JP4114247B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4114247B2
JP4114247B2 JP27721298A JP27721298A JP4114247B2 JP 4114247 B2 JP4114247 B2 JP 4114247B2 JP 27721298 A JP27721298 A JP 27721298A JP 27721298 A JP27721298 A JP 27721298A JP 4114247 B2 JP4114247 B2 JP 4114247B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lithium
electrode plate
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27721298A
Other languages
Japanese (ja)
Other versions
JP2000106174A (en
Inventor
博 松野
祐之 村井
達也 橋本
豊次 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP27721298A priority Critical patent/JP4114247B2/en
Publication of JP2000106174A publication Critical patent/JP2000106174A/en
Application granted granted Critical
Publication of JP4114247B2 publication Critical patent/JP4114247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解液二次電池、特にリチウム含有複合酸化物を正極活物質に用いた非水電解液二次電池に関するものである。
【0002】
【従来の技術】
近年、民生用電子機器のポータブル化,コードレス化が進んでいる。現在これら電子機器の駆動用電源としての役割を、ニッケルカドミウム電池あるいは密閉型小型鉛蓄電池が担っているが、ポータブル化,コードレス化が定着するに従い、駆動用電源となる二次電池の高エネルギー密度化,小型軽量化の要望が強くなっている。また近年は小型のカムコーダの急速な市場の拡大に代表されるように、高率充放電が可能な電池が要望されている。
【0003】
このような状況から、高い充放電電圧を示すリチウムコバルト複合酸化物、例えばLiCoO2 を正極活物質に用い、リチウムイオンの挿入,脱離を利用した非水電解液二次電池が開示されている(特開昭63−59507号公報)。
【0004】
このような電池は、高率充放電を実現可能にするため、例えば正極板と負極板をセパレータを間に介在して巻回したスパイラル構造とすることにより、電極面積をできるだけ大きくする工夫がなされている。
【0005】
その電極板作製手段の一例を示すと、特開平3−244508号公報に示されている手段では、まず正極活物質であるLiCoO2 の粉末100重量部に、アセチレンブラック3重量部,グラファイト粉末4重量部,フッ素樹脂系結着剤7重量部を混合し、カルボキシメチルセルロース水溶液に懸濁させてペースト状とし、このペーストをアルミニウム箔の両面に塗着し、乾燥後圧延して正極板としている。
【0006】
【発明が解決しようとする課題】
正極活物質は、リチウムイオンをインターカレーション,デインターカレーションすることのできるリチウム化合物であるから、正極活物質を増粘剤を含む水溶液に練合させると、前記リチウムイオンが溶出する。またリチウムと遷移金属の複合酸化物は、リチウム化合物と遷移金属化合物から合成されており、これらの原料中からNa,Ka等のアルカリ成分を完全に除去させるのは困難である。これらの材料より合成される正極活物質には合成未反応物としてアルカリ成分が残存してしまい、正極合剤ペーストのpHを著しく上昇させる。このため正極合剤ペーストを集電体であるアルミニウム箔に塗着するとき、アルミニウム箔が腐蝕され、アルミニウム箔と正極活物質の界面で水素ガスが発生する。これにより正極活物質のアルミニウム箔からの脱離あるいは浮き上がりを生じ、正極合剤ペーストの塗着工程歩留まりを低下させている。また正極活物質の浮き上がりによる集電特性の劣化やアルミニウム箔の腐蝕によるアルミニウムと正極活物質との界面に形成される不導体層により、インピーダンスが上昇する等、電池特性の劣化が生じやすかった。
【0007】
また、特開平8−69791号公報に示されているように、正極合剤ペースト中に炭酸ガスを通気させ、正極合剤ペーストのpHを7〜11とした後、これを集電体表面に塗着して正極板を作製する手段が知られている。しかしながらこの手段では、炭酸ガスによる中和によって正極合剤ペーストが含有しているフッ素樹脂系結着剤等の含有物が変質して、結着剤としての機能が低下してしまい好ましくなかった。
【0008】
そこで、本発明は、このような従来の課題を解決した非水電解液二次電池、特にリチウム含有複合酸化物を正極活物質に用いた非水電解液二次電池を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記目的を達成するため本発明は、強アルカリにより腐蝕するアルミニウム製集電体とし、その表面にリチウム含有複合酸化物等の正極活物質を主成分とする正極合剤ペーストを塗着した正極板と、負極板とこの両極板にセパレータを介在させた非水電解液二次電池において、前記正極活物質に対し重量比で100〜10000ppmのMoO3を添加することとしたものである。従って強アルカリによって腐蝕するアルミニウム製集電体に塗着される正極合剤ペースト中にはMoO3が含まれているため、アルミニウム製集電体の腐蝕を軽減させることができると共に正極合剤ペーストの塗着性が向上し、集電特性も向上させることができる。
【0010】
【発明の実施の形態】
本発明は、強アルカリによって腐蝕するアルミニウム製集電体とし、その表面にリチウム遷移金属を主体とした複合酸化物を主成分とする正極活物質を含む正極合剤ペーストを塗着した正極板と、負極板と、この正極板と負極板との間のセパレータを介在させた非水電解液二次電池において、前記正極合剤ペーストは正極活物質に対し重量比で100〜10000ppmのMoO3を添加したものを用いた非水電解液二次電池とする。
【0011】
正極合剤ペーストには、正極活物質を増粘剤と導電剤と結着剤を含むものであるから、正極活物質に対し重量比で100〜10000ppmのMoO3を添加することによりアルミニウム製集電体の腐蝕が緩和される。
【0012】
集電体に使用されるアルミニウム箔がアルカリによって腐蝕される場合の化学反応式は次の通りである。
【0013】
2Al+3H2O→Al23+3H2↑ (反応式1)
アルミニウム箔には、その表面に非常に薄い緻密な酸化膜であるAl23 が存在し、中性の水溶液中では、この酸化膜がアルミニウム金属と水との反応を阻害するため反応式1のような反応は起こらない。しかしこの酸化膜は、アルカリ性の水溶液とは
Al23+H2O→2AlO2 -+2H+ (反応式2)
のような反応を起こし、酸化膜がアルミン酸イオンとして溶液中に溶出する。続いて活性なアルミニウム金属が表面に現れ、水と反応して反応式1の反応が起こる。
【0014】
正極合剤ペースト中に添加したMoO3 は、強い酸化剤であるのでアルミニウム箔表面に現れたアルミニウム金属と次のような反応を起こす。
【0015】
2Al+3MoO3 → Al23+3MoO2 (反応式3)
反応式3に反応が起こることによって、アルミニウム金属と水との反応式1に示す反応が阻害され、アルカリ水溶液中であってもアルミニウム箔の腐蝕を防ぐことができることとなる。
【0016】
このため正極合剤ペースト中にMoO3 を添加することによって、アルミニウム箔と正極活物質層の間での水素ガスの発生がなくなり、アルミニウム箔からの正極活物質の脱落あるいは浮き上がりが生じないため塗着性が向上し、正極板の歩留まりも向上する。またアルミニウム箔と正極活物質層との界面に不導体層が形成されなくなるため、アルミニウム箔の集電特性を向上させることが可能となる。
【0017】
本発明は、正極合剤ペースト中に添加したMoO3 がアルミニウム箔の腐蝕を防ぐ機能を果たすのであり、特開平8−250119号公報に示されているような、LiCoO2 のCoの一部をMoで置換した系LiCo1-xMox2(0<x<1)では、本発明におけるようなアルミニウム箔の腐蝕を防ぐ効果は得られない。
【0018】
【実施例】
以下、本発明の実施例を図面とともに説明する。図1に本実施例で用いた円筒形電池の縦断面を示す。図1において、1は耐有機電解質性のステンレス鋼板を加工した電池ケース、2は安全弁を設けた封口板、3は絶縁パッキングを示す。4は極板群であり、これは正極板5および負極板6がセパレータ7を介して複数回渦巻状に巻回されている。そして正極板5からは正極リード5aが引き出されていて封口板2に接続され、負極板6からは負極リード6aが引き出されていて電池ケース1の底部に接続されている。8は絶縁リングで、極板群4の上下にそれぞれ設けられている。
【0019】
以下、正極板5,負極板6,電解液等について詳しく説明する。
負極板6は、コークスを加熱処理して得た炭素粉末100重量部に、フッ素樹脂系結着剤10重量部を混合し、これをカルボキシメチルセルロースの水溶液に懸濁させてペースト状にした。そしてこの負極合剤ペーストを厚さ0.015mmの銅箔の表面に塗着し、乾燥後厚さ0.2mmに圧延し、幅37mm,長さ280mmの大きさに切り出して負極板とした。
【0020】
正極板5は、正極活物質であるLiCoO2 の粉末100重量部に、アセチレンブラック5重量部,フッ素樹脂結着剤7重量部を混合し、これをカルボキシメチルセルロースの水溶液に懸濁させてpHを10〜14にしたペースト状の正極合剤を有するものである。この正極合剤ペーストをアルミニウム箔の両面に塗着し、乾燥後ロールプレス機によって0.17mmに圧延し、幅35mm,長さ250mmに切り出して正極板とした。
【0021】
正極板5,負極板6にはそれぞれ正極リード5a,負極リード6aを取り付け、セパレータ7を介して渦巻状に巻回し、直径13.8mm,高さ50mmの電池ケース1に挿入した。
【0022】
電解液には、炭酸エチレンと炭酸ジエチルの等容積混合溶媒に、六フッ化リン酸リチウムを1モル/リットルの割合で溶解したものを用い、その所定量を極板群4に注入した後、電池を密封口し試験電池とした。
【0023】
以下、正極板5の作製について詳しく説明する。 LiCoO2 の粉末100重量部に、アセチレンブラック5重量部,フッ素樹脂系結着剤7重量部を混合し、これをカルボキシメチルセルロースの水溶液に懸濁させてペースト状にするが、この正極合剤ペーストの調整時にこれを撹拌しながら正極合剤ペースト中にMoO3 をLiCoO2 に対し0〜30000ppmを添加する。このペーストを厚さ0.02mmのアルミニウム箔の両面にマルチコーターで塗着し、乾燥させた。
【0024】
得られた極板をローラープレス機を用いて0.17mmの厚みになるまで圧延し、幅35mm,長さ250mmに切り出して正極板を作製した。また正極活物質の塗着性を、アルミニウム箔に塗着した正極合剤1cm3 あたりの重量(以後塗着密度という)で評価し、これを次のような方法で測定した。
【0025】
正極合剤ペーストをアルミニウム箔に塗着し乾燥後の正極板を一定面積だけ切り出してその重量,厚みを測定する。切り出した正極板に含まれるアルミニウム箔の重量をアルミニウム箔の比重,切り出し面積,厚みより計算し、測定重量からこれを差し引き正極合剤の重量とした。また正極板の体積からアルミニウム箔の体積を差し引き、正極合剤体積を算出する。そしてこれらより正極合剤1cm3 あたりの重量を計算し塗着密度とした。
【0026】
アルミニウム箔が腐蝕されることによりアルミニウム箔と正極活物質層の界面で水素ガスが発生し、それによって正極活物質の浮き上がりが生じる。その結果、正極活物質層の見かけ体積が増加し、単位面積あたりの重量が減少する。このように塗着性が低下すると、塗着密度は減少することになる。
【0027】
前記の塗着密度測定法で測定した塗着密度と正極合剤ペースト中に添加したMoO3 量の関係を図2に丸印で示す。 MoO3 を添加した正極合剤ペーストを用いて作製した正極板は塗着密度が高まり、塗着性の向上が認められる。
【0028】
これは正極合剤ペースト中に添加したMoO3 がアルミニウム箔表面の酸化膜を保護することによりアルミニウム箔のアルカリ腐蝕を軽減させたためである。
【0029】
また上記手段により作製した各正極板を用いた本実施例の電池のインピーダンスを交流(1kHz)インピーダンス測定法で計測した。電池のインピーダンスとペースト中に添加したMoO3 量の関係を図3に丸印で示す。図3より明らかなように、本発明により作製した電池はインピーダンスが減少している。これはアルミニウム箔のアルカリ腐蝕が軽減され、電極としての集電特性が向上したためである。
【0030】
MoO3 の添加量が10000ppmを越えても塗着性は、 MoO3 の無添加である従来例に比べ向上が認められたが、電池のインピーダンスはMoO3 の添加量が10000ppmを越えると徐々に増加した。これは正極活物質中に絶縁体であるMoO3 を添加したため、正極板の導電性が低下したためである。またMoO3 の添加量を増加させると、電池活物質そのものの重量が減少するため、電池の放電容量が減少するので好ましくない。このため、本発明におけるMoO3 の添加量は、100〜10000ppmであることが望ましい。
【0031】
上記実施例として正極活物質は、LiCoO2 を用いたが、LiNiO2 ,LiMnO2 ,LiMn24 等のリチウム含有複合酸化物でも同様の効果が得られた。
【0032】
また、上記実施例においては増粘剤としてカルボキシメチルセルロースを用いて評価を行ったが、他の増粘剤であるMCやPVAを用いても同様の効果が得られた。
【0033】
さらに、上記実施例においては円筒形電池を用いて評価を行ったが、角形等、電池形状が異なっても同様の効果が得られた。
【0034】
さらに、上記実施例において負極には炭素材料を用いたが、リチウム金属やリチウム合金を負極としても同様の効果が得られた。
【0035】
さらに、上記実施例においては電解質として六フッ化リン酸リチウムを用いたが、他のリチウム塩、例えば過塩素酸リチウム,四フッ化ほう酸リチウム等でも同様の効果が得られた。
【0036】
さらに、上記実施例においては電解質の塩濃度を1モル/リットルとしたが、他の濃度のものを用いても同様の効果が得られた。
【0037】
さらに、上記実施例においては電解液として炭酸エチレンと炭酸ジエチルの混合溶媒を用いたが、他の非水溶媒、例えばプロピレンカーボネート等の環状エステル、テトラヒドロフラン等の環状エーテル、ジメトキシエタン等の鎖状エーテル、プロピオン酸メチル等の鎖状エステル等の非水溶媒や、これら多元系混合溶媒を用いても同様の効果が得られた。
【0038】
【発明の効果】
以上のように本発明は、強アルカリに対し腐蝕性を有するアルミニウム製集電体とし、その表面にリチウム含有複合酸化物を主成分とする正極活物質層を形成した正極板を有する非水電解液二次電池において、前記正極板は正極活物質に対し重量比で100〜10000ppmのMoO3を添加することにより、アルミニウム箔の腐蝕を軽減させることができ、正極合成ペーストの塗着性やアルミニウム箔の集電特性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施例における円筒形電池の縦断面図
【図2】正極合成ペースト中に添加したMoO3 量と塗着密度との相関を示す図
【図3】正極合成ペースト中に添加したMoO3 量と電池のインピーダンスとの関係を示す図
【符号の説明】
1 電池ケース
2 封口板
3 絶縁パッキング
4 極板群
5 正極板
5a 正極リード
6 負極板
6a 負極リード
7 セパレータ
8 絶縁リング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery using a lithium-containing composite oxide as a positive electrode active material.
[0002]
[Prior art]
In recent years, consumer electronic devices have become portable and cordless. Currently, nickel cadmium batteries or sealed small lead-acid batteries play a role as driving power sources for these electronic devices, but as the use of portable and cordless devices becomes established, the high energy density of secondary batteries that serve as driving power sources There is a strong demand for downsizing and weight reduction. In recent years, there has been a demand for a battery that can be charged and discharged at a high rate, as represented by the rapid market expansion of small camcorders.
[0003]
Under such circumstances, a non-aqueous electrolyte secondary battery using lithium cobalt composite oxide showing a high charge / discharge voltage, for example, LiCoO 2, as a positive electrode active material and utilizing insertion / extraction of lithium ions is disclosed. (Japanese Patent Laid-Open No. 63-59507).
[0004]
In order to realize high rate charge / discharge in such a battery, for example, the electrode area is made as large as possible by adopting a spiral structure in which a positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween. ing.
[0005]
As an example of the electrode plate preparation means, in the means shown in JP-A-3-244508, first, 100 parts by weight of LiCoO 2 powder as a positive electrode active material, 3 parts by weight of acetylene black, 4 parts of graphite powder. Part by weight and 7 parts by weight of a fluororesin binder are mixed and suspended in a carboxymethyl cellulose aqueous solution to form a paste. This paste is applied to both sides of an aluminum foil, dried and rolled to obtain a positive electrode plate.
[0006]
[Problems to be solved by the invention]
Since the positive electrode active material is a lithium compound capable of intercalating and deintercalating lithium ions, the lithium ions are eluted when the positive electrode active material is kneaded with an aqueous solution containing a thickener. The composite oxide of lithium and transition metal is synthesized from a lithium compound and a transition metal compound, and it is difficult to completely remove alkali components such as Na and Ka from these raw materials. In the positive electrode active material synthesized from these materials, an alkali component remains as a synthesis unreacted substance, and the pH of the positive electrode mixture paste is remarkably increased. Therefore, when the positive electrode mixture paste is applied to the aluminum foil as the current collector, the aluminum foil is corroded and hydrogen gas is generated at the interface between the aluminum foil and the positive electrode active material. As a result, the positive electrode active material is detached or lifted from the aluminum foil, and the yield of the positive electrode mixture paste application process is reduced. In addition, the battery characteristics were liable to deteriorate, such as the deterioration of the current collecting characteristics due to the rising of the positive electrode active material and the non-conductive layer formed at the interface between the aluminum and the positive electrode active material due to the corrosion of the aluminum foil.
[0007]
Further, as disclosed in JP-A-8-67991, carbon dioxide gas is passed through the positive electrode mixture paste to adjust the pH of the positive electrode mixture paste to 7 to 11, and then this is applied to the current collector surface. Means for producing a positive electrode plate by coating is known. However, this means is not preferable because the content as a fluororesin binder contained in the positive electrode mixture paste is altered by neutralization with carbon dioxide gas and the function as the binder is lowered.
[0008]
Accordingly, the present invention aims to provide a non-aqueous electrolyte secondary battery that solves such conventional problems, particularly a non-aqueous electrolyte secondary battery that uses a lithium-containing composite oxide as a positive electrode active material. Yes.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides an aluminum current collector corroded by a strong alkali, and a positive electrode plate coated with a positive electrode mixture paste mainly composed of a positive electrode active material such as a lithium-containing composite oxide on the surface thereof. In a non-aqueous electrolyte secondary battery in which a separator is interposed between the negative electrode plate and the bipolar plate, 100 to 10,000 ppm of MoO 3 is added by weight to the positive electrode active material. Therefore, since the positive electrode mixture paste applied to the aluminum current collector corroded by strong alkali contains MoO 3 , the corrosion of the aluminum current collector can be reduced and the positive electrode mixture paste This improves the coating property and improves the current collecting characteristics.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides an aluminum current collector corroded by a strong alkali, and a positive electrode plate coated with a positive electrode mixture paste including a positive electrode active material mainly composed of a composite oxide mainly composed of a lithium transition metal on the surface thereof; In a non-aqueous electrolyte secondary battery in which a negative electrode plate and a separator between the positive electrode plate and the negative electrode plate are interposed, the positive electrode mixture paste contains 100 to 10,000 ppm of MoO 3 by weight with respect to the positive electrode active material. A non-aqueous electrolyte secondary battery using the added one is obtained.
[0011]
Since the positive electrode mixture paste includes a thickener, a conductive agent, and a binder as a positive electrode active material, an aluminum current collector can be obtained by adding 100 to 10,000 ppm of MoO 3 by weight with respect to the positive electrode active material. Corrosion is alleviated.
[0012]
The chemical reaction formula when the aluminum foil used for the current collector is corroded by alkali is as follows.
[0013]
2Al + 3H 2 O → Al 2 O 3 + 3H 2 ↑ (Reaction Formula 1)
Al 2 O 3, which is a very thin and dense oxide film, is present on the surface of aluminum foil. In a neutral aqueous solution, this oxide film inhibits the reaction between aluminum metal and water. Such a reaction does not occur. However, this oxide film is different from an alkaline aqueous solution as Al 2 O 3 + H 2 O → 2AlO 2 + 2H + (Reaction Formula 2)
The oxide film is eluted in the solution as aluminate ions. Subsequently, active aluminum metal appears on the surface and reacts with water to cause the reaction of reaction formula 1.
[0014]
Since MoO 3 added to the positive electrode mixture paste is a strong oxidizing agent, the following reaction occurs with the aluminum metal appearing on the surface of the aluminum foil.
[0015]
2Al + 3MoO 3 → Al 2 O 3 + 3MoO 2 (Reaction Formula 3)
When the reaction occurs in Reaction Formula 3, the reaction shown in Reaction Formula 1 between the aluminum metal and water is inhibited, and corrosion of the aluminum foil can be prevented even in an alkaline aqueous solution.
[0016]
For this reason, by adding MoO 3 to the positive electrode mixture paste, generation of hydrogen gas between the aluminum foil and the positive electrode active material layer is eliminated, and the positive electrode active material does not fall off or rise from the aluminum foil. Wearability improves and the yield of a positive electrode plate also improves. In addition, since the nonconductive layer is not formed at the interface between the aluminum foil and the positive electrode active material layer, the current collection characteristics of the aluminum foil can be improved.
[0017]
In the present invention, MoO 3 added to the positive electrode mixture paste functions to prevent corrosion of the aluminum foil, and a part of Co in LiCoO 2 as disclosed in JP-A-8-250119 is used. In the system LiCo 1-x Mo x O 2 (0 <x <1) substituted with Mo, the effect of preventing corrosion of the aluminum foil as in the present invention cannot be obtained.
[0018]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a longitudinal section of a cylindrical battery used in this example. In FIG. 1, 1 is a battery case obtained by processing an organic electrolyte resistant stainless steel plate, 2 is a sealing plate provided with a safety valve, and 3 is an insulating packing. Reference numeral 4 denotes an electrode plate group, in which a positive electrode plate 5 and a negative electrode plate 6 are wound in a spiral shape a plurality of times via a separator 7. A positive electrode lead 5 a is drawn from the positive electrode plate 5 and connected to the sealing plate 2, and a negative electrode lead 6 a is drawn from the negative electrode plate 6 and connected to the bottom of the battery case 1. Insulating rings 8 are provided above and below the electrode plate group 4, respectively.
[0019]
Hereinafter, the positive electrode plate 5, the negative electrode plate 6, the electrolytic solution, and the like will be described in detail.
The negative electrode plate 6 was prepared by mixing 10 parts by weight of a fluororesin binder with 100 parts by weight of carbon powder obtained by heat-treating coke, and suspending it in an aqueous solution of carboxymethyl cellulose to make a paste. This negative electrode mixture paste was applied to the surface of a copper foil having a thickness of 0.015 mm, dried and then rolled to a thickness of 0.2 mm, and cut into a size of 37 mm in width and 280 mm in length to obtain a negative electrode plate.
[0020]
The positive electrode plate 5 is prepared by mixing 5 parts by weight of acetylene black and 7 parts by weight of a fluororesin binder with 100 parts by weight of LiCoO 2 powder as a positive electrode active material, and suspending it in an aqueous solution of carboxymethyl cellulose to adjust the pH. It has the paste-like positive electrode mixture made into 10-14. This positive electrode mixture paste was applied to both surfaces of an aluminum foil, dried and then rolled to 0.17 mm by a roll press, cut into a width of 35 mm and a length of 250 mm to obtain a positive electrode plate.
[0021]
A positive electrode lead 5a and a negative electrode lead 6a were attached to the positive electrode plate 5 and the negative electrode plate 6, respectively, wound in a spiral shape via a separator 7, and inserted into a battery case 1 having a diameter of 13.8 mm and a height of 50 mm.
[0022]
For the electrolyte, a solution obtained by dissolving lithium hexafluorophosphate at a ratio of 1 mol / liter in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate, and injecting a predetermined amount thereof into the electrode plate group 4, The battery was sealed and used as a test battery.
[0023]
Hereinafter, the production of the positive electrode plate 5 will be described in detail. A mixture of 100 parts by weight of LiCoO 2 and 5 parts by weight of acetylene black and 7 parts by weight of a fluororesin binder is suspended in an aqueous solution of carboxymethyl cellulose to form a paste. While adjusting this, 0 to 30000 ppm of MoO 3 is added to LiCoO 2 in the positive electrode mixture paste while stirring. This paste was applied on both sides of an aluminum foil having a thickness of 0.02 mm with a multicoater and dried.
[0024]
The obtained electrode plate was rolled to a thickness of 0.17 mm using a roller press and cut into a width of 35 mm and a length of 250 mm to produce a positive electrode plate. Moreover, the coating property of the positive electrode active material was evaluated by the weight per 1 cm 3 of the positive electrode mixture coated on the aluminum foil (hereinafter referred to as coating density), and this was measured by the following method.
[0025]
A positive electrode mixture paste is applied to an aluminum foil, and the positive electrode plate after drying is cut out to a certain area and its weight and thickness are measured. The weight of the aluminum foil contained in the cut-out positive electrode plate was calculated from the specific gravity, cut-out area, and thickness of the aluminum foil, and this was subtracted from the measured weight to obtain the weight of the positive electrode mixture. The volume of the aluminum foil is subtracted from the volume of the positive electrode plate to calculate the positive electrode mixture volume. From these, the weight per 1 cm 3 of the positive electrode mixture was calculated as the coating density.
[0026]
When the aluminum foil is corroded, hydrogen gas is generated at the interface between the aluminum foil and the positive electrode active material layer, thereby raising the positive electrode active material. As a result, the apparent volume of the positive electrode active material layer increases and the weight per unit area decreases. Thus, when a coating property falls, a coating density will reduce.
[0027]
The relationship between the coating density measured by the coating density measuring method and the amount of MoO 3 added to the positive electrode mixture paste is shown by circles in FIG. A positive electrode plate produced using a positive electrode mixture paste to which MoO 3 is added has an increased coating density, and an improvement in coating properties is observed.
[0028]
This is because the MoO 3 added to the positive electrode mixture paste protected the oxide film on the surface of the aluminum foil, thereby reducing the alkali corrosion of the aluminum foil.
[0029]
Further, the impedance of the battery of this example using each positive electrode plate produced by the above means was measured by an alternating current (1 kHz) impedance measurement method. The relationship between the impedance of the battery and the amount of MoO 3 added to the paste is indicated by a circle in FIG. As is clear from FIG. 3, the impedance of the battery produced according to the present invention is reduced. This is because the alkaline corrosion of the aluminum foil is reduced and the current collecting characteristics as an electrode are improved.
[0030]
Even when the addition amount of MoO 3 exceeds 10,000 ppm, the coating property was improved as compared with the conventional example in which no addition of MoO 3 was observed, but the impedance of the battery gradually increased when the addition amount of MoO 3 exceeded 10,000 ppm. Increased. This is because the conductivity of the positive electrode plate was lowered because MoO 3 as an insulator was added to the positive electrode active material. Further, if the amount of MoO 3 added is increased, the weight of the battery active material itself is decreased, which is not preferable because the discharge capacity of the battery is decreased. For this reason, it is desirable that the amount of MoO 3 added in the present invention is 100 to 10,000 ppm.
[0031]
In the above examples, LiCoO 2 was used as the positive electrode active material, but the same effect was obtained with lithium-containing composite oxides such as LiNiO 2 , LiMnO 2 , and LiMn 2 O 4 .
[0032]
Moreover, in the said Example, although evaluation was performed using carboxymethylcellulose as a thickener, the same effect was acquired even if it used MC and PVA which are other thickeners.
[0033]
Furthermore, in the said Example, although evaluation was performed using a cylindrical battery, the same effect was acquired even if battery shapes, such as a square, differed.
[0034]
Furthermore, although the carbon material was used for the negative electrode in the above examples, the same effect was obtained even when lithium metal or a lithium alloy was used as the negative electrode.
[0035]
Furthermore, although lithium hexafluorophosphate was used as the electrolyte in the above examples, similar effects were obtained with other lithium salts such as lithium perchlorate and lithium tetrafluoroborate.
[0036]
Furthermore, in the above examples, the salt concentration of the electrolyte was 1 mol / liter, but the same effect was obtained even when other concentrations were used.
[0037]
Further, in the above examples, a mixed solvent of ethylene carbonate and diethyl carbonate was used as the electrolytic solution, but other non-aqueous solvents, for example, cyclic esters such as propylene carbonate, cyclic ethers such as tetrahydrofuran, and chain ethers such as dimethoxyethane. The same effect was obtained even when a non-aqueous solvent such as a chain ester such as methyl propionate or a multi-component mixed solvent was used.
[0038]
【The invention's effect】
As described above, the present invention is a non-aqueous electrolysis having a positive electrode plate in which a positive electrode active material layer mainly composed of a lithium-containing composite oxide is formed on an aluminum current collector that is corrosive to a strong alkali. In the liquid secondary battery, the positive electrode plate can reduce corrosion of the aluminum foil by adding 100 to 10000 ppm by weight of MoO 3 with respect to the positive electrode active material. The current collecting characteristics of the foil can be improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a cylindrical battery in one embodiment of the present invention. FIG. 2 is a diagram showing the correlation between the amount of MoO 3 added to the positive electrode synthesis paste and the coating density. Of the relationship between the amount of MoO 3 added to the battery and the impedance of the battery [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Insulation packing 4 Electrode plate group 5 Positive electrode plate 5a Positive electrode lead 6 Negative electrode plate 6a Negative electrode lead 7 Separator 8 Insulation ring

Claims (3)

リチウムと可逆的に反応する正極活物質を主構成材料とし、かつアルカリ性を示す正極合剤ペーストを、アルカリに対し腐蝕性を有するアルミニウム製集電体に塗着した正極板を用いた非水電解液二次電池であって、前記正極活物質に対して重量比で100〜10000ppmのMoO3を添加した非水電解液二次電池。Non-aqueous electrolysis using a positive electrode plate comprising a positive electrode active material that reversibly reacts with lithium as a main constituent, and a positive electrode mixture paste showing alkalinity applied to an aluminum current collector corrosive to alkali A non-aqueous electrolyte secondary battery in which 100 to 10,000 ppm of MoO 3 is added by weight to the positive electrode active material. リチウムと可逆的に反応する正極活物質を、リチウム複合酸化物とした請求項1記載の非水電解液二次電池。  The nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material that reversibly reacts with lithium is a lithium composite oxide. リチウム含有複合酸化物は、LiCoO2、LiNiO2、LiMnO2、LiMn24のうちのいずれかのリチウム含有複合酸化物とした請求項2記載の非水電解液二次電池。The non-aqueous electrolyte secondary battery according to claim 2, wherein the lithium-containing composite oxide is any one of LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiMn 2 O 4 .
JP27721298A 1998-09-30 1998-09-30 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4114247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27721298A JP4114247B2 (en) 1998-09-30 1998-09-30 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27721298A JP4114247B2 (en) 1998-09-30 1998-09-30 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2000106174A JP2000106174A (en) 2000-04-11
JP4114247B2 true JP4114247B2 (en) 2008-07-09

Family

ID=17580382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27721298A Expired - Fee Related JP4114247B2 (en) 1998-09-30 1998-09-30 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4114247B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9023532B2 (en) 2012-08-01 2015-05-05 Samsung Sdi Co., Ltd. Positive active material composition for rechargeable lithium battery, positive electrode for rechargeable lithium battery including the positive active material composition, and rechargeable lithium battery including the positive active material composition
US9190664B2 (en) 2011-07-15 2015-11-17 Samsung Sdi Co., Ltd. Cathode active material composition, cathode prepared by using the same, and lithium battery including the cathode
US9214670B2 (en) 2012-01-06 2015-12-15 Samsung Sdi Co., Ltd. Positive electrode material for lithium battery, positive electrode prepared from the positive material, and lithium battery including the positive electrode
US9293761B2 (en) 2012-10-05 2016-03-22 Samsung Sdi Co., Ltd. Positive active material layer composition for rechargeable lithium battery and rechargeable lithium battery using the same
US9455441B2 (en) 2013-01-04 2016-09-27 Samsung Sdi Co., Ltd. Positive active material composition for rechargeable lithium battery, positive electrode prepared from composition, and rechargeable lithium battery including positive electrode

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1267430A4 (en) * 2000-03-22 2008-02-27 Sanyo Electric Co Rechargeable battery using nonaqueous electrolyte
DE10242694A1 (en) * 2002-09-13 2004-03-25 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Compositions used as electrode in lithium battery contain transition metal halide or ruthenium and/or molybdenum oxide, binder and optionally conductive additive or amorphous composition of metal clusters and lithium oxide or fluoride
JP4466673B2 (en) 2007-03-29 2010-05-26 Tdk株式会社 Method for producing positive electrode for lithium ion secondary battery
JP5625389B2 (en) * 2010-03-02 2014-11-19 ソニー株式会社 Non-aqueous electrolyte battery
JP5382061B2 (en) 2010-06-22 2014-01-08 日亜化学工業株式会社 Positive electrode composition for non-aqueous electrolyte secondary battery and positive electrode slurry using the positive electrode composition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228573A (en) * 1987-03-17 1988-09-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic lithium secondary cell
JPH01200572A (en) * 1987-10-14 1989-08-11 Toyota Central Res & Dev Lab Inc Electrolyte for lithium storage battery
JPH06275273A (en) * 1993-03-17 1994-09-30 Sanyo Electric Co Ltd Nonaqueous secondary battery
JPH07142093A (en) * 1993-11-22 1995-06-02 Yuasa Corp Lithium secondary battery
JP3203118B2 (en) * 1993-12-27 2001-08-27 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP3232910B2 (en) * 1994-08-30 2001-11-26 松下電器産業株式会社 Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3811974B2 (en) * 1994-11-22 2006-08-23 住友化学株式会社 Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JPH11144734A (en) * 1997-11-04 1999-05-28 Hitachi Ltd Lithium secondary battery and manufacture of lithium secondary battery
JPH11185758A (en) * 1997-12-24 1999-07-09 Aichi Steel Works Ltd Positive electrode material for nonaqueous secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190664B2 (en) 2011-07-15 2015-11-17 Samsung Sdi Co., Ltd. Cathode active material composition, cathode prepared by using the same, and lithium battery including the cathode
US9214670B2 (en) 2012-01-06 2015-12-15 Samsung Sdi Co., Ltd. Positive electrode material for lithium battery, positive electrode prepared from the positive material, and lithium battery including the positive electrode
US9023532B2 (en) 2012-08-01 2015-05-05 Samsung Sdi Co., Ltd. Positive active material composition for rechargeable lithium battery, positive electrode for rechargeable lithium battery including the positive active material composition, and rechargeable lithium battery including the positive active material composition
US9293761B2 (en) 2012-10-05 2016-03-22 Samsung Sdi Co., Ltd. Positive active material layer composition for rechargeable lithium battery and rechargeable lithium battery using the same
US9455441B2 (en) 2013-01-04 2016-09-27 Samsung Sdi Co., Ltd. Positive active material composition for rechargeable lithium battery, positive electrode prepared from composition, and rechargeable lithium battery including positive electrode
US10439210B2 (en) 2013-01-04 2019-10-08 Samsung Sdi Co., Ltd. Positive active material composition for rechargeable lithium battery, positive electrode prepared from composition, and rechargeable lithium battery including positive electrode

Also Published As

Publication number Publication date
JP2000106174A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
JP4794866B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5214202B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP3232910B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP5116329B2 (en) Nonaqueous electrolyte secondary battery
JP4739769B2 (en) Nonaqueous electrolyte secondary battery
US8685573B2 (en) Cathode active material and lithium ion rechargeable battery using the material
KR20060132968A (en) Nonaqueous electrolyte secondary battery
WO2006082719A1 (en) Positive electrode and nonaqueous electrolyte secondary battery
US20120052391A1 (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN1394364A (en) Positive electrode material and cell comprising same
JP5036121B2 (en) Nonaqueous electrolyte secondary battery
JP5313543B2 (en) Lithium battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
Zhu et al. Structural and electrochemical characterization of mechanochemically synthesized calcium zincate as rechargeable anodic materials
JP4114247B2 (en) Non-aqueous electrolyte secondary battery
JP2011014254A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP2009004357A (en) Nonaqueous electrolyte lithium-ion secondary battery
JP2010080231A (en) Precursor for positive electrode active material, method of manufacturing the same, positive electrode active material, method of manufacturing positive electrode active material, and nonaqueous electrolyte secondary battery
Qiu et al. Artificial cathode-electrolyte interphases on Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 by carbon nanotubes modified lif for enhanced cycleability
JPH11204108A (en) Manufacture of positive electrode plate for nonaqueous electrolyte secondary battery
JP2003288899A (en) Positive electrode active material for nonaqueous electrolyte secondary cell
JP5126851B2 (en) Lithium-containing transition metal chalcogenide, method for producing the same, and method for producing a non-aqueous secondary battery
JP2006156234A (en) Nonaqueous electrolyte secondary battery and its charging method
JP2010177207A (en) Non aqueous electrolyte secondary battery
JP2000040524A (en) Electrolyte for lithium secondary battery and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees