JP4115187B2 - Semiconductor crystal manufacturing method and group III nitride compound semiconductor light emitting device - Google Patents

Semiconductor crystal manufacturing method and group III nitride compound semiconductor light emitting device Download PDF

Info

Publication number
JP4115187B2
JP4115187B2 JP2002210807A JP2002210807A JP4115187B2 JP 4115187 B2 JP4115187 B2 JP 4115187B2 JP 2002210807 A JP2002210807 A JP 2002210807A JP 2002210807 A JP2002210807 A JP 2002210807A JP 4115187 B2 JP4115187 B2 JP 4115187B2
Authority
JP
Japan
Prior art keywords
crystal
semiconductor crystal
growth
base substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002210807A
Other languages
Japanese (ja)
Other versions
JP2004055799A (en
Inventor
誠二 永井
正好 小池
昌伸 千田
一義 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd, Toyota Central R&D Labs Inc filed Critical Toyoda Gosei Co Ltd
Priority to JP2002210807A priority Critical patent/JP4115187B2/en
Publication of JP2004055799A publication Critical patent/JP2004055799A/en
Application granted granted Critical
Publication of JP4115187B2 publication Critical patent/JP4115187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下地基板上にIII族窒化物系化合物半導体から成る半導体結晶を成長させ、下地基板から独立した良質の半導体結晶を得る方法に関する。また、本発明は、LED等に代表される各種の半導体素子の結晶成長基板の製造等に適用することができる。
【0002】
【従来の技術】
下地基板上にIII族窒化物系化合物半導体から成る半導体結晶を成長させ、その下地基板から独立した半導体結晶を得る従来技術としては、例えば、公開特許公報「特開平7−202265:III族窒化物半導体の製造方法」に記載されている湿式エッチングによる方法や、或いは、サファイア基板上にHVPE法等により厚膜のGaN(目的の半導体結晶)を成長させ、レーザ照射や研磨等によりサファイア基板を取り除く方法等が一般に知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、これらの従来技術においては、下地基板(例:サファイア等)とIII族窒化物系化合物半導体との間の熱膨張率差や格子定数差等に起因して、結晶成長工程完了後の降温時等に目的の単結晶(例:GaN等)に応力が加わり、目的の単結晶に転位やクラックが多数発生すると言う問題がある。
【0004】
例えば上記の様な従来技術を用いた場合、サファイアや或いはシリコン(Si)等から形成された下地基板上に窒化ガリウム(GaN)等の窒化物半導体を結晶成長させ、その後常温まで冷却すると、熱膨張係数差や或いは格子定数差等に起因する応力により窒化物半導体層に転位やクラックが多数入る。
【0005】
この様に、成長層(窒化物半導体層)に転位やクラックが多数入ると、その上にデバイスを作製した場合に、デバイス中に格子欠陥や転位、変形、クラック等が多数生じる結果となり、デバイス特性の劣化を引き起こす原因となる。また、下地基板を除去し、成長層のみを残して独立した基板(結晶)を得ようとする場合、上記の転位やクラック等の作用により、大面積のものが得られない。また、厚膜成長の場合には、成長中にさえ目的の単結晶にクラックが入り、部分的に小片剥離が発生する等の問題が非常に生じ易い。
【0006】
本発明は、上記の課題を解決するために成されたものであり、その目的は、下地基板から独立した良質の半導体結晶を得ることである。また、更には、裏面に凹凸を有するIII族窒化物系化合物半導体から成る半導体結晶基板を用いてIII族窒化物系化合物半導体発光素子を形成し、当該裏面の凹凸部に光反射膜を形成したIII族窒化物系化合物半導体発光素子の簡易な形成方法を提案することである。
【0007】
【課題を解決するための手段】
上記の課題を解決するためには、以下の手段が有効である
【0008】
即ち、第1の手段は、下地基板上にIII族窒化物系化合物半導体から成る半導体結晶を成長させ、下地基板から独立した良質の半導体結晶を得る方法であって、下地基板に突起部分又は凹凸を設ける基板加工工程と、下地基板の凹部の底面を残し、凸部の上面部分と側面部分にエピ成長防止膜を形成するエピ成長防止膜形成工程と、エピ成長防止膜の形成されていない下地基板の凹部の底面を半導体結晶が結晶成長し始める最初の結晶成長面とし、この結晶成長面が結晶成長により各々互いに連結されて少なくとも一連の略平面に成長するまで、前記半導体結晶を結晶成長させる結晶成長工程と、エピ成長防止膜の形成されていない下地基板の凹部の底面において破断により半導体結晶と前記下地基板とを分離する分離工程とを有することを特徴とする。
【0010】
ただし、本願発明で言う「III族窒化物系化合物半導体」一般には、2元、3元、又は4元の「Al1-x-yGayInxN; 0≦x≦1, 0≦y≦1, 0≦1-x-y≦1」なる一般式で表される任意の混晶比の半導体が含まれ、更に、p型或いはn型の不純物が添加された半導体も、本明細書の「III族窒化物系化合物半導体」の範疇とする。また、上記のIII族元素(Al, Ga, In)の内の少なくとも一部をボロン(B)やタリウム(Tl)等で置換したり、或いは、窒素(N)の少なくとも一部をリン(P)、砒素(As)、アンチモン(Sb)、ビスマス(Bi)等で置換したりした半導体等もまた、本明細書の「III族窒化物系化合物半導体」の範疇とする。また、上記のp型の不純物としては、例えば、マグネシウム(Mg)や、或いはカルシウム(Ca)等を添加することができる。また、上記のn型の不純物としては、例えば、シリコン(Si)や、硫黄(S)、セレン(Se)、テルル(Te)、或いはゲルマニウム(Ge)等を添加することができる。また、これらの不純物は、同時に2元素以上を添加しても良いし、同時に両型(p型とn型)を添加しても良い。
【0011】
また、上記の下地基板の材料としては、サファイア、スピネル、酸化マンガン、酸化ガリウムリチウム(LiGaO2)、硫化モリブデン(MoS)、シリコン(Si)、炭化シリコン(SiC)、AlN、GaAs、InP、GaP、MgO、ZnO、又はMgAl2O4等を用ることができる。即ち、これらの下地基板の材料としては、III族窒化物系化合物半導体の結晶成長に有用な、公知或いは任意の結晶成長基板を使用することができる。
【0012】
尚、下地基板の材料は、GaNとの反応、熱膨張係数差、及び高温での安定性の観点から、サファイアを選択することがより望ましい。
【0013】
エピタキシャル成長を防止するエピ成長防止膜により区分けされた多数の露出面を有する下地基板上にIII族窒化物系化合物より成る目的の半導体結晶を成長させる場合、下地基板と半導体結晶とは当該露出部分のみで接続される。このため、半導体結晶の厚さを十分に大きくすれば、内部応力または外部応力がこの下地基板の露出部分に集中的に作用し易くなる。その結果、特にこれらの応力は、下地基板の露出部分に対する剪断応力等として作用し、この応力が大きくなった時に、下地基板の露出部分と半導体結晶基板の接続部分が破断する。
【0014】
即ち、上記の本発明の手段に従ってこの応力を利用すれば、容易に下地基板と半導体結晶とを分離(剥離)することが可能となる。この手段により、下地基板から独立した単結晶(半導体結晶)を得ることができる。
【0015】
エピタキシャル成長を阻止するエピ成長防止膜としては、二酸化珪素(SiO2)、窒化珪素(SiNx)その他の化合物、チタン(Ti)、タングステン(W)その他の金属を用いることができる。その他、いわゆる横方向成長(ELO)に用いられるマスク材料を任意に用いて良い。
【0016】
尚、上記の「エピ成長防止膜により区分された多数の露出部」とは、少なくとも例えば図1の様な垂直断面から見る限りにおいて「多数」であれば良く、その平面形状としては一つに繋がっていても差し支えない。したがって、例えば、一次元的な一繋がりの矩形波形状や急峻な正弦波形状、或いは渦巻き状等に平面形状を形成しても、本発明の作用・効果を得ることは可能である。また、下地基板の露出部分の平面形状は断面ストライプ形状に限らず、略円形、略楕円形、略多角形、又は略正多角形等の任意の島型の形状等に上記の露出部の平面形状を形成しても、勿論本発明の作用・効果を得ることは可能である。
【0017】
また、下地基板と半導体結晶とを分離(剥離)する際に、下地基板側に半導体結晶の一部が残っても良いし、或いは、半導体結晶側に下地基板の一部が残っても良い。即ち、上記の分離工程は、これらの材料の一部の残骸を皆無とする様な各材料の完全な分離を前提(必要条件)とするものではない。
【0018】
また、第2の手段は、結晶成長工程は、エピ成長防止膜の形成されていない下地基板の露出面に少なくともバッファ層を形成した後に半導体結晶を結晶成長させることを特徴とする。ここで少なくともバッファ層を形成するとは、下地基板上に少なくとも1層のバッファ層が形成されていることを言い、後段の「結晶成長面が結晶成長により各々互いに連結されて少なくとも一連の略平面に成長するまで、半導体結晶を結晶成長させる」際の結晶成長面が、バッファ層の上面、バッファ層上に形成された層の上面、又はバッファ層上に形成された複数層の最上層の上面のいずれでも良い。バッファ層としては窒化アルミニウム(AlN)その他のIII族窒化物系化合物半導体、酸化亜鉛(ZnO)その他任意であって、形成方法、形成温度一切任意である。また、バッファ層を形成した後に1乃至複数層のIII族窒化物系化合物半導体を形成し、エピタキシャル成長の核となるべき良質の層を形成しても本願発明に包含される。
【0019】
また、第3の手段は、上記の第1又は第2の手段の結晶成長工程において、半導体結晶の膜厚を50μm以上にすることである。結晶成長させる目的の半導体結晶の厚さは、約50μm以上が望ましく、この厚さが厚い程、半導体結晶を強固にでき、更に、上記の剪断応力を上記の侵食残骸部に集中させ易くなる。また、これらの作用により、格子定数差に基づいて結晶成長中等の高温状態においても剥離現象は生じ得るため、その剥離後には、熱膨張係数差に起因する応力が殆ど半導体結晶に対して作用しなくなり、よって、転位やクラックが発生せず、高品質の半導体結晶(例:GaN単結晶)が得られる。この膜厚は70μm以上が更に望ましい。
【0020】
また、第4の手段は、上記の第1乃至第3の手段において、半導体結晶と下地基板とを冷却または加熱することにより、半導体結晶と下地基板との熱膨張係数差に基づく応力を発生させ、この応力を利用して侵食残骸部を破断することである。即ち、上記の破断(剥離)は、半導体結晶と下地基板との熱膨張係数差に基づく応力(剪断応力)によるものとしても良い。また、この手段によれば、特に、半導体結晶の膜厚を50μm以上に形成した場合に、半導体結晶の結晶性を高く維持しつつ、確実に半導体結晶と下地基板とを破断することができる。
【0021】
また、第5の手段は、上記の第1及びその従属項としての第2乃至第4の何れか1つの手段において、下地基板の露出部の配置間隔を1μm以上、50μm以下にすることである。これは即ちエピ成長防止膜の覆う範囲とほぼ等しい。より望ましくは、結晶成長の実施条件にも依存するが、下地基板の露出部の配置間隔は、5〜30μm程度が良い。ただし、この配置間隔とは、互いに接近する露出部の中心点間の距離のことを言う。
【0022】
これらの手段により、露出部分でない、エピ成長防止膜の上方を半導体結晶で覆うことが可能となる。また、この値が大きくなり過ぎると、確実にエピ成長防止膜の上方を半導体結晶で覆うことができなくなり、結晶性が均質かつ良質の結晶(半導体結晶)が得られなくなる或いは、この値が更に大きくなり過ぎると、結晶方位のズレが顕著となり望ましくない。
【0023】
また、露出部分の横方向の太さ、幅又は直径をSとし、上記の配置間隔(配置周期)をLとすると、S/Lの値は1/4〜1/6程度が望ましい。この様な設定により、所望の半導体結晶Aの横方向成長(ELO)が十分に促進されるため、高品質の単結晶を得ることができる。以下、互いに向かい合う露出部分の間の距離をW(=L−S)とし、この領域(即ち、エピ成長防止膜の上方領域)をウイングと呼ぶことがある。また、以下、上記の幅Sをシード幅と呼ぶことがある。したがって、ウイングに対するシード幅の比S/Wは1/3〜1/5程度が望ましい。
【0024】
また、下地基板の露出部分が略等間隔又は略一定周期で配置される様に加工工程及びエピ成長防止膜形成を実施することがより望ましい。これにより、横方向成長の成長条件が全体的に略均等となり、結晶性の良否や成長膜厚にムラが生じ難くなる。また、エピ成長防止膜の上方が、半導体結晶によって完全に覆われるまでの時間に、局所的なバラツキが生じ難くなるため、例えば、結晶成長速度の遅い結晶成長法から、結晶成長速度の速い結晶成長法に、途中で結晶成長法を変更する場合に、その時期を的確に、早期に、或いは一意に決定することが容易となる。また、この様な方法により、上記の剪断応力を各侵食残骸部に略均等に分配することが可能となるため、下地基板の露出部分における破断がムラなく生じ、下地基板と半導体結晶との分離が確実に実施できる様になる。
【0025】
したがって、例えば、下地基板の露出部分を、ストライプ状のメサ型の上面に形成し、これを等方向、等間隔に配置する様にしても良い。この様な侵食残骸部の形成は、容易かつ確実に実施できる等の、現行一般のエッチング加工の技術水準の現状に照らしたメリットがある。この時、メサ(露出部)の方向は、半導体結晶の<1−100>か<11−20>で良い。
【0026】
また、1辺が0.1μm以上の略正三角形を基調とする2次元三角格子の格子点上に露出部分を形成する方法も有効である。この方法によれば、下地基板との接触面積をより小さくできるため、上記の作用に基づいて、転位数を確実に低減できると共に下地基板の分離を容易にすることができる。
【0027】
また、露出部分の水平形状を、略正三角形、略正六角形、略円形、又は四角形に形成する方法も有効である。この方法により、III族窒化物系化合物半導体より形成される結晶の結晶軸の方向が各部で揃い易くなるため、或いは、任意の水平方向に対して露出部分の水平方向の長さ(太さ)を略一様に制限できるため、転位の数を抑制することができる。特に、正六角形や正三角形は、半導体結晶の結晶構造と合致し易いのでより望ましい。また、円形や四角形は製造技術の面で形成し易いと言う、現行一般のエッチング加工の技術水準の現状に照らしたメリットが有る。
【0028】
また、本発明の第6の手段は、上記下地基板を0.01μm以上侵食処理することである。また、上記の侵食処理(エッチング加工等)により、下地基板の一部まで侵食すれば、その後の結晶成長工程において、目的の半導体結晶の表面(結晶成長面)をより平坦化し易くなる。この「空洞」は、大きく形成される程、下地基板の露出部分に応力(剪断応力)が集中し易くなる。
【0029】
また、第7の手段は、上記の第1乃至第6の何れか1つの手段のエピ成長防止膜形成工程において下地基板の露出部分の横方向の太さ、幅又は直径を0.1μm以上、20μm以下にすることである。より望ましくは、結晶成長の実施条件にも依存するが、下地基板の露出部分の横方向の太さ、幅、又は直径は、0.5〜10μm程度が良い。この太さが太過ぎると、格子定数差に基づいて半導体結晶に働く応力の影響が大きくなり、半導体結晶の転位数が増加し易くなる。また、細過ぎると、下地基板の露出部分の形成が困難となるか、或いは、下地基板の露出部分の結晶成長速度が遅くなり、望ましくない。
【0030】
また、応力(剪断応力等)により破断させる際にも、下地基板の露出部分の横方向の太さ、幅、又は直径が大きくなり過ぎると、下地基板との接触面積が大きくなるため、確実に破断されない部分が生じ易くなり、望ましくない。また、格子定数差に基づいて半導体結晶に働く応力の影響の大小は、下地基板の露出部分の横方向の太さ(長さ)だけに依るものではなく、下地基板の露出部分の配置間隔等にも依存する。そして、これらの設定範囲が不適切であれば、上記の様に格子定数差に基づく応力の影響が大きくなり、半導体結晶の転位数が増加し易くなり、望ましくない。
【0031】
また、下地基板の露出部分の頭頂部付近の横方向の太さ、幅、又は直径には、上記の様に最適値又は適正範囲があるため、下地基板の露出部分の形状は、少なくとも局所的に閉じた形状(島状)、更には、外側に向かって凸状に閉じた形状が良く、より望ましくは、この形状は、略円形や略正多角形等が良い。この様な設定により、任意の水平方向に対して確実に、上記の最適値又は適正範囲を実現することが容易となる。
【0032】
また、第8の手段は、上記第1乃至第7の何れか1つの手段の結晶成長工程において、結晶成長速度の遅い結晶成長法から結晶成長速度の速い結晶成長法に、途中で結晶成長法を変更することである。例えば、横方向成長の速い結晶成長法から,縦方向成長の速い結晶成長法に途中で結晶成長法を変更することにより、短時間に結晶性の良質な半導体結晶を得ることができる。
【0033】
また、第9の手段は、上記の第1乃至第8の何れか1つの手段において、少なくとも分離工程よりも後に、半導体結晶の裏面に残った破断残骸をエッチング等の、化学的或いは物理的な加工処理により除去する工程を設けることである。この手段によれば、半導体結晶の裏面(下地基板を剥離させた側の面)に、半導体発光素子等の電極を形成した際に、電極と半導体結晶との界面付近に生じる電流ムラや電気抵抗を抑制でき、よって駆動電圧の低減や、或いは発光強度の向上等を図ることができる。
【0034】
更に、電極を半導体発光素子等の反射鏡としても利用する際には、鏡面付近での光の吸収や散乱が低減されて反射率が向上するので、発光強度が向上する。また、例えば、研磨等の物理的な加工処理によりこの工程を実施した場合等には、半導体結晶の裏面にバッファ層が有った場合にそれをも取り除いたり、或いは、半導体結晶の裏面の平坦度を向上したりすることもできるので、電流ムラや電気抵抗の抑制、或いは、鏡面付近での光の吸収や散乱の低減等の、上記の作用効果を更に補強することができる。
【0035】
尚、上記の加工処理は、熱処理であっても良い。目的の半導体結晶の昇華温度よりも、除去したい部分の昇華温度の方が低い場合等には、昇温処理やレーザ照射等によっても不要な部分を除去することができる。
【0038】
また、第10の手段は、上記の第1乃至第9の何れか1つの手段による半導体結晶の製造方法を用いて製造された半導体結晶を結晶成長基板として有し、裏面に前記下地基板の凹凸又はエピ成長防止膜の有無に対応した凹凸を有し、光反射膜を当該凹凸部に形成してIII族窒化物系化合物半導体発光素子を製造することである。これにより当該III族窒化物系化合物半導体発光素子は、裏面に反射膜を形成した凹凸を有するので、表面側(凹凸と反対側)からの光取り出し効率が向上する。
【0039】
尚、バッファ層、又は、バッファ層及び1乃至複数の半導体層を形成したのち主たる結晶成長工程を実施する場合、最初に積層する半導体層として、「AlxGa1-xN(0≦x<1)」より成るバッファ層を成膜することが望ましい。ただし、このバッファ層とは別に、更に、上記のバッファ層と略同組成(例:AlNや、AlGaN)の中間層を周期的に、又は他の層と交互に、或いは、多層構造が構成される様に、積層しても良い。この様なバッファ層(或いは、中間層)の積層により、格子定数差に起因する半導体結晶Aに働く応力を緩和できる等の従来と同様の作用原理により、結晶性を向上させることが可能である。
【0040】
また、前記の分離工程において、下地基板と半導体結晶Aを降温する際には、これらを成長装置の反応室に残し、略一定流量のアンモニア(NH3)ガスを反応室に流したままの状態で、概ね「-100℃/min〜-0.5℃/min」程度の冷却速度で略常温まで冷却する方法が望ましい。例えば、この様な方法により、半導体結晶Aの結晶性を安定かつ良質に維持したまま、確実に前記の分離工程を実施することができる。
以上の本発明の手段により、前記の課題を効果的、或いは合理的に解決することができる。
【0041】
【発明の実施の形態】
以下、本発明を具体的な実施例に基づいて説明する。ただし、本発明は以下に示す実施例に限定されるものではない。
【0042】
以下の実施例では、サファイア基板にエピ成長防止膜として二酸化ケイ素(SiO2)を用い、サファイア基板の露出面にAlNバッファ層をスパッタリング法により形成した後、ハライド気相成長法(HVPE)によりGaNの結晶成長を行った。
【0043】
(第1実施例)
図1は、本実施例の半導体結晶の製造工程を例示する、半導体結晶の模式的な断面図である。まず最初に、1インチ四方で厚さ約250μmのサファイア基板101(下地基板)を有機洗浄及び熱処理(ベーキング)によりクリーニングした。(図1の(a))
【0044】
1.下地基板加工工程:
次に、ハードベークレジストマスクを使用して、反応性イオンエッチング(RIE)を用いた選択ドライエッチングにより、配置周期L≒20μmのストライプ状の凸部を形成した(図1の(b))。即ち、ストライプ幅(シード幅S)≒5μm、ウイング幅W≒15μmで、基板が約0.5μmエッチングされるまでストライプ状にエッチングすることにより、断面形状が略矩形の凸部を形成した。また、上記のレジストマスクは、ストライプ状に残留した凸部の側壁が、その後に形成されるGaN層の{11−20}面と成る様に形成した。本エッチングにより、サファイア基板101表面にストライプ状の凸部が略周期的に形成された。
【0045】
2.エピ成長防止膜形成工程:
次に、サファイア基板101表面のストライプ状の凸部の上面以外の、凸部の側面及び凹部に二酸化ケイ素(SiO2)から成るエピ成長防止膜102を形成した。エピ成長防止膜102の膜厚は約0.2μmとした。こうして、サファイア基板101は、ストライプ状の凸部の上面のみが露出されることとなった(図1の(c))。
【0046】
次に、スパッタリングにより下地基板101の凸部の上面のみにAlNバッファ層(図1では省略)を形成した。
【0047】
3.結晶成長工程:
次に、AlNバッファ層で覆われた下地基板101の凸部の上面を結晶成長面としてGaN単結晶から成る目的の半導体結晶1AをHVPE法により形成した。
【0048】
最終的に目的の半導体結晶1Aは250μm程度まで結晶成長させる。このとき成長初期はGaNが横方向と縦方向に成長し、一旦各部が連結されて一連の略平面状に平坦化された後は、GaN結晶は縦方向に成長する。このHVPE法においては、横型のHVPE装置を用いた。また、V族原料にはアンモニア(NH3)を、III族原料にはGaとHClとを反応させて得られたGaClを用いた。
【0049】
こうして主に、横方向エピタキシャル成長によりエピ成長成長防止膜上方が埋められ、その後は、縦方向成長により、目的の膜厚の半導体結晶1A(GaN単結晶)が得られた(図1(d))。尚、図中の符号Rは「空洞」を示している。
【0050】
4.分離工程
上記の半導体結晶1Aを1.5℃/分の冷却速度で1100℃から略室温までゆっくりと冷却する。これにより、サファイア基板101の凸部の上面に形成したAlNバッファ層付近で剥離が生じ、サファイア基板101から独立した目的の膜厚の半導体結晶1A(GaN単結晶)が得られた(図1(e))。
【0051】
(第2実施例)
図2は、本実施例の半導体結晶の製造工程を例示する、半導体結晶の模式的な断面図である。図1の第1実施例においては、サファイア基板に形成したの凸部の上面から結晶成長を行ったが、本実施例ではサファイア基板に形成したの凹部の底面から結晶成長を行った。まず第1実施例同様、1インチ四方で厚さ約250μmのサファイア基板201(下地基板)を有機洗浄及び熱処理(ベーキング)によりクリーニングした。(図2の(a))
【0052】
1.下地基板加工工程:
次に、ハードベークレジストマスクを使用して、反応性イオンエッチング(RIE)を用いた選択ドライエッチングにより、配置周期L≒20μmのストライプ状の凸部及び凹部を形成した(図2の(b))。即ち、凹部の底面の幅(ストライプ幅、シード幅)S≒5μm、凸部上面の幅(ウイング幅)W≒15μmで、基板が約0.5μmエッチングされるまでストライプ状にエッチングすることにより、断面形状が略矩形の凸部を形成した。また、上記のレジストマスクは、ストライプ状に残留した凸部の側壁が、その後に形成されるGaN層の{11−20}面と成る様に形成した。本エッチングにより、サファイア基板101表面にストライプ状の凹部が略周期的に形成された。
【0053】
2.エピ成長防止膜形成工程:
次に、サファイア基板201表面のストライプ状の凹部の底面以外の、凸部の側面及び上面に二酸化ケイ素(SiO2)から成るエピ成長防止膜202を形成した。エピ成長防止膜202の膜厚は約0.2μmとした。こうして、サファイア基板201は、ストライプ状の凹部の底面のみが露出されることとなった(図2の(c))。
【0054】
3.結晶成長工程:
次に、下地基板201の凹部の底面を結晶成長面としてGaN単結晶から成る目的の半導体結晶2AをHVPE法により形成した。
【0055】
最終的に目的の半導体結晶2Aは250μm程度まで結晶成長させる。このとき成長初期はGaNが横方向と縦方向に成長し、一旦各部が連結されて一連の略平面状に平坦化された後は、GaN結晶は縦方向に成長する。このHVPE法においては、横型のHVPE装置を用いた。また、V族原料にはアンモニア(NH3)を、III族原料にはGaとHClとを反応させて得られたGaClを用いた。
【0056】
こうして主に、横方向エピタキシャル成長によりエピ成長防止膜上方が埋められ、その後は、縦方向成長により、目的の膜厚の半導体結晶2A(GaN単結晶)が得られた(図2(d))。尚、本実施例においては第1実施例のそれほど大きな「空洞」はできなかった。
【0057】
4.分離工程
上記の半導体結晶2Aを1.5℃/分の冷却速度で1100℃から略室温までゆっくりと冷却する。これにより、サファイア基板201の凹部と半導体結晶2Aの界面付近で剥離が生じ、サファイア基板201から独立した目的の膜厚の半導体結晶2A(GaN単結晶)が得られた(図2(e))。半導体結晶2A(GaN単結晶)はサファイア基板201の凹凸に対応する凹凸を裏面に有する半導体結晶であった。
【0058】
(第3実施例)
図3は、本実施例の半導体結晶の製造工程を例示する、半導体結晶の模式的な断面図である。本実施例は、サファイア基板の加工工程を省略して、第2実施例で得られた凹凸を裏面に有する半導体結晶を得ようとするものである。まず第1、第2実施例同様、1インチ四方で厚さ約250μmのサファイア基板301(下地基板)を有機洗浄及び熱処理(ベーキング)によりクリーニングした。(図3の(a))
【0059】
1.エピ成長防止膜形成工程:
次に、サファイア基板301表面にストライプ状に二酸化ケイ素(SiO2)から成るエピ成長防止膜302を形成した。エピ成長防止膜302の膜厚は約0.2μmとした。また、L、S、Wは第2実施例の凹凸のそれと同様とした。こうして、サファイア基板301は、ストライプ状に露出されることとなった(図3の(b))。
【0060】
次に、下地基板301の露出面を結晶成長面として、H2を10リットル/分、NH3を5リットル/分、TMAを20μmol/分で供給し、AlNバッファ層(図3では省略)を約200nmの厚さにまで結晶成長させた。
【0061】
2.結晶成長工程:
次に、AlNバッファ層で覆われた下地基板301の露出面を結晶成長面としてGaN単結晶から成る目的の半導体結晶3AをHVPE法により形成した。
【0062】
最終的に目的の半導体結晶3Aは250μm程度まで結晶成長させる。このとき成長初期はGaNが横方向と縦方向に成長し、一旦各部が連結されて一連の略平面状に平坦化された後は、GaN結晶は縦方向に成長する。本実施例においても、横型のHVPE装置を用いた。また、V族原料にはアンモニア(NH3)を、III族原料にはGaとHClとを反応させて得られたGaClを用いた。
【0063】
こうして主に、横方向エピタキシャル成長によりエピ成長防止膜上方が埋められ、その後は、縦方向成長により、目的の膜厚の半導体結晶3A(GaN単結晶)が得られた(図3(c))。尚、本実施例においては第2実施例同様、大きな「空洞」はできなかった。
【0064】
3.分離工程
上記の半導体結晶3Aを1.5℃/分の冷却速度で1100℃から略室温までゆっくりと冷却する。これにより、サファイア基板301の露出面に形成したAlNバッファ層付近で剥離が生じ、サファイア基板301から独立した目的の膜厚の半導体結晶3A(GaN単結晶)が得られた(図3(d))。半導体結晶3A(GaN単結晶)はサファイア基板301に形成したエピ成長防止膜302に対応する凹凸を裏面に有する半導体結晶であった。
【0065】
(第4実施例)
第2実施例で得られた半導体結晶(GaN単結晶)2Aを用い、III族窒化物系化合物半導体発光素子100を作成した。その構成を図4に示す。III族窒化物系化合物半導体発光素子100は、n型のGaN単結晶2A上にIII族窒化物系化合物半導体層をエピタキシャル成長させて形成したものであり、最上層をp型層とするLEDである。図4においてn型のGaN単結晶2A以外のIII族窒化物系化合物半導体層はまとめて符号3で示している。n型のGaN単結晶2Aは裏面に光反射膜の機能をも有するn電極1Mを有している。また、III族窒化物系化合物半導体層3上層には光透過性のp電極4Mを有している。III族窒化物系化合物半導体発光素子100は、n型のGaN単結晶2Aが裏面に凹凸を有し、且つ光反射膜の機能をも有するn電極1Mを形成しているので、p層側からの光取り出し効率が向上した。
【0066】
尚、上記のバッファ層とは別に、更に、上記のバッファ層と略同組成(例:AlNや、AlGaN)の中間層を周期的に、又は他の層と交互に、或いは、多層構造が構成される様に、積層しても良い。この様なバッファ層(或いは、中間層)の積層により、格子定数差に起因する半導体結晶1A、2A、3Aに働く応力を緩和できる等の従来と同様の作用原理により、結晶性を向上させることが可能である。
【0067】
また、前記の分離工程において、下地基板と半導体結晶1A、2A、3Aを降温する際には、これらを成長装置の反応室に残し、略一定流量のアンモニア(NH3)ガスを反応室に流したままの状態で、概ね「-100℃/min〜-0.5℃/min」程度の冷却速度で略常温まで冷却する方法でも良い。この冷却速度が速過ぎると、半導体結晶にワレ、クラックが発生する恐れがある。
【図面の簡単な説明】
【図1】本発明の第1の実施例に係わる半導体結晶の製造工程を例示する、模式的な断面図。
【図2】本発明の第2の実施例に係わる半導体結晶の製造工程を例示する、模式的な断面図。
【図3】本発明の第3の実施例に係わる半導体結晶の製造工程を例示する、模式的な断面図。
【図4】本発明の第4の実施例に係わる半導体発光素子の構成を例示する、模式的な断面図。
【符号の説明】
101、201、301 … 下地基板(例:サファイア等)
102 … SiO2層(エピ成長防止膜)
1A、2A、3A … 目的の半導体結晶(III族窒化物系化合物半導体)
L … 侵食残骸部の配置周期
S … シード幅
W … ウイング幅
1M … 光反射膜の機能を有するn電極
3 … LEDを構成するIII族窒化物系化合物半導体層
4M … 光透過性のp電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for growing a semiconductor crystal made of a group III nitride compound semiconductor on a base substrate to obtain a high-quality semiconductor crystal independent of the base substrate. Further, the present invention can be applied to the production of crystal growth substrates for various semiconductor elements represented by LEDs and the like.
[0002]
[Prior art]
As a conventional technique for growing a semiconductor crystal made of a group III nitride compound semiconductor on a base substrate and obtaining a semiconductor crystal independent of the base substrate, for example, Japanese Patent Laid-Open Publication No. 7-202265: Group III nitride is disclosed. Thick GaN (target semiconductor crystal) is grown on the sapphire substrate by the wet etching method described in “Semiconductor Manufacturing Method” or by HVPE method or the like, and the sapphire substrate is removed by laser irradiation or polishing. Methods and the like are generally known.
[0003]
[Problems to be solved by the invention]
However, in these conventional techniques, the temperature drop after completion of the crystal growth process is caused by the difference in thermal expansion coefficient or lattice constant between the base substrate (eg, sapphire) and the group III nitride compound semiconductor. There is a problem that stress is sometimes applied to the target single crystal (eg, GaN, etc.) and many dislocations and cracks are generated in the target single crystal.
[0004]
For example, when the conventional technology as described above is used, when a nitride semiconductor such as gallium nitride (GaN) is grown on a base substrate formed of sapphire or silicon (Si) and then cooled to room temperature, Many dislocations and cracks are generated in the nitride semiconductor layer due to the stress caused by the difference in expansion coefficient or the difference in lattice constant.
[0005]
In this way, when a large number of dislocations and cracks enter the growth layer (nitride semiconductor layer), when a device is fabricated thereon, a large number of lattice defects, dislocations, deformations, cracks, etc. occur in the device. It causes deterioration of characteristics. Further, when an independent substrate (crystal) is obtained by removing the base substrate and leaving only the growth layer, a large-area substrate cannot be obtained due to the above-described dislocations and cracks. Further, in the case of thick film growth, problems such as cracks in the target single crystal even during the growth and partial delamination occur very easily.
[0006]
The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a high-quality semiconductor crystal independent of a base substrate. Furthermore, a group III nitride compound semiconductor light emitting element was formed using a semiconductor crystal substrate made of a group III nitride compound semiconductor having irregularities on the back surface, and a light reflecting film was formed on the irregularities on the back surface. A simple method of forming a group III nitride compound semiconductor light emitting device is proposed.
[0007]
[Means for Solving the Problems]
  In order to solve the above problems, the following means are effective..
[0008]
  That is, the firstMeans is a method for growing a semiconductor crystal made of a group III nitride compound semiconductor on a base substrate to obtain a high-quality semiconductor crystal independent of the base substrate, and a substrate processing step of providing a protrusion or unevenness on the base substrate And an epitaxial growth preventing film forming step for forming an epitaxial growth preventing film on the upper surface portion and the side surface portion of the convex portion while leaving the bottom surface of the concave portion of the underlying substrate, and a bottom surface of the concave portion of the underlying substrate on which the epitaxial growth preventing film is not formed. A crystal growth step of crystal-growing the semiconductor crystal until the crystal growth surface is connected to each other by crystal growth and grows into at least a series of substantially planes. And a separation step of separating the semiconductor crystal and the base substrate by breaking at the bottom surface of the concave portion of the base substrate where the epitaxial growth preventing film is not formed.
[0010]
However, the “group III nitride compound semiconductor” in the present invention is generally a binary, ternary or quaternary “Al”.1-xyGayInxN; 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ 1-xy ≦ 1 ”is included, and semiconductors having an arbitrary mixed crystal ratio represented by the general formula are included, and p-type or n-type impurities are further included. The added semiconductor is also included in the category of “Group III nitride compound semiconductor” in this specification. Further, at least a part of the above group III elements (Al, Ga, In) is replaced with boron (B), thallium (Tl), or the like, or at least a part of nitrogen (N) is phosphorus (P ), Arsenic (As), antimony (Sb), semiconductors substituted with bismuth (Bi), and the like are also included in the category of “Group III nitride compound semiconductor” in this specification. Moreover, as said p-type impurity, magnesium (Mg), calcium (Ca), etc. can be added, for example. As the n-type impurity, for example, silicon (Si), sulfur (S), selenium (Se), tellurium (Te), germanium (Ge), or the like can be added. Further, two or more elements of these impurities may be added simultaneously, or both types (p-type and n-type) may be added simultaneously.
[0011]
In addition, as the material of the above-mentioned base substrate, sapphire, spinel, manganese oxide, lithium gallium oxide (LiGaO2), Molybdenum sulfide (MoS), silicon (Si), silicon carbide (SiC), AlN, GaAs, InP, GaP, MgO, ZnO, or MgAl2OFourEtc. can be used. That is, as a material for these base substrates, a known or arbitrary crystal growth substrate useful for crystal growth of a group III nitride compound semiconductor can be used.
[0012]
Note that it is more preferable to select sapphire as the material of the base substrate from the viewpoint of reaction with GaN, difference in thermal expansion coefficient, and stability at high temperature.
[0013]
When a target semiconductor crystal made of a group III nitride compound is grown on a base substrate having a large number of exposed surfaces separated by an epitaxial growth prevention film for preventing epitaxial growth, the base substrate and the semiconductor crystal are only exposed portions. Connected with. For this reason, if the thickness of the semiconductor crystal is made sufficiently large, internal stress or external stress tends to concentrate on the exposed portion of the underlying substrate. As a result, these stresses in particular act as shear stresses on the exposed portion of the underlying substrate, and when this stress increases, the exposed portion of the underlying substrate and the connection portion of the semiconductor crystal substrate break.
[0014]
That is, if this stress is used according to the above-mentioned means of the present invention, the base substrate and the semiconductor crystal can be easily separated (peeled). By this means, a single crystal (semiconductor crystal) independent from the base substrate can be obtained.
[0015]
As an epitaxial growth preventing film for preventing epitaxial growth, silicon dioxide (SiO2)2), Silicon nitride (SiNx) Other compounds, titanium (Ti), tungsten (W) and other metals can be used. In addition, a mask material used for so-called lateral growth (ELO) may be arbitrarily used.
[0016]
The above-mentioned “many exposed portions separated by the epi growth prevention film” may be “many” at least as long as viewed from a vertical section as shown in FIG. 1, for example. There is no problem even if they are connected. Therefore, for example, even if the planar shape is formed in a one-dimensional continuous rectangular wave shape, a steep sine wave shape, a spiral shape, or the like, it is possible to obtain the operation and effect of the present invention. In addition, the planar shape of the exposed portion of the base substrate is not limited to the cross-sectional stripe shape, but may be any island shape such as a substantially circular shape, a substantially elliptical shape, a substantially polygonal shape, or a substantially regular polygonal shape. Even if the shape is formed, it is of course possible to obtain the functions and effects of the present invention.
[0017]
Further, when separating (separating) the base substrate and the semiconductor crystal, a part of the semiconductor crystal may remain on the base substrate side, or a part of the base substrate may remain on the semiconductor crystal side. That is, the above separation step does not assume (necessary conditions) the complete separation of each material so that some of the remnants of these materials are eliminated.
[0018]
  Also,SecondThe means is characterized in that, in the crystal growth step, the semiconductor crystal is grown after forming at least a buffer layer on the exposed surface of the base substrate on which no epitaxial growth preventing film is formed. Here, the formation of at least a buffer layer means that at least one buffer layer is formed on a base substrate. In the latter stage, “the crystal growth surfaces are connected to each other by crystal growth to form at least a series of substantially flat surfaces. The crystal growth surface at the time of “growing a semiconductor crystal until it grows” is the upper surface of the buffer layer, the upper surface of the layer formed on the buffer layer, or the upper surface of the uppermost layer of the multiple layers formed on the buffer layer. Either is fine. The buffer layer may be aluminum nitride (AlN) or other group III nitride compound semiconductor, zinc oxide (ZnO), or any other arbitrary formation method and formation temperature. In addition, it is also included in the present invention to form one or more group III nitride compound semiconductors after forming the buffer layer to form a high-quality layer to be the nucleus of epitaxial growth.
[0019]
  Also,ThirdMeans aboveFirst or secondIn the crystal growth step of the means, the film thickness of the semiconductor crystal is set to 50 μm or more. The thickness of the semiconductor crystal intended for crystal growth is desirably about 50 μm or more. The thicker the semiconductor crystal, the stronger the semiconductor crystal, and the more easily the above-described shear stress is concentrated on the erosion debris. In addition, due to these effects, exfoliation can occur even at high temperatures such as during crystal growth based on the difference in lattice constant, so that stress due to the difference in thermal expansion coefficient almost acts on the semiconductor crystal after the exfoliation. Therefore, dislocations and cracks do not occur, and a high-quality semiconductor crystal (eg, GaN single crystal) can be obtained. This film thickness is more preferably 70 μm or more.
[0020]
  Also,4thMeans above1st to 3rdIn the means, by cooling or heating the semiconductor crystal and the base substrate, a stress based on a difference in thermal expansion coefficient between the semiconductor crystal and the base substrate is generated, and the erosion debris is broken using this stress. . That is, the rupture (peeling) may be caused by stress (shear stress) based on a difference in thermal expansion coefficient between the semiconductor crystal and the base substrate. Further, according to this means, particularly when the film thickness of the semiconductor crystal is formed to be 50 μm or more, the semiconductor crystal and the base substrate can be surely broken while maintaining the crystallinity of the semiconductor crystal high.
[0021]
  Also,5thMeans above1st and itsAs a dependent2nd to 4thIn any one of the means, the arrangement interval of the exposed portions of the base substrate is set to 1 μm or more and 50 μm or less. That is, it is almost equal to the area covered by the epi growth prevention film. More desirably, the arrangement interval of the exposed portions of the base substrate is preferably about 5 to 30 μm, although it depends on crystal growth conditions. However, this arrangement | positioning space | interval means the distance between the center points of the exposed part which mutually approaches.
[0022]
By these means, it is possible to cover the upper portion of the epitaxial growth preventing film, which is not an exposed portion, with a semiconductor crystal. If this value becomes too large, the upper portion of the epi-growth prevention film cannot be reliably covered with a semiconductor crystal, and a crystal with uniform crystallinity and good quality (semiconductor crystal) cannot be obtained. If it is too large, the crystal orientation shift becomes remarkable, which is not desirable.
[0023]
Further, when the lateral thickness, width, or diameter of the exposed portion is S and the above-described arrangement interval (arrangement period) is L, the value of S / L is preferably about 1/4 to 1/6. Such setting sufficiently promotes the lateral growth (ELO) of the desired semiconductor crystal A, so that a high-quality single crystal can be obtained. Hereinafter, the distance between the exposed portions facing each other is W (= L−S), and this region (that is, the region above the epi growth prevention film) may be called a wing. Hereinafter, the width S may be referred to as a seed width. Therefore, the ratio S / W of the seed width to the wing is preferably about 1/3 to 1/5.
[0024]
Further, it is more desirable to carry out the processing step and the formation of the epitaxial growth preventing film so that the exposed portions of the base substrate are arranged at substantially equal intervals or at substantially constant intervals. As a result, the growth conditions for the lateral growth are substantially uniform as a whole, and the quality of crystallinity and unevenness in the growth film thickness are less likely to occur. In addition, since local variations are less likely to occur during the time until the upper portion of the epi-growth prevention film is completely covered by the semiconductor crystal, for example, from a crystal growth method with a low crystal growth rate, a crystal with a high crystal growth rate is used. When the crystal growth method is changed to the growth method, it becomes easy to determine the timing accurately, early, or uniquely. In addition, such a method makes it possible to distribute the above-mentioned shear stress to each erosion debris part evenly, so that the exposed portion of the base substrate is evenly broken and the base substrate and the semiconductor crystal are separated. Can be implemented reliably.
[0025]
Therefore, for example, the exposed portion of the base substrate may be formed on the upper surface of a striped mesa shape and arranged at equal intervals in the same direction. Such formation of the erosion debris has an advantage in light of the current state of the art of general etching processing, such as being easy and reliable. At this time, the direction of the mesa (exposed portion) may be <1-100> or <11-20> of the semiconductor crystal.
[0026]
It is also effective to form an exposed portion on a lattice point of a two-dimensional triangular lattice whose base is a substantially regular triangle having a side of 0.1 μm or more. According to this method, since the contact area with the base substrate can be further reduced, the number of dislocations can be reliably reduced and the base substrate can be easily separated based on the above-described action.
[0027]
It is also effective to form a horizontal shape of the exposed portion into a substantially regular triangle, a substantially regular hexagon, a substantial circle, or a quadrangle. By this method, the crystal axis direction of the crystal formed from the group III nitride compound semiconductor can be easily aligned in each part, or the horizontal length (thickness) of the exposed portion with respect to an arbitrary horizontal direction Therefore, the number of dislocations can be suppressed. In particular, regular hexagons and regular triangles are more desirable because they easily match the crystal structure of the semiconductor crystal. Further, there is a merit in light of the current state of the technical level of general etching processing, in which a circle or a rectangle is easy to form in terms of manufacturing technology.
[0028]
  In addition, the present invention6thThe means is to erode the base substrate by 0.01 μm or more. Further, if a part of the base substrate is eroded by the above erosion treatment (etching process or the like), the surface of the target semiconductor crystal (crystal growth surface) can be more easily flattened in the subsequent crystal growth step. The larger the “cavity” is, the more easily stress (shear stress) is concentrated on the exposed portion of the base substrate.
[0029]
  Also,7thMeans above1st to 6thIn one of the means, the thickness, width, or diameter in the lateral direction of the exposed portion of the base substrate is set to 0.1 μm or more and 20 μm or less in the epitaxial growth preventing film forming step. More desirably, the thickness, width, or diameter in the horizontal direction of the exposed portion of the base substrate is preferably about 0.5 to 10 μm, although it depends on the conditions for crystal growth. If the thickness is too thick, the influence of the stress acting on the semiconductor crystal based on the lattice constant difference becomes large, and the number of dislocations in the semiconductor crystal tends to increase. On the other hand, if it is too thin, it is difficult to form the exposed portion of the base substrate, or the crystal growth rate of the exposed portion of the base substrate is slow, which is not desirable.
[0030]
Also, when breaking due to stress (shear stress, etc.), if the lateral thickness, width, or diameter of the exposed portion of the base substrate becomes too large, the contact area with the base substrate will increase, so Unbreakable parts are likely to occur, which is not desirable. In addition, the magnitude of the influence of the stress acting on the semiconductor crystal based on the difference in lattice constant does not depend only on the lateral thickness (length) of the exposed portion of the base substrate, but the arrangement interval of the exposed portion of the base substrate, etc. Also depends on. If these setting ranges are inappropriate, the influence of stress based on the difference in lattice constant increases as described above, and the number of dislocations in the semiconductor crystal tends to increase, which is not desirable.
[0031]
Further, since the thickness, width, or diameter in the lateral direction near the top of the exposed portion of the base substrate has an optimum value or an appropriate range as described above, the shape of the exposed portion of the base substrate is at least local. Close shape (island shape), further, a shape closed convexly toward the outside is preferable. More preferably, this shape is a substantially circular shape, a substantially regular polygon shape, or the like. With such a setting, it becomes easy to reliably realize the optimum value or the appropriate range in any horizontal direction.
[0032]
  Also,8thMeans above1st to 7thIn the crystal growth process of any one means, the crystal growth method is changed from a crystal growth method having a low crystal growth rate to a crystal growth method having a high crystal growth rate. For example, a semiconductor crystal with good crystallinity can be obtained in a short time by changing the crystal growth method on the way from a crystal growth method having a fast lateral growth to a crystal growth method having a fast vertical growth.
[0033]
  Also,9thMeans above1st to 8thIn any one of the means, at least after the separation step, there is provided a step of removing the broken debris remaining on the back surface of the semiconductor crystal by chemical or physical processing such as etching. According to this means, when an electrode such as a semiconductor light emitting element is formed on the back surface of the semiconductor crystal (the surface on which the base substrate is peeled off), current unevenness and electrical resistance generated near the interface between the electrode and the semiconductor crystal. Therefore, it is possible to reduce the driving voltage or improve the light emission intensity.
[0034]
Furthermore, when the electrode is also used as a reflecting mirror such as a semiconductor light emitting device, the light absorption and scattering near the mirror surface is reduced and the reflectance is improved, so that the emission intensity is improved. Also, for example, when this process is performed by physical processing such as polishing, if there is a buffer layer on the back surface of the semiconductor crystal, it is also removed, or the back surface of the semiconductor crystal is flattened. Therefore, the above-described effects such as suppression of current unevenness and electric resistance, or reduction of light absorption and scattering near the mirror surface can be further reinforced.
[0035]
Note that the above processing may be heat treatment. If the sublimation temperature of the portion to be removed is lower than the sublimation temperature of the target semiconductor crystal, the unnecessary portion can be removed by a temperature increase process, laser irradiation, or the like.
[0038]
  Also,10thThe means has a semiconductor crystal manufactured by using the method for manufacturing a semiconductor crystal according to any one of the first to ninth means as a crystal growth substrate, and the unevenness or epi growth prevention film of the base substrate is formed on the back surface. And forming a group III nitride compound semiconductor light emitting device by forming a light reflecting film on the concavo-convex portion. As a result, the group III nitride compound semiconductor light-emitting element has irregularities with a reflective film formed on the back surface, so that the light extraction efficiency from the front surface side (the side opposite to the irregularities) is improved.
[0039]
When the main crystal growth step is performed after forming the buffer layer or the buffer layer and one or more semiconductor layers, the first semiconductor layer to be stacked is “AlxGa1-xIt is desirable to form a buffer layer made of N (0 ≦ x <1) ”. However, in addition to this buffer layer, an intermediate layer of substantially the same composition as the above buffer layer (eg, AlN or AlGaN) is formed periodically or alternately with other layers, or a multilayer structure is formed. As shown in FIG. With such a buffer layer (or intermediate layer), it is possible to improve the crystallinity by the same operation principle as before, such as the stress acting on the semiconductor crystal A caused by the difference in lattice constant can be relieved. .
[0040]
In the separation step, when the temperature of the base substrate and the semiconductor crystal A is lowered, these are left in the reaction chamber of the growth apparatus, and ammonia (NHThree) A method of cooling to approximately room temperature at a cooling rate of approximately “-100 ° C./min to −0.5 ° C./min” with the gas flowing in the reaction chamber is desirable. For example, by such a method, it is possible to reliably perform the separation step while maintaining the crystallinity of the semiconductor crystal A stably and in good quality.
By the above means of the present invention, the above-mentioned problem can be effectively or rationally solved.
[0041]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on specific examples. However, the present invention is not limited to the following examples.
[0042]
In the following examples, silicon dioxide (SiO2) is used as an epi-growth prevention film on a sapphire substrate.2), An AlN buffer layer was formed on the exposed surface of the sapphire substrate by sputtering, and then GaN crystal growth was performed by halide vapor phase epitaxy (HVPE).
[0043]
(First embodiment)
FIG. 1 is a schematic cross-sectional view of a semiconductor crystal, illustrating the manufacturing process of the semiconductor crystal of this example. First, the sapphire substrate 101 (underlying substrate) having a thickness of about 250 μm square on 1 inch was cleaned by organic cleaning and heat treatment (baking). ((A) in FIG. 1)
[0044]
1. Substrate processing process:
Next, stripe-shaped convex portions having an arrangement period L≈20 μm were formed by selective dry etching using reactive ion etching (RIE) using a hard bake resist mask (FIG. 1B). That is, the stripe width (seed width S) ≈5 μm, the wing width W≈15 μm, and the substrate was etched in stripes until the substrate was etched by about 0.5 μm, thereby forming a convex portion having a substantially rectangular cross-sectional shape. Further, the resist mask was formed so that the side wall of the convex portion remaining in the stripe shape was the {11-20} plane of the GaN layer to be formed thereafter. By this etching, stripe-shaped convex portions were formed substantially periodically on the surface of the sapphire substrate 101.
[0045]
2. Epi growth prevention film formation process:
Next, silicon dioxide (SiO 2) is formed on the side surface and the concave portion of the convex portion other than the upper surface of the striped convex portion on the surface of the sapphire substrate 101.2The epitaxial growth prevention film 102 made of The film thickness of the epi growth prevention film 102 was about 0.2 μm. Thus, in the sapphire substrate 101, only the upper surface of the stripe-shaped convex portion was exposed ((c) in FIG. 1).
[0046]
Next, an AlN buffer layer (not shown in FIG. 1) was formed only on the upper surface of the convex portion of the base substrate 101 by sputtering.
[0047]
3. Crystal growth process:
Next, a target semiconductor crystal 1A made of a GaN single crystal was formed by the HVPE method with the upper surface of the convex portion of the base substrate 101 covered with the AlN buffer layer as the crystal growth surface.
[0048]
Finally, the target semiconductor crystal 1A is grown to about 250 μm. At this time, GaN grows in the horizontal direction and the vertical direction at the initial stage of growth, and after the respective parts are connected and flattened into a series of substantially planar shapes, the GaN crystal grows in the vertical direction. In this HVPE method, a horizontal HVPE apparatus was used. In addition, Group V materials include ammonia (NHThree), And GaCl obtained by reacting Ga and HCl was used as the Group III raw material.
[0049]
In this way, the upper part of the epitaxial growth prevention film was mainly filled by lateral epitaxial growth, and thereafter, the semiconductor crystal 1A (GaN single crystal) having a desired film thickness was obtained by vertical growth (FIG. 1 (d)). . In addition, the code | symbol R in a figure has shown the "cavity."
[0050]
4). Separation process
The semiconductor crystal 1A is slowly cooled from 1100 ° C. to about room temperature at a cooling rate of 1.5 ° C./min. Thereby, peeling occurred in the vicinity of the AlN buffer layer formed on the upper surface of the convex portion of the sapphire substrate 101, and a semiconductor crystal 1A (GaN single crystal) having a target film thickness independent of the sapphire substrate 101 was obtained (FIG. 1 ( e)).
[0051]
(Second embodiment)
FIG. 2 is a schematic cross-sectional view of a semiconductor crystal, illustrating the manufacturing process of the semiconductor crystal of this example. In the first embodiment of FIG. 1, crystal growth was performed from the top surface of the convex portion formed on the sapphire substrate, but in this embodiment, crystal growth was performed from the bottom surface of the concave portion formed on the sapphire substrate. First, as in the first embodiment, a sapphire substrate 201 (underlying substrate) having a thickness of about 250 μm and measuring 1 inch square was cleaned by organic cleaning and heat treatment (baking). ((A) of FIG. 2)
[0052]
1. Substrate processing process:
Next, stripe-shaped convex portions and concave portions having an arrangement period L≈20 μm were formed by selective dry etching using reactive ion etching (RIE) using a hard bake resist mask (FIG. 2B). ). That is, the width of the bottom surface of the concave portion (stripe width, seed width) S≈5 μm, the width of the top surface of the convex portion (wing width) W≈15 μm, and the substrate is etched in a stripe shape until the substrate is etched by about 0.5 μm. A convex portion having a substantially rectangular shape was formed. Further, the resist mask was formed so that the side wall of the convex portion remaining in the stripe shape was the {11-20} plane of the GaN layer to be formed thereafter. By this etching, striped concave portions were formed on the surface of the sapphire substrate 101 substantially periodically.
[0053]
2. Epi growth prevention film formation process:
Next, silicon dioxide (SiO 2) is formed on the side surface and top surface of the convex portion other than the bottom surface of the striped concave portion on the sapphire substrate 201 surface.2The epitaxial growth prevention film 202 made of The film thickness of the epi growth prevention film 202 was about 0.2 μm. Thus, in the sapphire substrate 201, only the bottom surface of the striped recess was exposed ((c) in FIG. 2).
[0054]
3. Crystal growth process:
Next, a target semiconductor crystal 2A made of a GaN single crystal was formed by HVPE using the bottom surface of the recess of the base substrate 201 as a crystal growth surface.
[0055]
Finally, the target semiconductor crystal 2A is grown to about 250 μm. At this time, GaN grows in the horizontal direction and the vertical direction at the initial stage of growth, and after the respective parts are connected and flattened into a series of substantially planar shapes, the GaN crystal grows in the vertical direction. In this HVPE method, a horizontal HVPE apparatus was used. In addition, Group V materials include ammonia (NHThree), And GaCl obtained by reacting Ga and HCl was used as the Group III raw material.
[0056]
Thus, the upper part of the epitaxial growth preventing film was mainly buried by lateral epitaxial growth, and thereafter, the semiconductor crystal 2A (GaN single crystal) having a desired film thickness was obtained by vertical growth (FIG. 2D). In this embodiment, the so large “cavity” of the first embodiment could not be formed.
[0057]
4). Separation process
The semiconductor crystal 2A is slowly cooled from 1100 ° C. to approximately room temperature at a cooling rate of 1.5 ° C./min. As a result, separation occurred near the interface between the recess of the sapphire substrate 201 and the semiconductor crystal 2A, and a semiconductor crystal 2A (GaN single crystal) having a target thickness independent of the sapphire substrate 201 was obtained (FIG. 2 (e)). . The semiconductor crystal 2A (GaN single crystal) was a semiconductor crystal having unevenness on the back surface corresponding to the unevenness of the sapphire substrate 201.
[0058]
(Third embodiment)
FIG. 3 is a schematic cross-sectional view of a semiconductor crystal, illustrating the manufacturing process of the semiconductor crystal of this example. In this embodiment, the processing step of the sapphire substrate is omitted, and a semiconductor crystal having the unevenness obtained in the second embodiment on the back surface is obtained. First, as in the first and second embodiments, a sapphire substrate 301 (underlying substrate) having a thickness of about 250 μm on one inch square was cleaned by organic cleaning and heat treatment (baking). ((A) of FIG. 3)
[0059]
1. Epi growth prevention film formation process:
Next, stripes of silicon dioxide (SiO2) are formed on the surface of the sapphire substrate 301.2The epitaxial growth prevention film 302 made of The film thickness of the epi growth prevention film 302 was about 0.2 μm. Further, L, S, and W were the same as those of the unevenness of the second example. Thus, the sapphire substrate 301 was exposed in a stripe shape ((b) of FIG. 3).
[0060]
Next, using the exposed surface of the base substrate 301 as a crystal growth surface, H210 liters / minute, NHThreeWas supplied at 5 liters / minute and TMA was supplied at 20 μmol / minute, and an AlN buffer layer (not shown in FIG. 3) was grown to a thickness of about 200 nm.
[0061]
2. Crystal growth process:
Next, the target semiconductor crystal 3A made of a GaN single crystal was formed by the HVPE method using the exposed surface of the base substrate 301 covered with the AlN buffer layer as the crystal growth surface.
[0062]
Finally, the target semiconductor crystal 3A is grown to about 250 μm. At this time, GaN grows in the horizontal direction and the vertical direction at the initial stage of growth, and after the respective parts are connected and flattened into a series of substantially planar shapes, the GaN crystal grows in the vertical direction. Also in this example, a horizontal HVPE apparatus was used. In addition, Group V materials include ammonia (NHThree), And GaCl obtained by reacting Ga and HCl was used as the Group III raw material.
[0063]
Thus, the upper part of the epitaxial growth preventing film was mainly buried by lateral epitaxial growth, and thereafter, a semiconductor crystal 3A (GaN single crystal) having a desired film thickness was obtained by vertical growth (FIG. 3C). In this example, as in the second example, a large “cavity” could not be formed.
[0064]
3. Separation process
The semiconductor crystal 3A is slowly cooled from 1100 ° C. to about room temperature at a cooling rate of 1.5 ° C./min. As a result, separation occurred in the vicinity of the AlN buffer layer formed on the exposed surface of the sapphire substrate 301, and a semiconductor crystal 3A (GaN single crystal) having a target film thickness independent of the sapphire substrate 301 was obtained (FIG. 3D). ). The semiconductor crystal 3A (GaN single crystal) was a semiconductor crystal having irregularities on the back surface corresponding to the epi-growth preventing film 302 formed on the sapphire substrate 301.
[0065]
(Fourth embodiment)
Using the semiconductor crystal (GaN single crystal) 2A obtained in the second example, a Group III nitride compound semiconductor light emitting device 100 was produced. The configuration is shown in FIG. The group III nitride compound semiconductor light emitting device 100 is an LED formed by epitaxially growing a group III nitride compound semiconductor layer on an n-type GaN single crystal 2A, and the uppermost layer is a p-type layer. . In FIG. 4, the group III nitride compound semiconductor layers other than the n-type GaN single crystal 2A are collectively indicated by reference numeral 3. The n-type GaN single crystal 2A has an n-electrode 1M having a function of a light reflection film on the back surface. The upper layer of the group III nitride compound semiconductor layer 3 has a light-transmitting p-electrode 4M. In the group III nitride compound semiconductor light emitting device 100, the n-type GaN single crystal 2 </ b> A has an n-side electrode 1 </ b> M having irregularities on the back surface and also functioning as a light reflection film. Improved light extraction efficiency.
[0066]
In addition to the above buffer layer, an intermediate layer of substantially the same composition (eg, AlN or AlGaN) as the above buffer layer is formed periodically or alternately with other layers, or a multilayer structure is formed. As is done, they may be stacked. Crystallinity is improved by the same principle of action as in the past, such as relaxation of the stress acting on the semiconductor crystals 1A, 2A, 3A due to the difference in lattice constant by the lamination of such buffer layers (or intermediate layers). Is possible.
[0067]
In the separation step, when the temperature of the base substrate and the semiconductor crystals 1A, 2A, and 3A is lowered, these are left in the reaction chamber of the growth apparatus, and ammonia (NHThree) A method of cooling to a substantially normal temperature at a cooling rate of approximately “-100 ° C./min to −0.5 ° C./min” while the gas is allowed to flow into the reaction chamber may be used. If this cooling rate is too high, cracks and cracks may occur in the semiconductor crystal.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view illustrating a process for manufacturing a semiconductor crystal according to a first embodiment of the invention.
FIG. 2 is a schematic cross-sectional view illustrating a semiconductor crystal manufacturing process according to a second embodiment of the invention.
FIG. 3 is a schematic cross-sectional view illustrating a process for manufacturing a semiconductor crystal according to a third example of the invention.
FIG. 4 is a schematic cross-sectional view illustrating the configuration of a semiconductor light emitting element according to a fourth example of the invention.
[Explanation of symbols]
101, 201, 301 ... Underlying substrate (eg, sapphire, etc.)
102… SiO2Layer (Epitaxial growth prevention film)
1A, 2A, 3A ... Target semiconductor crystal (Group III nitride compound semiconductor)
L ... Arrangement cycle of erosion debris
S… Seed width
W… Wing width
1M: n electrode having a function of a light reflecting film
3 Group III nitride compound semiconductor layer constituting LED
4M ... Light transmissive p-electrode

Claims (10)

下地基板上にIII族窒化物系化合物半導体から成る半導体結晶を成長させ、前記下地基板から独立した良質の半導体結晶を得る方法であって、
下地基板に凹凸を設ける基板加工工程と、
下地基板の凹部の底面を残し凸部の上面部分と側面部分にエピ成長防止膜を形成するエピ成長防止膜形成工程と、
前記エピ成長防止膜の形成されていない下地基板の凹部の底面を前記半導体結晶が結晶成長し始める最初の結晶成長面とし、この結晶成長面が結晶成長により各々互いに連結されて少なくとも一連の略平面に成長するまで、前記半導体結晶を結晶成長させる結晶成長工程と、
前記エピ成長防止膜の形成されていない下地基板の凹部の底面において破断により半導体結晶と前記下地基板とを分離する分離工程と
を有することを特徴とする半導体結晶の製造方法。
A method of growing a semiconductor crystal composed of a group III nitride compound semiconductor on a base substrate to obtain a high-quality semiconductor crystal independent of the base substrate,
A substrate processing step of providing irregularities on the base substrate;
An epi-growth prevention film forming step for forming an epi-growth prevention film on the upper surface part and side surface part of the convex part while leaving the bottom surface of the concave part of the base substrate;
The bottom surface of the concave portion of the base substrate on which the epi growth prevention film is not formed is the first crystal growth surface where the semiconductor crystal begins to grow, and the crystal growth surfaces are connected to each other by crystal growth to form at least a series of substantially flat surfaces. A crystal growth step of growing the semiconductor crystal until it grows into
And a separation step of separating the semiconductor crystal and the base substrate by breaking at the bottom surface of the concave portion of the base substrate on which the epi-growth preventing film is not formed.
前記結晶成長工程は、前記エピ成長防止膜の形成されていない前記下地基板の露出面に少なくともバッファ層を形成した後に前記半導体結晶を結晶成長させることを特徴とする請求項1に記載の半導体結晶の製造方法。  2. The semiconductor crystal according to claim 1, wherein, in the crystal growth step, the semiconductor crystal is grown after at least a buffer layer is formed on an exposed surface of the base substrate on which the epitaxial growth prevention film is not formed. Manufacturing method. 前記結晶成長工程において、前記半導体結晶の膜厚を50μm以上としたことを特徴とする請求項1又は請求項2に記載の半導体結晶の製造方法。  3. The method of manufacturing a semiconductor crystal according to claim 1, wherein in the crystal growth step, the film thickness of the semiconductor crystal is 50 μm or more. 前記半導体結晶と前記下地基板とを冷却または加熱することにより、前記半導体結晶と前記下地基板との熱膨張係数差に基づく応力を発生させ、この応力を利用して破断することを特徴とする請求項1乃至請求項3のいずれか1項に記載の半導体結晶の製造方法。  The semiconductor crystal and the base substrate are cooled or heated to generate a stress based on a difference in thermal expansion coefficient between the semiconductor crystal and the base substrate, and the stress is used to break. The manufacturing method of the semiconductor crystal of any one of Claim 1 thru | or 3. 前記基板加工工程において、前記凹部の配置間隔を1μm以上、50μm以下とすることを特徴とする請求項1乃至請求項4の何れか1項に記載の半導体結晶の製造方法。  5. The method of manufacturing a semiconductor crystal according to claim 1, wherein, in the substrate processing step, an interval between the recesses is 1 μm or more and 50 μm or less. 前記基板加工工程成工程において、前記下地基板を0.01μm以上侵食処理したことを特徴とする請求項1乃至請求項5の何れか1項に記載の半導体結晶の製造方法。  6. The method of manufacturing a semiconductor crystal according to claim 1, wherein in the substrate processing step, the base substrate is eroded by 0.01 μm or more. 前記エピ成長防止膜形成工程において、前記下地基板の露出部分の横方向の太さ、幅、又は直径を0.1μm以上、20μm以下とすることを特徴とする請求項1乃至請求項6の何れか1項に記載の半導体結晶の製造方法。  The thickness, width, or diameter in the lateral direction of the exposed portion of the base substrate is set to 0.1 μm or more and 20 μm or less in the epi growth prevention film forming step. 2. A method for producing a semiconductor crystal according to item 1. 前記結晶成長工程において、結晶成長速度の遅い結晶成長法から結晶成長速度の速い結晶成長法に、途中で結晶成長法を変更することを特徴とする請求項1乃至請求項7の何れか1項に記載の半導体結晶の製造方法。  8. The crystal growth method according to claim 1, wherein in the crystal growth step, the crystal growth method is changed halfway from a crystal growth method having a low crystal growth rate to a crystal growth method having a high crystal growth rate. The manufacturing method of the semiconductor crystal of description. 少なくとも前記分離工程よりも後に、前記半導体結晶の裏面をエッチング等の、化学的或いは物理的な加工処理により除去する工程を有することを特徴とする請求項1乃至請求項8の何れか1項に記載の半導体結晶の製造方法。  9. The method according to claim 1, further comprising a step of removing the back surface of the semiconductor crystal by chemical or physical processing such as etching after at least the separation step. 10. The manufacturing method of the semiconductor crystal of description. 請求項1乃至請求項9の何れか1項に記載の半導体結晶の製造方法を用いて製造された、前記半導体結晶を結晶成長基板として有し、裏面に前記下地基板の凹凸又はエピ成長防止膜の有無に対応した凹凸を有し、光反射膜を当該凹凸を有する裏面に形成されたことを特徴とするIII族窒化物系化合物半導体発光素子。  An unevenness or epi-growth prevention film of the base substrate on the back surface, having the semiconductor crystal manufactured as a crystal growth substrate, manufactured using the method for manufacturing a semiconductor crystal according to any one of claims 1 to 9. A Group III nitride compound semiconductor light-emitting element having irregularities corresponding to the presence or absence of the light-emitting element and having a light reflecting film formed on the back surface having the irregularities.
JP2002210807A 2002-07-19 2002-07-19 Semiconductor crystal manufacturing method and group III nitride compound semiconductor light emitting device Expired - Fee Related JP4115187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002210807A JP4115187B2 (en) 2002-07-19 2002-07-19 Semiconductor crystal manufacturing method and group III nitride compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002210807A JP4115187B2 (en) 2002-07-19 2002-07-19 Semiconductor crystal manufacturing method and group III nitride compound semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2004055799A JP2004055799A (en) 2004-02-19
JP4115187B2 true JP4115187B2 (en) 2008-07-09

Family

ID=31934214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002210807A Expired - Fee Related JP4115187B2 (en) 2002-07-19 2002-07-19 Semiconductor crystal manufacturing method and group III nitride compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP4115187B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713026A (en) * 2010-08-31 2012-10-03 秋山信之 Production method for silicon thin film, production method for silicon thin-film solar cell, silicon thin film, and silicon thin-film solar cell

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619441B1 (en) * 2004-06-30 2006-09-08 서울옵토디바이스주식회사 Growth method of easy remove Sudstate
US7704860B2 (en) * 2004-11-22 2010-04-27 Panasonic Corporation Nitride-based semiconductor device and method for fabricating the same
JP4452167B2 (en) * 2004-12-06 2010-04-21 株式会社豊田中央研究所 Method of manufacturing structure having semiconductor layer of III-V compound
KR100588377B1 (en) 2005-05-10 2006-06-09 삼성전기주식회사 Vertically structured gan type light emitting diode and method of manufacturing the same
DE112006002505T5 (en) 2005-09-29 2008-08-14 Sumitomo Chemical Co., Ltd. A method of producing a group 3-5 nitride semiconductor and a method of manufacturing a light emitting device
PL1801855T3 (en) 2005-12-22 2009-06-30 Freiberger Compound Mat Gmbh Processes for selective masking of III-N layers and for the preparation of free-standing III-N layers or of devices
JP4879614B2 (en) 2006-03-13 2012-02-22 住友化学株式会社 Method for manufacturing group 3-5 nitride semiconductor substrate
JP5167974B2 (en) * 2008-06-16 2013-03-21 豊田合成株式会社 Group III nitride compound semiconductor light emitting device and method of manufacturing the same
US8154034B1 (en) * 2010-11-23 2012-04-10 Invenlux Limited Method for fabricating vertical light emitting devices and substrate assembly for the same
JP5631952B2 (en) * 2011-10-21 2014-11-26 ルミジエヌテック カンパニー リミテッド Substrate manufacturing method
KR101420265B1 (en) 2011-10-21 2014-07-21 주식회사루미지엔테크 Method of manufacturing a substrate
KR101337351B1 (en) * 2011-11-23 2013-12-06 주식회사 아이브이웍스 Method for manufacturing nitride based semiconductor devices
JP2013209271A (en) * 2012-03-30 2013-10-10 Mitsubishi Chemicals Corp Manufacturing method of periodic table group 13 metal nitride semiconductor substrate, and groundwork substrate used for the manufacturing method
KR102369976B1 (en) * 2015-07-16 2022-03-04 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emittng device
TW202249079A (en) * 2021-02-26 2022-12-16 日商京瓷股份有限公司 Semiconductor substrate, method for producing same, apparatus for producing same, and template substrate
CN113257970A (en) * 2021-07-15 2021-08-13 广东中图半导体科技股份有限公司 Patterned substrate for LED growth, epitaxial wafer and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102713026A (en) * 2010-08-31 2012-10-03 秋山信之 Production method for silicon thin film, production method for silicon thin-film solar cell, silicon thin film, and silicon thin-film solar cell

Also Published As

Publication number Publication date
JP2004055799A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
JP4201541B2 (en) Semiconductor crystal manufacturing method and group III nitride compound semiconductor light emitting device manufacturing method
US7052979B2 (en) Production method for semiconductor crystal and semiconductor luminous element
JP4115187B2 (en) Semiconductor crystal manufacturing method and group III nitride compound semiconductor light emitting device
CN100414005C (en) Production method for semiconductor crystal and semiconductor luminous element
JP4084544B2 (en) Semiconductor substrate and semiconductor device manufacturing method
JP2003163370A (en) Method of manufacturing semiconductor crystal
US7163876B2 (en) Method for manufacturing group-III nitride compound semiconductor, and group-III nitride compound semiconductor device
EP1278233A1 (en) Production method of iii nitride compound semiconductor substrate and semiconductor device
US6716655B2 (en) Group III nitride compound semiconductor element and method for producing the same
JP2000106455A (en) Nitride semiconductor structure, fabrication thereof and light emitting element
TW544930B (en) Method for producing semiconductor crystal
TW201706465A (en) Nitride semiconductor growth substrate and method for manufacturing same, and semiconductor device and method for manufacturing same
JP2006066496A (en) Crystal growth method of gallium nitride, gallium nitride substrate, and manufacturing method thereof
JP4749583B2 (en) Manufacturing method of semiconductor substrate
JP4093064B2 (en) Embedded substrate crystal manufacturing method and embedded substrate crystal
JP2002299253A5 (en)
JP2009292713A (en) Method of growing nitride single crystal and method of manufacturing nitride semiconductor light emitting device
JP4450202B2 (en) Semiconductor manufacturing method
JP4749584B2 (en) Manufacturing method of semiconductor substrate
JP5146697B2 (en) Nitride semiconductor
JP3906739B2 (en) Manufacturing method of nitride semiconductor substrate
JP3823781B2 (en) Nitride semiconductor substrate and method for manufacturing the same
JP4605513B2 (en) Embedded substrate crystal manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees