JP2006156234A - Nonaqueous electrolyte secondary battery and its charging method - Google Patents

Nonaqueous electrolyte secondary battery and its charging method Download PDF

Info

Publication number
JP2006156234A
JP2006156234A JP2004347290A JP2004347290A JP2006156234A JP 2006156234 A JP2006156234 A JP 2006156234A JP 2004347290 A JP2004347290 A JP 2004347290A JP 2004347290 A JP2004347290 A JP 2004347290A JP 2006156234 A JP2006156234 A JP 2006156234A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
lithium
electrode active
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004347290A
Other languages
Japanese (ja)
Inventor
Nobumichi Nishida
伸道 西田
Hidetoshi Inoue
英俊 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004347290A priority Critical patent/JP2006156234A/en
Publication of JP2006156234A publication Critical patent/JP2006156234A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery enhancing a yield and reliability, and capable of charging at high voltage of 4.4-4.6 V vs. lithium, and to provide its charging method. <P>SOLUTION: In the nonaqueous electrolyte secondary battery equipped with a positive electrode 11 having a positive active material, a negative electrode 12 having a negative active material, and a nonaqueous electrolyte having a nonaqueous solvent and an electrolyte salt, the positive active material is comprised of a lithium cobalt composite oxide to which at least zirconium and magnesium are added and a lithium nickel manganese composite oxide having layer structure. The potential of the positive active material is 4.4-4.6 V vs. lithium. The content of each iron, chromium, copper and zinc as impurity elements contained in the positive electrode mix is respectively 10ppm or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、正極活物質の電位がリチウム基準で4.4〜4.6V、好ましくはこの正極活物質と、負極活物質として黒鉛等の炭素材料と組み合わせて、電池電圧が4.3V以上4.5V以下の高電圧で充電する非水電解質二次電池及びその充電方法に関し、特に正極活物質としてLiCoOに少なくともジルコニウムとマグネシウムの両方を含有するリチウムコバルト複合酸化物と、層状構造を有し、少なくともマンガンとニッケルの両方を含有するリチウムマンガンニッケル複合酸化物との混合物からなるものを使用した、歩留まりと信頼性が向上した正極活物質の電位がリチウム基準で4.4〜4.6V、好ましくはこの正極活物質と、負極活物質として黒鉛等の炭素材料と組み合わせて、電池電圧が4.3V以上4.5V以下の高電圧で充電する非水電解質二次電池及びその充電方法に関する。 In the present invention, the positive electrode active material has a potential of 4.4 to 4.6 V based on lithium, preferably a combination of this positive electrode active material and a carbon material such as graphite as the negative electrode active material, so that the battery voltage is 4.3 V or higher. In particular, the present invention relates to a non-aqueous electrolyte secondary battery that is charged at a high voltage of 5 V or less and a charging method thereof, and in particular, has a layered structure and a lithium cobalt composite oxide containing at least both zirconium and magnesium in LiCoO 2 as a positive electrode active material. The potential of the positive electrode active material using a mixture of a lithium manganese nickel composite oxide containing at least both manganese and nickel and having improved yield and reliability is 4.4 to 4.6 V based on lithium, Preferably, the positive electrode active material is combined with a carbon material such as graphite as the negative electrode active material, so that the battery voltage is 4.3V to 4.5V. The present invention relates to a non-aqueous electrolyte secondary battery that is charged with pressure and a charging method thereof.

携帯型の電子機器の急速な普及に伴い、それに使用される電池への要求仕様は、年々厳しくなり、特に小型・薄型化、高容量でサイクル特性が優れ、性能の安定したものが要求されている。そして、二次電池分野では他の電池に比べて高エネルギー密度であるリチウム非水電解質二次電池が注目され、このリチウム非水電解質二次電池の占める割合は二次電池市場において大きな伸びを示している。   With the rapid spread of portable electronic devices, the required specifications for the batteries used for them are becoming stricter year by year, and in particular, small and thin, high capacity, excellent cycle characteristics, and stable performance are required. Yes. In the field of secondary batteries, lithium non-aqueous electrolyte secondary batteries, which have a higher energy density than other batteries, are attracting attention, and the proportion of lithium non-aqueous electrolyte secondary batteries shows a significant increase in the secondary battery market. ing.

ところで、この種の非水電解質二次電池が使用される機器においては、電池を収容するスペースが角形(扁平な箱形)であることが多いことから、発電要素を角形外装缶に収容して形成した角形の非水電解質二次電池が使用されることが多い。このような角形の非水電解質二次電池は以下のようにして作製されるのが一般的である。   By the way, in a device in which this type of non-aqueous electrolyte secondary battery is used, the space for accommodating the battery is often a square (flat box shape), so the power generation element is accommodated in a rectangular outer can. The formed rectangular non-aqueous electrolyte secondary battery is often used. Such a rectangular nonaqueous electrolyte secondary battery is generally manufactured as follows.

すなわち、細長いシート状の銅箔等からなる負極芯体(集電体)の両面に負極活物質を含有する負極合剤を塗布した負極板と、細長いシート状のアルミニウム箔等からなる正極芯体の両面に正極活物質を含有する正極合剤を塗布した正極板との間に、微多孔性ポリエチレンフィルム等からなるセパレータを配置し、負極板及び正極板をセパレータにより互いに絶縁した状態で円柱状の巻き芯に渦巻状に巻回して、円筒形の渦巻状電極体を作製する。この円筒状電極体をプレス機で押し潰し、角形の電池外装缶に挿入できるような形に成型した後、これを角形外装缶に収容し、電解液を注液して角形の非水電解質二次電池としている。   That is, a negative electrode plate in which a negative electrode mixture containing a negative electrode active material is applied on both sides of a negative electrode core (current collector) made of a long sheet-like copper foil, and a positive electrode core made of a long, thin sheet-like aluminum foil A separator made of a microporous polyethylene film or the like is disposed between a positive electrode plate coated with a positive electrode mixture containing a positive electrode active material on both sides, and a cylindrical shape with the negative electrode plate and the positive electrode plate insulated from each other by the separator. A cylindrical spiral electrode body is manufactured by winding it in a spiral shape. The cylindrical electrode body is crushed with a press machine and formed into a shape that can be inserted into a rectangular battery outer can. Then, the cylindrical electrode body is accommodated in the rectangular outer can, and an electrolyte is injected to inject the rectangular nonaqueous electrolyte. Next battery.

このような従来の角形の非水電解質二次電池の構成を図面を用いて説明する。図1は下記特許文献1に開示されている角形の非水電解質二次電池を縦方向に切断して示す斜視図である。この非水電解質二次電池10は、正極板11と負極板12とがセパレータ13を介して巻回された扁平状の渦巻状電極体14を、角型の電池外装缶15の内部に収容し、封口板16によって電池外装缶15を密閉したものである。   The configuration of such a conventional rectangular nonaqueous electrolyte secondary battery will be described with reference to the drawings. FIG. 1 is a perspective view showing a rectangular nonaqueous electrolyte secondary battery disclosed in Patent Document 1 below, cut in the vertical direction. This non-aqueous electrolyte secondary battery 10 accommodates a flat spiral electrode body 14 in which a positive electrode plate 11 and a negative electrode plate 12 are wound via a separator 13 in a rectangular battery outer can 15. The battery outer can 15 is sealed with a sealing plate 16.

渦巻状電極体14は、正極板11が最外周に位置して露出するように巻回されており、露出した最外周の正極板11は、正極端子を兼ねる電池外装缶15の内面に直接接触し、電気的に接続されている。また、負極板12は、封口板16の中央に形成され、負極端子を兼ねる絶縁体17を介して取り付けられた負極端子18に対して、集電体19を介して電気的に接続されている。   The spiral electrode body 14 is wound so that the positive electrode plate 11 is exposed at the outermost periphery, and the exposed outermost positive electrode plate 11 is in direct contact with the inner surface of the battery outer can 15 that also serves as a positive electrode terminal. And are electrically connected. Further, the negative electrode plate 12 is electrically connected via a current collector 19 to a negative electrode terminal 18 that is formed at the center of the sealing plate 16 and attached via an insulator 17 that also serves as a negative electrode terminal. .

そして、電池外装缶15は、正極板11と電気的に接続されているので、負極板12と電池外装缶15との短絡を防止するために、渦巻状電極体14の上端と封口板16との間に絶縁スペーサ20を挿入することにより、負極板12と電池外装缶15とを電気的に絶縁状態にしている。   Since the battery outer can 15 is electrically connected to the positive electrode plate 11, in order to prevent a short circuit between the negative electrode plate 12 and the battery outer can 15, the upper end of the spiral electrode body 14 and the sealing plate 16 The insulating spacer 20 is inserted between the negative electrode plate 12 and the battery outer can 15 so as to be electrically insulated.

そして、この角形の非水電解質二次電池は、渦巻状電極体14を電池外装缶15内に挿入した後、封口板16を電池外装缶15の開口部にレーザ溶接し、その後電解液注液孔21から非水電解液を注液して、この電解液注液孔21を密閉することにより作製される。このような角形の非水電解質二次電池は、使用時のスペースの無駄が少なく、しかも電池性能や電池の信頼性が高いという優れた効果を奏するものである。   In this rectangular nonaqueous electrolyte secondary battery, the spiral electrode body 14 is inserted into the battery outer can 15, the sealing plate 16 is laser welded to the opening of the battery outer can 15, and then the electrolyte solution is injected. The non-aqueous electrolyte solution is injected from the hole 21 and the electrolyte solution injection hole 21 is sealed. Such a rectangular non-aqueous electrolyte secondary battery has an excellent effect that there is little wasted space during use, and the battery performance and battery reliability are high.

このような非水電解質二次電池に使用される負極活物質としては、黒鉛、非晶質炭素などの炭素質材料がリチウム金属やリチウム合金に匹敵する放電電位を有しながらも、デンドライトが成長することがないために安全性が高く、更に初期効率に優れ、電位平坦性も良好であり、また、密度も高いという優れた性質を有していることから広く用いられている。   As a negative electrode active material used in such non-aqueous electrolyte secondary batteries, dendrites grow while carbonaceous materials such as graphite and amorphous carbon have discharge potentials comparable to lithium metals and lithium alloys. Therefore, it is widely used because it has excellent properties such as high safety, excellent initial efficiency, good potential flatness, and high density.

一方、正極活物質としては、LiCoO、LiNiO、LiMn、LiFeO等のリチウム複合酸化物が炭素材料からなる負極と組み合わせることにより高エネルギー密度の4V級の非水電解質二次電池が得られることが知られている。このうち、特に各種電池特性が他のものに対して優れていることから、LiCoOが多く使用されているが、コバルトは高価であると共に資源としての存在量が少ないため、このLiCoOを非水電解質二次電池の正極材料として使用し続けるには非水電解質二次電池のさらなる高性能化及び高寿命化が望まれており、また、コバルトに換えて他の遷移元素を使用することでコバルトを使用した場合と同等ないしはそれ以上の各種電池特性を達成すべく現在に至るまで多くの開発がなされている。 On the other hand, as a positive electrode active material, a high energy density 4V class non-aqueous electrolyte secondary battery is obtained by combining a lithium composite oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and LiFeO 2 with a negative electrode made of a carbon material. Is known to be obtained. Among them, LiCoO 2 is often used because various battery characteristics are superior to others. However, since cobalt is expensive and abundant as a resource, this LiCoO 2 is not used. In order to continue to be used as a positive electrode material for water electrolyte secondary batteries, further improvement in performance and life of non-aqueous electrolyte secondary batteries is desired, and by using other transition elements instead of cobalt. Many developments have been made so far to achieve various battery characteristics equivalent to or better than those obtained when cobalt is used.

たとえば、下記特許文献2及び3に開示されているように、LiCoOを正極活物質として用いた非水電解質二次電池の特性向上方法として、LiCoOへZr、Mg等の異種元素を添加する方法が知られている。下記特許文献2には、正極活物質であるLiCoOにジルコニウムを添加することで、高電圧を発生し、かつ優れた充放電特性と保存特性を示す非水電解質二次電池が開示されている。このジルコニウムを添加したLiCoOは、LiCoO粒子の表面が酸化ジルコニウムZrO若しくはリチウムとジルコニウムとの複合酸化物LiZrOにより覆われることによって安定化され、その結果、高い電位においても電解液の分解反応や結晶破壊を起こすことなく、優れたサイクル特性、保存特性を示す正極活物質が得られることによるものであって、この効果は、単に焼成後のLiCoOにジルコニウム若しくはジルコニウムの化合物を混合するだけでは得られず、リチウム塩とコバルト化合物とを混合したものにジルコニウムを添加して焼成することにより得られるものである。 For example, as disclosed in Patent Documents 2 and 3 below, as a method for improving the characteristics of a non-aqueous electrolyte secondary battery using LiCoO 2 as a positive electrode active material, different elements such as Zr and Mg are added to LiCoO 2 . The method is known. The following Patent Document 2, the addition of zirconium to LiCoO 2 as a cathode active material, and generates a high voltage, and the non-aqueous electrolyte secondary battery exhibiting excellent charge and discharge characteristics and storage characteristics are disclosed . This zirconium-added LiCoO 2 is stabilized by covering the surface of LiCoO 2 particles with zirconium oxide ZrO 2 or a composite oxide of lithium and zirconium, Li 2 ZrO 3. As a result, even at a high potential, the electrolyte solution This is because a positive electrode active material exhibiting excellent cycle characteristics and storage characteristics is obtained without causing a decomposition reaction or crystal destruction of this, and this effect is simply obtained by adding zirconium or a zirconium compound to LiCoO 2 after firing. It cannot be obtained only by mixing, but can be obtained by adding zirconium to a mixture of lithium salt and cobalt compound and baking.

また、下記特許文献3には、正極活物質であるLiCoOに添加する異種元素として、ジルコニウム(Zr)のみでなく、チタン(Ti)及び弗素(F)をも含めた中から少なくとも1種を添加することにより、リチウム非水電解質二次電池の負荷特性及びサイクル特性を向上させることができることが示されている。 In Patent Document 3 below, at least one element selected from not only zirconium (Zr) but also titanium (Ti) and fluorine (F) is added as a heterogeneous element to be added to the positive electrode active material LiCoO 2. It has been shown that the load characteristics and cycle characteristics of the lithium non-aqueous electrolyte secondary battery can be improved by the addition.

さらに、下記特許文献4には、NiとMnの組成比が実質的に等しい層構造を有するLi遷移金属複合酸化物が、LiCoOと同等の4V近傍の電圧を有し、かつ高い容量で優れた充放電効率を示すことが開示されており、また、下記特許文献5には、遷移金属としてNi及びMnを少なくとも含有し、かつ層状構造を有するリチウム遷移金属複合酸化物にフッ素をさらに含有している正極活物質を使用すると、負極活物質として炭素材料を含む負極と組み合わせることにより4.4V以上の充電電圧で充電することができるとともに熱的安定性に優れた非水電解質二次電池が得られること、さらには、下記非特許文献1には、Ni、Co、及びMnを含むリチウム遷移金属複合酸化物の中でも、MnとNiの組成比が等しい化学式LiMnNiCo(1−2x)で表される材料が、充電状態(高い酸化状態)でも特異的に高い熱的安定性を示すことが示されている。 Furthermore, in Patent Document 4 below, a Li transition metal composite oxide having a layer structure in which the composition ratio of Ni and Mn is substantially equal has a voltage in the vicinity of 4 V equivalent to LiCoO 2 and is excellent in high capacity. Further, it is disclosed that the following patent document 5 contains at least Ni and Mn as transition metals and further contains fluorine in a lithium transition metal composite oxide having a layered structure. When a positive electrode active material is used, a non-aqueous electrolyte secondary battery that can be charged at a charge voltage of 4.4 V or more and combined with a negative electrode containing a carbon material as a negative electrode active material and has excellent thermal stability In addition, the following Non-Patent Document 1 discloses that among lithium transition metal composite oxides containing Ni, Co, and Mn, the chemical formula LiM having the same composition ratio of Mn and Ni n x Ni x Co (1-2x) material represented by O 2 have been shown to exhibit specific high thermal stability even charged state (high oxidation state).

特開2001−273931号公報(特許請求の範囲、段落[0003]〜[0004]、図1)JP-A-2001-273931 (Claims, paragraphs [0003] to [0004], FIG. 1) 特開平4−319260号公報(特許請求の範囲、段落[0006]、[0008]〜[0011])JP-A-4-319260 (Claims, paragraphs [0006], [0008] to [0011]) 特開2004−299975号公報(特許請求の範囲、段落[0006]〜[0008])JP 2004-299975 A (claims, paragraphs [0006] to [0008]) 特開2002−042813号公報(特許請求の範囲、段落[0011]〜[0016])JP 2002-042813 A (claims, paragraphs [0011] to [0016]) 特開2004−296098号公報(特許請求の範囲)JP 2004-296098 A (Claims) Electrochemical and Solid-State Letters,4(12)A200-A203(2001)Electrochemical and Solid-State Letters, 4 (12) A200-A203 (2001)

現在、例えばコバルト酸リチウムLiCoOなどのリチウム含有遷移金属酸化物を正極活物質として用い、炭素材料を負極活物質として用いた非水電解質二次電池においては、黒鉛等炭素材料の負極活物質と組み合わせたとき、一般に充電電圧は4.1〜4.2V(正極活物質の電位はリチウム基準で4.2〜4.3V)となっている。このような充電条件では、正極は理論容量に対して50〜60%しか利用されていないことになる。したがって、充電電圧をより高くすることができれば、正極の容量を理論容量に対して70%以上で利用することが可能となり、電池の高容量化及び高エネルギー密度化が可能となる。 At present, in a non-aqueous electrolyte secondary battery using a lithium-containing transition metal oxide such as lithium cobaltate LiCoO 2 as a positive electrode active material and a carbon material as a negative electrode active material, When combined, the charging voltage is generally 4.1 to 4.2 V (the potential of the positive electrode active material is 4.2 to 4.3 V based on lithium). Under such charging conditions, the positive electrode is used only 50 to 60% of the theoretical capacity. Therefore, if the charging voltage can be further increased, the capacity of the positive electrode can be utilized at 70% or more of the theoretical capacity, and the capacity and energy density of the battery can be increased.

本出願人は、上述のような非水電解質二次電池用の正極活物質の開発状況を踏まえて、さらに安定で高充電電圧を達成できる正極活物質を得るべく種々検討を重ねた結果、正極活物質として異種元素を添加したコバルト酸リチウムと層状ニッケルマンガン酸リチウムを混合したものを使用した新規な非水電解質二次電池を開発し、既に特願2004−094475号及び特願2004−320394号(以下、まとめて「先願」という。)として特許出願している。   Based on the development status of the positive electrode active material for a non-aqueous electrolyte secondary battery as described above, the present applicant has conducted various studies to obtain a positive electrode active material that can achieve a more stable and high charge voltage. A novel non-aqueous electrolyte secondary battery using a mixture of lithium cobaltate to which different elements are added as active materials and layered lithium manganese oxide is developed. Japanese Patent Application Nos. 2004-094475 and 2004-320394 have been developed. (Hereinafter collectively referred to as “prior application”).

この先願発明にかかる非水電解質二次電池の正極活物質は、コバルト酸リチウムに少なくともZr、Mgの異種元素を添加することで高電圧(〜4.5V)での構造安定性を向上させ、さらに高電圧で熱安定性の高い層状ニッケルマンガン酸リチウムを混合することで安全性を確保するようになしたものである。この正極活物質を使用した正極を炭素材料を負極活物質とする負極と組み合わせると、充電電圧が4.3V以上4.5V以下の高電圧で充電可能な非水電解質二次電池が得られる。   The positive electrode active material of the non-aqueous electrolyte secondary battery according to the invention of the prior application improves the structural stability at high voltage (up to 4.5V) by adding at least Zr and Mg different elements to lithium cobaltate, Furthermore, safety is ensured by mixing layered lithium manganese oxide with high voltage and high thermal stability. When a positive electrode using this positive electrode active material is combined with a negative electrode using a carbon material as a negative electrode active material, a non-aqueous electrolyte secondary battery that can be charged at a high voltage of 4.3 V to 4.5 V is obtained.

しかしながら、このような先願発明の非水電解質二次電池は、発生頻度は低いにしても電池電圧が低下する検査不良品の発生が見られ、製造歩留まりと信頼性において課題があった。本願の発明者等は、この不良品の発生の原因を種々検討した結果、高純度に精製した原料を用いて正極活物質を作製した非水電解質二次電池においてはこのような電圧低下に基づく不良品の発生が見られないことから、正極極板中の金属不純物が原因であることを知見した。この現象は、正極合剤中の金属不純物が充放電サイクル中に溶出して微小短絡を起こしたことに起因するものと考えられる。   However, such non-aqueous electrolyte secondary batteries according to the invention of the prior application are subject to problems in terms of production yield and reliability due to the occurrence of defective test products in which the battery voltage decreases even if the frequency of occurrence is low. The inventors of the present application, as a result of various investigations of the cause of the occurrence of this defective product, are based on such a voltage drop in a nonaqueous electrolyte secondary battery in which a positive electrode active material is produced using a highly purified raw material. Since the generation of defective products was not observed, it was found that the metal impurities in the positive electrode plate were the cause. This phenomenon is considered to be caused by the fact that the metal impurities in the positive electrode mixture were eluted during the charge / discharge cycle to cause a micro short circuit.

工業的には高純度に精製した原料を用いて非水電解質二次電池を製造することはコストの点からして受け入れることができない。そこで、本発明者等はこのような電池電圧低下の原因となる不純物を決定すべくさらに実験を重ねた結果、少なくともFe、Cr、Cu及びZnの4つの不純物濃度を所定範囲内に制御することにより、上述のような電池電圧の低下の発生頻度を劇的に減少させることができることを見出し、本発明を完成するに至ったのである。   Industrially, it is unacceptable in terms of cost to manufacture a non-aqueous electrolyte secondary battery using a raw material purified to a high purity. Therefore, as a result of further experiments to determine the impurities that cause such a decrease in battery voltage, the inventors have controlled at least four impurity concentrations of Fe, Cr, Cu, and Zn within a predetermined range. As a result, the inventors have found that the frequency of occurrence of a decrease in battery voltage as described above can be drastically reduced, and the present invention has been completed.

すなわち、本発明は、歩留まりと信頼性が向上した炭素材料を負極活物質とする負極と組み合わせ場合の充電電圧を4.3V以上4.5V以下の高電圧とすることができる、正極活物質としてLiCoOに少なくともジルコニウムとマグネシウムの両方を含有するリチウムコバルト複合酸化物と、層状構造を有し、少なくともマンガンとニッケルの両方を含有するリチウムマンガンニッケル複合酸化物との混合物からなるものを使用した非水電解質二次電池及びその充電方法を提供することを目的とする。 That is, the present invention provides a positive electrode active material in which the charging voltage when combined with a negative electrode using a carbon material with improved yield and reliability as a negative electrode active material can be a high voltage of 4.3 V or more and 4.5 V or less. Non-coating using a mixture of a lithium cobalt composite oxide containing at least both zirconium and magnesium in LiCoO 2 and a lithium manganese nickel composite oxide having a layered structure and containing at least both manganese and nickel An object is to provide a water electrolyte secondary battery and a charging method thereof.

本発明の上記目的は以下の構成により達成し得る。すなわち、請求項1に係る非水電解質二次電池の発明は、正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩とを有する非水電解質と、を備える非水電解質二次電池において、前記正極活物質が、少なくともジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物と、層状構造を有するリチウムニッケルマンガン複合酸化物と、からなり、前記正極活物質の電位がリチウム基準で4.4〜4.6Vであり、かつ、前記正極合剤中に含まれる不純物元素である鉄、クロム、銅、亜鉛のそれぞれの含有量が10ppm以下であることを特徴とする。   The above object of the present invention can be achieved by the following configurations. That is, the invention of a non-aqueous electrolyte secondary battery according to claim 1 includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte having a non-aqueous solvent and an electrolyte salt. In the water electrolyte secondary battery, the positive electrode active material comprises a lithium cobalt composite oxide to which at least zirconium and magnesium are added, and a lithium nickel manganese composite oxide having a layered structure, and the potential of the positive electrode active material Is 4.4 to 4.6 V based on lithium, and the content of each of iron, chromium, copper, and zinc as impurity elements contained in the positive electrode mixture is 10 ppm or less. .

本発明においては、正極合剤中に含まれる不純物元素である鉄、クロム、銅、亜鉛のそれぞれの含有量が10ppm以下であることが必須であり、これらの不純物元素のうち1種でも10ppmを越えて含有されていると電池電圧検査により不良品と判断される電池の数が増加する。このような不純物濃度の低下は、正極活物質の精製と極板製造時のコンタミネーションの抑制により達成し得る。また、不純物元素である鉄、クロム、銅、亜鉛のそれぞれの含有量が10ppmを越えることがあっても、従来のLiCoOからなる正極活物質を使用した非水電解質二次電池の場合と同様に正極活物質の電位がリチウム基準で4.3V未満とする場合には、電池電圧検査により不良品と判断される電池の数が増えることがないが、このような非水電解質二次電池は本発明の範囲外である。 In the present invention, it is essential that the content of each of the impurity elements iron, chromium, copper, and zinc contained in the positive electrode mixture is 10 ppm or less, and at least one of these impurity elements is 10 ppm. If it is contained in excess, the number of batteries judged as defective by battery voltage inspection increases. Such a decrease in impurity concentration can be achieved by refining the positive electrode active material and suppressing contamination during electrode plate production. In addition, even if the content of each of the impurity elements iron, chromium, copper, and zinc exceeds 10 ppm, the same as in the case of the conventional non-aqueous electrolyte secondary battery using the positive electrode active material made of LiCoO 2 In addition, when the potential of the positive electrode active material is less than 4.3 V on the basis of lithium, the number of batteries judged to be defective by the battery voltage inspection does not increase, but such a non-aqueous electrolyte secondary battery It is outside the scope of the present invention.

本発明においては、リチウムコバルト複合酸化物として、LiCo1−x−y−zZrMg(0≦a≦1.1、x≧0.0001、y≧0.0001、z≧0,0.0002≦x+y+z≦0.03、M=Al、Ti、Sn)が好ましい。Zr、Mg、Al、Ti、Snの添加量が少ないとサイクル特性向上効果が小さく、添加量が多いと容量低下を招く。また、層状リチウムニッケルマンガン複合酸化物としては、LiMnNiCoM'(0≦b≦1.2、0.1≦s≦0.5、0.1≦t≦0.5、u≧0,0.0001≦v≦0.03、s+t+u+v=1、M'=Mg,Zr,Al,Ti,Sn、NiとMnがモル比で実質的に等しい(0.95≦s/t≦1.05))が好ましく、
上記組成で熱安定性の高い活物質が得られる。M'添加によりサイクル、保存特性がさらに向上するが、添加量が少ないと効果が小さく、添加量が多いと初期容量の低下を招く。
In the present invention, Li a Co 1-xy- Zr x Mg y M z O 2 (0 ≦ a ≦ 1.1, x ≧ 0.0001, y ≧ 0.0001) is used as the lithium cobalt composite oxide. Z ≧ 0, 0.0002 ≦ x + y + z ≦ 0.03, M = Al, Ti, Sn). If the added amount of Zr, Mg, Al, Ti, Sn is small, the effect of improving the cycle characteristics is small, and if the added amount is large, the capacity is reduced. As the layered lithium-nickel-manganese composite oxide, Li b Mn s Ni t Co u M 'v O 2 (0 ≦ b ≦ 1.2,0.1 ≦ s ≦ 0.5,0.1 ≦ t ≦ 0.5, u ≧ 0, 0.0001 ≦ v ≦ 0.03, s + t + u + v = 1, M ′ = Mg, Zr, Al, Ti, Sn, Ni and Mn are substantially equal in molar ratio (0.95 ≦ s / t ≦ 1.05)) is preferred,
An active material having high thermal stability can be obtained with the above composition. Although the cycle and storage characteristics are further improved by adding M ′, the effect is small when the added amount is small, and the initial capacity is lowered when the added amount is large.

また、本発明においては、非水溶媒系電解質を構成する非水溶媒(有機溶媒)としては、カーボネート類、ラクトン類、エーテル類、エステル類などを使用することができ、これら溶媒の2種類以上を混合して用いることもできる。これらの中ではカーボネート類、ラクトン類、エーテル類、ケトン類、エステル類などが好ましく、カーボネート類がさらに好適に用いられる。   In the present invention, carbonates, lactones, ethers, esters and the like can be used as the nonaqueous solvent (organic solvent) constituting the nonaqueous solvent electrolyte, and two or more of these solvents can be used. Can also be used in combination. Among these, carbonates, lactones, ethers, ketones, esters and the like are preferable, and carbonates are more preferably used.

具体例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3オキサゾリジン−2−オン、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、メチルブチルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル、1,4−ジオキサンなどを挙げることができる。本発明では充放電効率を高める点からECを含む混合溶媒が好適に用いられるが、一般に環状カーボネートは高電位において酸化分解されやすいので、非水電解質中のEC含有量を5体積%以上25体積%以下とすることが好ましい。   Specific examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl. -1,3-oxazolidine-2-one, dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), methyl propyl carbonate, methyl butyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, dipropyl carbonate, γ -Butyrolactone, γ-valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate, 1,4-dio Xanthan can be mentioned. In the present invention, a mixed solvent containing EC is preferably used from the viewpoint of increasing the charge / discharge efficiency. However, since cyclic carbonate is generally easily oxidized and decomposed at a high potential, the EC content in the non-aqueous electrolyte is 5% by volume or more and 25% by volume. % Or less is preferable.

なお、本発明における非水電解質の溶質としては、非水電解質二次電池において一般に溶質として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12など及びそれらの混合物が例示される。これらの中でも、LiPF(ヘキサフルオロリン酸リチウム)が好ましく用いられる。高い充電電圧で充電する場合、正極の集電体であるアルミニウムが溶解しやすくなるが、LiPFの存在下では、LiPFが分解することにより、アルミニウム表面に被膜が形成され、この被膜によってアルミニウムの溶解を抑制することができる。従って、リチウム塩としては、LiPFを用いることが好ましい。前記非水溶媒に対する溶質の溶解量は、0.5〜2.0mol/Lとするのが好ましい。 In addition, as a solute of the nonaqueous electrolyte in the present invention, a lithium salt generally used as a solute in a nonaqueous electrolyte secondary battery can be used. Such lithium salts include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , and mixtures thereof Illustrated. Among these, LiPF 6 (lithium hexafluorophosphate) is preferably used. When charged with a high charging voltage, although aluminum is a current collector of the positive electrode is easily dissolved in the presence of LiPF 6, by LiPF 6 decomposes, coating is formed on the aluminum surface, the aluminum by the coating Can be dissolved. Therefore, it is preferable to use LiPF 6 as the lithium salt. The amount of solute dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / L.

また、請求項2に係る発明は、請求項1に記載の非水電解質二次電池において、前記負極活物質が、炭素質物からなる、ことを特徴とする。   The invention according to claim 2 is the non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material is made of a carbonaceous material.

また、請求項3に係る発明は、請求項1又は2に記載の非水電解質二時電池において、前記非水電解質は、さらにVCを0.5〜5質量%含有することを特徴とする。 The invention according to claim 3 is the nonaqueous electrolyte binary battery according to claim 1 or 2, wherein the nonaqueous electrolyte further contains 0.5 to 5% by mass of VC.

また、請求項4に係る発明は、請求項1〜3のいずれかに記載の非水電解質二次電池において、前記正極活物質のリチウムマンガンニッケル複合酸化物は、さらにコバルトを含有することを特徴とする。   The invention according to claim 4 is the nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the lithium manganese nickel composite oxide of the positive electrode active material further contains cobalt. And

さらに、請求項5に係る非水電解質二次電池の充電方法の発明は、正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩とを有する非水電解質と、を備え、前記正極活物質が、少なくともジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物と、層状構造を有するリチウムニッケルマンガン複合酸化物と、からなり、かつ、前記正極合剤中に含まれる不純物元素である鉄、クロム、銅、亜鉛のそれぞれの含有量が10ppm以下である非水電解質二次電池の充電方法において、前記正極活物質の電位がリチウム基準で4.4〜4.6Vで充電することを特徴とする。   Furthermore, the invention of the method for charging a non-aqueous electrolyte secondary battery according to claim 5 includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, a non-aqueous electrolyte having a non-aqueous solvent and an electrolyte salt, The positive electrode active material comprises a lithium cobalt composite oxide to which at least zirconium and magnesium are added, and a lithium nickel manganese composite oxide having a layered structure, and is included in the positive electrode mixture In the method of charging a non-aqueous electrolyte secondary battery in which the content of each of the impurity elements iron, chromium, copper, and zinc is 10 ppm or less, the potential of the positive electrode active material is 4.4 to 4.6 V based on lithium. It is characterized by charging.

本発明は上記の構成を備えることにより以下に述べるような優れた効果を奏する。すなわち、請求項1の発明によれば、電池電圧低下の原因となる不純物である少なくともFe、Cr、Cu及びZnの4つの不純物濃度を10ppm以下に維持したため、電池の高容量化及び高エネルギー密度化を達成しながらも、電池電圧が低下する検査不良品の発生は小さくなり、製造の歩留まりが良く、しかも信頼性に優れた非水電解質二次電池が得られる。   By providing the above configuration, the present invention has the following excellent effects. That is, according to the invention of claim 1, since the concentration of at least four impurities of Fe, Cr, Cu, and Zn, which are impurities that cause a decrease in battery voltage, is maintained at 10 ppm or less, the battery has a high capacity and a high energy density. The non-aqueous electrolyte secondary battery having a good manufacturing yield and excellent reliability can be obtained while reducing the generation of defective products with reduced battery voltage.

また、請求項2の発明によれば、負極活物質として炭素質物からなるので、負極活物質として電位の低い炭素質物(リチウム基準で約0.1V)を用いると、電池電圧が高く、正極活物質の利用率の高い電池が得られる。   According to the second aspect of the present invention, since the negative electrode active material is made of a carbonaceous material, if a low-potential carbonaceous material (about 0.1 V based on lithium) is used as the negative electrode active material, the battery voltage is high and the positive electrode active material is high. A battery with a high utilization rate of the substance can be obtained.

また、請求項3の発明によれば、VCは、従来から有機溶媒の還元分解を抑制するための添加剤として慣用的に使用されているものであり、このVCの添加によって最初の充電による負極へのリチウムの挿入前に負極活物質層上に不動態化層とも称される負極表面被膜(SEI:Solid Electrolyte Interface)が形成し、このSEIがリチウムイオンの周囲の溶媒分子の挿入を阻止するバリアーとして機能するので、負極活物質が有機溶媒と直接反応しないようになるために、サイクル特性の向上効果が見られ、長寿命の非水電解質二次電池が得られる。VCの添加量は電解液全体に対して、0.5〜5質量%、好ましくは1〜3質量%である。VCの添加量が0.5質量%未満ではサイクル特性向上効果が少なく、また3質量%を越えると初期容量の低下と高温時に電池の膨れをまねくので好ましくない。   According to the invention of claim 3, VC is conventionally used conventionally as an additive for suppressing reductive decomposition of an organic solvent. By adding this VC, the negative electrode by the first charge is used. Before insertion of lithium into the negative electrode active material layer, a negative electrode surface coating (SEI: Solid Electrolyte Interface) is formed on the negative electrode active material layer, and this SEI prevents the insertion of solvent molecules around the lithium ions. Since it functions as a barrier, the negative electrode active material does not directly react with the organic solvent, so that an effect of improving cycle characteristics is seen and a long-life nonaqueous electrolyte secondary battery is obtained. The addition amount of VC is 0.5-5 mass% with respect to the whole electrolyte solution, Preferably it is 1-3 mass%. If the amount of VC added is less than 0.5% by mass, the effect of improving the cycle characteristics is small, and if it exceeds 3% by mass, the initial capacity decreases and the battery swells at high temperatures, which is not preferable.

また、請求項4の発明によれば、Ni、Co、及びMnを含むリチウム遷移金属複合酸化物、特にMnとNiの組成比が等しい化学式LiMnNiCo(1−2x)で表される材料は充電状態(高い酸化状態)でも特異的に高い熱的安定性を示すから、高充電電圧で充電しても安全な非水電解質二次電池が得られる。 According to the invention of claim 4, a lithium transition metal composite oxide containing Ni, Co, and Mn, particularly represented by the chemical formula LiMn x Ni x Co (1-2x) O 2 in which the composition ratio of Mn and Ni is equal. Since the material to be used exhibits a specific high thermal stability even in a charged state (high oxidation state), a safe non-aqueous electrolyte secondary battery can be obtained even when charged at a high charging voltage.

さらに、請求項5の発明によれば、充電電圧を従来のものよりも高い正極活物質の電位がリチウム基準で4.4〜4.6Vとすることができるため、高容量及び高エネルギー密度の非水電解質二次電池となる。   Furthermore, according to the invention of claim 5, since the potential of the positive electrode active material whose charging voltage is higher than that of the conventional one can be 4.4 to 4.6 V on the basis of lithium, high capacity and high energy density are achieved. A non-aqueous electrolyte secondary battery is obtained.

以下、本願発明を実施するための最良の形態を実施例及び比較例を用いて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解質二次電池及びその充電方法の一例を例示するものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。   Hereinafter, the best mode for carrying out the present invention will be described in detail using examples and comparative examples. However, the examples described below are merely examples of non-aqueous electrolyte secondary batteries and their charging methods for embodying the technical idea of the present invention, and the present invention is specified in this example. The present invention can be equally applied to various modifications without departing from the technical idea shown in the claims.

<正極の作製>
異種元素添加コバルト酸リチウムは次のようにして作製した。出発原料としては、リチウム源には炭酸チウム(LiCO)を用い、コバルト源には炭酸コバルト合成時に異種元素としてジルコニウム(Zr)をコバルトに対して0.2mol%及びマグネシウム(Mg)を0.5mol%添加した水溶液から共沈させ、その後、熱分解反応によって得られたジルコニウム、マグネシウム添加四酸化三コバルト(Co)を用いた。これらを所定量秤量して混合した後、空気雰囲気下において850℃で20時間焼成し、ジルコニウム、マグネシウム添加コバルト酸リチウムを得た。これを乳鉢で平均粒径14μmまで粉砕し、正極活物質Aとした。
<Preparation of positive electrode>
The heterogeneous element-added lithium cobalt oxide was produced as follows. As a starting material, lithium carbonate is used as lithium source (Li 2 CO 3 ), and cobalt source is zirconium (Zr) as a heterogeneous element at the time of cobalt carbonate synthesis, 0.2 mol% with respect to cobalt and magnesium (Mg). Coprecipitation was performed from an aqueous solution added with 0.5 mol%, and then zirconium and magnesium-added tricobalt tetroxide (Co 3 O 4 ) obtained by a thermal decomposition reaction were used. A predetermined amount of these were weighed and mixed, and then fired at 850 ° C. for 20 hours in an air atmosphere to obtain zirconium and magnesium-added lithium cobalt oxide. This was pulverized with a mortar to an average particle size of 14 μm to obtain a positive electrode active material A.

層状ニッケルマンガン酸リチウムは次のようにして作製した。出発原料としては、リチウム源には炭酸リチウム(LiCO)を、遷移金属源にはNi0.33Mn0.33Co0.34(OH)で表される共沈水酸化物を用いた。これらを所定量秤量し混合した後、空気雰囲気下において1000℃で20時間焼成し、これを乳鉢で平均粒径5μmまで粉砕し、正極活物質Bとした。 The layered lithium nickel manganate was prepared as follows. As starting materials, lithium carbonate (Li 2 CO 3 ) is used for the lithium source, and co-precipitated hydroxide represented by Ni 0.33 Mn 0.33 Co 0.34 (OH) 2 is used for the transition metal source. It was. A predetermined amount was weighed and mixed, and then fired at 1000 ° C. for 20 hours in an air atmosphere. This was pulverized to a mean particle size of 5 μm in a mortar to obtain a positive electrode active material B.

以上のようにして得られた正極活物質A及び正極活物質Bを質量比が7:3になるように混合し、次に、混合した正極活物質が94質量部、導電剤としての炭素粉末が3質量部、結着剤としてのポリフッ化ビニリデン粉末が3質量部となるよう混合し、これをN−メチルピロリドン(NMP)溶液と混合してスラリーを調製した。このスラリーを厚さ15μmのアルミニウム製の集電体の両面にドクターブレード法により塗布、乾燥して、正極集電体の両面に活物質層を形成した。その後、圧縮ローラーを用いて圧縮し、短辺の長さが43.5mmの正極を作製した。正極活物質及び極板作製時のコンタミネーションを抑え、正極合剤中の不純物金属元素(Fe、Cr、Cu、Zn)量を調整した。誘導結合プラズマ(ICP)発光分析装置による測定の結果、正極合剤中にはFe;5ppm、Cr;3ppm、Cu;2ppm、Zn;2ppmが含まれていることが分かった。   The positive electrode active material A and the positive electrode active material B obtained as described above were mixed so that the mass ratio was 7: 3. Next, the mixed positive electrode active material was 94 parts by mass, and carbon powder as a conductive agent. Was mixed with 3 parts by mass of polyvinylidene fluoride powder as a binder, and this was mixed with an N-methylpyrrolidone (NMP) solution to prepare a slurry. This slurry was applied to both sides of an aluminum current collector having a thickness of 15 μm by a doctor blade method and dried to form active material layers on both sides of the positive electrode current collector. Then, it compressed using the compression roller and produced the positive electrode whose length of a short side is 43.5 mm. Contamination during the production of the positive electrode active material and the electrode plate was suppressed, and the amount of impurity metal elements (Fe, Cr, Cu, Zn) in the positive electrode mixture was adjusted. As a result of measurement by an inductively coupled plasma (ICP) emission spectrometer, it was found that the positive electrode mixture contained Fe: 5 ppm, Cr: 3 ppm, Cu: 2 ppm, Zn: 2 ppm.

<負極の作製>
黒鉛粉末が95質量部、増粘剤としてのカルボキシメチルセルロース(CMC)が3質量部、結着剤としてのスチレン−ブタジエンゴム(SBR)2質量部を水に分散させスラリーを調製した。このスラリーを厚さ8μmの銅製の集電体の両面にドクターブレード法により塗布、乾燥して、負極集電体の両面に活物質層を形成した。その後、圧縮ローラーを用いて圧縮し、短辺の長さが44.5mmの負極を作製した。なお、黒鉛の電位はリチウム基準で0.1Vである。例えば、正極活物質電位がリチウム基準で4.4Vのとき、黒鉛を負極に用いた電池電圧は4.3Vである。正極及び負極の塗布量は、設計基準となる充電電圧における正極活物質1gあたりの充電容量を3極式セル(対極:リチウム金属、参照極:リチウム金属)で測定し、このデータと黒鉛負極の理論充電容量をもとに充電容量比(負極充電容量/正極充電容量)が1.1となるように調整した。正極活物質と充電容量を表1に示す。
<Preparation of negative electrode>
A slurry was prepared by dispersing 95 parts by mass of graphite powder, 3 parts by mass of carboxymethyl cellulose (CMC) as a thickener, and 2 parts by mass of styrene-butadiene rubber (SBR) as a binder in water. This slurry was applied to both surfaces of a copper current collector having a thickness of 8 μm by a doctor blade method and dried to form active material layers on both surfaces of the negative electrode current collector. Then, it compressed using the compression roller and produced the negative electrode whose length of a short side is 44.5 mm. The potential of graphite is 0.1 V with respect to lithium. For example, when the positive electrode active material potential is 4.4 V based on lithium, the battery voltage using graphite as the negative electrode is 4.3 V. The coating amount of the positive electrode and the negative electrode was measured with a tripolar cell (counter electrode: lithium metal, reference electrode: lithium metal) as the charge capacity per 1 g of the positive electrode active material at the charging voltage as the design standard. Based on the theoretical charge capacity, the charge capacity ratio (negative electrode charge capacity / positive electrode charge capacity) was adjusted to 1.1. Table 1 shows the positive electrode active material and the charge capacity.

<充電正極電位と正極容量の関係>
ジルコニウム,マグネシウム添加コバルト酸リチウム/層状ニッケルマンガン酸リチウム(混合比7:3)の場合

Figure 2006156234
<Relationship between charging positive electrode potential and positive electrode capacity>
Zirconium and magnesium-added lithium cobalt oxide / layered lithium nickel manganate (mixing ratio 7: 3)
Figure 2006156234

<電解質の作製>
エチレンカーボネート20体積%、エチルメチルカーボネート50体積%、ジエチルカーボネート30体積%となるようにした混合溶媒を調整し、これにLiPFを1mol/L溶解して電解質とした。
<Preparation of electrolyte>
A mixed solvent was prepared so as to be 20% by volume of ethylene carbonate, 50% by volume of ethyl methyl carbonate, and 30% by volume of diethyl carbonate, and 1 mol / L of LiPF 6 was dissolved therein to obtain an electrolyte.

<電池の作製>
上記の正極、負極及び電解質を用いて、また、セパレータとしてポリエチレン製微多孔膜を用い、実施例1に係る角形の非水電解質二次電池(6mm×34mm×50mm)を500個作製した。
<Production of battery>
Using the above positive electrode, negative electrode and electrolyte, and using a polyethylene microporous membrane as a separator, 500 rectangular nonaqueous electrolyte secondary batteries (6 mm × 34 mm × 50 mm) according to Example 1 were produced.

<検査不良の測定>
上述のようにして作製した各電池について、25℃において、1It(1C)の定電流で充電し、電池の電圧が4.3Vになった後は4.3Vの定電流で充電電流値が1/50It(1/50C)になるまで初期充電した。この初期充電した電池を60℃で24時間放置し、電池電圧の低下が0.1Vを越えるものを不良とし、不良と判定された電池の個数を調べた。結果を表2に示す。
<Measurement of inspection defects>
About each battery produced as mentioned above, it charges with the constant current of 1 It (1C) at 25 degreeC, and after the voltage of a battery becomes 4.3V, a charging current value is 1 with a constant current of 4.3V. The battery was initially charged until / 50 It (1/50 C). This initially charged battery was allowed to stand at 60 ° C. for 24 hours, and the battery voltage drop exceeding 0.1 V was regarded as defective, and the number of batteries determined to be defective was examined. The results are shown in Table 2.

<サイクル特性の測定>
前記検査不良の測定で良品と判断された電池について、25℃において、1Itの定電流で電池電圧が3Vに達するまで放電を行い、この時の放電容量を電池容量として求めた。サイクル特性の測定は、電池容量を測定した各電池について、25℃において、1Itの定電流で電池電圧が4.3Vに達するまで充電した後に4.3Vの定電圧で電流値が1/50Itになるまで充電し、その後、1Itの定電流で電池電圧が3Vに達するまで放電することを1サイクルとし、300サイクルに達するまで繰返して300サイクル後の放電容量を求めた。そして、各電池について以下の計算式に基いて25℃における300サイクル後の容量残存率(%)を求めた。結果を電池容量及び容量残存率とともにまとめて表2に示した。
容量残存率(%)=(300サイクル後の放電容量/電池容量)×100
<Measurement of cycle characteristics>
About the battery judged to be a non-defective product by the measurement of the inspection failure, discharging was performed at 25 ° C. at a constant current of 1 It until the battery voltage reached 3 V, and the discharge capacity at this time was obtained as the battery capacity. The cycle characteristics were measured for each battery whose battery capacity was measured at 25 ° C. until the battery voltage reached 4.3 V at a constant current of 1 It, and then the current value was reduced to 1/50 It at a constant voltage of 4.3 V. Then, charging was performed until the battery voltage reached 3 V at a constant current of 1 It as one cycle, and the discharge capacity after 300 cycles was obtained repeatedly until reaching 300 cycles. And the capacity | capacitance residual ratio (%) after 300 cycles in 25 degreeC was calculated | required about each battery based on the following formulas. The results are shown in Table 2 together with the battery capacity and the capacity remaining rate.
Capacity remaining rate (%) = (discharge capacity after 300 cycles / battery capacity) × 100

<参考例1及び2>
実施例1と同様の構成の電池を作成し、充電電圧を4.2V(参考例1)及び4.6V(参考例2)とした以外は実施例1の場合と同様にして監査不良の測定、電池容量の測定、及びサイクル特性の測定を行った。結果を実施例1の結果とまとめて表2に示した。
<Reference Examples 1 and 2>
A battery having the same configuration as in Example 1 was prepared, and the measurement of defective inspection was performed in the same manner as in Example 1 except that the charging voltage was 4.2 V (Reference Example 1) and 4.6 V (Reference Example 2). The battery capacity and cycle characteristics were measured. The results are shown in Table 2 together with the results of Example 1.

<実施例2〜5、比較例1〜7>
正極、負極の製造の際に不純物含有量を変更し、また、設計基準となる充電電圧を変更した以外は実施例1と同様にして、実施例2〜5、比較例1〜7の電池を作製し、これらの電池のそれぞれについて実施例1の場合と同様にして検査不良の測定、電池容量の測定、及びサイクル特性の測定を行った。結果を各電池の不純物含有量とともに実施例1の結果とまとめて表2に示した。
<Examples 2-5, Comparative Examples 1-7>
The batteries of Examples 2-5 and Comparative Examples 1-7 were changed in the same manner as in Example 1 except that the impurity content was changed during the production of the positive electrode and the negative electrode, and the charging voltage as the design standard was changed. Each of these batteries was subjected to measurement of defective inspection, measurement of battery capacity, and measurement of cycle characteristics in the same manner as in Example 1. The results are shown in Table 2 together with the results of Example 1 together with the impurity content of each battery.

Figure 2006156234
Figure 2006156234

以上の表2に示した結果より、次のことが分かる。すなわち、異元素を添加したコバルト酸リチウムとニッケルマンガン酸リチウム混含物を正極活物質とした場合、充電電圧が4.3V〜4.5Vの範囲内であれば、不純物としてFe、Cr、Cu、Znの全てについて10ppm以下となるようにする(実施例1〜5)ことで、検査不良値は500個中1個以下、電池容量は1150mAh以上、サイクル特性は87%以上と良好な結果が得られた。それに対し、不純物としてFe、Cr、Cu、Znの全てについて10ppm以下であっても、充電電圧が4.2Vと低い場合(参考例1)は、検査不良値及びサイクル特性の結果は良好であるが、電池容量の結果は1080mAhにとどまっている。逆に、不純物としてFe、Cr、Cu、Znの全てについて10ppm以下であっても、充電電圧が4.6Vと高い場合(参考例2)は、検査不良値及び電池容量の結果は良好であるが、サイクル特性が60%と大きく悪化している。   From the results shown in Table 2 above, the following can be understood. That is, when a mixture of lithium cobalt oxide and lithium nickel manganate added with different elements is used as the positive electrode active material, if the charging voltage is in the range of 4.3 V to 4.5 V, Fe, Cr, Cu as impurities , Zn is made to be 10 ppm or less for all (Examples 1 to 5), the defective test value is 1 or less out of 500, the battery capacity is 1150 mAh or more, and the cycle characteristic is 87% or more. Obtained. On the other hand, if the charge voltage is as low as 4.2 V even if it is 10 ppm or less for all of Fe, Cr, Cu, and Zn as impurities (reference example 1), the results of the defective inspection value and the cycle characteristics are good. However, the result of the battery capacity is only 1080 mAh. On the other hand, even if the impurities are 10 ppm or less for all of Fe, Cr, Cu, and Zn, when the charging voltage is as high as 4.6 V (Reference Example 2), the results of the defective inspection value and the battery capacity are good. However, the cycle characteristics are greatly deteriorated to 60%.

また、不純物としてFe、Cr、Cu、Znの1種でも10ppmを越えている(比較例1〜7)と、電池容量及びサイクル特性は良好な結果が得られているが、検査不良値が500個中5個以上と大幅に悪化しており、製造の歩留まりが悪く、しかも信頼性にかけていることが分かる。   Further, if any one of Fe, Cr, Cu, and Zn as impurities exceeds 10 ppm (Comparative Examples 1 to 7), good results are obtained in the battery capacity and cycle characteristics, but the inspection defect value is 500. It can be seen that the number is 5 or more, and the manufacturing yield is poor and the reliability is high.

以上述べたとおり、本発明によれば、高電圧充電で高容量化され、製造に際して歩留まりが良く、かつ高信頼性の非水電解質二次電池を得るには、正極合剤中の金属不純物(特に、Fe、Cr、Cu、Zn)量の制御が重要であり、正極活物質の精製、コンタミネーション防止によりそれぞれの不純物元素含有量を10ppm以下に抑えることで良好な結果が得られることが明らかである。   As described above, according to the present invention, in order to obtain a high-capacity non-aqueous electrolyte secondary battery that has a high capacity by high-voltage charging, a high yield in manufacturing, and a high reliability, the metal impurities ( In particular, control of the amount of Fe, Cr, Cu, Zn) is important, and it is clear that good results can be obtained by suppressing the content of each impurity element to 10 ppm or less by refining the positive electrode active material and preventing contamination. It is.

なお、実施例及び比較例では、電解質溶媒としてエチレンカーボネート(EC)、メチルエチルカーボネート(MEC)及びジエチルカーボネート(DEC)からなる混合溶媒を使用した例を示したが、従来から知られている各種の溶媒を使用し得ることは明らかであろう。ただし、環状カーボネートは、充放電効率を高める点からは添加されていた方がよいが、高電位において酸化分解されやすいので、特にECを用いる場合は非水電解質溶媒中の含有量を5体積%以上25体積%以下とすることが望ましい。   In Examples and Comparative Examples, examples in which a mixed solvent composed of ethylene carbonate (EC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC) was used as an electrolyte solvent were shown. It will be apparent that the following solvents can be used. However, it is better to add the cyclic carbonate from the viewpoint of increasing the charge / discharge efficiency, but since it is easily oxidatively decomposed at a high potential, the content in the nonaqueous electrolyte solvent is 5% by volume particularly when EC is used. It is desirable to set it as 25 volume% or less.

従来の角形の非水電解質二次電池を縦方向に切断して示す斜視図である。It is a perspective view which cut | disconnects and shows the conventional square nonaqueous electrolyte secondary battery to the vertical direction.

符号の説明Explanation of symbols

10 非水電解質二次電池
11 正極板
12 負極板
13 セパレータ
14 扁平状の渦巻状電極体
15 角型の電池外装缶
16 封口板
17 絶縁体
18 負極端子
19 集電体
20 絶縁スペーサ
21 電解液注液孔
DESCRIPTION OF SYMBOLS 10 Nonaqueous electrolyte secondary battery 11 Positive electrode plate 12 Negative electrode plate 13 Separator 14 Flat spiral electrode body 15 Rectangular battery outer can 16 Sealing plate 17 Insulator 18 Negative electrode terminal 19 Current collector 20 Insulating spacer 21 Electrolyte injection Liquid hole

Claims (5)

正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩とを有する非水電解質と、を備える非水電解質二次電池において、
前記正極活物質が、少なくともジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物と、層状構造を有するリチウムニッケルマンガン複合酸化物と、からなり、
前記正極活物質の電位がリチウム基準で4.4〜4.6Vであり、
かつ、前記正極合剤中に含まれる不純物元素である鉄、クロム、銅、亜鉛のそれぞれの含有量が10ppm以下であることを特徴とする非水電解質二次電池。
In a nonaqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a nonaqueous electrolyte having a nonaqueous solvent and an electrolyte salt,
The positive electrode active material comprises a lithium cobalt composite oxide to which at least zirconium and magnesium are added, and a lithium nickel manganese composite oxide having a layered structure,
The positive electrode active material has a potential of 4.4 to 4.6 V based on lithium,
And each content of iron, chromium, copper, and zinc which are impurity elements contained in the said positive electrode mixture is 10 ppm or less, The nonaqueous electrolyte secondary battery characterized by the above-mentioned.
前記負極活物質が、炭素質物からなる、ことを特徴とする請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material is made of a carbonaceous material. 前記非水電解質は、さらにビニレンカーボネートを0.5〜5質量%含有することを特徴とする請求項1又は2に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the non-aqueous electrolyte further contains 0.5 to 5% by mass of vinylene carbonate. 前記正極活物質のリチウムマンガンニッケル複合酸化物は、さらにコバルトを含有することを特徴とする請求項1〜3のいずれかに記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the lithium manganese nickel composite oxide of the positive electrode active material further contains cobalt. 正極活物質を有する正極と、負極活物質を有する負極と、非水溶媒と電解質塩とを有する非水電解質と、を備え、
前記正極活物質が、少なくともジルコニウムとマグネシウムとが添加されたリチウムコバルト複合酸化物と、層状構造を有するリチウムニッケルマンガン複合酸化物と、からなり、
かつ、前記正極合剤中に含まれる不純物元素である鉄、クロム、銅、亜鉛のそれぞれの含有量が10ppm以下である非水電解質二次電池の充電方法において、
前記正極活物質の電位がリチウム基準で4.4〜4.6Vで充電することを特徴とする非水電解質二次電池の充電方法。
A positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte having a non-aqueous solvent and an electrolyte salt,
The positive electrode active material comprises a lithium cobalt composite oxide to which at least zirconium and magnesium are added, and a lithium nickel manganese composite oxide having a layered structure,
And in the method for charging a non-aqueous electrolyte secondary battery in which each content of iron, chromium, copper, and zinc as impurity elements contained in the positive electrode mixture is 10 ppm or less,
The non-aqueous electrolyte secondary battery charging method, wherein the positive electrode active material is charged at a potential of 4.4 to 4.6 V based on lithium.
JP2004347290A 2004-11-30 2004-11-30 Nonaqueous electrolyte secondary battery and its charging method Pending JP2006156234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004347290A JP2006156234A (en) 2004-11-30 2004-11-30 Nonaqueous electrolyte secondary battery and its charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004347290A JP2006156234A (en) 2004-11-30 2004-11-30 Nonaqueous electrolyte secondary battery and its charging method

Publications (1)

Publication Number Publication Date
JP2006156234A true JP2006156234A (en) 2006-06-15

Family

ID=36634241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004347290A Pending JP2006156234A (en) 2004-11-30 2004-11-30 Nonaqueous electrolyte secondary battery and its charging method

Country Status (1)

Country Link
JP (1) JP2006156234A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103036A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2007103306A (en) * 2005-10-07 2007-04-19 Sony Corp Battery
JP2008027833A (en) * 2006-07-25 2008-02-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2012020768A1 (en) * 2010-08-10 2012-02-16 Agcセイミケミカル株式会社 Production method for a composite compound comprising nickel and cobalt
JP2013041840A (en) * 2010-03-30 2013-02-28 Mitsui Mining & Smelting Co Ltd Positive electrode active material for lithium ion battery and lithium ion battery
JP2013534203A (en) * 2010-07-26 2013-09-02 ジュート−ヒェミー アイピー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー コマンデットゲゼルシャフト Method for reducing magnetism and / or oxidation impurities in lithium metal oxygen compounds

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103036A (en) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2007103306A (en) * 2005-10-07 2007-04-19 Sony Corp Battery
JP2008027833A (en) * 2006-07-25 2008-02-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2013041840A (en) * 2010-03-30 2013-02-28 Mitsui Mining & Smelting Co Ltd Positive electrode active material for lithium ion battery and lithium ion battery
JP2013534203A (en) * 2010-07-26 2013-09-02 ジュート−ヒェミー アイピー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー コマンデットゲゼルシャフト Method for reducing magnetism and / or oxidation impurities in lithium metal oxygen compounds
KR101614376B1 (en) 2010-07-26 2016-04-22 쉬드-케미 아이피 게엠베하 운트 코 카게 Process for reducing magnetic and/or oxidic impurities in lithium-metal-oxygen compounds
WO2012020768A1 (en) * 2010-08-10 2012-02-16 Agcセイミケミカル株式会社 Production method for a composite compound comprising nickel and cobalt

Similar Documents

Publication Publication Date Title
JP4794180B2 (en) Nonaqueous electrolyte secondary battery
JP5318356B2 (en) Nonaqueous electrolyte secondary battery
JP5247196B2 (en) Nonaqueous electrolyte secondary battery
JP4794172B2 (en) Non-aqueous electrolyte secondary battery and charging method thereof
JP5052161B2 (en) Nonaqueous electrolyte secondary battery
US20110159172A1 (en) Method for manufacturing positive electrode of nonaqueous electrolyte secondary battery
JP2009129721A (en) Non-aqueous secondary battery
JP2006344509A (en) Lithium secondary battery
JP5030559B2 (en) Nonaqueous electrolyte secondary battery
JP2009110886A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP2006228651A (en) Nonaqueous electrolyte secondary battery and its charging method
JP2009105017A (en) Nonaqueous electrolyte secondary battery
JP5235307B2 (en) Nonaqueous electrolyte secondary battery
JP4794193B2 (en) Nonaqueous electrolyte secondary battery
JP2008251212A (en) Non-aqueous electrolyte secondary battery
JP2006092820A (en) Cathode active material for nonaqueous electrolyte secondary battery, cathode, and the nonaqueous electrolyte secondary battery
JP2006156234A (en) Nonaqueous electrolyte secondary battery and its charging method
JP4737952B2 (en) Non-aqueous electrolyte secondary battery
JP4963819B2 (en) Nonaqueous electrolyte secondary battery
JP5196718B2 (en) Nonaqueous electrolyte secondary battery
JP5019892B2 (en) Nonaqueous electrolyte secondary battery
JP4147448B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2006120529A (en) Positive electrode active material for nonaqueous electrolytic solution secondary battery, positive electrode for secondary battery, and nonaqueous electrolytic solution secondary battery
JP2002343355A (en) Nonaqueous electrolyte secondary battery
JP2008226752A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100715