼンなどの芳香族類;メトキシエタノール、エトキシエタノールなどのセロソルブ類;ヘキサン、ペンタン、シクロヘキサン、メチルシクロヘキサンなどの炭化水素類などが挙げられる。
色素層(変形形状補償層)の膜厚は、10nm〜10μm、好ましくは10〜200nmが適当である。
【0023】
また、上記以外に変形形状補償層は、熱により分解するガス発生化合物により構成されていてもよい。
該ガス発生化合物の具体例を示すと、分解温度、分解速度等を適宜選択する必要はあるが、例えば有機化合物としては、ジニトロソペンタメチレンテトラミン(DPT)、N,N′−ジメチル−N,N′−ジニトロソテレフタルアミド(DMDNTA)等のニトロソ化合物;ベンゼンスルホニルヒドラジト(BSH)、p−トルエンスルホニルヒドラジト(TSH)、ジフェニルスルホン−S,S′−ジスルホニルヒドラジト(DPSDSH)、4,4′−オキシビスベンゼンスルホニルヒドラジト(OBSH)等のスルホニルヒドラジド化合物;アゾジカルボン酸アミド(ADCA)、アゾビスイソブチロニトリル(AIBN)、ジアゾアミノベンゼン(DAB)、バリウム−アゾジカルボキシレート等のアゾ、ジアゾ化合物;トリヒドラジノトリアジン、p−トルエンスルホニルセミカルバジド、4,4′−オキシビスベンゼンスルホニルセミカルバジド等が挙げられ、無機化合物としては重炭酸ナトリウム、炭酸アンモニウム、重炭酸アンモニウム、亜硝酸アンモニウム、過酸化物等が挙げられる。
【0024】
上記の有機化合物及び無機化合物は何れも単独で又は二種以上を適宜混合して使用することが可能である。
上記ガス発生化合物の中で、有機化合物は分解挙動が発熱反応となることから一定温度に達すると急激に分解する為に発生ガス量も一定となり易いので添加量とガス発生量との関係が予想し易く好ましい。
また、無機化合物は一般に吸熱反応が多く徐々に分解するものがあるが、この様な場合にはガス発生等をコントロールすることが望ましい。
また、ガス発生化合物、特に有機系の化合物には分解温度を調節する為に適宜助剤を添加しても良い。
【0025】
助剤としては、例えば、分解温度を低下させる助剤として、亜鉛華、カプリル酸亜鉛、硝酸亜鉛、亜鉛脂肪酸石けん等の亜鉛化合物;炭酸鉛、フタル酸鉛、亜リン酸鉛、ステアリン酸鉛等の鉛の化合物;カプリル酸カドミウム、カプロン酸カドミウム、ラウリン酸カドミウム、ミリスチン酸カドミウム、カドミウム脂肪酸石けん等のカドミウム化合物;尿素、硼砂、エタノールアミン等が用いられる。他方、分解を抑制する助剤としては、マレイン酸、フマル酸等の有機酸;ステアロイルクロリド、フタロイルクロリド等のハロゲン化有機酸;無水マレイン酸、無水フタル酸等の無水有機酸;ヒドロキノン、ナフタレンジオール等の多水酸基アルコール;d−マルトーズ等の炭化水素;脂肪族アミン、ヘテロサイクリックアミン、アミド、オキシム等の窒素含有物;チオール、メルカプタン、硫化物、スルホン酸、スルホキシド、イソシアネート等のイオウ含有物;シクロヘキサノン、アセチルアセトン等のケトン;アルデヒド類;リン酸塩、亜リン酸塩化合物;6,6−ジメチルフルベン、ヘキサクロルシクロペンタジエン、ジブチル錫マレエート等が用いられる。これらの助剤を適宜使用することにより分解挙動を修正することができる。
【0026】
なお、本発明では有機材料層を光記録媒体の一構成層として用いるが、有機材料の状態変化に基づく変形層への圧力を利用するため、従来のような厳しい光学条件が有機材料に課せられることはない。
従って、未記録時の反射率を高める場合には、記録再生波長に対して吸収係数の小さな有機材料を用いることが可能であるし、未記録時の反射率をさほど気にしない場合には、変形層の光吸収機能の大小に合わせて有機材料層の吸収係数を調整し、適度な記録パワーで記録できるようにすることができる。
このように本発明では、基本的に有機材料の複素屈折率変化を利用しなくてよいため、有機材料に厳しい光学的条件が課せられず、有機材料として非常に多くの材料を用いることが可能となる。
その結果、従来のように記録再生波長に対して吸収帯を短波長側に位置させるような記録再生方式では、例えば記録再生波長が450nm以下になった場合、基本的に有機材料の共役系や分子骨格を小さくする必要があるため、有機材料の安定性の悪化(経時的に結晶化や凝集化が起きる)、溶解性の悪化、波長制御の悪化(置換基導入個所の減少と、置換基効果の低下)を招く恐れがあったが、本発明ではこれらの問題が発生しない。
つまり、有機材料の物性を目的に合わせて非常に広く柔軟に変えることができ、記録再生特性の向上を図ることができる。
【0027】
例えば、本発明の追記型光記録媒体では、青色波長以下に対応した光記録媒体でありながら、例えばCD−RやDVD−Rに用いる色素を用いることができるため、青色波長でも赤色波長でも記録再生が可能な光記録媒体を提供できる。
なお、本発明では基本的に記録再生に有機材料の光学定数(複素屈折率)変化を用いる必要はないが、勿論有機材料の光学定数変化を用いても構わない。
以上、変形層の変形形状を補償するために、変形形状補償層を構成する材料の爆発、分解、昇華に伴う圧力を利用する場合の好適な材料例を説明したが、変形形状補償層を構成する材料の膨張圧力を用いる場合は、例えば高分子材料を用いることができる。
このような高分子材料としては、ポリノルボルネン、ポリイソプレン、スチレン・ブタジエン共重合体、ポリウレタン、ポリオレフィン系樹脂、含フッ素系樹脂、ポリカプロクラトン系樹脂、ポリアミド系樹脂等が挙げられる。また、後述する、変形受容層として用いることのできる高分子材料も使用可能である。更にこれらの高分子材料は色素と混合して使用することもできる。
【0028】
本発明では、更に変形層の隣接層のうち、変形形状補償層とは反対側の隣接層として変形受容層を設ける。
この変形受容層は、記録パワーの変化に対する変形層の変形量の変動を小さくするために設けられ、記録パワーマージンの拡大に非常に有効である。従って、変形受容層は、変形形状補償層とは全く反対に、記録によって状態変化に伴う変形層側への圧力が殆ど発生しない材料で構成することが好ましい。即ち、変形受容層は、記録によって大きな分解、爆発、昇華等を起し難い材料、或いは分解、爆発、昇華等を起しても変形層への圧力が大きくならない材料及び膜厚で構成することが好ましい。
そのため、膜形成が容易であり、安価な高分子化合物を変形受容層として用いることが好ましい。
高分子化合物としては、例えばアクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル系樹脂、ポリビニルエステル系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂、ポリエーテルスルホン樹脂等が挙げられる。
【0029】
具体例としては、ポリスチレン、ポリ(α−メチルスチレン)、ポリインデン、ポリ(4−メチル−1−ペンテン)、ポリビニルピリジン、ポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラール、ポリ酢酸ビニル、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルメチルエーテル、ポリビニルエチルエーテル、ポリビニルベンジルエーテル、ポリビニルメチルケトン、ポリ(N−ビニルカルバゾール)、ポリ(N−ビニルピロリドン)、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸、ポリアクリロニトリル、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ブチル、ポリメタクリル酸ベンジル、ポリメタクリル酸シクロヘキシル、ポリメタクリル酸、ポリメタクリル酸アミド、ポリメタクリロニトリル、ポリアセトアルデヒド、ポリクロラール、ポリエチレンオキシド、ポリプロピレンオキシド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート類(ビスフェノール類+炭酸)、ポリ(ジエチレングリコール・ビスアリルカーボネート)類、6−ナイロン、6,6−ナイロン、12−ナイロン、6,12−ナイロン、ポリアスパラギン酸エチル、ポリグルタミン酸エチル、ポリリジン、ポリプロリン、ポリ(γ−ベンジル−L−グルタメート)、メチルセルロース、エチルセルロース、ベンジルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、アセチルセルロース、セルローストリアセテート、セルローストリブチレート、ポリウレタン樹脂などの樹脂;ポリ(フェニルメチルシラン)などの有機ポリシラン;有機ポリゲルマン;或いはそれらの共重合体又は共重縮合体などが挙げられる。
【0030】
更に、大きな分解、爆発、昇華等を起こさない特性を有する色素を変形受容層として用いることも可能である。この場合、変形層の変形温度よりも色素の分解温度の方が十分低いか、十分高いことが好ましい。
変形受容層の厚さは任意であるが、変形受容層に隣接して高硬度の材料が設けられる場合には、記録感度と記録パワーマージンの兼ね合いによって膜厚を決定することが好ましい。
なお、本発明で言う変形受容層は、この変形受容層が変形層の変形を完全に阻害する材料や、変形形状の対称性を悪化させる材料から構成されない限り、任意の層とすることができ、例えば、空気層、接着層、保護層、カバー層等であってもよい。
【0031】
本発明では変形層の変形によって情報を記録再生するが、この変形層の変形は、変形層に単独で光吸収機能を持たせるか、変形形状補償層に単独で光吸収機能を持たせるか、或いは変形層と変形形状補償層の両者に光吸収機能を持たせることで達成することができる。
但し、記録後の再生安定性や保存安定性を高めるため、記録部においては光吸収機能が低下していることが好ましい。
そこで、本発明では、変形層と変形形状補償層の両者に光吸収機能を持たせ、記録によって変形形状補償層の光吸収機能を低下又は消失させる態様が特に好ましい。
何故ならば、本発明では、変形層は記録によって分解や昇華等を起さない材料から好ましく構成され、記録によって変形層の光吸収機能を低下又は消失させることが一般的には困難であるのに対し、変形形状補償層は、記録によって分解や昇華等を起し易い材料から好ましく構成され、記録によって変形形状補償層の光吸収機能を低下又は消失させることが容易であるからである。
これによって記録後の記録部の光吸収機能を低下させることができ、再生による劣化を防止することができ安定性が改善される。
【0032】
なお、本発明では「単純層構成で、安価に製造可能な追記型光記録媒体及びその記録再生方法」を提供できるが、これは変形という最も単純な記録原理を用いるためである。
また、「記録再生波長に大きな制限がなく、記録特性の波長依存性が少ない追記型光記録媒体及びその記録再生方法」を提供できる理由は、例えば記録光に対する光吸収機能を併せ持つ変形層を用いる場合、この変形層としてはSiC、Si、Ge等のSi又はGe含有物が好ましく用いられ、これらの材料の複素屈折率は、従来の追記型光記録媒体に用いられる有機材料のような大きな波長依存性を持たないためである。
また、「表面記録或いは高NAレンズによる記録に対応でき、高密度化が達成できる追記型光記録媒体及びその記録再生方法」を提供できる理由は、本発明の光記録媒体の構成及び記録原理上、記録再生方向に制限がないためである(また記録再生方向が何れであっても、それに合わせた層構成が容易に実現できる)。また、本発明では入射光に対する変形層の変形方向を規定しているが、これは前述したように、再生信号の極性をHigh to Low化し、また微分波形化を防止するためのものであるから、記録極性や微分波形等の問題が生じない場合、或いは問題とならないような場合には、変形層の変形方向と入射光の関係は任意で構わない。
【0033】
本発明では、反射層を設けてもよい。
反射層の材料としては、レーザ光に対する反射率が高い物質が適しており、例えば、Mg、Se、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Co、Ni、Ru、Rh、Pd、Ir、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Si、Ge、Te、Pb、Po、Sn、Biなどの金属及び半金属、或いはステンレス鋼を挙げることができる。
これらの中で好ましいのは、Cr、Ni、Pt、Cu、Ag、Au、Al及びステンレス鋼である。
これらの物質は単独で用いてもよく、二種以上の組み合わせで、或いは合金として用いてもよい。
反射層は、例えば上記物質を蒸着、スパッタリング又はイオンプレーティングすることにより形成することができる。
反射層の膜厚は、通常10〜500nmとするが、好ましくは10〜300nmの範囲である。
【0034】
本発明の実施の形態例は、図3〜図9に示す通りである。
図3は、変形層に本発明の変形形状補償層と変形受容層を隣接させた構造を有する例である(本発明の必須層構成)。
図4は、図3の構造を有し、主反射界面が変形層と変形受容層の界面にある場合の、変形層の変形方向と再生方向を示した図である。図4では、変形層及び/又は変形形状補償層の光吸収機能によって変形層を変形受容層側に変形させる。
図5は、図4の構造と機能を有する層構成を、実際の追記型光記録媒体に適用した例、即ち、基板上に図4の層構成を積層した例を示す図である。
図6は、図4の構造と機能を有する層構成を、実際の追記型光記録媒体に適用した別の例、即ち、基板上に図4の層構成を積層し、更に変形受容層上にカバー層を設けた例を示す図である。
図7は、図4の構造と機能を有する層構成を、実際の追記型光記録媒体に適用した更に別の例、即ち、基板上に図4の層構成を積層し、更に変形受容層上に接着層を介してカバー層を設けた例を示す図である。
【0035】
図8は、図3の構造を有し、変形受容層の変形層とは反対側の隣接層として反射層を有する構造であって、主反射界面が変形受容層と反射層の界面にある場合の、変形層の変形方向と再生方向を示した図である。
図8では、変形層及び/又は変形形状補償層の光吸収機能によって変形層を変形受容層側に変形させる。
図9は、図8の構造と機能を有する層構成を、実際の追記型光記録媒体に適用した例、即ち、基板上に図8の層構成を積層した例を示す図である。
なお、図3〜図9の「A」は、変形層と変形形状補償層が剥離した部分、変形形状補償層が膨張した部分、或いは変形層が膨張した部分を示す。
また、図3〜図9では、変形層の変形が生じた部分の変形形状補償層が光学定数変化を起していてもよい。
以上の図3〜図9は、本発明の効果を奏する最小限の層を有する例を示したものであって、実際には、図3〜図9に示した層構成に加えて、適宜、基板、下引層、上引層、保護層、接着層、カバ−層等が設けられる。
【0036】
【実施例】
以下、実施例、比較例、参考例を示して本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
【0037】
比較例1
溝深さ55nmの案内溝を有するポリカーボネート基板上に、変形形状補償層としてDVD−Rに利用できる下記〔化1〕からなる色素層を厚さ約60nm、更にその上に光吸収機能を有する変形層としてSiCを厚さ10nm設けた光記録媒体を作製した。
この光記録媒体に対して、パルステック工業製の光ディスク評価装置、DDU−1000(波長:405nm、NA:0.65)を用いて、SiC側から9.0mWのレーザ光を照射し、ランド部(入射レーザ光側から見て、手前側にある溝位置)に、記録周波数65.4MHz、記録線速度6.0m/sで8−16変調の信号を記録した。
その結果、変調度が約70%で、記録極性がHigh to Lowであり、図19に示すような、非常に明瞭なアイパタ−ンが得られ、ジッタ(σ/Tw)は7.8%となった。
また、記録パワーに対するジッタ特性は、図20の◆で示した線のようになり、後述する比較例2に比べて、ジッタの値が良く、また記録パワーマージンも広いことが確認できた。
なお、図20には、本比較例で色素層の膜厚を50nmとした場合の測定結果(■で示した線)も併せて示した。
この時、変形層の変形状態をAFM(原子間力顕微鏡)によって確認したところ、図22に示すように、変形層は入射光側に変形しており、またその変形形状の対称性は良好であった。
【0038】
【化1】

Figure 0004117876
【0039】
実施例1
溝深さ55nmの案内溝を有するポリカーボネート基板上に、変形形状補償層としてDVD−Rに利用できる上記〔化1〕の色素からなる色素層を厚さ約60nm、その上に光吸収機能を有する変形層としてSiCを厚さ10nm、更にその上に変形受容層としてポリスチレン樹脂を厚さ約2μm設けた光記録媒体を作製した。
この光記録媒体に対して、パルステック工業製の光ディスク評価装置、DDU−1000(波長:405nm、NA:0.65)を用いて、ポリスチレン樹脂層側から9.7mWのレーザ光を照射し、ランド部(入射レーザ光側から見て、手前側にある溝位置)に、記録周波数65.4MHz、記録線速度6.0m/sで8−16変調の信号を記録した。
その結果、変調度が約61%で、記録極性がHigh to Lowであり、比較例1と同様に明瞭なアイパターンが得られ、ジッタ(σ/Tw)は8.0%となった。
また、記録パワーに対するジッタ特性は、図24の■で示した線のようになり、比較例1のディスクに比べて(図24の◆で示した線)、記録パワーマージンが広いことが確認できた(変形受容層の効果が確認できた)。
この時、ポリスチレン樹脂層を剥がし、変形層の変形状態をAFMによって確認したところ、図23に示すように、変形層は入射光側(ポリスチレン樹脂層側)に変形しており、またその変形形状の対称性は良好であった。なお、図23中の白い点線はマーク中心を示す線である。
【0040】
比較例2
溝深さ55nmの案内溝を有するポリカーボネート基板上に、光吸収機能を有する変形層としてSiCを厚さ10nm設けた光記録媒体を作製した。
この光記録媒体に対して、パルステック工業製の光ディスク評価装置、DDU−1000(波長:405nm、NA:0.65)を用いて、SiC側から8.0mWのレーザ光を照射し、ランド部(入射レーザ光側から見て、手前側にある溝位置)に、記録周波数65.4MHz、記録線速度6.0m/sで8−16変調の信号を記録した。
その結果、変調度が約70%で、記録極性がHigh to Lowであり、図18に示すような、比較的良好なアイパターンが得られたが、ジッタ(σ/Tw)は10.4%と大きくなった。
また、記録パワーに対するジッタ特性は、図20の●で示した線のようになり、前述した比較例1に比べて、ジッタの値が悪く、また記録パワーマージンも狭いことが確認できた。
この時、変形層の変形状態をAFMによって確認したところ、図21に示すように、変形層は入射光側に変形しているが、その変形形状の対称性が大きく崩れていた。なお、図21中の白い点線はマーク中心を示す線である。
以上、比較例1と比較例2の結果から、変形形状補償層の有効性が示され、比較例1と実施例1の結果から、変形受容層の有効性が示された。
【0041】
実施例2
溝深さ55nmの案内溝を有するポリカーボネート基板上に、変形形状補償層として青色レーザ波長に吸収を持つ下記〔化2〕からなる色素層を厚さ約20nm、光吸収機能を有する変形層としてSiCを厚さ約5nm、変形受容層としてポリスチレン樹脂からなる層を厚さ約80nm、反射層としてAgを厚さ約100nm設けた光記録媒体を作製した。
この光記録媒体に対して、パルステック工業製の光ディスク評価装置、DDU−1000(波長:405nm、NA:0.65)を用いて、基板側から9.5mWのレーザ光を照射し、ランド部(入射レーザ光側から見て、奥側にある溝位置)に、記録周波数65.4MHz、記録線速度6.0m/sで8−16変調の信号を記録した。
その結果、記録パワーに対するジッタ特性は、図25の■で示した線のようになり、後述する比較例3に比べて、ジッタの値が良いことが確認できた。
また、繰り返し再生による再生劣化が殆どなく、記録部の色素層は分解・変質を起していることが確認できた。
【0042】
【化2】
Figure 0004117876
【0043】
比較例3
溝深さ55nmの案内溝を有するポリカーボネート基板上に、光吸収機能を有する変形層としてSiCを厚さ約10nm、変形受容層としてポリスチレン樹脂からなる層を厚さ約80nm、反射層としてAgを厚さ約100nm設けた光記録媒体を作製した。
この光記録媒体に対して、パルステック工業製の光ディスク評価装置、DDU−1000(波長:405nm、NA:0.65)を用いて、基板側から9.8mWのレーザ光を照射して、ランド部(入射レーザ光側から見て、奥側にある溝位置)に、記録周波数65.4MHz、記録線速度6.0m/sで8−16変調の信号を記録した。
その結果、記録パワーに対するジッタ特性は、図25の◆で示した線のようになり、前述の実施例2に比べて、ジッタの値が悪かった。
【0044】
以上、実施例において、本発明の変形形状補償層と変形受容層の効果を確認したが、本発明では、光吸収層に記録に必要な光吸収機能を持たせることにより、色素層(例えば変形形状補償層)に大きな光吸収機能を持たせる必要がなくなるため、色素層の膜厚を薄膜化でき、従って、浅溝基板の利用が可能であることを確認した。
また、上記実施例では、何れも記録をランド部に行ったが、これは、変形層の変形形状を観察し易くするためであって、本発明はランド記録に限定されるものではない。
【0045】
次に、参考例1〜8により、変形層とその隣接層の界面が主反射界面となる場合において、変形層を入射光側に変形させることの重要性を示すが、これらの参考例では、変形層の変形の作用を明確にするため、変形形状補償層を設けない光記録媒体で実験を行った(変形形状補償層を設けた場合も、これらの参考例と同様な現象となる)。
なお、図10〜図17は、それぞれ参考例1〜8の記録結果を示す図である。
図10(a)〜図17(a)は、参考例1〜8の再生信号(RFレベル)の記録マーク長(Mark Length)依存性を測定した結果を示す図であり、各図中の、Unrecは未記録時の再生信号(RFレベル)を、Topはマーク列を記録した時の最大再生信号レベル(即ちスペース部)を、Bottomはマーク列を記録した時の最小再生信号レベルを、MAは(Top−Bottom)/Topで計算される変調度を示す。
また、図10(b)〜図16(b)には、3Tマークを連続して記録した場合の再生信号、4Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを、図10(c)〜図16(c)には、6Tマークを連続して記録した場合の再生信号、8Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを、図10(d)〜図17(d)には、3Tマークを連続して記録した場合の再生信号、14Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示した。
【0046】
参考例1
溝深さ55nmの案内溝を有するポリカーボネート基板上に、光吸収機能を有する変形層としてSiCを厚さ10nm設けた光記録媒体を作製した。
この光記録媒体に対して、パルステック工業製の光ディスク評価装置、DDU−1000(波長:405nm、NA:0.65)を用いて、基板側から5.0mWのレーザ光を照射し、グルーブ部(入射レーザ光側から見て、手前側にある溝位置)に、記録周波数65.4MHz、記録線速度6.0m/sで3T〜14Tマークをそれぞれ単独で記録した。
なお、SiCは入射光とは反対側(反基板側)に変形していることをAFMにより確認した。
また、図10(a)の結果から、記録マーク長によらずHigh to Low記録が行えている可能性があることが確認できる。
更に、図10(b)〜図10(d)の結果から、3T、4T、6T、8T、14Tとも、マーク長記録が可能な再生信号波形を示すことが分る。
【0047】
参考例2
記録パワーを6.0mWとした点以外は参考例1と全く同様の実験を行った。なお、SiCは入射光とは反対側(反基板側)に変形していることをAFMにより確認した。
また、図11(a)の結果から、記録マーク長によって記録極性が変化すること、即ち、短マークではHigh to Low記録であるが、長マークではHigh to Low記録とLow to High記録が混在したような信号が発生し、マーク長記録が困難となることが分る。
更に、図11(b)〜図11(d)の結果から、3T、4Tはマーク長記録が可能な再生信号波形を示すが、6T、8T、14Tはマーク中央部のRFレベルが大きく上昇した再生信号波形を示し〔6T、8Tでは、再生信号の周期が本来の再生信号の倍に見える。このことは図10(c)と比べるとよく分る〕、マーク長記録が困難となることが分る。
【0048】
参考例3
基板側から6.0mWのレーザ光を照射してランド部(入射レーザ光側から見て奥側にある溝位置)に記録した点以外は参考例1と全く同様の実験を行った。なお、SiCは入射光とは反対側(反基板側)に変形していることをAFMにより確認した。
また、図12(a)の結果から、記録マーク長によって記録極性が変化する傾向、即ち、短マークではHigh to Low記録であるが、長マークではHigh to Low記録とLow to High記録が混在したような信号が発生する傾向が見られ、マーク長記録が困難となる可能性があることが分る。更に、図12(b)〜図12(d)の結果から、3T、4T、6T、8Tは、マーク長記録が可能な再生信号波形を示すが、14Tはマーク中央部のRFレベルが大きく上昇した再生信号波形を示し、マーク長記録が困難となることが分る。
【0049】
参考例4
基板側から7.0mWのレーザ光を照射してランド部(入射レーザ光側から見て奥側にある溝位置)に記録した点以外は参考例1と全く同様の実験を行った。
なお、SiCは入射光とは反対側(反基板側)に変形していることをAFMにより確認した。
また、図13(a)の結果から、記録マーク長によって記録極性が変化すること、即ち、短マークではHigh to Low記録であるが、長マークではHigh to Low記録とLow to High記録が混在したような信号が発生し、マーク長記録が困難となることが分る。
更に、図13(b)〜図13(d)の結果から、3T、4Tは、マーク長記録が可能な再生信号波形を示すが、6T、8T、14Tはマーク中央部のRFレベルが大きく上昇した再生信号波形を示し〔例えば6Tでは再生信号の周期が本来の再生信号の倍に見える。このことは図10(c)と比べるとよく分る〕、マーク長記録が困難となることが分る。
【0050】
以上、参考例1〜4の結果から、変形層とその隣接層の界面が主反射界面となり、基板上に光吸収機能を有する変形層を設けたような単純層構成で、変形層を入射光と反対側に変形させる場合は(今の場合、基板側から記録再生する方式では)、マーク長による記録再生が困難である場合が多く、また記録極性がLowto High化する場合が多いことが確かめられた。
【0051】
参考例5
溝深さ55nmの案内溝を有するポリカーボネート基板上に、光吸収機能を有する変形層としてSiCを厚さ10nm設けた光記録媒体を作製した。
この光記録媒体に対して、パルステック工業製の光ディスク評価装置、DDU−1000(波長:405nm、NA:0.65)を用いて、SiC側から8.0mWのレーザ光を照射し、ランド部(入射レーザ光側から見て、手前側にある溝位置)に、記録周波数65.4MHz、記録線速度6.0m/sで3T〜14Tマークをそれぞれ単独で記録した。
なお、SiCは入射光側(反基板側)に変形していることをAFMにより確認した。
また、図14(a)の結果から、記録マーク長によらずHigh to Low記録が行えている可能性があることが確認できる。
更に、図14(b)〜図14(d)の結果から、3T、4T、6T、8T、14Tとも、マーク長記録が可能な再生信号波形を示すことが分る。
【0052】
参考例6
記録パワーを9.0mWとした点以外は参考例5と全く同様の実験を行った。
なお、SiCは入射光側(反基板側)に変形していることをAFMにより確認した。
また、図15(a)の結果から、記録マーク長によらずHigh to Low記録が行えている可能性があることが確認できる。
更に、図15(b)〜図15(d)の結果から、3T、4T、6T、8T、14Tとも、マーク長記録が可能な再生信号波形を示すことが分る。
【0053】
参考例7
SiC側から7.0mWのレーザ光を照射してグル−ブ部(入射レーザ光側から見て奥側にある溝位置)に記録した点以外は、参考例5と全く同様の実験を行った。なお、SiCは入射光側(反基板側)に変形していることをAFMにより確認した。
また、図16(a)の結果から、記録マーク長によらずHigh to Low記録が行えている可能性があることが確認できる。
更に、図16(b)〜図16(d)の結果から、3T、4T、6T、8T、14Tとも、マーク長記録が可能な再生信号波形を示すことが分る。
【0054】
参考例8
基板側から8.0mWのレーザ光を照射してグル−ブ部(入射レーザ光側から見て奥側にある溝位置)に記録した点以外は参考例5と全く同様の実験を行った。なお、SiCは入射光側(反基板側)に変形していることをAFMにより確認した。
また、図17(a)の結果から、記録マーク長によらずHigh to Low記録が行えている可能性があることが確認できる。
更に、図17(d)の結果から、最短及び最長マークとも、マーク長記録が可能な再生信号波形を示すことが分る。
【0055】
以上、参考例5〜8に示したように、変形層とその隣接層の界面が主反射界面となり、基板上に光吸収機能を有する変形層を設けただけの単純な光記録媒体であって、変形層を入射光側に変形させる場合は(今の場合、反基板側から記録再生する方式では)、マーク長記録が可能で、High to Low記録が行える可能性があることが実験によって証明された。
【0056】
【発明の効果】
本発明1〜22によれば、単純層構成で安価に製造可能であり、記録再生波長に大きな制限がなく、記録特性の波長依存性が少なく、有機材料を用いる場合でも有機材料に対して従来のような厳しい光学的条件が不要であり、変形を主体とする記録原理を用いているにも関わらず良好なジッタと広い記録パワーマージンを実現でき、表面記録或いは高NAレンズによる記録に対応でき高密度化が達成できるという特性を有する追記型光記録媒体及びその記録再生方法を提供できる。
【図面の簡単な説明】
【図1】変形層の変形形状の対称性を説明する図。
(a) 対称性が悪化した変形形状の例。
(b) 理想的な変形形状の例。
【図2】マーク長記録の記録マークを再生した場合の再生信号の波形を説明する図。
(a) 一般的な場合
(b) 記録マークの前後エッジ近傍で変極点を持つ微分波形
(c) 記録マークの中心近傍で変極点を持つ微分波形
【図3】変形層に変形形状補償層と変形受容層を隣接させた構造を有する例を示す図。
【図4】図3の構造を有し、主反射界面が変形層と変形受容層の界面にある場合の、変形層の変形方向と再生方向を示した図。
【図5】図4の構造と機能を有する層構成を、実際の追記型光記録媒体に適用した例、即ち、基板上に図4の層構成を積層した例を示す図。
【図6】図4の構造と機能を有する層構成を、実際の追記型光記録媒体に適用した別の例、即ち、基板上に図4の層構成を積層し、更に変形受容層上にカバー層を設けた例を示す図。
【図7】図4の構造と機能を有する層構成を、実際の追記型光記録媒体に適用した更に別の例、即ち、基板上に図4の層構成を積層し、更に変形受容層上に接着層を介してカバー層を設けた例を示す図。
【図8】図3の構造を有し、変形受容層の変形層とは反対側の隣接層として反射層を有する構造であって、主反射界面が変形受容層と反射層の界面にある場合の、変形層の変形方向と再生方向を示した図。
【図9】図8の構造と機能を有する層構成を、実際の追記型光記録媒体に適用した例、即ち、基板上に図8の層構成を積層した例を示す図。
【図10】参考例1の記録結果を示す図。
(a) 記録マーク長と再生信号(RFレベル)及び変調度の関係を示す。
(b) 3Tマーク、4Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(c) 6Tマーク、8Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(d) 3Tマーク、14Tマークを連続して記録した場合の再生信号、及び未記録時の再生信号レベルを示す。
【図11】参考例2の記録結果を示す図。
(a) 記録マーク長と再生信号(RFレベル)及び変調度の関係を示す。
(b) 3Tマーク、4Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(c) 6Tマーク、8Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(d) 3Tマーク、14Tマークを連続して記録した場合の再生信号、及び未記録時の再生信号レベルを示す。
【図12】参考例3の記録結果を示す図。
(a) 記録マーク長と再生信号(RFレベル)及び変調度の関係を示す。
(b) 3Tマーク、4Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(c) 6Tマーク、8Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(d) 3Tマーク、14Tマークを連続して記録した場合の再生信号、及び未記録時の再生信号レベルを示す。
【図13】参考例4の記録結果を示す図。
(a) 記録マーク長と再生信号(RFレベル)及び変調度の関係を示す。
(b) 3Tマーク、4Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(c) 6Tマーク、8Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(d) 3Tマーク、14Tマークを連続して記録した場合の再生信号、及び未記録時の再生信号レベルを示す。
【図14】参考例5の記録結果を示す図。
(a) 記録マーク長と再生信号(RFレベル)及び変調度の関係を示す。
(b) 3Tマーク、4Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(c) 6Tマーク、8Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(d) 3Tマーク、14Tマークを連続して記録した場合の再生信号、及び未記録時の再生信号レベルを示す。
【図15】参考例6の記録結果を示す図。
(a) 記録マーク長と再生信号(RFレベル)及び変調度の関係を示す。
(b) 3Tマーク、4Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(c) 6Tマーク、8Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(d) 3Tマーク、14Tマークを連続して記録した場合の再生信号、及び未記録時の再生信号レベルを示す。
【図16】参考例7の記録結果を示す図。
(a) 記録マーク長と再生信号(RFレベル)及び変調度の関係を示す。
(b) 3Tマーク、4Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(c) 6Tマーク、8Tマークを連続して記録した場合の再生信号、及び、未記録時の再生信号レベルを示す。
(d) 3Tマーク、14Tマークを連続して記録した場合の再生信号、及び未記録時の再生信号レベルを示す。
【図17】参考例8の記録結果を示す図。
(a) 記録マーク長と再生信号(RFレベル)及び変調度の関係を示す。
(d) 3Tマーク、14Tマークを連続して記録した場合の再生信号、及び未記録時の再生信号レベルを示す。
【図18】比較例2の光記録媒体のアイパターンを示す図。
【図19】比較例1の光記録媒体のアイパターンを示す図。
【図20】比較例1及び比較例2の各光記録媒体の記録パワーに対するジッタ特性を示す図。
【図21】比較例2の光記録媒体の変形層の変形状態をAFMによって測定した図。
【図22】比較例1の光記録媒体の変形層の変形状態をAFMによって測定した結果を示す図。
【図23】実施例1の光記録媒体のポリスチレン層を剥がし、変形層の変形状態をAFMによって測定した結果を示す図。
【図24】比較例1及び実施例1の各光記録媒体の記録パワーに対するジッタ特性を示す図。
【図25】実施例2及び比較例3の各光記録媒体の記録パワーに対するジッタ特性を示す図。
【図26】従来のディスクの層構成を示す図。
【符号の説明】
A 変形層と変形形状補償層が剥離した部分、変形形状補償層が膨張した部分、或いは変形層が膨張した部分
Mark Length マーク長
T 基準クロック
RF Lebel(V) RF(再生信号)レベル(ボルト)
Modulated amplitude 変調度
Unrec 未記録時の再生信号(RF)レベル
Top マーク列を記録した時の最大再生信号レベル(即ちスペース部)
Bottom マーク列を記録した時の最小再生信号レベル(即ちマーク部)
MA (Top−Bottom)/Topで計算される変調度
Time0.5(μs/div) 時間(1メモリ0.5マイクロ秒)
σ/Tw ジッタ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a write once read many (WORM) optical recording medium, and more particularly to a write once optical recording medium capable of high density recording even at a blue laser wavelength of about 350 to 500 nm.
[0002]
[Prior art]
◎ About recordable optical recording media for blue laser
Development of blue lasers capable of ultra-high density recording is rapidly progressing, and write-once type optical recording media corresponding thereto are being developed.
In conventional write-once optical recording media, recording pits are formed by irradiating a recording layer made of an organic material with laser light and causing a change in refractive index mainly due to decomposition and alteration of the organic material. The optical constant and decomposition behavior of the organic material used are important factors for forming good recording pits.
Accordingly, it is necessary to select an organic material used for the recording layer that is suitable for optical properties and decomposition behavior with respect to the blue laser wavelength. In other words, the recording / reproducing wavelength has a large absorption band in order to increase the reflectivity when unrecorded, and to cause a large change in refractive index due to decomposition of the organic material by laser irradiation (this provides a large degree of modulation). It is selected so as to be located at the bottom of the long wavelength side.
[0003]
This is because the skirt on the long wavelength side of the large absorption band of the organic material is a wavelength region having an appropriate absorption coefficient and a large refractive index.
However, an organic material having an optical property with respect to a blue laser wavelength that is the same as the conventional value has not yet been found. This is because in order to obtain an organic material having an absorption band near the blue laser wavelength, it is necessary to reduce the molecular skeleton or shorten the conjugated system, but this leads to a decrease in absorption coefficient, that is, a decrease in refractive index. Because.
That is, there are many organic materials having an absorption band near the blue laser wavelength, and the absorption coefficient can be controlled. However, since there is no large refractive index, a large degree of modulation cannot be obtained.
[0004]
Examples of organic materials compatible with blue lasers are described in JP-A Nos. 2001-181524, 2001-158865, 2000-343824, 2000-343825, and 2000-335110. is there.
However, these publications only measure the spectra of the solution and the thin film even when looking at the examples, and there is no description regarding recording and reproduction.
In JP-A-11-221964, JP-A-11-334206, and JP-A-2000-43423, although there is a description of recording in the examples, the recording wavelength is 488 nm, and the description regarding the recording conditions and recording density is as follows. There is only a statement that a good recording pit was formed.
In Japanese Patent Laid-Open No. 11-58955, although there is a description of recording in the examples, the recording wavelength is 430 nm, and there is no description regarding recording conditions and recording density, and there is a description that a good degree of modulation was obtained. Only.
[0005]
JP 2001-39034, JP 2000-149320, JP 2000-11504, JP 2000-108513, JP 2000-222772, JP 2000-218940, JP 2000-222771, In Japanese Laid-Open Patent Publication Nos. 2000-158818, 2000-280621, and 2000-280620, there are examples of recording with a recording wavelength of 430 nm and NA of 0.65, but the shortest pit is 0.4 μm. Density conditions (recording density equivalent to DVD).
In Japanese Patent Application Laid-Open No. 2001-146074, the recording / reproducing wavelength is 405 to 408 nm, but there is no specific description regarding the recording density, and the recording density is a low recording density condition of 14T-EFM signal recording.
[0006]
Further, the following technologies are disclosed regarding the layer configuration and recording method different from those of conventional CD and DVD optical recording media.
Japanese Patent Application Laid-Open No. 7-304258 discloses a technique for recording by changing the extinction coefficient (absorption coefficient in the present invention) of a saturable absorbing dye in a layer structure of substrate / saturable absorbing dye-containing layer / reflective layer. It is disclosed.
In JP-A-8-83439, recording is performed by discoloring or deforming a metal vapor deposition layer by heat generated by the light absorption layer in a layer configuration of substrate / metal vapor deposition layer / light absorption layer / protective sheet. Techniques to do are disclosed.
In JP-A-8-138245, recording is performed by changing the depth of the groove portion by changing the film thickness of the recording layer in a layer structure of substrate / dielectric layer / recording layer including light absorber / reflective layer. Technology is disclosed.
Japanese Patent Application Laid-Open No. H8-297838 discloses a technique for performing recording by changing the film thickness of the recording layer by 10 to 30% in a layer configuration of substrate / recording layer including a light absorber / metal reflective layer. Yes.
[0007]
Japanese Patent Application Laid-Open No. 9-198714 discloses that a substrate / a recording layer containing an organic dye / a metal reflective layer / a protective layer has a layer structure of 20 to 40% wider than the unrecorded portion. A technique for recording is disclosed.
Japanese Patent No. 2506374 discloses a technique for recording by forming a bubble by deforming a metal thin film with a layer structure of substrate / intermediate layer / metal thin film.
Japanese Patent No. 2591939 discloses a layer structure of substrate / light absorption layer / recording auxiliary layer / light reflecting layer, in which the recording auxiliary layer is deformed into a concave shape, and the light reflecting layer is made concave along the deformation of the recording auxiliary layer. A technique for recording by deforming is disclosed.
Japanese Patent No. 2591940 discloses a recording assist with a layer structure of substrate / light absorbing layer / porous recording auxiliary layer / light reflecting layer or substrate / porous recording auxiliary layer / light absorbing layer / light reflecting layer. A technique is disclosed in which recording is performed by deforming the layer into a concave shape and deforming the light reflecting layer into a concave shape along with the deformation of the recording auxiliary layer.
Japanese Patent No. 2591941 discloses a layer structure of substrate / porous light absorption layer / light reflection layer, in which the light absorption layer is deformed into a concave shape, and the light reflection layer is deformed into a concave shape along with the deformation of the light absorption layer. A technique for recording by performing the above is disclosed.
[0008]
Japanese Patent No. 2998925 discloses that the recording auxiliary layer and the organic dye are compatible with each other and the absorption spectrum of the organic dye is shifted to the short wavelength side in a layer configuration of substrate / recording layer containing organic dye / recording auxiliary layer. A technique for recording with the above is disclosed.
In Japanese Patent Laid-Open No. 9-265660, a composite functional layer having a function of a reflective layer and a recording layer and a protective layer are sequentially formed on a substrate, and recording is performed by forming bumps on the substrate and the composite functional layer. Techniques to do are disclosed. In addition, as a composite functional layer, there exists a prescription | regulation with metals, such as nickel, chromium, titanium, or those alloys.
Japanese Patent Laid-Open No. 10-134415 discloses a layer structure in which a metal thin film layer, a deformable buffer layer, a reflective layer, and a protective layer are sequentially formed on a substrate, and the substrate and the metal thin film layer are deformed at the same time. A technique for recording by reducing the thickness of the buffer layer is disclosed. In addition, as a metal thin film layer, there exists prescription | regulation with metals, such as nickel, chromium, titanium, or those alloys. In addition, as the buffer layer, there is a description that a resin that is easily deformable and has an appropriate fluidity is used, and a pigment may be contained in order to promote deformation.
[0009]
Japanese Patent Laid-Open No. 11-306591 discloses a layer structure in which a metal thin film layer, a buffer layer, and a reflective layer are sequentially laminated on a substrate, and the substrate and the metal thin film layer are deformed at the same time. A technique for recording by changing an optical constant is disclosed. In addition, as a metal thin film layer, there exists a description that metals, such as nickel, chromium, titanium, or those alloys are preferable. The buffer layer is made of a mixture of a dye and an organic polymer, and a dye having a large absorption band near the recording / reproducing wavelength is used.
Japanese Patent Laid-Open No. 10-124926 discloses a layer structure in which a metal recording layer, a buffer layer, and a reflective layer are sequentially laminated on a substrate, and the substrate and the metal recording layer are deformed at the same time. A technique for recording by changing an optical constant is disclosed. In addition, as a metal recording layer, there exists a description that metals, such as nickel, chromium, titanium, or those alloys are preferable. The buffer layer is made of a mixture of a dye and a resin, and a dye having a large absorption band near the recording / reproducing wavelength is used.
[0010]
As described above, the above-described conventional technologies are not aimed at realizing an optical recording medium in the blue laser wavelength region, and are not a layer configuration or a recording method effective in the blue laser wavelength region.
In particular, in the vicinity of 405 nm, which is the center of the oscillation wavelength of a blue semiconductor laser that is currently in practical use, most organic materials have an optical constant comparable to that required for the recording layer of conventional write-once type optical recording media. It does n’t exist. In addition, there are no examples in which recording conditions are clarified near 405 nm and recording is performed at a higher recording density than DVD.
Furthermore, many of the above embodiments in the prior art are experiments with a conventional disk configuration (see FIG. 26), and a configuration different from the conventional disk configuration has been proposed. The same optical characteristics and functions as before are required, and there is no effective proposal for a layer structure, a recording principle, and a recording method that can easily realize a write-once type optical recording medium made of an organic material in the blue laser wavelength region.
[0011]
In addition, in a write-once type optical recording medium using a conventional organic material, a large refractive index and a relatively small absorption coefficient (about 0.05 to 0.07) with respect to the recording / reproducing wavelength from the viewpoint of securing the degree of modulation and the reflectance. ) Can only be used.
That is, since the organic material does not have sufficient absorption capability for the recording light, it is impossible to reduce the film thickness of the organic material, and thus it is necessary to use a substrate having a deep groove. (Organic materials are usually formed by spin coating, so organic materials were buried in deep grooves to increase the thickness). Therefore, it becomes very difficult to form a substrate having a deep groove, which is a factor of deteriorating the quality as an optical recording medium.
Furthermore, in a write-once optical recording medium using a conventional organic material, the main absorption band of the organic material exists in the vicinity of the recording / reproducing wavelength, so the wavelength dependence of the optical constant of the organic material increases (the optical constant depends on the wavelength). Recording characteristics such as recording sensitivity, modulation factor, jitter, error rate, and reflectivity greatly change with respect to fluctuations in recording / reproducing wavelength due to individual differences of lasers, environmental temperature changes, etc. was there.
[0012]
[Problems to be solved by the invention]
An object of the present invention is to provide a write-once type optical recording medium that satisfies the following characteristics a) to e) and a recording / reproducing method thereof.
a) It can be manufactured inexpensively with a simple layer structure.
b) There is no great limitation on the recording / reproducing wavelength, and the wavelength dependence of the recording characteristics is small.
c) Even in the case of using an organic material, strict optical conditions as in the past are not required for the organic material.
d) Good jitter and a wide recording power margin can be realized in spite of using the recording principle mainly composed of deformation.
e) Corresponding to surface recording or recording with a high NA lens, high density can be achieved.
[0013]
[Means for Solving the Problems]
  The above-mentioned problems are solved by the following inventions 1) to 22) (hereinafter referred to as the present invention 1 to 22).
  1) The deformation layer that causes deformation by recording has a structure sandwiched between a deformation shape compensation layer that compensates for the deformation shape of the deformation layer and a deformation receptive layer that receives the deformation of the deformation layer.The deformation shape compensation layer is made of an organic material that generates a pressure toward the deformation layer side by a change in state of at least one of decomposition, explosion, and sublimation due to recording.A write-once optical recording medium characterized by the above.
  2)The write-once type optical recording medium according to 1), wherein the organic material is a dye.
  3)The deformation layer that causes deformation by recording has a structure sandwiched between a deformation shape compensation layer that compensates for the deformation shape of the deformation layer and a deformation reception layer that receives deformation of the deformation layer, and the recording polarity is High to Low. A write-once type optical recording medium characterized by being.
  4) The interface between the deformation layer and the deformation receiving layer is the main reflection interface, and the regeneration is performed from the deformation receiving layer side 1)~ Any one of 3)The write-once type optical recording medium as described.
  5) The recording portion is formed by deformation of the deformation layer toward the deformation-receiving layer side.4)The write-once type optical recording medium as described.
  6)Adjacent to the deformation receptive layerReflective layerSet up1) characterized in that the interface between the deformation-receiving layer and the reflective layer is the main reflective interface, and the reproduction is performed from the deformation shape compensation layer side.Or 2) as describedWrite-once optical recording medium.
  7) The recording portion is formed by deformation of the deformation layer toward the deformation-receiving layer side.6)The write-once type optical recording medium as described.
  8) The deformed portion is formed in the deformable layer by the light absorption function of the deformable layer 1) to7)The write-once type optical recording medium according to any one of the above.
  9) The deformation portion is formed in the deformation layer by the light absorption function of the deformation shape compensation layer.7)The write-once type optical recording medium according to any one of the above.
  10) The deformable layer and the deformed shape compensation layer have a light absorption function with respect to the recording light, the deformed portion is formed in the deformable layer by the light absorption function of both, and the light absorption function of the deformed shape compensation layer is reduced or disappeared by the recording. 1) to characterized by7)The write-once type optical recording medium according to any one of the above.
  11) The write-once type optical recording medium according to any one of 1) to 10), wherein the deformation-receiving layer is made of a polymer compound.
  12) The recordable optical recording medium according to any one of 1) to 11), wherein the deformable layer contains Si or Ge.
  13) The write-once type optical recording medium according to 12), wherein recording and reproduction are possible in a laser wavelength range of 350 to 500 nm.
  14) The deformation layer that causes deformation by recording has a structure sandwiched between a deformation shape compensation layer that compensates the deformation shape of the deformation layer and a deformation receptive layer that receives deformation of the deformation layer,The deformation shape compensation layer is made of an organic material that generates a pressure toward the deformation layer side by a change in state of at least one of decomposition, explosion, and sublimation due to recording.A recording method for a write once optical recording medium, wherein the deformation layer is deformed toward the deformation receiving layer by recording.
  15) The organic material is a pigment14)The recording method of the write-once type optical recording medium as described.
  16) To a write-once type optical recording medium having a structure in which a deformation layer that is deformed by recording is sandwiched between a deformation shape compensation layer that compensates for the deformation shape of the deformation layer and a deformation reception layer that receives deformation of the deformation layer. A recording method for a write-once optical recording medium, wherein the deformation layer is deformed toward the deformation-receiving layer by recording, and the recording polarity is set to High to Low.
  17) The deformation layer that causes deformation by recording has a structure sandwiched between a deformation shape compensation layer that compensates for the deformation shape of the deformation layer and a deformation reception layer that accepts deformation of the deformation layer. A recording method on a write once optical recording medium in which the interface of the receiving layer is a main reflection interface and reproduction is performed from the deformation receiving layer side, wherein the deformation layer is deformed to the deformation receiving layer side by recording. Method of recording optical recording medium.
  18) a deformation shape compensation layer that compensates the deformation shape of the deformation layer, a deformation layer that causes deformation by recording, a deformation receptive layer that accepts deformation of the deformation layer, and a reflective layer; Is a recording method on a write once optical recording medium in which reproduction is performed from the deformation shape compensation layer side, and the deformation layer is deformed to the deformation receiving layer side by recording. Recording method of write-once type optical recording medium.
  19) The deformation of the deformation layer toward the deformation-receiving layer is caused by the expansion force of the deformation layer and / or the pressure accompanying the change in the state of the deformation shape compensation layer.18)A recording method of a write-once type optical recording medium according to any one of the above.
  20) The deformation of the deformation layer toward the deformation receiving layer side is caused by the light absorption function of the deformation layer and / or the light absorption function of the deformation shape compensation layer by irradiation of recording light.18)A recording method of a write-once type optical recording medium according to any one of the above.
  21) Deformation of the deformation layer toward the deformation-receiving layer is caused by the light absorption function of the deformation layer and the light absorption function of the deformation shape compensation layer by irradiation of recording light. 14) to characterized in that the light absorption function is reduced or eliminated18)A recording method of a write-once type optical recording medium according to any one of the above.
  22) The write-once type optical recording medium according to any one of 14) to 21), wherein the deformable layer is composed of a material containing Si or Ge, and recording / reproduction is performed with a laser beam having a wavelength of 350 to 500 nm. Recording method.
[0014]
Hereinafter, the present invention will be described in detail.
The present inventor has found that sufficient recording / reproducing characteristics cannot be obtained with a write-once optical recording medium in which a deformable layer is provided on a substrate. That is, in a write-once type optical recording medium provided with a deformable layer on a substrate, for example, when the deformable layer has a light absorption function, the deformable layer can be deformed by irradiation of recording light, and a certain level of recording / reproduction characteristics can be obtained. Although it can be obtained, it has been found that jitter characteristics similar to CD-R and DVD-R cannot be obtained.
The cause is that, as a result of the examination, in the deformed shape of the deformable layer, the symmetry with respect to the scanning direction of the recording light around the central portion of the recording mark (hereinafter, simply referred to as the deformed shape symmetry) deteriorates. [See Fig. 1 (a). FIG. 1B is an example of an ideal deformed shape.
The deterioration of the symmetry of the deformed shape is likely to occur when the mark length becomes long or the physical properties (film thickness, hardness, etc.) relating to deformation of the deformed layer are not optimal.
[0015]
Therefore, as a result of examining the solution to the above problem, the present inventor provided a deformed shape compensation layer adjacent to the deformed layer in order to correct the deformed shape distortion as shown in FIG. The idea of using pressure due to the state change of the deformed shape compensation layer was confirmed, and its effectiveness was confirmed.
That is, in order to improve jitter characteristics, it has been found that it is important that the deformation shape of the deformation layer has a good symmetry. In the present invention, the deformation shape compensation layer is adjacent to the deformation layer. To compensate (correct) the distortion of the deformed shape.
On the other hand, the present inventor has found that it is important to control the deformation amount in order to widen the recording power margin (jitter fluctuation margin with respect to the recording power change).
In the present invention, in order to reduce the variation in the deformation amount of the deformation layer with respect to the change in recording power, the deformation receiving layer is provided in the adjacent layer on the direction side where the deformation layer causes deformation.
By changing the hardness, film thickness, etc. of the deformation receiving layer, the deformation amount and the deformation increase / decrease amount can be controlled, and the recording power margin can be widened.
[0016]
In the present invention, when the interface between the deformable layer and its adjacent layer becomes the main reflection interface, it is preferable to deform the deformable layer to the incident light side. This is because when the deformation layer is deformed to the side opposite to the incident light, the recording polarity becomes low to high, the recording polarity changes depending on the recording mark length or recording power, or the reproduction signal waveform is differentiated. It is because it is easy to do.
Generally, in mark length recording, when a recorded mark is reproduced, a reproduction signal (RF signal) as shown in FIG. 2A is obtained, whereas as shown in FIGS. 2B and 2C. In the present invention, a signal having an inflection point in the vicinity of the front and rear edges of the recording mark and in the vicinity of the center of the recording mark is referred to as a differential waveform (differential waveform conversion).
In addition, the main reflection interface referred to in the present invention refers to a reflection interface having the largest contribution to the reflected light from the optical recording medium by irradiation of recording / reproducing light, and is usually a reflection interface having the largest reflection coefficient.
[0017]
The deformation layer used in the present invention is not limited as long as it is deformed by recording. This deformation is caused by expansion of the deformation layer or pressure from other layers.
In the present invention, in order to improve the recording / reproduction characteristics, it is preferable to use a material having a large complex refractive index difference from the adjacent layer as the deformation layer.
For example, Au, Ag, Al, Cr, Ni, Al, Fe, Sn etc. are mentioned as a metal with a small refractive index (complex refractive index real part) generally. In general, as a material having a large refractive index (real refractive index real part), a material containing Si or Ge (for example, Si, Ge, Si)xGe1-x, Mg2Ge, Mg2Si, SiC, etc.); metals such as Nb, Ta, Be, V, or metal oxides thereof (for example, Ta2O5, Nb2O5Etc.); AlSb, AlxGa1-xAs, CdSe, GaSb, Hg1-xCdxExamples thereof include semiconductors such as Te, Se, Te, ZnTe, ZnS, PbS, InP, and GaP.
[0018]
When the adjacent layer of the deformation layer has a relatively low refractive index (for example, about 1.8 or less), the material of the deformation layer is Al.2O3, MgO, BeO, ZrO2, UO2, ThO2Simple oxide based oxides such as SiO22MgO · SiO2, MgO / SiO2, CaO · SiO2, ZrO2・ SiO23Al2O3・ 2SiO22MgO · 2Al2O3・ 5SiO2, Li2O ・ Al2O3・ 4SiO2Silicate oxides such as Al2TiO5, MgAl2O4, Ca10(PO4)6(OH)2, BaTiO3LiNbO3, PZT, PLZT (PbTiO3-PbZrO3Oxides), double oxide oxides such as ferrite; Si3N4, Si6-ZAlZOZN8-ZNon-oxides of nitrides such as AlN, BN, TiN; SiC, B4Non-oxides of carbides such as C, TiC and WC; LaB6TiB2, ZrB2Non-oxides of borides such as CdS, MoS2Sulfide non-oxide such as MoSi2Silicide-based non-oxides such as amorphous carbon, graphite, diamond and other carbon-based non-oxides; or their contents can be used.
[0019]
When the light absorbing function is imparted to the deformable layer, the deformable layer has a relatively large absorption coefficient with respect to the recording wavelength (the absorption coefficient here is an imaginary part of the complex refractive index, preferably 0.2 or more, for example). There is no limitation as long as the material has. Examples include materials containing Si or Ge (eg, Si, Ge, SixGe1-x, Mg2Ge, Mg2Si, SiC, etc.); metals such as Nb, Ta, Be, V, or metal oxides thereof (for example, Ta2O5, Nb2O5Etc.); AlSb, AlxGa1-xAs, CdSe, GaSb, Hg1-xCdxTe, Se, Te, ZnTe, ZnS, PbS, InP, GaP, and other semiconductors; or metals such as Ni, Cr, Ti, Ta, Fe, etc., which have lower thermal conductivity than Ag, etc., and Cu / Al, Ni / An alloy such as Fe can be used.
[0020]
In the present invention, when the interface between the deformable layer and the adjacent layer becomes the main reflection interface, the deformable layer is deformed to the incident light side, so that the deformed shape of the deformable layer is compensated (the symmetry of the deformed shape is improved). It is preferable that the deformation shape compensation layer for this is an adjacent layer on the back side of the deformation layer as viewed from the incident light side.
This is because, in the present invention, in order to compensate for the deformation shape of the deformation layer, a pressure based on a change in the state of the material constituting the deformation shape compensation layer, for example, a pressure accompanying expansion, decomposition, explosion, sublimation, or the like is used. (If the deformed shape compensation layer is an adjacent layer on the near side of the deformed layer when viewed from the incident light side, the deformed layer is opposite to the incident light due to the pressure accompanying the change in the state of the material constituting the deformed shape compensated layer. The recording polarity is changed to Low to High, the recording polarity changes depending on the recording mark length and recording power, or the reproduction signal waveform is differentiated).
Among the pressures based on the state change of the material constituting the deformed shape compensation layer, it is particularly preferable to use the pressure accompanying decomposition, explosion, sublimation and the like.
[0021]
The deformation shape compensation layer needs to be made of a material that generates pressure toward the deformation layer side as described above, and an organic material is preferably used. This is because organic materials cause decomposition, explosion, sublimation, etc. within an appropriate recording power range.
Preferred organic materials include polymethine, naphthalocyanine, phthalocyanine, squarylium, croconium, pyrylium, naphthoquinone, anthraquinone (indanthrene), xanthene, triphenylmethane, azulene, tetrahydrocholine , Phenanthrene-based, triphenothiazine-based dyes, metal complex compounds, and the like.
The dye layer can be formed by ordinary means such as vapor deposition, sputtering, CVD, and solvent coating. In the case of using the coating method, the above-described pigment or the like may be dissolved in an organic solvent and applied by a conventional coating method such as spraying, roller coating, dipping, or spin coating.
[0022]
As the organic solvent to be used, alcohols such as methanol, ethanol and isopropanol; ketones such as acetone, methyl ethyl ketone and cyclohexanone; amides such as N, N-dimethylacetamide and N, N-dimethylformamide; sulfoxide such as dimethyl sulfoxide Ethers such as tetrahydrofuran, dioxane, diethyl ether and ethylene glycol monomethyl ether; esters such as methyl acetate and ethyl acetate; aliphatic halogenated carbons such as chloroform, methylene chloride, dichloroethane, carbon tetrachloride and trichloroethane; Aromatics such as benzene, xylene, monochlorobenzene and dichlorobenzene; cellosolves such as methoxyethanol and ethoxyethanol; hexane, pentane, Cyclohexane, and hydrocarbons such as methylcyclohexane.
The film thickness of the dye layer (deformation shape compensation layer) is 10 nm to 10 μm, preferably 10 to 200 nm.
[0023]
In addition to the above, the deformation shape compensation layer may be composed of a gas generating compound that decomposes by heat.
As specific examples of the gas generating compound, it is necessary to appropriately select a decomposition temperature, a decomposition rate, and the like. For example, as an organic compound, dinitrosopentamethylenetetramine (DPT), N, N′-dimethyl-N, Nitroso compounds such as N′-dinitrosoterephthalamide (DMDNTA); benzenesulfonyl hydrazite (BSH), p-toluenesulfonyl hydrazite (TSH), diphenylsulfone-S, S′-disulfonylhydrazide (DPSDSH), 4 Sulfonylhydrazide compounds such as 4,4'-oxybisbenzenesulfonylhydrazide (OBSH); azodicarboxylic acid amide (ADCA), azobisisobutyronitrile (AIBN), diazoaminobenzene (DAB), barium-azodicarboxylate Azo and diazo compounds such as trihydra Bruno triazine, p- toluenesulfonyl semicarbazide, include 4,4'-oxybisbenzenesulfonyl semicarbazide etc., sodium bicarbonate as inorganic compounds, ammonium carbonate, ammonium bicarbonate, ammonium nitrite, include peroxides.
[0024]
Any of the above organic compounds and inorganic compounds can be used alone or in admixture of two or more.
Among the above-mentioned gas generating compounds, the decomposition behavior of organic compounds becomes an exothermic reaction, so when the temperature reaches a certain temperature, the amount of generated gas tends to be constant because it decomposes rapidly, so the relationship between the amount added and the amount of gas generated is expected. It is easy to do and preferable.
In general, some inorganic compounds have many endothermic reactions and gradually decompose. In such cases, it is desirable to control gas generation and the like.
In addition, an auxiliary may be appropriately added to the gas generating compound, particularly an organic compound, in order to adjust the decomposition temperature.
[0025]
As an auxiliary agent, for example, as an auxiliary agent for lowering the decomposition temperature, zinc compounds such as zinc white, zinc caprylate, zinc nitrate, zinc fatty acid soap; lead carbonate, lead phthalate, lead phosphite, lead stearate, etc. Lead compounds; cadmium compounds such as cadmium caprylate, cadmium caproate, cadmium laurate, cadmium myristate, cadmium fatty acid soap; urea, borax, ethanolamine and the like. On the other hand, as an auxiliary for suppressing decomposition, organic acids such as maleic acid and fumaric acid; halogenated organic acids such as stearoyl chloride and phthaloyl chloride; anhydrous organic acids such as maleic anhydride and phthalic anhydride; hydroquinone and naphthalene Polyhydric alcohols such as diols; Hydrocarbons such as d-maltose; Nitrogen containing aliphatic amines, heterocyclic amines, amides, oximes, etc .; Sulfur containing thiols, mercaptans, sulfides, sulfonic acids, sulfoxides, isocyanates, etc. Products; ketones such as cyclohexanone and acetylacetone; aldehydes; phosphates and phosphite compounds; 6,6-dimethylfulvene, hexachlorocyclopentadiene, dibutyltin maleate and the like. The decomposition behavior can be corrected by appropriately using these auxiliaries.
[0026]
In the present invention, the organic material layer is used as a constituent layer of the optical recording medium. However, since the pressure to the deformed layer based on the change in the state of the organic material is used, severe optical conditions as in the past are imposed on the organic material. There is nothing.
Therefore, in order to increase the reflectance when not recorded, it is possible to use an organic material having a small absorption coefficient with respect to the recording / reproducing wavelength, and when the reflectance when not recorded is not much concerned, The absorption coefficient of the organic material layer can be adjusted in accordance with the light absorption function of the deformable layer so that recording can be performed with an appropriate recording power.
As described above, in the present invention, basically, it is not necessary to use the complex refractive index change of the organic material, so that strict optical conditions are not imposed on the organic material, and a very large number of materials can be used as the organic material. It becomes.
As a result, in the conventional recording / reproducing method in which the absorption band is positioned on the short wavelength side with respect to the recording / reproducing wavelength, for example, when the recording / reproducing wavelength is 450 nm or less, basically a conjugated system of an organic material or Deterioration of stability of organic materials (crystallization and aggregation occur over time), deterioration of solubility, deterioration of wavelength control (decrease in the number of substituent introduction sites, substituent However, in the present invention, these problems do not occur.
That is, the physical properties of the organic material can be changed very widely and flexibly according to the purpose, and the recording / reproducing characteristics can be improved.
[0027]
For example, in the write-once type optical recording medium of the present invention, although it is an optical recording medium corresponding to a blue wavelength or less, for example, a dye used for CD-R or DVD-R can be used, so that recording can be performed at a blue wavelength or a red wavelength. An optical recording medium that can be reproduced can be provided.
In the present invention, basically, it is not necessary to use a change in the optical constant (complex refractive index) of the organic material for recording and reproduction, but of course, a change in the optical constant of the organic material may be used.
In the above, a preferred material example has been described in the case of using the pressure accompanying explosion, decomposition, and sublimation of the material constituting the deformation shape compensation layer in order to compensate the deformation shape of the deformation layer. When the expansion pressure of the material to be used is used, for example, a polymer material can be used.
Examples of such a polymer material include polynorbornene, polyisoprene, styrene / butadiene copolymer, polyurethane, polyolefin resin, fluorine-containing resin, polycaprocraton resin, and polyamide resin. Moreover, the polymeric material which can be used as a deformation | transformation receiving layer mentioned later can also be used. Furthermore, these polymer materials can also be used by mixing with a pigment.
[0028]
In the present invention, a deformation receiving layer is provided as an adjacent layer on the side opposite to the deformation shape compensation layer among the adjacent layers of the deformation layer.
This deformation receptive layer is provided in order to reduce the variation of the deformation amount of the deformation layer with respect to the change in recording power, and is very effective in expanding the recording power margin. Accordingly, it is preferable that the deformation receiving layer is made of a material that hardly generates pressure on the deformation layer side due to the state change by recording, contrary to the deformation shape compensation layer. That is, the deformation receiving layer is made of a material and a film thickness that do not easily cause large decomposition, explosion, sublimation, etc. by recording, or a material and a film thickness that do not increase the pressure on the deformation layer even if decomposition, explosion, sublimation, etc. occur. Is preferred.
Therefore, it is preferable to use a high-molecular compound that is easy to form a film and is inexpensive as the deformation receiving layer.
Examples of the polymer compound include acrylic resin, polycarbonate resin, polyester resin, polyamide resin, vinyl chloride resin, polyvinyl ester resin, polystyrene resin, polyolefin resin, and polyethersulfone resin.
[0029]
Specific examples include polystyrene, poly (α-methylstyrene), polyindene, poly (4-methyl-1-pentene), polyvinylpyridine, polyvinyl formal, polyvinyl acetal, polyvinyl butyral, polyvinyl acetate, polyvinyl alcohol, polyvinyl chloride. , Polyvinylidene chloride, polyvinyl methyl ether, polyvinyl ethyl ether, polyvinyl benzyl ether, polyvinyl methyl ketone, poly (N-vinyl carbazole), poly (N-vinyl pyrrolidone), methyl polyacrylate, polyethyl acrylate, polyacrylic acid , Polyacrylonitrile, polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polybenzyl methacrylate, polycyclohexyl methacrylate, polymethacrylic acid, poly Tacrylic acid amide, polymethacrylonitrile, polyacetaldehyde, polychloral, polyethylene oxide, polypropylene oxide, polyethylene terephthalate, polybutylene terephthalate, polycarbonates (bisphenols + carbonic acid), poly (diethylene glycol bisallyl carbonates), 6-nylon , 6,6-nylon, 12-nylon, 6,12-nylon, polyethyl aspartate, ethyl polyglutamate, polylysine, polyproline, poly (γ-benzyl-L-glutamate), methylcellulose, ethylcellulose, benzylcellulose, hydroxy Ethyl cellulose, hydroxypropyl cellulose, acetyl cellulose, cellulose triacetate, cellulose tributyrate, polyurethane Resins such as fats; the like, or a copolymer or co-polycondensate thereof; organic polygermane; poly (phenyl methyl silane) organic polysilane such.
[0030]
Furthermore, it is also possible to use a dye having characteristics that do not cause large decomposition, explosion, sublimation, etc. as the deformation receiving layer. In this case, it is preferable that the decomposition temperature of the pigment is sufficiently lower or sufficiently higher than the deformation temperature of the deformation layer.
The thickness of the deformation receiving layer is arbitrary, but when a material with high hardness is provided adjacent to the deformation receiving layer, it is preferable to determine the film thickness according to the balance between recording sensitivity and recording power margin.
The deformation receptive layer referred to in the present invention can be any layer as long as the deformation receptive layer is not composed of a material that completely inhibits deformation of the deformable layer or a material that deteriorates the symmetry of the deformed shape. For example, an air layer, an adhesive layer, a protective layer, a cover layer, or the like may be used.
[0031]
In the present invention, information is recorded / reproduced by deformation of the deformation layer. The deformation of the deformation layer can be either a single layer having a light absorption function or a deformation shape compensation layer having a single light absorption function. Alternatively, this can be achieved by providing both the deformation layer and the deformation shape compensation layer with a light absorption function.
However, in order to improve the reproduction stability and storage stability after recording, it is preferable that the light absorption function is lowered in the recording portion.
Therefore, in the present invention, it is particularly preferable that both the deformation layer and the deformation shape compensation layer have a light absorption function, and the light absorption function of the deformation shape compensation layer is reduced or eliminated by recording.
This is because, in the present invention, the deformable layer is preferably composed of a material that does not decompose or sublimate due to recording, and it is generally difficult to reduce or eliminate the light absorption function of the deformable layer by recording. On the other hand, the deformed shape compensation layer is preferably composed of a material that easily undergoes decomposition, sublimation or the like by recording, and it is easy to reduce or eliminate the light absorption function of the deformed shape compensating layer by recording.
As a result, the light absorption function of the recording part after recording can be lowered, deterioration due to reproduction can be prevented, and stability is improved.
[0032]
In the present invention, a “write-once type optical recording medium and a recording / reproducing method thereof that can be manufactured at a low cost with a simple layer configuration” can be provided because the simplest recording principle of deformation is used.
In addition, the reason why the “write-once type optical recording medium and recording / reproducing method thereof with no significant limitation on the recording / reproducing wavelength and with less wavelength dependency of the recording characteristics” can be provided is, for example, using a deformation layer having a light absorption function for recording light In this case, Si or Ge-containing materials such as SiC, Si, and Ge are preferably used as the deformable layer, and the complex refractive index of these materials has a large wavelength as in organic materials used in conventional write-once optical recording media. This is because there is no dependency.
The reason why the “write-once type optical recording medium and recording / reproducing method thereof that can cope with surface recording or recording with a high NA lens and can achieve high density” is provided on the basis of the structure and recording principle of the optical recording medium of the present invention. This is because there is no restriction in the recording / reproducing direction (and any layer structure corresponding to the recording / reproducing direction can be easily realized). Further, in the present invention, the deformation direction of the deformation layer with respect to the incident light is defined. However, as described above, this is for making the polarity of the reproduction signal High to Low and preventing the differential waveform. When there is no problem such as recording polarity or differential waveform, or when there is no problem, the relationship between the deformation direction of the deformation layer and the incident light may be arbitrary.
[0033]
In the present invention, a reflective layer may be provided.
As the material of the reflective layer, a substance having a high reflectance with respect to laser light is suitable. For example, Mg, Se, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Metals such as Fe, Co, Ni, Ru, Rh, Pd, Ir, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Si, Ge, Te, Pb, Po, Sn, Bi, and the like Mention may be made of metals or stainless steel.
Among these, Cr, Ni, Pt, Cu, Ag, Au, Al, and stainless steel are preferable.
These substances may be used alone, in combination of two or more kinds or as an alloy.
The reflective layer can be formed, for example, by vapor deposition, sputtering or ion plating of the above substance.
The thickness of the reflective layer is usually 10 to 500 nm, preferably 10 to 300 nm.
[0034]
Embodiments of the present invention are as shown in FIGS.
FIG. 3 is an example having a structure in which the deformation shape compensation layer of the present invention and the deformation receiving layer are adjacent to the deformation layer (essential layer structure of the present invention).
FIG. 4 is a diagram showing the deformation direction and the reproduction direction of the deformation layer when the main reflection interface is at the interface between the deformation layer and the deformation receiving layer, having the structure of FIG. In FIG. 4, the deformation layer is deformed to the deformation receiving layer side by the light absorption function of the deformation layer and / or the deformation shape compensation layer.
FIG. 5 is a diagram showing an example in which the layer configuration having the structure and function of FIG. 4 is applied to an actual write-once optical recording medium, that is, an example in which the layer configuration of FIG. 4 is stacked on a substrate.
FIG. 6 shows another example in which the layer structure having the structure and function of FIG. 4 is applied to an actual write-once optical recording medium, that is, the layer structure of FIG. 4 is laminated on a substrate, and further on the deformation receiving layer. It is a figure which shows the example which provided the cover layer.
FIG. 7 shows another example in which the layer structure having the structure and function of FIG. 4 is applied to an actual write-once optical recording medium, that is, the layer structure of FIG. 4 is laminated on a substrate, and further on the deformation receiving layer. It is a figure which shows the example which provided the cover layer through the contact bonding layer.
[0035]
FIG. 8 is a structure having the structure of FIG. 3 and having a reflective layer as an adjacent layer on the opposite side of the deformation receiving layer, and the main reflection interface is at the interface between the deformation receiving layer and the reflection layer. It is the figure which showed the deformation | transformation direction and reproduction | regeneration direction of a deformation | transformation layer.
In FIG. 8, the deformation layer is deformed to the deformation receiving layer side by the light absorption function of the deformation layer and / or the deformation shape compensation layer.
FIG. 9 is a diagram showing an example in which the layer configuration having the structure and function of FIG. 8 is applied to an actual write-once optical recording medium, that is, an example in which the layer configuration of FIG. 8 is stacked on a substrate.
“A” in FIGS. 3 to 9 indicates a portion where the deformation layer and the deformation shape compensation layer are peeled, a portion where the deformation shape compensation layer is expanded, or a portion where the deformation layer is expanded.
3 to 9, the deformation shape compensation layer in the portion where the deformation of the deformation layer has occurred may cause an optical constant change.
The above FIGS. 3 to 9 show examples having the minimum layers that exhibit the effects of the present invention. In practice, in addition to the layer configuration shown in FIGS. A substrate, an undercoat layer, an overcoat layer, a protective layer, an adhesive layer, a cover layer, and the like are provided.
[0036]
【Example】
EXAMPLES Hereinafter, although an Example, a comparative example, and a reference example are shown and this invention is demonstrated concretely, this invention is not limited by these Examples.
[0037]
Comparative Example 1
On a polycarbonate substrate having a guide groove with a groove depth of 55 nm, a dye layer composed of the following [Chemical Formula 1] that can be used in a DVD-R as a deformation shape compensation layer is about 60 nm thick, and further has a light absorption function thereon. An optical recording medium having SiC as a layer having a thickness of 10 nm was produced.
The optical recording medium was irradiated with 9.0 mW laser light from the SiC side using an optical disk evaluation device, DDU-1000 (wavelength: 405 nm, NA: 0.65) manufactured by Pulse Tech Industry, and the land portion A signal of 8-16 modulation was recorded at a recording frequency of 65.4 MHz and a recording linear velocity of 6.0 m / s at the groove position on the near side as viewed from the incident laser beam side.
As a result, the modulation degree is about 70%, the recording polarity is High to Low, a very clear eye pattern as shown in FIG. 19 is obtained, and the jitter (σ / Tw) is 7.8%. became.
Further, the jitter characteristic with respect to the recording power is as shown by the line marked with ♦ in FIG. 20, and it was confirmed that the jitter value was good and the recording power margin was wide as compared with Comparative Example 2 described later.
FIG. 20 also shows the measurement results (lines indicated by ■) when the film thickness of the dye layer is 50 nm in this comparative example.
At this time, when the deformation state of the deformation layer was confirmed by AFM (atomic force microscope), as shown in FIG. 22, the deformation layer was deformed to the incident light side, and the symmetry of the deformation shape was good. there were.
[0038]
[Chemical 1]
Figure 0004117876
[0039]
Example 1
On a polycarbonate substrate having a guide groove with a groove depth of 55 nm, a dye layer composed of the dye of the above [Chemical Formula 1] that can be used in a DVD-R as a deformation shape compensation layer is about 60 nm thick, and has a light absorption function thereon. An optical recording medium was prepared in which SiC was formed as a deformable layer with a thickness of 10 nm and a polystyrene resin was formed thereon as a deformable receiving layer with a thickness of about 2 μm.
This optical recording medium was irradiated with 9.7 mW of laser light from the polystyrene resin layer side using an optical disk evaluation apparatus, DDU-1000 (wavelength: 405 nm, NA: 0.65) manufactured by Pulstec Industrial, A signal of 8-16 modulation was recorded at a land frequency (groove position on the near side when viewed from the incident laser beam side) at a recording frequency of 65.4 MHz and a recording linear velocity of 6.0 m / s.
As a result, the degree of modulation was about 61%, the recording polarity was High to Low, a clear eye pattern was obtained as in Comparative Example 1, and the jitter (σ / Tw) was 8.0%.
In addition, the jitter characteristic with respect to the recording power is shown by the line indicated by ■ in FIG. 24, and it can be confirmed that the recording power margin is wider than the disk of Comparative Example 1 (line indicated by ◆ in FIG. 24). (The effect of the deformation receptive layer was confirmed).
At this time, when the polystyrene resin layer was peeled off and the deformation state of the deformation layer was confirmed by AFM, the deformation layer was deformed to the incident light side (polystyrene resin layer side) as shown in FIG. The symmetry of was good. The white dotted line in FIG. 23 is a line indicating the mark center.
[0040]
Comparative Example 2
An optical recording medium in which SiC was formed to a thickness of 10 nm as a deformable layer having a light absorption function on a polycarbonate substrate having a guide groove with a groove depth of 55 nm was produced.
The optical recording medium was irradiated with 8.0 mW of laser light from the SiC side using an optical disk evaluation device, DDU-1000 (wavelength: 405 nm, NA: 0.65) manufactured by Pulstec Industrial Co., Ltd. A signal of 8-16 modulation was recorded at a recording frequency of 65.4 MHz and a recording linear velocity of 6.0 m / s at the groove position on the near side as viewed from the incident laser beam side.
As a result, the degree of modulation was about 70%, the recording polarity was High to Low, and a relatively good eye pattern as shown in FIG. 18 was obtained, but the jitter (σ / Tw) was 10.4%. It became bigger.
Further, the jitter characteristic with respect to the recording power is as shown by the line indicated by ● in FIG. 20, and it was confirmed that the jitter value was worse and the recording power margin was narrower than that of the comparative example 1 described above.
At this time, when the deformation state of the deformation layer was confirmed by AFM, as shown in FIG. 21, the deformation layer was deformed to the incident light side, but the symmetry of the deformation shape was greatly broken. The white dotted line in FIG. 21 is a line indicating the mark center.
As described above, the results of Comparative Example 1 and Comparative Example 2 showed the effectiveness of the deformed shape compensation layer, and the results of Comparative Example 1 and Example 1 showed the effectiveness of the deformation receiving layer.
[0041]
Example 2
On a polycarbonate substrate having a guide groove with a groove depth of 55 nm, a dye layer consisting of the following [Chemical Formula 2] having absorption at the blue laser wavelength as a deformation shape compensation layer is about 20 nm thick, and SiC as a deformation layer having a light absorption function. An optical recording medium having a thickness of about 5 nm, a layer made of polystyrene resin as a deformation receiving layer about 80 nm thick, and Ag as a reflection layer about 100 nm thick was prepared.
The optical recording medium is irradiated with 9.5 mW laser light from the substrate side using an optical disk evaluation device, DDU-1000 (wavelength: 405 nm, NA: 0.65) manufactured by Pulse Tech Industry, and the land portion A signal of 8-16 modulation was recorded at a recording frequency of 65.4 MHz and a recording linear velocity of 6.0 m / s at the groove position on the back side as viewed from the incident laser beam side.
As a result, the jitter characteristic with respect to the recording power is as indicated by the line indicated by the black square in FIG. 25, and it was confirmed that the jitter value was better than that of Comparative Example 3 described later.
In addition, it was confirmed that there was almost no reproduction deterioration due to repeated reproduction, and that the dye layer in the recording area was decomposed and altered.
[0042]
[Chemical 2]
Figure 0004117876
[0043]
Comparative Example 3
On a polycarbonate substrate having a guide groove with a groove depth of 55 nm, SiC is about 10 nm thick as a deformation layer having a light absorption function, a layer made of polystyrene resin is about 80 nm thick as a deformation receiving layer, and Ag is thick as a reflection layer. An optical recording medium having a thickness of about 100 nm was produced.
This optical recording medium was irradiated with 9.8 mW of laser light from the substrate side using an optical disk evaluation device, DDU-1000 (wavelength: 405 nm, NA: 0.65) manufactured by Pulstec Industrial. A signal of 8-16 modulation was recorded at a recording frequency of 65.4 MHz and a recording linear velocity of 6.0 m / s in a portion (a groove position on the back side as viewed from the incident laser beam side).
As a result, the jitter characteristic with respect to the recording power is as indicated by the line marked with ♦ in FIG. 25, and the jitter value was worse than that in Example 2 described above.
[0044]
As described above, in the examples, the effects of the deformed shape compensation layer and the deformable receiving layer of the present invention were confirmed, but in the present invention, the light absorbing layer has a light absorbing function necessary for recording, so that the dye layer (for example, the deformed layer) Since it is not necessary to give the shape compensation layer a large light absorption function, it has been confirmed that the film thickness of the dye layer can be reduced, and that a shallow groove substrate can be used.
In the above embodiments, the recording is performed on the land portion, but this is for easy observation of the deformation shape of the deformation layer, and the present invention is not limited to the land recording.
[0045]
Next, reference examples 1 to 8 show the importance of deforming the deformation layer to the incident light side when the interface between the deformation layer and its adjacent layer is the main reflection interface. In these reference examples, In order to clarify the deformation effect of the deformable layer, an experiment was performed on an optical recording medium without a deformable shape compensation layer (the same phenomenon as in these reference examples is also obtained when a deformable shape compensation layer is provided).
10 to 17 are diagrams showing recording results of Reference Examples 1 to 8, respectively.
10 (a) to 17 (a) are diagrams showing the results of measuring the recording mark length (Mark Length) dependence of the reproduction signals (RF levels) of Reference Examples 1 to 8, and in each figure, Unrec is a reproduction signal (RF level) when not recorded, Top is a maximum reproduction signal level (that is, a space portion) when a mark row is recorded, Bottom is a minimum reproduction signal level when a mark row is recorded, MA Indicates the degree of modulation calculated by (Top-Bottom) / Top.
FIGS. 10B to 16B show a reproduction signal when 3T marks are continuously recorded, a reproduction signal when 4T marks are continuously recorded, and a reproduction signal when no recording is performed. FIGS. 10 (c) to 16 (c) show the levels of the reproduction signal when the 6T mark is continuously recorded, the reproduction signal when the 8T mark is continuously recorded, and the reproduction when not recorded. The signal levels in FIGS. 10D to 17D are the reproduction signal when the 3T mark is continuously recorded, the reproduction signal when the 14T mark is continuously recorded, and the unrecorded signal. The reproduction signal level is shown.
[0046]
Reference example 1
An optical recording medium in which SiC was formed to a thickness of 10 nm as a deformable layer having a light absorption function on a polycarbonate substrate having a guide groove with a groove depth of 55 nm was produced.
This optical recording medium was irradiated with 5.0 mW of laser light from the substrate side using an optical disk evaluation apparatus, DDU-1000 (wavelength: 405 nm, NA: 0.65) manufactured by Pulstec Industrial Co., Ltd. 3T to 14T marks were individually recorded at a recording frequency of 65.4 MHz and a recording linear velocity of 6.0 m / s at the groove position on the near side as viewed from the incident laser beam side.
It was confirmed by AFM that SiC was deformed to the side opposite to the incident light (on the side opposite to the substrate).
Further, from the result of FIG. 10A, it can be confirmed that there is a possibility that High to Low recording can be performed regardless of the recording mark length.
Furthermore, it can be seen from the results of FIGS. 10B to 10D that 3T, 4T, 6T, 8T, and 14T all show reproduced signal waveforms that allow mark length recording.
[0047]
Reference example 2
The same experiment as in Reference Example 1 was performed except that the recording power was 6.0 mW. It was confirmed by AFM that SiC was deformed to the side opposite to the incident light (on the side opposite to the substrate).
Further, from the result of FIG. 11A, the recording polarity changes depending on the recording mark length, that is, the high mark is high to low recording in the short mark, but the high to low recording and the low to high recording are mixed in the long mark. It can be seen that such a signal is generated and it becomes difficult to record the mark length.
Further, from the results shown in FIGS. 11B to 11D, 3T and 4T show reproduction signal waveforms that can be recorded in the mark length, but 6T, 8T, and 14T have greatly increased the RF level at the center of the mark. Reproduction signal waveform is shown [In 6T and 8T, the period of the reproduction signal appears to be double that of the original reproduction signal. This can be clearly seen when compared with FIG. 10 (c)], indicating that it is difficult to record the mark length.
[0048]
Reference example 3
Except that the laser beam of 6.0 mW was irradiated from the substrate side and recorded in the land portion (groove position on the back side when viewed from the incident laser beam side), the same experiment as in Reference Example 1 was performed. It was confirmed by AFM that SiC was deformed to the side opposite to the incident light (on the side opposite to the substrate).
Further, from the result of FIG. 12A, the recording polarity tends to change depending on the recording mark length, that is, the short mark is High to Low recording, but the long mark is a mixture of High to Low recording and Low to High recording. It can be seen that such a signal tends to be generated and mark length recording may be difficult. Further, from the results shown in FIGS. 12B to 12D, 3T, 4T, 6T, and 8T show reproduction signal waveforms that allow mark length recording, while 14T shows a significant increase in the RF level at the center of the mark. It can be seen that it is difficult to record the mark length.
[0049]
Reference example 4
Except that the laser beam of 7.0 mW was irradiated from the substrate side and recorded in the land portion (groove position on the back side when viewed from the incident laser beam side), the same experiment as in Reference Example 1 was performed.
It was confirmed by AFM that SiC was deformed to the side opposite to the incident light (on the side opposite to the substrate).
Further, from the result of FIG. 13A, the recording polarity changes depending on the recording mark length, that is, the short mark is High to Low recording, but the long mark is a mixture of High to Low recording and Low to High recording. It can be seen that such a signal is generated and it becomes difficult to record the mark length.
Further, from the results shown in FIGS. 13B to 13D, 3T and 4T show the reproduction signal waveforms that can be recorded in the mark length, but 6T, 8T, and 14T show a significant increase in the RF level at the center of the mark. [For example, at 6T, the period of the reproduced signal appears to be double that of the original reproduced signal. This can be clearly seen when compared with FIG. 10 (c)], indicating that it is difficult to record the mark length.
[0050]
As described above, from the results of Reference Examples 1 to 4, the interface between the deformed layer and its adjacent layer is the main reflective interface, and the deformed layer is made incident light with a simple layer structure in which a deformable layer having a light absorption function is provided on the substrate. (In this case, recording / reproduction from the substrate side), it is often difficult to perform recording / reproduction by the mark length, and the recording polarity often becomes Low to High. It was.
[0051]
Reference Example 5
An optical recording medium in which SiC was formed to a thickness of 10 nm as a deformable layer having a light absorption function on a polycarbonate substrate having a guide groove with a groove depth of 55 nm was produced.
The optical recording medium was irradiated with 8.0 mW of laser light from the SiC side using an optical disk evaluation device, DDU-1000 (wavelength: 405 nm, NA: 0.65) manufactured by Pulstec Industrial Co., Ltd. 3T to 14T marks were individually recorded at a recording frequency of 65.4 MHz and a recording linear velocity of 6.0 m / s at the groove position on the near side as viewed from the incident laser beam side.
In addition, it was confirmed by AFM that SiC was deformed to the incident light side (non-substrate side).
Further, from the result of FIG. 14A, it can be confirmed that High to Low recording may be performed regardless of the recording mark length.
Further, from the results of FIGS. 14B to 14D, it can be seen that all of 3T, 4T, 6T, 8T, and 14T show reproduction signal waveforms that allow mark length recording.
[0052]
Reference Example 6
Except for the point that the recording power was 9.0 mW, the same experiment as in Reference Example 5 was performed.
In addition, it was confirmed by AFM that SiC was deformed to the incident light side (non-substrate side).
Further, from the result of FIG. 15A, it can be confirmed that there is a possibility that High to Low recording can be performed regardless of the recording mark length.
Further, from the results of FIGS. 15B to 15D, it can be seen that all of 3T, 4T, 6T, 8T, and 14T show reproduced signal waveforms that allow mark length recording.
[0053]
Reference Example 7
Exactly the same experiment as Reference Example 5 was performed, except that 7.0 mW laser light was irradiated from the SiC side and recorded in the groove portion (groove position on the back side when viewed from the incident laser light side). . In addition, it was confirmed by AFM that SiC was deformed to the incident light side (non-substrate side).
Further, from the result of FIG. 16A, it can be confirmed that there is a possibility that High to Low recording can be performed regardless of the recording mark length.
Further, from the results of FIGS. 16B to 16D, it can be seen that all of 3T, 4T, 6T, 8T, and 14T show reproduced signal waveforms that allow mark length recording.
[0054]
Reference Example 8
Exactly the same experiment as in Reference Example 5 was performed except that 8.0 mW laser beam was irradiated from the substrate side and recorded in the groove portion (groove position on the back side when viewed from the incident laser beam side). In addition, it was confirmed by AFM that SiC was deformed to the incident light side (non-substrate side).
Further, from the result of FIG. 17A, it can be confirmed that there is a possibility that High to Low recording can be performed regardless of the recording mark length.
Further, from the result of FIG. 17 (d), it can be seen that both the shortest and longest marks show reproduction signal waveforms that allow mark length recording.
[0055]
As described above, as shown in Reference Examples 5 to 8, a simple optical recording medium in which the interface between the deformable layer and its adjacent layer is the main reflective interface, and the deformable layer having the light absorption function is provided on the substrate. In the case where the deformation layer is deformed to the incident light side (in the present case, recording / reproduction from the non-substrate side), it is proved by experiments that mark length recording is possible and High to Low recording is possible. It was done.
[0056]
【The invention's effect】
According to the present invention 1 to 22, it can be manufactured at a low cost with a simple layer configuration, the recording / reproducing wavelength is not greatly limited, the wavelength dependence of recording characteristics is small, and even when an organic material is used, it is conventional with respect to the organic material. It is possible to realize good jitter and a wide recording power margin despite the use of the recording principle mainly composed of deformation, and can cope with surface recording or recording with a high NA lens. It is possible to provide a write-once type optical recording medium having a characteristic that high density can be achieved and a recording / reproducing method thereof.
[Brief description of the drawings]
FIG. 1 is a view for explaining the symmetry of a deformed shape of a deformable layer.
(A) An example of a deformed shape whose symmetry has deteriorated.
(B) An example of an ideal deformed shape.
FIG. 2 is a diagram for explaining a waveform of a reproduction signal when a mark length recording mark is reproduced.
(A) General case
(B) Differential waveform having an inflection point near the front and rear edges of the recording mark.
(C) Differential waveform with an inflection point near the center of the recording mark
FIG. 3 is a view showing an example having a structure in which a deformation shape compensation layer and a deformation receiving layer are adjacent to a deformation layer;
4 is a diagram showing the deformation direction and the reproduction direction of the deformation layer when the main reflection interface is at the interface between the deformation layer and the deformation reception layer, having the structure of FIG. 3;
5 is a diagram showing an example in which the layer configuration having the structure and function of FIG. 4 is applied to an actual write-once optical recording medium, that is, an example in which the layer configuration of FIG. 4 is stacked on a substrate.
6 is another example in which the layer structure having the structure and function of FIG. 4 is applied to an actual write-once optical recording medium, that is, the layer structure of FIG. 4 is laminated on a substrate, and further on the deformation receiving layer. The figure which shows the example which provided the cover layer.
7 is another example in which the layer configuration having the structure and function of FIG. 4 is applied to an actual write-once optical recording medium, that is, the layer configuration of FIG. 4 is laminated on a substrate, and further on the deformation receiving layer. The figure which shows the example which provided the cover layer through the contact bonding layer.
8 is a structure having the structure of FIG. 3 and having a reflective layer as an adjacent layer on the opposite side of the deformation receiving layer, and the main reflection interface is at the interface of the deformation receiving layer and the reflection layer. The figure which showed the deformation | transformation direction and reproduction | regeneration direction of a deformation | transformation layer.
9 is a diagram showing an example in which the layer configuration having the structure and function of FIG. 8 is applied to an actual write-once optical recording medium, that is, an example in which the layer configuration of FIG. 8 is stacked on a substrate.
10 is a diagram showing a recording result of Reference Example 1. FIG.
(A) The relationship between the recording mark length, the reproduction signal (RF level), and the modulation degree is shown.
(B) Reproduction signal when 3T mark and 4T mark are continuously recorded, and reproduction signal level when not recorded.
(C) Reproduction signal when 6T mark and 8T mark are continuously recorded, and reproduction signal level when not recorded.
(D) A reproduction signal when 3T mark and 14T mark are continuously recorded, and a reproduction signal level when not recorded.
FIG. 11 is a diagram showing a recording result of Reference Example 2.
(A) The relationship between the recording mark length, the reproduction signal (RF level), and the modulation degree is shown.
(B) Reproduction signal when 3T mark and 4T mark are continuously recorded, and reproduction signal level when not recorded.
(C) Reproduction signal when 6T mark and 8T mark are continuously recorded, and reproduction signal level when not recorded.
(D) A reproduction signal when 3T mark and 14T mark are continuously recorded, and a reproduction signal level when not recorded.
12 is a view showing a recording result of Reference Example 3. FIG.
(A) The relationship between the recording mark length, the reproduction signal (RF level), and the modulation degree is shown.
(B) Reproduction signal when 3T mark and 4T mark are continuously recorded, and reproduction signal level when not recorded.
(C) Reproduction signal when 6T mark and 8T mark are continuously recorded, and reproduction signal level when not recorded.
(D) A reproduction signal when 3T mark and 14T mark are continuously recorded, and a reproduction signal level when not recorded.
13 is a diagram showing a recording result of Reference Example 4. FIG.
(A) The relationship between the recording mark length, the reproduction signal (RF level), and the modulation degree is shown.
(B) Reproduction signal when 3T mark and 4T mark are continuously recorded, and reproduction signal level when not recorded.
(C) Reproduction signal when 6T mark and 8T mark are continuously recorded, and reproduction signal level when not recorded.
(D) A reproduction signal when 3T mark and 14T mark are continuously recorded, and a reproduction signal level when not recorded.
14 is a diagram showing a recording result of Reference Example 5. FIG.
(A) The relationship between the recording mark length, the reproduction signal (RF level), and the modulation degree is shown.
(B) Reproduction signal when 3T mark and 4T mark are continuously recorded, and reproduction signal level when not recorded.
(C) Reproduction signal when 6T mark and 8T mark are continuously recorded, and reproduction signal level when not recorded.
(D) Reproduction signal when 3T mark and 14T mark are continuously recorded, and reproduction signal level when not recorded.
15 is a diagram showing a recording result of Reference Example 6. FIG.
(A) The relationship between the recording mark length, the reproduction signal (RF level), and the modulation degree is shown.
(B) Reproduction signal when 3T mark and 4T mark are continuously recorded, and reproduction signal level when not recorded.
(C) Reproduction signal when 6T mark and 8T mark are continuously recorded, and reproduction signal level when not recorded.
(D) A reproduction signal when 3T mark and 14T mark are continuously recorded, and a reproduction signal level when not recorded.
FIG. 16 is a view showing a recording result of Reference Example 7;
(A) The relationship between the recording mark length, the reproduction signal (RF level), and the modulation degree is shown.
(B) Reproduction signal when 3T mark and 4T mark are continuously recorded, and reproduction signal level when not recorded.
(C) Reproduction signal when 6T mark and 8T mark are continuously recorded, and reproduction signal level when not recorded.
(D) A reproduction signal when 3T mark and 14T mark are continuously recorded, and a reproduction signal level when not recorded.
FIG. 17 is a view showing a recording result of Reference Example 8.
(A) The relationship between the recording mark length, the reproduction signal (RF level), and the modulation degree is shown.
(D) A reproduction signal when 3T mark and 14T mark are continuously recorded, and a reproduction signal level when not recorded.
18 is a diagram showing an eye pattern of the optical recording medium of Comparative Example 2. FIG.
19 is a diagram showing an eye pattern of the optical recording medium of Comparative Example 1. FIG.
20 is a diagram showing jitter characteristics with respect to recording power of optical recording media of Comparative Example 1 and Comparative Example 2. FIG.
FIG. 21 is a diagram in which the deformation state of the deformation layer of the optical recording medium of Comparative Example 2 is measured by AFM.
FIG. 22 is a view showing a result of measuring the deformation state of the deformation layer of the optical recording medium of Comparative Example 1 by AFM.
FIG. 23 is a diagram showing the results of measuring the deformation state of the deformation layer by AFM after peeling off the polystyrene layer of the optical recording medium of Example 1.
24 is a graph showing jitter characteristics with respect to recording power of optical recording media of Comparative Example 1 and Example 1. FIG.
FIG. 25 is a diagram showing jitter characteristics with respect to recording power of optical recording media of Example 2 and Comparative Example 3;
FIG. 26 is a diagram showing a layer structure of a conventional disk.
[Explanation of symbols]
A A part where the deformed layer and the deformed shape compensation layer are separated, a part where the deformed shape compensation layer is expanded, or a part where the deformed layer is expanded
Mark Length Mark Head
T Reference clock
RF Level (V) RF (reproduction signal) level (volts)
Modulated amplitude modulation degree
Playback signal (RF) level when Unrec is not recorded
Top playback signal level (ie space part) when Top mark row is recorded
Bottom Minimum playback signal level when a mark row is recorded (ie, mark portion)
Degree of modulation calculated by MA (Top-Bottom) / Top
Time0.5 (μs / div) Time (1 memory 0.5 microsecond)
σ / Tw jitter

Claims (22)

記録によって変形を起す変形層が、変形層の変形形状を補償する変形形状補償層と、変形層の変形を受容する変形受容層とに挟まれた構造を有し、該変形形状補償層が、記録による分解、爆発及び昇華のうちの少なくとも一つの状態変化により変形層側に向かって圧力を発生させる有機材料からなることを特徴とする追記型光記録媒体。Deformable layer causing deformation by recording a deformed shape compensation layer to compensate for the deformation shape of the deformation layer, deformation sandwiched between receiving layer configured for receiving deformation of the deformable layer have a, deformation shape compensation layer, A write-once type optical recording medium comprising an organic material that generates pressure toward the deformation layer side by at least one state change among decomposition, explosion, and sublimation by recording. 前記有機材料が色素であることを特徴とする請求項1記載の追記型光記録媒体。  The write-once type optical recording medium according to claim 1, wherein the organic material is a dye. 記録によって変形を起す変形層が、変形層の変形形状を補償する変形形状補償層と、変形層の変形を受容する変形受容層とに挟まれた構造を有し、記録極性がHigh to Lowであることを特徴とする追記型光記録媒体。  The deformation layer that causes deformation by recording has a structure sandwiched between a deformation shape compensation layer that compensates for the deformation shape of the deformation layer and a deformation reception layer that receives deformation of the deformation layer, and the recording polarity is High to Low. A write-once type optical recording medium characterized by being. 変形層と変形受容層の界面を主反射界面とし、再生が変形受容層側から行われることを特徴とする請求項1〜3の何れかに記載の追記型光記録媒体。The write-once type optical recording medium according to any one of claims 1 to 3, wherein the interface between the deformation layer and the deformation receiving layer is a main reflection interface, and reproduction is performed from the deformation receiving layer side. 変形層の変形受容層側への変形により記録部が形成されることを特徴とする請求項記載の追記型光記録媒体。The write-once type optical recording medium according to claim 4, wherein the recording portion is formed by deformation of the deformation layer toward the deformation receiving layer. 変形受容層に隣接して反射層が設けられた構造を有し、該変形受容層と反射層の界面を主反射界面とし、再生が変形形状補償層側から行われることを特徴とする請求項1又は2記載の追記型光記録媒体。Claims reflective layer adjacent to the deformed receptive layer has a set vignetting structure, the interface deformation receptive layer and the reflective layer as a main reflection interface, characterized in that the reproduction is performed from the deformed shape compensation layer side Item 3. The write-once type optical recording medium according to item 1 or 2 . 変形層の変形受容層側への変形により記録部が形成されることを特徴とする請求項記載の追記型光記録媒体。The write-once type optical recording medium according to claim 6, wherein the recording portion is formed by deformation of the deformation layer toward the deformation receiving layer. 変形層の光吸収機能によって変形層に変形部が形成されることを特徴とする請求項1〜の何れかに記載の追記型光記録媒体。Write-once optical recording medium according to any one of claims 1 to 7, characterized in that deformable portion to deform layer by light absorption function active layer is formed. 変形形状補償層の光吸収機能によって変形層に変形部が形成されることを特徴とする請求項1〜の何れかに記載の追記型光記録媒体。Write-once optical recording medium according to any one of claims 1 to 7, characterized in that deformable portion to deform layer by light absorption function deformed shape compensation layer is formed. 変形層と変形形状補償層とが記録光に対する光吸収機能を有し、両者の光吸収機能によって変形層に変形部が形成され、記録によって変形形状補償層の光吸収機能が低下又は消失することを特徴とする請求項1〜の何れかに記載の追記型光記録媒体。The deformable layer and the deformed shape compensation layer have a light absorption function with respect to the recording light, the deformed portion is formed in the deformable layer by the light absorption function of both, and the light absorption function of the deformed shape compensation layer is reduced or eliminated by recording The write-once type optical recording medium according to any one of claims 1 to 7 . 変形受容層が高分子化合物からなることを特徴とする請求項1〜10の何れかに記載の追記型光記録媒体。  The write-once type optical recording medium according to claim 1, wherein the deformation receiving layer is made of a polymer compound. 変形層がSi又はGeを含有すること特徴とする請求項1〜11の何れかに記載の追記型光記録媒体。  The write-once type optical recording medium according to claim 1, wherein the deformable layer contains Si or Ge. 350〜500nmのレーザ波長範囲で記録再生が可能であることを特徴とする請求項12記載の追記型光記録媒体。  13. The write-once type optical recording medium according to claim 12, wherein recording / reproduction is possible in a laser wavelength range of 350 to 500 nm. 記録によって変形を起す変形層が、変形層の変形形状を補償する変形形状補償層と、変形層の変形を受容する変形受容層とに挟まれた構造を有し、該変形形状補償層が、記録による分解、爆発及び昇華のうちの少なくとも一つの状態変化により変形層側に向かって圧力を発生させる有機材料からなる追記型光記録媒体への記録方法であって、記録によって変形層を変形受容層側へ変形させることを特徴とする追記型光記録媒体の記録方法。The deformation layer that causes deformation by recording has a structure sandwiched between a deformation shape compensation layer that compensates for the deformation shape of the deformation layer and a deformation reception layer that receives deformation of the deformation layer , and the deformation shape compensation layer comprises: A recording method for a write-once optical recording medium made of an organic material that generates pressure toward the deformation layer by at least one state change of decomposition, explosion, and sublimation by recording. A recording method for a write-once type optical recording medium, characterized by being deformed to the layer side. 有機材料が色素であることを特徴とする請求項14記載の追記型光記録媒体の記録方法。Recording method of the write once optical recording medium according to claim 14, wherein the organic material is dye. 記録によって変形を起す変形層が、変形層の変形形状を補償する変形形状補償層と、変形層の変形を受容する変形受容層とに挟まれた構造を有する追記型光記録媒体への記録方法であって、記録によって変形層を変形受容層側へ変形させ、記録極性をHigh to Lowとすることを特徴とする追記型光記録媒体の記録方法。Recording method to write-once type optical recording medium, wherein deformation layer causing deformation by recording is sandwiched between deformation shape compensation layer for compensating deformation shape of deformation layer and deformation receiving layer for receiving deformation of deformation layer A recording method for a write-once type optical recording medium, wherein the deformation layer is deformed to the deformation receiving layer side by recording, and the recording polarity is set to High to Low. 記録によって変形を起す変形層が、変形層の変形形状を補償する変形形状補償層と、変形層の変形を受容する変形受容層とに挟まれた構造を有し、該変形層と変形受容層の界面を主反射界面とし、再生が変形受容層側から行われる追記型光記録媒体への記録方法であって、記録によって変形層を変形受容層側へ変形させることを特徴とする追記型光記録媒体の記録方法。  The deformation layer that causes deformation by recording has a structure sandwiched between a deformation shape compensation layer that compensates the deformation shape of the deformation layer and a deformation reception layer that receives deformation of the deformation layer, and the deformation layer and the deformation reception layer Is a recording method on a write-once optical recording medium in which reproduction is performed from the deformation-receiving layer side, and the deformation layer is deformed to the deformation-receiving layer side by recording. Recording method of recording medium. 変形層の変形形状を補償する変形形状補償層、記録によって変形を起す変形層、変形層の変形を受容する変形受容層、反射層が順次設けられた構造を有し、該変形受容層と反射層の界面を主反射界面とし、再生が変形形状補償層側から行われる追記型光記録媒体への記録方法であって、記録によって変形層を変形受容層側へ変形させることを特徴とする追記型光記録媒体の記録方法。  A deformation shape compensation layer that compensates for the deformation shape of the deformation layer, a deformation layer that causes deformation by recording, a deformation reception layer that receives deformation of the deformation layer, and a reflection layer are provided in order, and the deformation reception layer and the reflection layer A recording method on a write once optical recording medium in which the interface of the layer is a main reflection interface, and reproduction is performed from the deformation shape compensation layer side, wherein the deformation layer is deformed to the deformation receiving layer side by recording. Method of recording optical recording medium. 変形層の変形受容層側への変形を、変形層の膨張力及び/又は変形形状補償層の状態変化に伴う圧力によって生じさせることを特徴とする請求項14〜18の何れかに記載の追記型光記録媒体の記録方法。The additional writing according to any one of claims 14 to 18 , wherein the deformation of the deformation layer toward the deformation receiving layer is caused by an expansion force of the deformation layer and / or a pressure accompanying a state change of the deformation shape compensation layer. Method of recording optical recording medium. 変形層の変形受容層側への変形を、記録光の照射による変形層の光吸収機能及び/又は変形形状補償層の光吸収機能によって生じさせることを特徴とする請求項14〜18の何れかに記載の追記型光記録媒体の記録方法。The deformation of the deformable receiving layer side of the deformable layer, any one of claims 14 to 18, characterized in that to produce the light absorption function of the active layer due to irradiation with recording light and / or light absorption function of the deformed shape compensation layer The recording method of the write-once type optical recording medium described in 1. 変形層の変形受容層側への変形を、記録光の照射による変形層の光吸収機能と変形形状補償層の光吸収機能とによって生じさせ、記録光の照射後に、変形形状補償層の光吸収機能を低下又は消失させることを特徴とする請求項14〜18の何れかに記載の追記型光記録媒体の記録方法。The deformation of the deformation layer toward the deformation receiving layer is caused by the light absorption function of the deformation layer and the light absorption function of the deformation shape compensation layer by irradiation of the recording light, and after the light irradiation of the recording light, the light absorption of the deformation shape compensation layer recording method of the write-once optical recording medium according to any one of claims 14 to 18, characterized in that reducing or eliminating the function. 変形層がSi又はGeを含有する材料から構成され、波長が350〜500nmのレーザ光により記録再生を行うことを特徴とする請求項14〜21の何れかに記載の追記型光記録媒体の記録方法。  The recording on the write-once type optical recording medium according to any one of claims 14 to 21, wherein the deformable layer is made of a material containing Si or Ge, and recording / reproducing is performed with a laser beam having a wavelength of 350 to 500 nm. Method.
JP2002220490A 2002-06-25 2002-07-29 Write-once optical recording medium and recording / reproducing method thereof Expired - Fee Related JP4117876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220490A JP4117876B2 (en) 2002-06-25 2002-07-29 Write-once optical recording medium and recording / reproducing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002184466 2002-06-25
JP2002220490A JP4117876B2 (en) 2002-06-25 2002-07-29 Write-once optical recording medium and recording / reproducing method thereof

Publications (2)

Publication Number Publication Date
JP2004086932A JP2004086932A (en) 2004-03-18
JP4117876B2 true JP4117876B2 (en) 2008-07-16

Family

ID=32071611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220490A Expired - Fee Related JP4117876B2 (en) 2002-06-25 2002-07-29 Write-once optical recording medium and recording / reproducing method thereof

Country Status (1)

Country Link
JP (1) JP4117876B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4550682B2 (en) * 2004-07-16 2010-09-22 三菱化学メディア株式会社 Optical recording medium and optical recording method for optical recording medium
WO2006009107A1 (en) 2004-07-16 2006-01-26 Mitsubishi Kagaku Media Co., Ltd. Optical recording medium and optical recording method of optical recording medium
JP4660217B2 (en) 2005-01-31 2011-03-30 株式会社東芝 Storage medium, reproducing method, recording method, reproducing apparatus and recording apparatus
KR100914948B1 (en) * 2005-02-21 2009-08-31 가부시키가이샤 리코 Optical recording medium and recording and readout method using the same
WO2007080937A1 (en) 2006-01-13 2007-07-19 Mitsubishi Kagaku Media Co., Ltd. Optical recording medium

Also Published As

Publication number Publication date
JP2004086932A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP3897695B2 (en) Write-once optical recording medium with low-to-high recording polarity for short wavelengths
JP4117878B2 (en) Write-once optical recording medium and recording method thereof
JP4271063B2 (en) Write-once optical recording medium and recording / reproducing method thereof
TWI298881B (en)
JP4577872B2 (en) Write-once optical recording medium
JP3987376B2 (en) Write-once optical recording medium
JP4117876B2 (en) Write-once optical recording medium and recording / reproducing method thereof
US6771579B2 (en) Optical recording method and optical recording medium
JP4313048B2 (en) Write-once optical recording medium
JP4065719B2 (en) Write-once optical recording medium and recording / reproducing method thereof
JP4117881B2 (en) Write-once optical recording medium
Min et al. New digital versatile disc recordable (DVD-R) with metal thin film and organic film on polycarbonate
JP3844704B2 (en) Write-once type optical recording medium capable of multi-value recording and multi-value recording method
US7875365B2 (en) Recordable optical recording media
JP4299681B2 (en) Optical information recording method
JP2007313882A (en) Optical information recording medium, method for recording information, and compound
JP3833964B2 (en) Write-once optical recording medium
JP3922690B2 (en) Optical recording medium and recording method thereof
JP3833961B2 (en) Write-once optical recording medium
KR100275692B1 (en) Phase change type optical disk
JPS61239444A (en) Laser light heat-sensitive recording medium
JP2005100577A (en) Recordable optical recording medium, and its recording method
JP2004213745A (en) Write-once type optical recording medium
KR100227084B1 (en) Optical recording medium
KR100275691B1 (en) Phase change type optical disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees