JP4112209B2 - ディスク装置とモータ - Google Patents

ディスク装置とモータ Download PDF

Info

Publication number
JP4112209B2
JP4112209B2 JP2001328524A JP2001328524A JP4112209B2 JP 4112209 B2 JP4112209 B2 JP 4112209B2 JP 2001328524 A JP2001328524 A JP 2001328524A JP 2001328524 A JP2001328524 A JP 2001328524A JP 4112209 B2 JP4112209 B2 JP 4112209B2
Authority
JP
Japan
Prior art keywords
signal
state
response
energization control
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001328524A
Other languages
English (en)
Other versions
JP2002204591A (ja
Inventor
誠 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001328524A priority Critical patent/JP4112209B2/ja
Publication of JP2002204591A publication Critical patent/JP2002204591A/ja
Application granted granted Critical
Publication of JP4112209B2 publication Critical patent/JP4112209B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、モータを含んで構成されたディスク装置と、モータに関するものである。
【0002】
【従来の技術】
近年、OA機器やAV機器の駆動用モータとして、複数個のトランジスタにより電子的に電流路を切り換えるモータが広く使用されている。光ディスク装置(DVD装置、CD装置、等)や磁気ディスク装置(HDD装置、FDD装置、等)などのディスク装置では、このようなモータを含んで構成されている。このようなモータの例として、PNP型パワートランジスタとNPN型パワートランジスタを用いてコイルへの電流路を切り換えるモータがある。
【0003】
図29に従来のモータを示し、その動作について説明する。ロータ2011は永久磁石による界磁部を有し、位置検出器2041はロータ2011の界磁部の磁界を3個の位置検出素子で検出する。すなわち、ロータ2011の回転に応動した3個の位置検出素子の3相の出力信号から、位置検出器2041は2組の3相の電圧信号Kp1,Kp2,Kp3とKp4,Kp5,Kp6を発生する。第1の分配器2042は電圧信号Kp1,Kp2,Kp3に応動した3相の下側信号Mp1,Mp2,Mp3を作りだし、下側のNPN型パワートランジスタ2021,2022,2023の通電を制御する。第2の分配器2043は電圧信号Kp4,Kp5,Kp6に応動した3相の上側信号Mp4,Mp5,Mp6を作りだし、上側のPNP型パワートランジスタ2025,2026,2027の通電を制御する。これにより、コイル2012,2013,2014に3相の駆動電圧を供給する。
【0004】
【発明が解決しようとする課題】
従来の構成では、位置検出器2041はロータ2011の回転位置を検出する3個の位置検出素子を含んでいるため、位置検出素子を取り付けるスペースや配線等が煩雑であり、コストアップを生じていた。そのため、たとえば、米国特許第5,130,620号明細書や米国特許第5,473,232号明細書には、位置検出素子をすべて無くし、コイルに生じる逆起電力を検出して回転駆動するモータの構成が示されている。しかし、位置検出素子をすべて無くしたモータでは、モータの回転速度が低いときに十分な逆起電力が生じないため、低い速度でのモータ駆動や速度制御が困難であった。特に、逆起電力を検出したパルス信号に基づいて速度制御を行った場合には、逆起電力の検出パルス信号の時間的なゆれが大きく、回転速度のゆれが大きくなっていた。
【0005】
また、米国特許第5,729,102号明細書には、1個の位置検出素子の出力により推定電気角をもとめ、推定電気角にもとづいて正弦波電流をコイルに供給するモータの構成が示されている。しかし、米国特許第5,729,102号明細書の構成では、細かなステップで推定電気角を求めることが難しい。特に、高速回転時には推定電気角の誤差が大きくなり、高精度な回転駆動が難しかった。また、推定電気角の演算や駆動信号の作成にマイクロプロセッサを使っているために、高速回転時においてマイクロプロセッサの処理速度が不足し、モータを高速回転させることが難しかった。
【0006】
DVD−ROM/CD−ROM/CDディスクを再生するディスク装置では、1万rpmの高速再生から200rpmのCD再生までの広い速度範囲における回転動作が要求され、これらの回転速度において安定に回転駆動することが要望されている。また、DVD−RAM/RW装置などの書換可能なディスク装置では、高密度ディスクへの情報記録・再生を行っているので、ディスクへの記録および再生においてディスクを高精度に回転させる必要がある。また、光ディスク装置だけでなく、HDDやFDDなどの磁気ディスク装置においても、低コストに安定にディスクを回転駆動することが要望されている。
【0007】
本発明の目的は、上記の課題をそれぞれまたは同時に解決したディスク装置およびモータを提供することにある。
【0008】
【課題を解決するための手段】
本発明の構成のディスク装置では、少なくとも、ディスクから信号再生を行う、または、前記ディスクに信号記録を行うヘッド手段と、少なくとも、前記ヘッド手段の出力信号を処理して再生情報信号を出力する、または、記録情報信号を信号処理して前記ヘッド手段に出力する情報処理手段と、前記ディスクを回転駆動し、界磁磁束を発生する界磁部分を取り付けられたロータと、Q相(ここに、Qは3以上の整数)のコイルと、直流電圧を供給する2つの出力端子を有する電圧供給手段と、前記電圧供給手段の一方の出力端子側と前記コイルの一端への電流路を形成する第1のパワートランジスタをそれぞれ含んで構成されたQ個の第1の電力増幅手段と、前記電圧供給手段の他方の出力端子側と前記コイルの一端への電流路を形成する第2のパワートランジスタをそれぞれ含んで構成されたQ個の第2の電力増幅手段と、前記ロータの回転に応動した位置信号を得る位置検出手段と、前記位置信号に応動して前記Q個の第1の電力増幅手段と前記Q個の第2の電力増幅手段の通電区間を制御し、各前記通電区間を電気角の360/Q度相当よりも大きくする通電動作手段と、を具備するディスク装置であって、前記通電動作手段は、前記位置信号に応動した時間間隔T0を計測する時間計測手段と、前記時間間隔T0に応動した第1の調整時間T1であって、前記時間間隔の半分T0/2よりも小さい前記第1の調整時間T1(ここに、T1<T0/2)毎に第1の状態信号を変化させ、前記第1の状態信号が前記時間間隔T0当たりに複数状態の状態変化を行うようにし、前記時間計測手段の計測動作に応動して前記第1の状態信号を第1の所定状態にする第1のタイミング調整手段と、前記時間間隔T0に応動した第2の調整時間T2であって、前記第1の調整時間の半分T1/2よりも小さい前記第2の調整時間T2(ここに、T2<T1/2)毎に第2の状態信号を変化させ、前記第2の状態信号が前記第1の調整時間T1当たりに複数状態の状態変化を行うようにし、前記第1の状態信号の変化に応動して前記第2の状態信号を第2の所定状態にする第2のタイミング調整手段と、前記第1の状態信号と前記第2の状態信号に応動した少なくとも1個の通電制御信号を作成し、前記Q個の第1の電力増幅手段と前記Q個の第2の電力増幅手段のうちで少なくとも1個の電力増幅手段の通電区間を前記少なくとも1個の通電制御信号に応動して制御する信号作成手段と、を含んで構成され、前記信号作成手段は、前記第2の状態信号に応動して傾斜を有するスロープ信号を作成するスロープ手段と、前記第1の状態信号と前記スロープ信号に応動した前記少なくとも1個の通電制御信号を作成し、立ち上がり部分と立ち下がり部分のうちの少なくとも一方の部分において前記スロープ信号に応動して前記少なくとも1個の通電制御信号を変化させる形成手段と、を含んで構成している。
【0009】
このように構成することにより、単一の位置信号に応動してQ相のコイルへの正確な通電制御を行うことができる。従って、たとえば、1個の位置検出素子の出力信号のみを用いて、Q相のコイルへの電流路の切換動作を行わせ、ディスクを安定に所定方向に回転駆動するディスク装置を実現できる。また、通電制御信号は、立ち上がり部分と平坦部分と立ち下がり部分などにより形成され、立ち上がり部分と立ち下がり部分のうちの少なくとも一方の部分をスロープ信号に応動して実質的に滑らかに変化させている。従って、Q相のコイルへの電流路の切換動作を滑らかにできる。これにより、発生駆動力の脈動が小さくなり、振動・騒音の小さなディスク装置になる。ここで、スロープ信号は、アナログ的な傾斜を有する傾斜信号の場合や、平均値が傾斜信号になるパルスを含んだディジタル信号の場合がある。
【0010】
また、時間計測手段の計測結果に応動した第1の調整時間T1であって、前記時間間隔の半分T0/2よりも小さい第1の調整時間T1(ここに、T1<T0/2)毎に第1の状態信号を変化させた。時間計測手段の計測結果に応動した第2の調整時間T2であって、前記第1の調整時間の半分T1/2よりも小さい第2の調整時間T2(ここに、T2<T1/2)毎に第2の状態信号を変化させた。従って、時間計測手段が次の計測結果を出力するまでに第1の状態信号は所要の状態数だけ変化し、第1の状態信号が次の変化を行うまでに第2の状態信号は所要の状態数だけ変化する。第2の状態信号に応動して実質的に傾斜を有するスロープ信号を得て、第1の状態信号とスロープ信号に応動した通電制御信号を出力した。これにより、ディスクの回転速度が変化しても、スロープ信号に応動して実質的に滑らかな変化を行う通電制御信号を作成できる。
【0011】
従って、たとえば、ディスクの再生半径位置に応動してディスクの回転速度を変えていくディスク装置であっても、常に滑らかな電流路の切換動作を行わせ、振動・騒音の小さいディスク装置を実現できる。また、時間計測手段の計測動作に応動して第1の状態信号を第1の所定状態にし、第1の状態信号の変化に応動して第2の状態信号を第2の所定状態にしているので、第1の状態信号の変化時点とスロープ信号を同期して変化させることができる。これにより、ロータ回転に同期した通電制御信号を正確に作成でき、Q相のコイルへの通電制御の乱れが生じない。また、たとえば、位置信号に基づいてディスクの回転速度を制御するならば、安定に高精度な速度制御を行うことができる。その結果、位置検出手段を簡素にした低コストの構成ながらも、振動・騒音が小さく、高精度にディスクを回転駆動するディスク装置を実現できる。
【0012】
本発明の別の観点のディスク装置では、少なくとも、ディスクから信号再生を行う、または、前記ディスクに信号記録を行うヘッド手段と、少なくとも、前記ヘッド手段の出力信号を処理して再生情報信号を出力する、または、記録情報信号を信号処理して前記ヘッド手段に出力する情報処理手段と、前記ディスクを回転駆動し、界磁磁束を発生する界磁部分を取り付けられたロータと、Q相(ここに、Qは3以上の整数)のコイルと、直流電圧を供給する2つの出力端子を有する電圧供給手段と、前記電圧供給手段の一方の出力端子側と前記コイルの一端への電流路を形成する第1のパワートランジスタをそれぞれ含んで構成されたQ個の第1の電力増幅手段と、前記電圧供給手段の他方の出力端子側と前記コイルの一端への電流路を形成する第2のパワートランジスタをそれぞれ含んで構成されたQ個の第2の電力増幅手段と、前記ロータの回転に応動した位置信号を得る位置検出手段と、前記位置信号に応動して前記Q個の第1の電力増幅手段と前記Q個の第2の電力増幅手段の通電区間を制御し、各前記通電区間を電気角の360/Q度相当よりも大きくする通電動作手段と、を具備するディスク装置であって、前記通電動作手段は、前記位置信号に応動した時間間隔T0を計測する時間計測手段と、前記時間間隔T0に応動した第1の調整時間T1であって、前記時間間隔の半分T0/2よりも小さい前記第1の調整時間T1(ここに、T1<T0/2)毎に第1の状態信号を変化させ、前記第1の状態信号が前記時間間隔T0当たりに複数状態の状態変化を行うようにし、前記時間計測手段の計測動作に応動して前記第1の状態信号を第1の所定状態にする第1のタイミング調整手段と、前記時間間隔T0に応動した第2の調整時間T2であって、前記第1の調整時間の半分T1/2よりも小さい前記第2の調整時間T2(ここに、T2<T1/2)毎に第2の状態信号を変化させ、前記第2の状態信号が前記第1の調整時間T1当たりに複数状態の状態変化を行うようにし、前記第1の状態信号の変化に応動して前記第2の状態信号を第2の所定状態にする第2のタイミング調整手段と、前記第1の状態信号と前記第2の状態信号に応動した少なくとも1個の通電制御信号を作成し、前記Q個の第1の電力増幅手段と前記Q個の第2の電力増幅手段のうちで少なくとも1個の電力増幅手段の通電区間を前記少なくとも1個の通電制御信号に応動して制御する信号作成手段と、を含んで構成している。
【0013】
このように構成することにより、単一の位置信号に応動してQ相のコイルへの正確な通電制御を行うことができる。従って、たとえば、1個の位置検出素子の出力信号のみを用いて、Q相のコイルへの電流路の切換動作を行わせ、ディスクを安定に所定方向に回転駆動するディスク装置を実現できる。また、時間計測手段の計測結果に応動した第1の調整時間T1であって、前記時間間隔の半分T0/2よりも小さい第1の調整時間T1(ここに、T1<T0/2)毎に第1の状態信号を変化させた。時間計測手段の計測結果に応動した第2の調整時間T2であって、前記第1の調整時間の半分T1/2よりも小さい第2の調整時間T2(ここに、T2<T1/2)毎に第2の状態信号を変化させた。従って、時間計測手段が次の計測結果を出力するまでに第1の状態信号は所要の状態数だけ変化し、第1の状態信号が次の変化を行うまでに第2の状態信号は所要の状態数だけ変化する。その結果、第1の状態信号と第2の状態信号に応動して電流路の切換動作を行わせるならば、正確かつ安定にディスクを回転駆動できる。
【0014】
また、たとえば、第2の状態信号に応動して実質的に傾斜を有するスロープ信号を作成するならば、通電制御信号の立ち上がり部分や立ち下がり部分をスロープ信号に応動して実質的に滑らかにすることができるので、Q相のコイルへの電流路の切換動作を滑らかになる。これにより、発生駆動力の脈動が小さくなり、振動・騒音の小さなディスク装置を実現できる。また、ディスクの回転速度が変化しても、第1の状態信号の状態変化数や第2の状態信号の状態変化数は変わらないので、常に滑らかな電流路の切換を実現する通電制御信号を作成できる。従って、たとえば、ディスクの再生半径位置に応動してディスクの回転速度を変えていくディスク装置であっても、常に滑らかな電流路の切換動作を行わせ、振動・騒音の小さいディスク装置を実現できる。
また、たとえば、時間計測手段の計測動作に応動して第1の状態信号を第1の所定状態にし、第1の状態信号の変化に応動して第2の状態信号を第2の所定状態にするならば、第1の状態信号の変化時点と第2の状態信号の変化時点を同期させることが可能になる。これにより、ロータ回転に同期した通電制御信号を作成でき、Q相のコイルへの通電制御の乱れが生じない。また、たとえば、位置信号に基づいてディスクの回転速度を制御するならば、安定に高精度な速度制御を行うことができる。その結果、低コストの構成ながらも、振動・騒音が小さく、高精度にディスクを回転駆動するディスク装置を実現できる。
【0015】
また、本発明の構成のモータは、界磁磁束を発生する界磁部分を取り付けられたロータと、Q相(ここに、Qは3以上の整数)のコイルと、直流電圧を供給する2つの出力端子を有する電圧供給手段と、前記電圧供給手段の一方の出力端子側と前記コイルの一端への電流路を形成する第1のパワートランジスタをそれぞれ含んで構成されたQ個の第1の電力増幅手段と、前記電圧供給手段の他方の出力端子側と前記コイルの一端への電流路を形成する第2のパワートランジスタをそれぞれ含んで構成されたQ個の第2の電力増幅手段と、前記ロータの回転に応動した位置信号を得る位置検出手段と、前記位置信号に応動して前記Q個の第1の電力増幅手段と前記Q個の第2の電力増幅手段の通電区間を制御し、各前記通電区間を電気角の360/Q度相当よりも大きくする通電動作手段と、を具備するモータであって、前記通電動作手段は、前記位置信号に応動した時間間隔T0を計測する時間計測手段と、前記時間間隔T0に応動した第1の調整時間T1であって、前記時間間隔の半分T0/2よりも小さい前記第1の調整時間T1(ここに、T1<T0/2)毎に第1の状態信号を変化させ、前記第1の状態信号が前記時間間隔T0当たりに複数状態の状態変化を行うようにし、前記時間計測手段の計測動作に応動して前記第1の状態信号を第1の所定状態にする第1のタイミング調整手段と、前記時間間隔T0に応動した第2の調整時間T2であって、前記第1の調整時間の半分T1/2よりも小さい前記第2の調整時間T2(ここに、T2<T1/2)毎に第2の状態信号を変化させ、前記第2の状態信号が前記第1の調整時間T1当たりに複数状態の状態変化を行うようにし、前記第1の状態信号の変化に応動して前記第2の状態信号を第2の所定状態にする第2のタイミング調整手段と、前記第1の状態信号と前記第2の状態信号に応動した少なくとも1個の通電制御信号を作成し、前記Q個の第1の電力増幅手段と前記Q個の第2の電力増幅手段のうちで少なくとも1個の電力増幅手段の通電区間を前記少なくとも1個の通電制御信号に応動して制御する信号作成手段と、を含んで構成され、前記信号作成手段は、前記第2の状態信号に応動して傾斜を有するスロープ信号を作成するスロープ手段と、前記第1の状態信号と前記スロープ信号に応動した前記少なくとも1個の通電制御信号を作成し、立ち上がり部分と立ち下がり部分のうちの少なくとも一方の部分において前記スロープ信号に応動して前記少なくとも1個の通電制御信号を変化させる形成手段と、を含んで構成している。
【0016】
このように構成することにより、単一の位置信号に応動してQ相のコイルへの正確な通電制御を行うことができる。従って、たとえば、1個の位置検出素子の出力信号のみを用いて、Q相のコイルへの電流路の切換動作を行わせ、ロータを安定に所定方向に回転駆動するモータを実現できる。また、通電制御信号は、立ち上がり部分と平坦部分と立ち下がり部分などにより形成され、立ち上がり部分と立ち下がり部分のうちの少なくとも一方の部分をスロープ信号に応動して実質的に滑らかに変化させている。従って、Q相のコイルへの電流路の切換動作を滑らかにできる。これにより、発生駆動力の脈動が小さくなり、振動・騒音の小さなモータになる。ここで、スロープ信号は、アナログ的な傾斜を有する傾斜信号の場合や、平均値が傾斜信号になるパルスを含んだディジタル信号の場合がある。また、時間計測手段の計測結果に応動した第1の調整時間T1であって、前記時間間隔の半分T0/2よりも小さい第1の調整時間T1(ここに、T1<T0/2)毎に第1の状態信号を変化させた。時間計測手段の計測結果に応動した第2の調整時間T2であって、前記第1の調整時間の半分T1/2よりも小さい第2の調整時間T2(ここに、T2<T1/2)毎に第2の状態信号を変化させた。
【0017】
従って、時間計測手段が次の計測結果を出力するまでに第1の状態信号は所要の状態数だけ変化し、第1の状態信号が次の変化を行うまでに第2の状態信号は所要の状態数だけ変化する。第2の状態信号に応動して実質的に傾斜を有するスロープ信号を得て、第1の状態信号とスロープ信号に応動した通電制御信号を出力した。これにより、ロータの回転速度が変化しても、スロープ信号に応動して実質的に滑らかな変化を行う通電制御信号を作成できる。また、時間計測手段の計測動作に応動して第1の状態信号を第1の所定状態にし、第1の状態信号の変化に応動して第2の状態信号を第2の所定状態にしているので、第1の状態信号の変化時点とスロープ信号を同期して変化させることができる。これにより、ロータ回転に同期した通電制御信号を正確に作成でき、Q相のコイルへの通電制御の乱れが生じない。
【0018】
また、たとえば、位置信号に基づいてロータの回転速度を制御するならば、安定に高精度な速度制御を行うことができる。その結果、位置検出手段を簡素にした低コストの構成ながらも、振動・騒音が小さく、高精度にロータを回転駆動するモータを実現できる。
【0019】
本発明の別の観点のモータでは、界磁磁束を発生する界磁部分を取り付けられたロータと、Q相(ここに、Qは3以上の整数)のコイルと、直流電圧を供給する2つの出力端子を有する電圧供給手段と、前記電圧供給手段の一方の出力端子側と前記コイルの一端への電流路を形成する第1のパワートランジスタをそれぞれ含んで構成されたQ個の第1の電力増幅手段と、前記電圧供給手段の他方の出力端子側と前記コイルの一端への電流路を形成する第2のパワートランジスタをそれぞれ含んで構成されたQ個の第2の電力増幅手段と、前記ロータの回転に応動した位置信号を得る位置検出手段と、前記位置信号に応動して前記Q個の第1の電力増幅手段と前記Q個の第2の電力増幅手段の通電区間を制御し、各前記通電区間を電気角の360/Q度相当よりも大きくする通電動作手段と、を具備するモータであって、前記通電動作手段は、前記位置信号に応動した時間間隔T0を計測する時間計測手段と、前記時間間隔T0に応動した第1の調整時間T1であって、前記時間間隔の半分T0/2よりも小さい前記第1の調整時間T1(ここに、T1<T0/2)毎に第1の状態信号を変化させ、前記第1の状態信号が前記時間間隔T0当たりに複数状態の状態変化を行うようにし、前記時間計測手段の計測動作に応動して前記第1の状態信号を第1の所定状態にする第1のタイミング調整手段と、前記時間間隔T0に応動した第2の調整時間T2であって、前記第1の調整時間の半分T1/2よりも小さい前記第2の調整時間T2(ここに、T2<T1/2)毎に第2の状態信号を変化させ、前記第2の状態信号が前記第1の調整時間T1当たりに複数状態の状態変化を行うようにし、前記第1の状態信号の変化に応動して前記第2の状態信号を第2の所定状態にする第2のタイミング調整手段と、前記第1の状態信号と前記第2の状態信号に応動した少なくとも1個の通電制御信号を作成し、前記Q個の第1の電力増幅手段と前記Q個の第2の電力増幅手段のうちで少なくとも1個の電力増幅手段の通電区間を前記少なくとも1個の通電制御信号に応動して制御する信号作成手段と、を含んで構成している。
【0020】
このように構成することにより、単一の位置信号に応動してQ相のコイルへの正確な通電制御を行うことができる。従って、たとえば、1個の位置検出素子の出力信号のみを用いて、Q相のコイルへの電流路の切換動作を行わせ、ロータを安定に所定方向に回転駆動するモータを実現できる。また、時間計測手段の計測結果に応動した第1の調整時間T1であって、前記時間間隔の半分T0/2よりも小さい第1の調整時間T1(ここに、T1<T0/2)毎に第1の状態信号を変化させた。時間計測手段の計測結果に応動した第2の調整時間T2であって、前記第1の調整時間の半分T1/2よりも小さい第2の調整時間T2(ここに、T2<T1/2)毎に第2の状態信号を変化させた。
【0021】
従って、時間計測手段が次の計測結果を出力するまでに第1の状態信号は所要の状態数だけ変化し、第1の状態信号が次の変化を行うまでに第2の状態信号は所要の状態数だけ変化する。その結果、第1の状態信号と第2の状態信号に応動して電流路の切換動作を行わせるならば、正確かつ安定にロータを回転駆動できる。また、たとえば、第2の状態信号に応動して実質的に傾斜を有するスロープ信号を作成するならば、通電制御信号の立ち上がり部分や立ち下がり部分をスロープ信号に応動して実質的に滑らかにすることができるので、Q相のコイルへの電流路の切換動作を滑らかになる。これにより、発生駆動力の脈動が小さくなり、振動・騒音の小さなモータを実現できる。また、ロータの回転速度が変化しても、第1の状態信号の状態変化数や第2の状態信号の状態変化数は変わらないので、常に滑らかな電流路の切換を実現する通電制御信号を作成できる。
【0022】
また、たとえば、時間計測手段の計測動作に応動して第1の状態信号を第1の所定状態にし、第1の状態信号の変化に応動して第2の状態信号を第2の所定状態にするならば、第1の状態信号の変化時点と第2の状態信号の変化時点を同期させることが可能になる。これにより、ロータ回転に同期した通電制御信号を作成でき、Q相のコイルへの通電制御の乱れが生じない。また、たとえば、位置信号に基づいてロータの回転速度を制御するならば、安定に高精度な速度制御を行うことができる。その結果、低コストの構成ながらも、振動・騒音が小さく、高精度にロータを回転駆動するモータを実現できる。
【0033】
これらおよびその他の構成や動作については、実施の形態の説明において詳細に説明する。
【0034】
【発明の実施の形態】
以下、本発明の好適な実施例について、図面を参照しながら説明する。
【0035】
《実施例1》
図1から図9に本発明の実施の形態1のモータを含んで構成されたディスク装置およびモータを示す。図1に全体構成を示す。ロータ11には、磁石磁束により複数極の界磁磁束を発生する界磁部を取り付けられている。ここでは、2極の永久磁石磁束による界磁部を示したが、一般に、4極,6極,等の多極の界磁部が構成可能である。3相のコイル12,13,14は、ステータに配設され、ロータ11との相対関係に関して、電気的に120度相当ずらされて配置されている。ここに、電気角の360度はロータの界磁部のN極とS極の1組の角度幅に相当する。各コイル12,13,14の一端は共通接続され、他の一端は電力供給端子として電力供給部20の出力端子側に接続されている。
【0036】
3相のコイル12,13,14は3相の駆動電流I1,I2,I3により3相磁束を発生し、ロータ11の界磁部との相互作用によって駆動力を発生し、ロータ11に駆動力を与える。ディスク1は、ロータ11に一体的に固定して取り付けられ、ロータ11によって直接的に回転駆動される。
【0037】
ディスク1にはディジタル的な情報信号(例えば、高品位な音響・映像信号)が記録されており、光学ヘッドもしくは磁気ヘッドによって構成されるヘッド2により、ディスク1からの信号再生をしている。情報処理部3は、ヘッド2からの出力信号を処理し、再生情報信号(例えば、高品位な音響・映像信号)を出力する。
【0038】
または、ディスク1にはディジタル的な情報信号を記録可能であり、光学ヘッドもしくは磁気ヘッドによって構成されるヘッド2により、ディスク1に信号記録している。情報処理部3は、入力された記録情報信号(例えば、高品位な音響・映像信号)を信号処理した記録用信号をヘッド2に供給し、ヘッド2によってディスク1に記録させている。
【0039】
図9(a)に信号再生を行うディスク装置の例を示す。ディスク1はロータ11と一体になって直接に回転駆動される。ディスク1には高密度にディジタル情報信号が記録されている。ヘッド2は、回転しているディスク1上の情報信号を信号再生し、再生用信号Pfを出力する。情報処理部3は、ヘッド2からの再生用信号Pfをディジタル的に処理し、再生情報信号Pgを出力する。なお、ここではステータやコイルの図示は省略した。
【0040】
図9(b)に信号記録を行うディスク装置の例を示す。ディスク1はロータ11と一体になって直接に回転駆動される。ディスク1は記録可能ディスクであり、高密度にディジタル情報信号を記録できる。情報処理部3は、入力された記録情報信号Rgをディジタル的に処理し、記録用信号Rfをヘッド2に出力する。ヘッド2は、回転しているディスク1上に記録用信号Rfを高密度に記録し、新たな情報信号をディスク1上に形成していく。
【0041】
なお、上記ヘッド2としては、状況に応じて再生専用ヘッド、記録再生兼用ヘッド、または、記録専用ヘッドが用いられる。
図1の位置検出部30は、1個の位置検出素子41と整形回路42を含んで構成されている。位置検出素子41は、たとえば、磁電変換素子であるホール素子であり、ロータ11の界磁部の磁極磁束を検知し、ロータ11の回転位置に応動したアナログ的な位置検出信号(位置信号)を出力する。整形回路42は、位置検出素子41の単一の位置検出信号を波形整形した単一の位置パルス信号Dt(位置信号)を出力する。ここで、位置検出素子41の位置検出信号や整形回路42の位置パルス信号Dtは、ロータ11およびディスク1の回転位置を表す位置信号に相当している。
【0042】
図1の指令部32は、位置検出部30の位置パルス信号Dtによりディスク1およびロータ11の回転速度を検出し、ディスク1の回転速度と目標速度との差に応動した指令信号Acを作り出している。ここでは、指令部32の指令信号Acは、位置パルス信号Dtに応動した電圧信号である。
【0043】
図1の通電動作ブロック45は、通電制御部31を含んで構成されている。通電制御部31は、位置検出部30の位置パルス信号Dtに応動して3相の第1の通電制御信号P1,P2,P3と3相の第2の通電制御信号Q1,Q2,Q3を出力する。図2に通電制御部31の具体的な構成を示す。
【0044】
図2の通電制御部は、時間計測器101と第1のタイミング調整器102と第2のタイミング調整器103と信号作成器104を含んで構成されている。時間計測器101は、位置パルス信号Dtの1周期または半周期に対応した時間間隔T0を計測し、その計測結果に対応した計測データ信号Daと計測動作信号Dpを出力する。また、時間計測器101は、位置パルス信号Dtを所要時間遅延させた遅延位置パルス信号Ddを必要に応じて出力する。
【0045】
第1のタイミング調整器102は、計測動作信号Dpの到来により計測データ信号Daを入力し、計測データ信号Da(時間間隔T0)に応動した第1の調整時間T1毎に第1のタイミング信号Faを発生する。また、第1のタイミング調整器102は、第1のタイミング信号Faに応動して内部状態を遷移させ、その内部状態遷移に応動して第1の状態信号を変化させる。第1のタイミング調整器102は、少なくとも第1の状態信号に応動した第1の調整信号Jaを出力する。さらに、第1のタイミング調整器102は、計測動作信号Dpに応動して第1の状態信号を実質的に第1の所定状態にセットする。
【0046】
第2のタイミング調整器103は、計測動作信号Dpの到来により計測データ信号Daを入力し、計測データ信号Da(時間間隔T0)に応動した第2の調整時間T2毎に第2のタイミング信号を発生する。また、第2のタイミング調整器103は、第2のタイミング信号に応動して内部状態を遷移させ、その内部状態に応動して第2の状態信号を変化させる。第2のタイミング調整器103は、第2の状態信号に応動した第2の調整信号Jbを出力する。また、第2のタイミング調整器103は、少なくとも第1のタイミング信号Faに応動して第2の状態信号を実質的に第2の所定状態にセットする。
【0047】
信号作成器104は、スロープ器111と形成器112を含んで構成されている。スロープ器111は、第2の調整信号Jbに応動したスロープ信号Saを出力する。形成器112は、第1の調整信号Jaとスロープ信号Saに応動した3相の第1の通電制御信号P1,P2,P3と3相の第2の通電制御信号Q1,Q2,Q3を出力する。第1の通電制御信号P1,P2,P3や第2の通電制御信号Q1,Q2,Q3の振幅は、形成器112への入力信号Ac’に応動して変化する。ここでは、指令部32の指令信号Acが形成器112の入力信号Ac’になっている。
【0048】
図3に時間計測器101と第1のタイミング調整器102と第2のタイミング調整器103の具体的な構成を示す。時間計測器101は、計測器121と遅延器122を含んで構成されている。計測器121は、位置パルス信号Dtの計測エッジ間の時間間隔T0を計測する計測回路201と計測結果を保持する計測データ保持回路202を含んで構成されている。位置パルス信号Dtの1周期の時間間隔を計測する場合に、計測回路201は位置パルス信号Dtの立ち上がりエッジまたは立ち下がりエッジを計測エッジにし、計測エッジ間の時間間隔を計測する。また、位置パルス信号Dtの半周期の時間間隔を計測する場合に、計測回路201は位置パルス信号Dtの立ち上がりエッジと立ち下がりエッジの両方を計測エッジにし、計測エッジ間の時間間隔を計測する。
【0049】
計測回路201は、位置パルス信号Dtの計測エッジ間の時間間隔T0の間に到来するクロック回路130の第1のクロック信号Ck1のパルス数をアップカウントする。計測データ保持回路202は、位置パルス信号Dtの到来に応動して計測回路201の内部データ信号Dbを保持する。これにより、計測データ保持回路202の出力データ信号Dcは、位置パルス信号Dtの1周期または半周期の時間間隔に対応した時間間隔T0を表す2進数のディジタルデータになる。計測回路201は、計測データ保持回路202が新しいデータを保持した直後にリセットされ、新たな計測を行う。
【0050】
遅延器122は、遅延回路211と遅延保持回路212を含んで構成されている。遅延回路211は、位置パルス信号Dtの計測エッジの到来に応動して計測器121の新たな出力データ信号Dcを入力する。その後に、遅延回路211はクロック回路130の第2のクロック信号CK2によりダウンカウントする。遅延回路211の内部データが零になると、計測動作信号Dpを発生する。計測動作信号Dpに応動して、遅延保持回路212は計測器121の出力データ信号Dcを入力・保持し、新たな計測データ信号Daを出力する。これにより、遅延器122は計測データに比例または略比例した所要の遅延時間Tdだけ遅れて、新たな計測動作信号Dpと計測データ信号Daを出力している。
【0051】
また、遅延器122の遅延回路211は、位置パルス信号Dtを遅延時間Tdだけ遅らせた遅延位置パルス信号Ddを出力する。なお、時間計測器101は第1のクロック信号Ck1と第2のクロック信号Ck2を発生するクロック回路130を含んで構成しても良い。
【0052】
第1のタイミング調整器102は、第1の繰返カウンタ回路221と第1の状態回路222と第1の調整回路223を含んで構成されている。第1の繰返カウンタ回路221は、計測動作信号Dpに応動して計測データ信号Daを入力し、クロック回路130の第3のクロック信号CK3によりダウンカウントする。第1の繰返カウンタ回路221の内部データが零になると、第1のタイミング信号Faを発生する。第1の繰返カウンタ回路221は、第1のタイミング信号Faの発生により計測データ信号Daを再入力し、再度ダウンカウントする。これにより、第1の繰返カウンタ回路221は、計測動作信号Dpの発生後、計測データ信号Daに対応した第1の調整時間T1毎に第1のタイミング信号Faを出力する。
【0053】
第1の調整時間T1は位置パルス信号Dtの時間間隔T0に比例または略比例している。時間計測器101が位置パルス信号Dtの1周期の時間間隔T0を計測する場合に、第1のタイミング信号Faの第1の調整時間T1はT0/6または略T0/6に等しくされている。また、時間計測器101が位置パルス信号Dtの半周期の時間間隔T0を計測する場合に、第1のタイミング信号Faの第1の調整時間T1はT0/3または略T0/3に等しくされている。なお、第1のタイミング調整器102は第3のクロック信号Ck3を発生するクロック回路130を含んで構成しても良い。
【0054】
第1の状態回路222は、たとえば、アップ型のカウンタ回路によって構成され、その内部状態に応動した第1の状態出力信号Jdを出力する。第1の状態回路222は、計測動作信号Dpにより内部状態を実質的に第1の所定状態にされる。その後に、第1の状態回路222は、第1のタイミング信号Faをクロックとしてカウントアップし、第1のタイミング信号Faに応動して内部状態を変化させ、第1の状態出力信号Jdを変化・遷移させる。従って、第1の状態出力信号Jdは時間計測器101の計測動作に応動して実質的に第1の所定状態に設定され、第1のタイミング信号Faの発生に応動して第1の状態出力信号Jdの状態を変化・遷移させる。すなわち、第1の状態出力信号Jdは第1の調整時間T1毎にその状態を変化・遷移させる。時間計測器101が位置パルス信号Dtの1周期の時間間隔を計測する場合に、第1の状態回路222は6状態(相数3の2倍の状態数)または略6状態で変化する。また、時間計測器101が位置パルス信号Dtの半周期の時間間隔を計測する場合に、第1の状態回路222は3状態(相数3の1倍の状態数)または略3状態で変化する。なお、第1の状態回路222の内部状態が所定値以上にならないように、第1の状態回路222のカウント値に制限を設けている。
【0055】
第1の調整回路223は、第1の状態回路222の第1の状態出力信号Jdに応動した第1の調整信号Jaを出力する。時間計測器101が位置パルス信号Dtの1周期の時間間隔を計測する場合に、第1の調整回路223の第1の調整信号Jaは第1の状態出力信号Jdに応動して位置パルス信号Dtの1周期当たり6状態または略6状態で変化する。また、時間計測器101が位置パルス信号Dtの半周期の時間間隔を計測する場合に、第1の調整回路223の第1の調整信号Jaは第1の状態出力信号Jdと遅延位置パルス信号Ddに応動して位置パルス信号Dtの1周期当たり6状態(相数3の2倍の状態数)または略6状態で変化する。従って、第1の調整信号Jeは少なくとも第1の状態出力信号Jdに応動したディジタル信号になる。
【0056】
第2のタイミング調整器103は、第2の繰返カウンタ回路231と第2の状態回路232と第2の調整回路233を含んで構成されている。第2の繰返カウンタ回路231は、計測動作信号Dpに応動して計測データ信号Daを入力し、クロック回路130の第4のクロック信号CK4によりダウンカウントする。第2の繰返カウンタ回路231の内部データが零になると、第2のタイミング信号Fbを発生する。第2の繰返カウンタ回路231は、第2のタイミング信号Fbの発生により計測データ信号Daを再入力し、再度ダウンカウントする。これにより、第2の繰返カウンタ回路231は、計測動作信号Dpの発生後、計測データ信号Daに対応した第2の調整時間T2毎に第2のタイミング信号Fbを出力する。第2の調整時間T2は位置パルス信号Dtの時間間隔T0に比例または略比例している。第2の調整時間T2は第1の調整時間T1よりも十分に小さくされ(T2<T1/2)、ここでは、T2はT1/10程度にされている。なお、第2の繰返カウンタ回路231は、第1のタイミング信号Faの発生に応動して計測データ信号Daを再入力しているが、これは必要に応じて実施すれば良く、無くしても良い。また、第2のタイミング調整器103は第4のクロック信号Ck4を発生するクロック回路130を含んで構成しても良い。
【0057】
第2の状態回路232は、たとえば、アップ型のカウンタ回路によって構成され、その内部状態に応動した第2の状態出力信号Jeを出力する。第2の状態回路232は、第1のタイミング信号Faにより内部状態を実質的に第2の所定状態にされる。また、第2の状態回路232は、必要に応じて、計測動作信号Dpにより内部状態を実質的に第2の所定状態にされる。その後に、第2の状態回路232は、第2のタイミング信号Fbをクロックとしてカウントアップし、第2のタイミング信号Fbに応動して内部状態を変化させ、第2の状態出力信号Jeを変化・遷移させる。従って、第2の状態出力信号Jeは第1のタイミング信号Faの発生や時間計測器101の計測動作に応動して実質的に第2の所定状態に設定され、第2のタイミング信号Fbの発生に応動して第2の状態出力信号Jeの状態を変化・遷移させる。すなわち、第2の状態出力信号Jeは第2の調整時間T2毎にその状態を変化・遷移させる。ここでは、第2の状態回路232は10状態または略10状態で変化する。なお、第2の状態回路232の内部状態が所定値以上にならないように、第2の状態回路232のカウント値に制限を設けている。
【0058】
第2の調整回路233は、第2の状態回路232の第2の状態出力信号Jeに応動した第2の調整信号Jbを出力する。従って、第2の調整信号Jbは第2の状態出力信号Jeに応動したディジタル信号になる。
【0059】
図10に時間計測器101と第1のタイミング調整器102と第2のタイミング調整器103の動作説明用の波形図を示す。図10の横軸は時間である。ここでは、時間計測器101が位置パルス信号Dtの1周期を計測する場合を示す。時間計測器101の計測器121は、図10(a)に示した位置パルス信号Dtの1周期の時間間隔T0を計測する。時間計測器101の遅延器122は、計測時間間隔T0に比例または略比例した遅延時間Tdだけ位置パルス信号Dtを全体的に遅延させた遅延位置パルス信号Ddを出力する(図10(b)参照)。また、遅延器122は、位置パルス信号Dtの計測エッジ時点から遅延時間Tdだけ遅らせたタイミングにて計測動作信号Dpを出力する。第1のタイミング調整器102の第1の繰返カウンタ回路221は、計測時間間隔T0に応動した第1の調整時間T1毎に第1のタイミング信号Faを発生する(図10(c)参照)。
【0060】
第1の調整時間T1はT0/6または略T0/6にされている。第1のタイミング調整器102の第1の状態回路222は、計測動作信号Dpに応動して内部状態および第1の状態出力信号Jdを実質的に第1の所定状態にする。また、第1の状態回路222は、第1の調整時間T1毎に発生する第1のタイミング信号Faに応動して第1の状態出力信号Jdを変化・遷移させる。第1のタイミング調整器102の第1の調整回路223は、第1の状態出力信号Jdに応動した第1の調整信号Jaを出力する。従って、第1の調整信号Jaは位置パルス信号Dtまたは遅延位置パルス信号Ddの1周期当たり6状態または略6状態の状態変化を行う。なお、第1の調整信号Jaは第1の状態出力信号Jdと遅延位置パルス信号Ddに応動して変化させても良い。
【0061】
第2のタイミング調整器103の第2の繰返カウンタ回路231は、計測時間間隔T0に応動した第2の調整時間T2毎に第2のタイミング信号Fbを発生する(図10(d)参照)。ここでは、第2の調整時間T2はT1/10または略T1/10にされている。第2のタイミング調整器103の第2の状態回路232は、第1のタイミング信号Faおよび計測動作信号Dpに応動して内部状態および第2の状態出力信号Jeを実質的に第2の所定状態にする。また、第2の状態回路232は、第2の調整時間T2毎に発生する第2のタイミング信号Fbに応動して第2の状態出力信号Jeを変化させる。第2のタイミング調整器103の第2の調整回路233は、第2の状態出力信号Jeに応動した第2の調整信号Jbを出力する。従って、第2の調整信号Jbは第1のタイミング信号Faの1周期当たり10状態または略10状態の状態変化を行う。
【0062】
図2の信号作成器104のスロープ器111の具体的な構成を図4に示す。スロープ器111は、DA変換回路301と基準電圧回路302と差動回路303を含んで構成されている。DA変換回路301は、第2のタイミング調整器103の第2の調整信号Jbに応動して第1のスロープ信号Sa1を出力する。図10(e)に第1のスロープ信号Sa1の波形を示す。第1のタイミング信号Faに応動して第2の調整信号Jbが第2の所定状態になるので、第1のスロープ信号Sa1は零にセットされる。第1のスロープ信号Sa1は、第2の調整信号Jbが第1の所定値より小さい間は零であり、第2の調整信号Jbの増加に伴って振幅を大きくし、基準電圧に達するとその値で一定になる。その結果、第1のスロープ信号Sa1は、第1のタイミング信号Faに同期し、所要の傾斜を有するアナログ的なスロープ信号になる。
【0063】
基準電圧回路302は、基準電圧に相当する一定電圧の第3のスロープ信号Sa3を出力する。第3のスロープ信号Sa3は傾斜を持っていないので厳密に言えばスロープ信号とは言えないが、ここでは信号をグループで扱うために、スロープ信号と表現する。差動回路303は、第3のスロープ信号Sa3と第1のスロープ信号Sa1の差を取り、第2のスロープ信号Sa2を出力する。図10(f),(g)に第2のスロープ信号Sa2と第3のスロープ信号Sa3の波形を示す。
【0064】
スロープ器111は、時間計測器101の計測時間間隔T0に実質的に比例した第1の調整時間毎に繰り返す少なくとも1個のスロープ信号Sa1を作成している。スロープ信号Sa1は、位置パルス信号の1周期である時間間隔T0当たりに実質的に複数回の傾斜波形を繰り返している。ここでは、スロープ信号Sa1は位置パルス信号の1周期当たりに実質的に6回の傾斜波形を繰り返している。
【0065】
図2の信号作成器104の形成器112は、第1のタイミング調整器102の第1の調整信号Jaと第2のタイミング調整器103の第2の調整信号Jbに応動して3相の第1の通電制御信号P1,P2,P3と3相の第2の通電制御信号Q1,Q2,Q3を形成している。第1の通電制御信号P1を作成する形成器112の一部分の形成回路の具体的な構成を図5に示す。形成器112の一部分の形成回路は、信号合成回路311と乗算回路312と電流変換回路313を含んで構成されている。信号合成回路311は、スロープ器111の第1のスロープ信号Sa1と第2のスロープ信号Sa2と第3のスロープ信号Sa3を第1のタイミング調整器102の第1の調整信号Jaに応動して合成し、台形波状の合成信号Gp1を作成する。
【0066】
乗算回路312は、合成信号Gp1と入力信号Ac’を乗算する。ここでは、入力信号Ac’は指令部32の指令信号Acであるから、乗算回路312の出力信号は合成信号Gp1と指令信号Acの乗算結果になる。電流変換回路313は、乗算回路312の出力信号に実質的に比例した電流信号である第1の通電制御信号P1を出力する。その結果、第1の通電制御信号P1は、第1のタイミング調整器102の第1の調整信号Ja(第1の状態出力信号Jd)と第2のタイミング調整器103の第2の調整信号Jb(第2の状態出力信号Je)に応動し、第1の調整信号Jaによりスロープ信号Sa1,Sa2,Sa3を合成した台形波状の波形をしている。その他の第1の通電制御信号P2,P3や第2の通電制御信号Q1,Q2,Q3を作成する形成器112の他の形成回路の具体的な構成も、図5に示した形成回路と同様であり、説明を省略する。
【0067】
形成器112は、スロープ信号Sa1に応動して少なくとも一方の傾斜部分において実質的に滑らかに変化する少なくとも1個の通電制御信号を作成している。ここでは、立ち上がり傾斜部分と立ち下がり傾斜部分の両方において実質的に滑らかに変化する3相の第1の通電制御信号と3相の第2の通電制御信号を作成している。3相の第1の通電制御信号と3相の第2の通電制御信号はそれぞれ、位置信号の1周期に実質的に等しい繰り返し時間を有している。
【0068】
図10(h)に第1の通電制御信号P1の波形を示す。第1の通電制御信号P1は、その振幅を指令信号Acに応動して変化させる台形波状の電流信号になる。第1の通電制御信号P1の通電区間Tp1は電気角で360/3=120度よりもかなり大きくされている。図10(i),(j)に他の第1の通電制御信号P2,P3の波形を示す。このように、3相の第1の通電制御信号P1,P2,P3は、第1のタイミング調整器102の第1の調整信号Jaと第2のタイミング調整器103の第2の調整信号Jbに応動し、第1の調整信号Jaによりスロープ信号Sa1,Sa2,Sa3を合成した台形波状の電流信号になっている。これらの3相の第1の通電制御信号P1,P2,P3の通電区間Tp1,Tp2,Tp3は、それぞれ120度よりもかなり大きくされている。ここでは、Tp1,Tp2,Tp3を150〜180度に選定している。
【0069】
同様に、図10(k)〜(m)に3相の第2の通電制御信号Q1,Q2,Q3の波形を示す。3相の第2の通電制御信号Q1,Q2,Q3は、第1のタイミング調整器102の第1の調整信号Jaと第2のタイミング調整器103の第2の調整信号Jbに応動し、第1の調整信号Jaによりスロープ信号Sa1,Sa2,Sa3を合成した台形波状の電流信号になっている。これらの3相の第2の通電制御信号Q1,Q2,Q3の通電区間Tq1,Tq2,Tq3は、それぞれ120度よりもかなり大きくされている。ここでは、Tq1,Tq2,Tq3を150〜180度に選定している。
【0070】
なお、第1の通電制御信号P1と第2の通電制御信号Q1は逆相(電気角で180度の位相差)にされ、第1の通電制御信号P2と第2の通電制御信号Q2は逆相にされ、第1の通電制御信号P3と第2の通電制御信号Q3は逆相にされている。
【0071】
図1の電力供給部20は、通電制御部31の3相の第1の通電制御信号P1,P2,P3と3相の第2の通電制御信号Q1,Q2,Q3に応動して3相のコイル12,13,14への電流路を切り換えている。図6に電力供給部20の具体的な構成を示す。図6の電力供給部20は、3個の第1の電力増幅器351,352,353と3個の第2の電力増幅器355,356,357を含んで構成されている。
【0072】
第1の電力増幅器351は、電圧供給部25の負極出力端子側とコイル12の電力供給端子側への電流路を形成する第1のパワートランジスタを含んで構成され、第1の通電制御信号P1を増幅して出力する。同様に、第1の電力増幅器352は、電圧供給部25の負極出力端子側とコイル13の電力供給端子側への電流路を形成する第1のパワートランジスタを含んで構成され、第1の通電制御信号P2を増幅して出力する。
【0073】
同様に、第1の電力増幅器353は、電圧供給部25の負極出力端子側とコイル14の電力供給端子側への電流路を形成する第1のパワートランジスタを含んで構成され、第1の通電制御信号P3を増幅して出力する。一例として、図7に第1の電力増幅器351の具体的な構成を示す。この第1の電力増幅器351は、NPN型バイポーラの第1のパワートランジスタ361によって構成され、ベース側への入力電流を電流増幅して出力する。
【0074】
第2の電力増幅器355は、電圧供給部25の正極出力端子側とコイル12の電力供給端子側への電流路を形成する第2のパワートランジスタを含んで構成され、第2の通電制御信号Q1を増幅して出力する。同様に、第2の電力増幅器356は、電圧供給部25の正極出力端子側とコイル13の電力供給端子側への電流路を形成する第2のパワートランジスタを含んで構成され、第2の通電制御信号Q2を増幅して出力する。
【0075】
同様に、第2の電力増幅器357は、電圧供給部25の正極出力端子側とコイル13の電力供給端子側への電流路を形成する第2のパワートランジスタを含んで構成され、第2の通電制御信号Q3を増幅して出力する。一例として、図8に第2の電力増幅器355の具体的な構成を示す。この第2の電力増幅器355は、NPN型バイポーラの第2のパワートランジスタ365によって構成され、ベース側への入力電流を電流増幅して出力する。
【0076】
次に、全体的な動作について説明する。ディスク1を直接的に回転駆動するロータ11の界磁部の磁極の回転位置を位置検出素子41にて検出する。位置検出部30は、位置検出素子41の単一の位置検出信号(位置信号)を波形整形した位置パルス信号Dtを出力する。通電動作ブロック45の通電制御部31は、位置パルス信号Dtの1周期または半周期の時間間隔T0を計測し、計測結果に応動した第1のタイミング信号Faを第1の調整時間T1毎に発生させ、計測結果に応動した第2の調整時間T2毎に第2のタイミング信号Fbを発生させる。第1の調整時間T1と第2の調整時間T2は時間間隔T0に実質的に比例し、かつ、T1はT0のおよそ1/6または1/3、T2はT0のおよそ1/60または1/30にされている。
【0077】
第1のタイミング信号Faに応動して第1の調整時間T1毎に第1の状態出力信号Jdおよび第1の調整信号Jaを変化・遷移させる。ここでは、第1の状態出力信号Jdおよび第1の調整信号Jaはおよそ6状態または3状態にて変化・遷移する。第2のタイミング信号Fbに応動して第2の調整時間T2毎に第2の状態出力信号Jeおよび第2の調整信号Jbを変化・遷移させる。ここでは、第2の状態出力信号Jeおよび第2の調整信号Jbはおよそ10状態にて変化・遷移する。第2の調整信号Jbに応動して実質的に傾斜を有するスロープ信号Sa1,Sa2,Sa3を作り出す。
【0078】
第1の調整信号Jaに応動してスロープ信号Sa1,Sa2,Sa3を合成し、立ち上がり傾斜部分や立ち下がり傾斜部分のうちで少なくとも一方の傾斜部分においてスロープ信号に応動して滑らかに変化する6個の合成信号を作り出す。6個の合成信号に応動した3相の第1の通電制御信号P1,P2,P3と3相の第2の通電制御信号Q1,Q2,Q3を作成する。各通電制御信号は、立ち上がり傾斜部分や立ち下がり傾斜部分のうちで少なくとも一方の傾斜部分においてスロープ信号に応動して滑らかに変化している。
【0079】
電力供給部20の3個の第1の電力増幅器351,352,353は、3相の第1の通電制御信号P1,P2,P3を増幅してコイル12,13,14に駆動電流I1,I2,I3の負極側電流を供給する。電力供給部20の3個の第2の電力増幅器355,356,357は、3相の第2の通電制御信号Q1,Q2,Q3を増幅してコイル12,13,14に駆動電流I1,I2,I3の正極側電流を供給する。これにより、ディスク1やロータ11の回転に同期して変化する滑らかな傾斜を有する3相の駆動電流I1,I2,I3を3相のコイル12,13,14に供給する。その結果、発生駆動力の脈動が著しく小さくなり、ディスク1の振動・騒音は大幅に小さくなる。従って、高密度ディスクへの記録・再生に適したディスク装置を実現できる。
【0080】
また、指令部32は、位置パルス信号Dtの周期または半周期に基づいてディスク1やロータ11の回転速度を検出し、回転速度と目標速度を比較し、比較結果に応動した速度制御電圧である指令信号Acを出力する。3相の第1の通電制御信号P1,P2,P3と3相の第2の通電制御信号Q1,Q2,Q3は、指令信号Acに応動して振幅を変化する。これにより、コイル12,13,14への駆動電流I1,I2,I3の大きさが指令信号Acに応動して制御され、ディスク1やロータ11を高精度に速度制御できる。
【0081】
本実施の形態では、単一の位置信号に基づいて3相のコイルへの電流路を正確に切り換えている。従って、たとえば、1個の位置検出素子を用いてディスクやロータを回転駆動できるので、部品点数が少なく、簡素な構成の低コストなディスク装置やモータを実現できる。単一の位置信号の時間間隔T0を計測し、計測結果に応動した第1の調整時間T1毎に第1のタイミング信号を得て、第1のタイミング信号の発生に応動して第1の状態信号(たとえば、第1の状態出力信号または第1の調整信号)を変化・遷移させた。
【0082】
また、位置信号の時間間隔T0の計測結果に応動した第2の調整時間T2毎に第2のタイミング信号を得て、第2のタイミング信号の発生に応動して第2の状態信号(たとえば、第2の状態出力信号または第2の調整信号)を変化・遷移させた。これにより、第2の状態信号に応動して実質的に滑らかな傾斜を有するスロープ信号を作成できる。従って、第1の状態信号や第2の状態信号に応動した通電制御信号を作成するならば、3相のコイルへの電流路を正確なタイミングにて滑らかに切り換えることが可能になる。
【0083】
特に、第1の状態信号とスロープ信号に応動した通電制御信号を作成するならば、立ち上がり傾斜部分や平坦部分や立ち下がり傾斜部分などにおいて、立ち上がり傾斜部分と立ち下がり傾斜部分のうちで少なくとも一方の傾斜部分においてスロープ信号に応動して実質的に滑らかに変化する通電制御信号を容易に作成できる。その結果、3相のコイルへの駆動電流は滑らかに変化し、発生駆動力の脈動を低減できる。これにより、振動・騒音が小さく、高密度ディスクへの記録・再生に適したディスク装置を実現できる。
【0084】
また、第1の調整時間T1が第2の調整時間T2よりも大幅に長いので、第1のタイミング調整器を構成する第1の繰返カウンタ回路のビット長を長くでき、第1の調整時間T1の有効ビット長も長くでき、正確なタイミングにて第1のタイミング信号を発生できる。すなわち、ディスクが高速回転する場合であっても、第1の調整時間T1の有効ビット長を長くできるので、ビット誤差の影響が小さくなる。従って、3相の第1の通電制御信号と3相の第2の通電制御信号を正確なタイミングで作成できる。
【0085】
また、第2のタイミング調整器の第2のタイミング信号はスロープ信号の作成に使用しているだけであるから、第2のタイミング調整器を構成する第2の繰返カウンタ回路のビット長が短くて、第2の調整時間T2の有効ビット長が短くなっても、その影響は少ない。これらの第1の調整時間T1と第2の調整時間T2は位置信号の計測結果に応動しているので、ディスクの回転速度が変化した場合でも、正確なタイミングにて電流路の切換動作を行わせることができる。従って、指令部32において目標速度をディスク半径に反比例して変化させる場合であっても、常に正確なタイミングで電流路の切換を行うことができる。その結果、ディスクの高精度な回転駆動および速度制御を行うディスク装置およびモータを実現できる。
【0086】
また、時間計測器による位置信号の計測動作に応動して第1のタイミング調整器の第1の状態信号を実質的に第1の所定状態にセットしている。これにより、位置信号の位相に合わせた第1の状態信号を作成でき、通電制御信号の位相をロータの回転位置に正確に合わせることができる。これにより、ディスクを加速または減速させた場合であっても、常に正確な位相において電流路の切換動作を行わせることができる。また、第1のタイミング信号の発生による第1の状態信号の変化動作に応動して第2のタイミング調整器の第2の状態信号を実質的に第2の所定状態にセットしている。これにより、スロープ信号の位相を第1のタイミング信号に同期させることができ、通電制御信号の傾斜部分をロータの回転位置に正確に合わせることができる。その結果、ロータの回転位置に同期した通電制御信号を作成でき、ロータを高精度に回転駆動できる。
【0087】
また、位置信号の計測結果に応動した所要の遅延時間Tdを設けて、位置信号の検出エッジの発生から遅延時間Td後に計測動作信号Dpを発生させ、第1のタイミング調整器の第1の状態信号を第1の所定状態にした。これにより、位置信号の位相に対して実際の切換動作の位相に位相ずれを設けることが可能になり、位置検出素子41とコイル11,12,13の相対的な配置に自由度を持たせることが可能になる。すなわち、モータ構造の設計自由度が大きくなり、最適配置が可能になる。
【0088】
《実施例2》
図11から図14に本発明の実施の形態2のモータを含んで構成されたディスク装置およびモータを示す。図11に全体構成を示す。本実施の形態では、電流検出部33とスイッチング制御部37と通電駆動部38を含んで構成されている。通電制御部31と通電駆動部38は通電動作ブロック145を形成し、電流検出部33とスイッチング制御部37はスイッチング動作ブロック146を形成している。なお、前述の実施の形態1と同様なものには同一の番号を付し、説明を省略する。
【0089】
電力供給部20は、3個の第1の電力増幅器と3個の第2の電力増幅器を含んで構成され(図6参照)、ディスク1やロータ11の回転に伴って3相のコイル12,13,14への電流路を切り換えていく。第1の電力増幅器には図7に示した構成にダイオードを追加すれば使用可能であるが、図12に第1の電力増幅器の別の構成を示す。また、第2の電力増幅器には図8に示した構成にダイオードを追加すれば使用可能であるが、図13に第2の電力増幅器の別の構成を示す。
【0090】
図12の第1の電力増幅器500は、第1の電界効果型パワートランジスタ501と第1のパワーダイオード501dと電界効果型トランジスタ502と抵抗503,504を含んで構成されている。第1の電界効果型パワートランジスタ501は、NチャンネルMOS形の電界効果型パワートランジスタによって構成され、その電流流出端子側から電流流入端子側に向けて逆接続されて挿入される寄生ダイオードによって、第1のパワーダイオード501dが形成されている。第1の電界効果型パワートランジスタ501と電界効果型トランジスタ502は電界効果型パワー部カレントミラー回路を構成し、通電制御端子側への入力電流を所定の電流増幅して出力する(たとえば、100倍程度の増幅)。抵抗503,504は、電界効果型パワー部カレントミラー回路の増幅特性を高めるものであり、必要に応じて挿入される。すなわち、抵抗503,504は両方挿入、一方挿入、または無くしても良い。
【0091】
図13の第2の電力増幅器510は、第2の電界効果型パワートランジスタ511と第2のパワーダイオード511dと電界効果型トランジスタ512と抵抗513,514を含んで構成されている。第2の電界効果型パワートランジスタ511は、NチャンネルMOS形の電界効果型パワートランジスタによって構成され、その電流流出端子側から電流流入端子側に向けて逆接続されて挿入される寄生ダイオードによって、第2のパワーダイオード511dが形成されている。第2の電界効果型パワートランジスタ511と電界効果型トランジスタ512は電界効果型パワー部カレントミラー回路を構成し、通電制御端子側への入力電流を所定の電流増幅して出力する(たとえば、100倍程度の増幅)。抵抗513,514は、電界効果型パワー部カレントミラー回路の増幅特性を高めるものであり、必要に応じて挿入される。すなわち、抵抗513,514は両方挿入、一方挿入、または無くしても良い。
【0092】
図11のスイッチング動作ブロック146の電流検出部33は、電力供給部20の3個の第1の電力増幅器を介して電圧供給部25がコイル12,13,14に供給する通電電流または合成供給電流Igを検出し、通電電流または合成供給電流Igに応動した電流検出信号Adを出力する。この合成供給電流Igは、3相のコイル12,13,14への3相の駆動電流I1,I2,I3の負極側電流の合成値に相当する。スイッチング制御部37は、電流検出部33の電流検出信号Adと指令部32の指令信号Acを比較し、その比較結果に応動した高周波のスイッチングパルス信号Wpを出力する。
【0093】
図11の通電動作ブロック145の通電駆動部38は、通電制御部31の3相の第1の通電制御信号P1,P2,P3と3相の第2の通電制御信号Q1,Q2,Q3およびスイッチング制御部37のスイッチングパルス信号Wpが入力される。通電駆動部38は、スイッチングパルス信号Wpに応動して3相の第1の通電制御信号P1,P2,P3および/または3相の第2の通電制御信号Q1,Q2,Q3を高周波パルスにし、3相の第3の通電制御信号P1’,P2’,P3’と3相の第4の通電制御信号Q1’,Q2’,Q3’を作成する。図14に通電駆動部38の具体的な構成を示す。
【0094】
図14の通電駆動部38は、第1の通電動作器550と第2の通電動作器551を含んで構成されている。第1の通電動作器550の第1の通電動作回路550aは、第1の通電制御信号P1をスイッチングパルス信号Wpによってパルス化した第3の通電制御信号P1’を作成する。第3の通電制御信号P1’は、スイッチングパルス信号Wpが”H”(高電位状態)の時に第1の通電制御信号P1に比例または略比例した大きさの電流信号になり、スイッチングパルス信号Wpが”L”(低電位状態)の時に第1の通電制御信号P1に無関係に零または所要のオフ用電流信号になる。
【0095】
同様に、第1の通電動作器550の第1の通電動作回路550bは、第1の通電制御信号P2をスイッチングパルス信号Wpによってパルス化した第3の通電制御信号P2’を作成する。同様に、第1の通電動作器550の第1の通電動作回路550cは、第1の通電制御信号P3をスイッチングパルス信号Wpによってパルス化した第3の通電制御信号P3’を作成する。すなわち、3相の第3の通電制御信号P1’,P2’,P3’は、3相の第1の通電制御信号P1,P2,P3に応動し、単一のスイッチングパルス信号Wpによりパルス化した3相の電流信号になっている。
【0096】
第2の通電動作器551の第2の通電動作回路551aは、第2の通電制御信号Q1に比例または略比例した第4の通電制御信号Q1’を作成する。同様に、第2の通電動作器551の第2の通電動作回路551bは、第2の通電制御信号Q2に比例または略比例した第4の通電制御信号Q2’を作成する。同様に、第2の通電動作器551の第2の通電動作回路551cは、第2の通電制御信号Q3に比例または略比例した第4の通電制御信号Q3’を作成する。すなわち、3相の第4の通電制御信号Q1’,Q2’,Q3’は、3相の第2の通電制御信号Q1,Q2,Q3に応動た3相の電流信号になっている。なお、必要ならば、第2の通電動作器551の第2の通電動作回路551a,551b,551cは、第2の通電制御信号Q1,Q2,Q3をスイッチングパルス信号Wpによってパルス化して、第4の通電制御信号Q1’,Q2’,Q3’を作成しても良い。
【0097】
図11において、3相の第3の通電制御信号P1’,P2’,P3’は、電力供給器20の3個の第1の電力増幅器の通電制御端子側に供給される。第1の電力増幅器の電界効果型パワー部カレントミラー回路は、通電制御端子への入力電流である第3の通電制御信号P1’を電流増幅して出力する。これにより、第1の電力増幅器の第1の電界効果型パワートランジスタは、第3の通電制御信号P1’に応動して高周波スイッチング動作を行い、コイル12への駆動電圧V1をパルス的な電圧にし、コイル12に駆動電流I1の負極側電流を供給する。
【0098】
同様に、他の相の第1の電力増幅器の電界効果型パワー部カレントミラー回路は、通電制御端子への入力電流である第3の通電制御信号P2’を電流増幅して出力する。これにより、第1の電力増幅器の第1の電界効果型パワートランジスタは、第3の通電制御信号P2’に応動して高周波スイッチング動作を行い、コイル13への駆動電圧V2をパルス的な電圧にし、コイル13に駆動電流I2の負極側電流を供給する。同様に、残りの相の第1の電力増幅器の電界効果型パワー部カレントミラー回路は、通電制御端子への入力電流である第3の通電制御信号P3’を電流増幅して出力する。これにより、第1の電力増幅器の第1の電界効果型パワートランジスタは、第3の通電制御信号P3’に応動して高周波スイッチング動作を行い、コイル14への駆動電圧V3をパルス的な電圧にし、コイル13に駆動電流I3の負極側電流を供給する。
【0099】
3相の第4の通電制御信号Q1’,Q2’,Q3’は、電力供給器20の3個の第2の電力増幅器の通電制御端子側に供給される。第2の電力増幅器の電界効果型パワー部カレントミラー回路は、通電制御端子への入力電流である第4の通電制御信号Q1’を電流増幅して出力し、コイル12に駆動電流I1の正極側電流を供給する。同様に、他の相の第2の電力増幅器の電界効果型パワー部カレントミラー回路は、通電制御端子への入力電流である第4の通電制御信号Q2’を電流増幅して出力し、コイル13に駆動電流I2の正極側電流を供給する。同様に、残りの相の第2の電力増幅器の電界効果型パワー部カレントミラー回路は、通電制御端子への入力電流である第4の通電制御信号Q3’を電流増幅して出力し、コイル14に駆動電流I3の正極側電流を供給する。
【0100】
図11の電流検出部33は、電圧供給部25から3相のコイル12,13,14への通電電流Igに比例または略比例したパルス的な電流検出信号Adを出力する。スイッチング制御部37のスイッチングパルス信号Wpは、電流検出信号Adと指令信号Adを比較し、その比較結果に応動した高周波スイッチング信号になっている。スイッチングパルス信号Wpは、通常、20kHz〜500kHzの範囲内の高周波信号にされている。
【0101】
スイッチングパルス信号Wpに応動してパルス化された第3の通電制御信号P1’,P2’,P3’により、3個の第1の電力増幅器は高周波スイッチング動作を行う。その結果、通電電流Igのピーク値は指令信号Acに応動して電流制御される。これにより、3相のコイル12,13,14への駆動電流I1,I2,I3を指令信号Acに応動して正確に電流制御でき、発生駆動力の脈動を低減できる。すなわち、ディスク1やロータ11の振動・騒音を大幅に低減できる。なお、スイッチングパルス信号Wpの周波数は一定である必要はなく、回転数や負荷状況によって周波数が変わっても良い。
【0102】
また、通電制御部31の3相の第1の通電制御信号P1,P2,P3や3相の第2の通電制御信号Q1,Q2,Q3は、立ち上がり傾斜部分と立ち下がり傾斜部分のうちで少なくとも一方の傾斜部分を信号作成器104のスロープ信号に応動して滑らかに変化させている。3相の第1の通電制御信号P1,P2,P3とスイッチングパルス信号Wpに応動した3相の第3の通電制御信号P1’,P2’,P3’を作成し、3相の第3の通電制御信号P1’,P2’,P3’に応動して3個の第1の電力増幅器を高周波スイッチング動作させている。また、3相の第2の通電制御信号Q1,Q2,Q3(とスイッチングパルス信号Wp)に応動した3相の第4の通電制御信号Q1’,Q2’,Q3’を作成し、3相の第4の通電制御信号Q1’,Q2’,Q3’に応動して3個の第2の電力増幅器を動作させている。これにより、3相のコイル12,13,14への駆動電流I1,I2,I3は滑らかな変化を行い、発生駆動力の脈動は著しく小さくなる。すなわち、ディスク1やロータ11の振動・騒音を大幅に低減できる。
【0103】
本実施の形態では、上述の説明にて理解されるように、コイルに駆動電流を供給するパワートランジスタをオン・オフの高周波スイッチング動作させ、パワートランジスタの電力損失を大幅に低減した。すなわち、第1の電力増幅器の第1のパワートランジスタをオン・オフの高周波スイッチング動作させ、パワートランジスタの電力損失を著しく小さくした。これにより、ディスク装置やモータの発熱が著しく小さくなる。従って、記録可能ディスクへの記録・再生を安定に実施できる。
【0104】
また、本実施の形態では、電圧供給部から3相のコイルへの通電電流に応動した電流検出信号Adを作成し、電流検出信号Adと指令信号Acの比較結果に応動した単一のスイッチングパルス信号Wpを作成している。このスイッチングパルス信号Wpに応動して電力供給部の3個の第1の電力増幅器と3個の第2の電力増幅器のうちで少なくとも1個の電力増幅器を高周波スイッチング動作させている。従って、指令信号に応動した正確な電流制御が可能になり、消費電力の少ない高性能なディスク装置やモータを実現できる。特に、電圧供給部から3相のコイルへの通電電流に直接的に比例または略比例した電流検出信号を作成し、電流検出信号と指令信号の比較結果によりスイッチングパルス信号を作成した。これにより、電圧供給部から3相のコイルへの通電電流のピーク値を指令信号に応動して直接制御することが可能になり、高精度の電流制御が可能になる。
【0105】
また、1個または2個の第1の電力増幅器を単一のスイッチングパルス信号に応動して同時に高周波スイッチング動作させるようにしているので、高周波スイッチング動作の構成が非常に簡素になり、低コストに実現できる。なお、電流検出部の構成は、通電電流に直接比例したパルス的な電流検出信号を作成する場合に限らず、フィルタなどにより平滑化した電流検出信号を出力するようにしても良い。また、第1の電力増幅器だけでなく、第2の電力増幅器も高周波スイッチング動作させるようにしても良い。
【0106】
また、本実施の形態でも、前述の実施の形態1と同様な各種の利点を得ることができる。
【0107】
《実施例3》
図15から図21に本発明の実施の形態3のモータを含んで構成されたディスク装置およびモータを示す。図15に全体構成を示す。本実施の形態では、通電制御部600と通電駆動部601により通電動作ブロック605を形成し、第1の通電制御信号や第2の通電制御信号や第3の通電制御信号や第4の通電制御信号をディジタル的なオン・オフのパルス信号にしたものである。なお、前述の実施の形態1や実施の形態2と同様なものには同一の番号を付し、説明を省略する。
【0108】
図15の通電動作ブロック605の通電制御部600は、位置検出部30の位置パルス信号Dtに応動してディジタル的に変化する3相の第1の通電制御信号P1,P2,P3と3相の第2の通電制御信号Q1,Q2,Q3を出力する。また、第1の調整信号Ja(または第1の状態出力信号Jd)を通電駆動部601に供給する。図16に通電制御部600の具体的な構成を示す。
【0109】
図16の通電制御部600は、時間計測器101と第1のタイミング調整器102と第2のタイミング調整器103と信号作成器614を含んで構成されている。時間計測器101と第1のタイミング調整器102と第2のタイミング調整器103の具体的な構成は、図3に示したものと同様である。
【0110】
時間計測器101は、位置パルス信号Dtの1周期または半周期の時間間隔T0を計測し、その計測結果に対応した計測データ信号Daと計測動作信号Dpを出力する。また、時間計測器101は、位置パルス信号Dtを所要時間遅延させた遅延位置パルス信号Ddを必要に応じて出力する。
【0111】
第1のタイミング調整器102は、計測動作信号Dpの到来により計測データ信号Daを入力し、時間間隔T0に比例または略比例した第1の調整時間T1毎に第1のタイミング信号Faを発生する。また、第1のタイミング調整器102は、第1のタイミング信号Faに応動して第1の調整時間T1毎に第1の状態出力信号Jdおよび第1の調整信号Jaを変化・遷移させる。また、第1のタイミング調整器102は、計測動作信号Dpに応動して第1の状態出力信号Jdおよび第1の調整信号Jaを実質的に第1の所定状態にセットする。
【0112】
第2のタイミング調整器103は、計測動作信号Dpの到来により計測データ信号Daを入力し、時間間隔T0に比例または略比例した第2の調整時間T2毎に第2のタイミング信号を発生する。また、第2のタイミング調整器103は、第2のタイミング信号に応動して第2の調整時間T2毎に第2の状態出力信号Jeおよび第2の調整信号Jbを半価・遷移させる。また、第2のタイミング調整器103は、少なくとも第1のタイミング信号Faに応動して第2の状態出力信号Jeおよび第2の調整信号Jbを実質的に第2の所定状態にセットする。
【0113】
図22に時間計測器101と第1のタイミング調整器102と第2のタイミング調整器103の動作説明用の波形図を示す。ここでは、時間計測器101が位置パルス信号Dtの1周期を計測する場合を示している。時間計測器101の計測器121は、図22(a)に示した位置パルス信号Dtの1周期の時間間隔T0を計測する。時間計測器101の遅延器122は、計測時間間隔T0に比例または略比例した遅延時間Tdだけ位置パルス信号Dtを全体的に遅延させた遅延位置パルス信号Ddを出力する(図22(b)参照)。また、遅延器122は、位置パルス信号Dtの計測エッジ時点から所要の遅延時間Tdだけ遅らせたタイミングにて計測動作信号Dpを出力する。
【0114】
第1のタイミング調整器102の第1の繰返カウンタ回路221は、計測時間間隔T0に応動した第1の調整時間T1毎に第1のタイミング信号Faを発生する(図22(c)参照)。第1の調整時間T1はT0/6または略T0/6にされている。第1のタイミング調整器102の第1の状態回路222は、計測動作信号Dpに応動して第1の状態出力信号Jdを実質的に第1の所定状態にし、その後に、第1のタイミング信号Faに応動して第1の状態出力信号Jdを変化・遷移させる。
【0115】
第1のタイミング調整器102の第1の調整回路223は、第1の状態出力信号Jdに応動した第1の調整信号Jaを出力する。従って、第1の調整信号Jaは遅延位置パルス信号Ddの1周期当たり6状態または略6状態の状態変化を行う。なお、第1の調整信号Jaは第1の状態出力信号Jdと遅延位置パルス信号Ddに応動して変化させても良い。第2のタイミング調整器103の第2の繰返カウンタ回路231は、計測時間間隔T0に応動した第2の調整時間T2毎に第2のタイミング信号Fbを発生する(図22(d)参照)。ここでは、第2の調整時間T2はT1/30または略T1/30にされている。
【0116】
第2のタイミング調整器103の第2の状態回路232は、第1のタイミング信号Faおよび計測動作信号Dpに応動して第2の状態出力信号Jeを実質的に第2の所定状態にし、その後に、第2のタイミング信号Fbに応動して第2の状態出力信号Jeを変化・遷移させる。第2のタイミング調整器103の第2の調整回路233は、第2の状態出力信号Jeに応動した第2の調整信号Jbを出力する。従って、第2の調整信号Jbは第1のタイミング信号Faのパルス間隔当たり30状態または略30状態の状態変化を行う。
【0117】
図16の信号作成器614は、スロープ器621と形成器622を含んで構成されている。スロープ器621は、第2の調整信号Jbに応動して実質的に傾斜を有するディジタル的なスロープ信号Saを出力する。形成器622は、第1の調整信号Jaとスロープ信号Saに応動したディジタル的な3相の第1の通電制御信号P1,P2,P3とディジタル的な3相の第2の通電制御信号Q1,Q2,Q3を出力する。信号作成器614のスロープ器621の具体的な構成を図17に示す。
【0118】
図17のスロープ器621は、第1のディジタルスロープ回路631と第2のディジタルスロープ回路632と高レベル回路633を含んで構成されている。第1のディジタルスロープ回路631は、第2のタイミング調整器103の第2の調整信号Jbに応動してディジタル的な第1のスロープ信号Sa1を出力する。図22(e)に第1のスロープ信号Sa1の波形を示す。
【0119】
第1のタイミング信号Faに応動して第2の調整信号Jbが第2の所定状態になるので、第1のスロープ信号Sa1は”Lb”(低レベル状態)にセットされる。第1のスロープ信号Sa1は、第2の調整信号Jbが第1の所定値よりも小さい間は”Lb”であり、第2の調整信号Jbの増加に伴ってパルス幅が徐々に広くなる数個のパルスを発生し、第2の調整信号Jbが第2の所定値に達すると”Hb”(高レベル状態)になる。その結果、第1のスロープ信号Sa1は、第1のタイミング信号Faに同期したディジタル的なパルス信号になり、そのパルス信号の平均的な電圧値は立ち上がり部分において実質的に所要の傾斜を有する滑らかなスロープ信号になる。
【0120】
同様に、第2のディジタルスロープ回路632は、第2のタイミング調整器103の第2の調整信号Jbに応動してディジタル的な第2のスロープ信号Sa2を出力する。図22(f)に第2のスロープ信号Sa2の波形を示す。第1のタイミング信号Faに応動して第2の調整信号Jbが第2の所定状態になるので、第2のスロープ信号Sa2は”Hb”にセットされる。第2のスロープ信号Sa2は、第2の調整信号Jbが第3の所定値よりも小さい間は”Hb”であり、第2の調整信号Jbが第3の所定値以上になるとその増加に伴ってパルス幅が徐々に狭くなる数個のパルスを発生し、第2の調整信号Jbが第4の所定値に達すると”Lb”になる。ここに、第3の所定値は第2の所定値と一致させても良い。
【0121】
その結果、第2のスロープ信号Sa2は、第1のタイミング信号Faに同期したディジタル的なパルス信号であり、そのパルス信号の平均的な電圧値は立ち下がり部分において実質的に所要の傾斜を有する滑らかなスロープ信号になる。高レベル回路633は、ディジタル的な第3のスロープ信号Sa3を出力する。ここでは、第3のスロープ信号Sa3は”Hb”になされている(図22(g)参照)。
【0122】
図16の信号作成器614の形成器622は、第1のタイミング調整器102の第1の調整信号Jaと第2のタイミング調整器103の第2の調整信号Jbに応動して3相の第1の通電制御信号P1,P2,P3と3相の第2の通電制御信号Q1,Q2,Q3を形成している。第1の通電制御信号P1を形成する形成器622の一部の形成回路の具体的な構成を図18に示す。形成器622の一部の形成回路は、信号合成回路640を含んで構成されている。
【0123】
信号合成回路640は、スロープ器621の第1のスロープ信号Sa1と第2のスロープ信号Sa2と第3のスロープ信号Sa3を第1のタイミング調整器102の第1の調整信号Jaに応動して合成し、ディジタル的に変化する第1の通電制御信号P1を作成する。その結果、第1の通電制御信号P1は、第1のタイミング調整器102の第1の調整信号Ja(第1の状態出力信号Jd)と第2のタイミング調整器103の第2の調整信号Jb(第2の状態出力信号Je)に応動し、第1の調整信号Jaによりスロープ信号Sa1,Sa2,Sa3を合成したディジタル信号になっている。その他の第1の通電制御信号P2,P3や第2の通電制御信号Q1,Q2,Q3の形成する形成器622の具体的な構成も、図18に示した形成回路と同様であり、説明を省略する。
【0124】
図22(h)に第1の通電制御信号P1の波形を示す。第1の通電制御信号P1は、立ち上がり部分において第1のスロープ信号Sa1に応動したパルス波形になり、中間部分において高レベル”Hb”に保たれ、立ち下がり部分において第2のスロープ信号Sa2に応動したパルス波形になる。第1の通電制御信号P1の通電区間Tp1は電気角で360/3=120度よりもかなり大きくされている。
【0125】
図22(i),(j)に他の第1の通電制御信号P2,P3の波形を示す。このように、3相の第1の通電制御信号P1,P2,P3は、第1のタイミング調整器102の第1の調整信号Jaと第2のタイミング調整器103の第2の調整信号Jbに応動し、第1の調整信号Jaによりスロープ信号Sa1,Sa2,Sa3を合成したディジタル信号になっている。これらの3相の第1の通電制御信号P1,P2,P3の通電区間Tp1,Tp2,Tp3は、それぞれ120度よりもかなり大きくされている。ここでは、Tp1,Tp2,Tp3を150〜180度に選定している。
【0126】
同様に、図22(k)〜(m)に3相の第2の通電制御信号Q1,Q2,Q3の波形を示す。3相の第2の通電制御信号Q1,Q2,Q3は、第1のタイミング調整器102の第1の調整信号Jaと第2のタイミング調整器103の第2の調整信号Jbに応動し、第1の調整信号Jaによりスロープ信号Sa1,Sa2,Sa3を合成したディジタル信号になっている。これらの3相の第2の通電制御信号Q1,Q2,Q3の通電区間Tq1,Tq2,Tq3は、それぞれ120度よりもかなり大きくされている。ここでは、Tq1,Tq2,Tq3を150〜180度に選定している。
【0127】
なお、第1の通電制御信号P1と第2の通電制御信号Q1は逆相(電気角で180度の位相差)にされ、第1の通電制御信号P2と第2の通電制御信号Q2は逆相にされ、第1の通電制御信号P3と第2の通電制御信号Q3は逆相にされている。
【0128】
図15の通電駆動部601は、通電制御部600の第1の通電制御信号P1,P2,P3および/または第2の通電制御信号Q1,Q2,Q3とスイッチング制御部37のスイッチングパルス信号Wpを論理合成し、第3の通電制御信号P1’,P2’,P3’および第4の通電制御信号Q1’,Q2’,Q3’を作成する。図19に通電駆動部601の具体的な構成を示す。
【0129】
図19の通電駆動部601は、第1の通電動作論理器650と第2の通電動作論理器651を含んで構成されている。第1の通電動作論理器650の第1の論理合成回路650aは、第1の調整信号Jaに応動して所要の区間において第1の通電制御信号P1とスイッチングパルス信号Wpを論理合成し、第3の通電制御信号P1’を作成する。同様に、第1の通電動作論理器650の第1の論理合成回路650bは、第1の調整信号Jaに応動して所要の区間において第1の通電制御信号P2とスイッチングパルス信号Wpを論理合成し、第3の通電制御信号P2’を作成する。同様に、第1の通電動作論理器650の第1の論理合成回路650cは、第1の調整信号Jaに応動して所要の区間において第1の通電制御信号P3とスイッチングパルス信号Wpを論理合成し、第3の通電制御信号P3’を作成する。
【0130】
第2の通電動作論理器651の第2の論理合成回路651aは、第1の調整信号Jaに応動して所要の区間において第2の通電制御信号Q1とスイッチングパルス信号Wpを論理合成し、第4の通電制御信号Q1’を作成する。同様に、第2の通電動作論理器651の第2の論理合成回路651bは、第1の調整信号Jaに応動して所要の区間において第2の通電制御信号Q2とスイッチングパルス信号Wpを論理合成し、第4の通電制御信号Q2’を作成する。同様に、第2の通電動作論理器651の第2の論理合成回路651cは、第1の調整信号Jaに応動して所要の区間において第2の通電制御信号Q3とスイッチングパルス信号Wpを論理合成し、第4の通電制御信号Q3’を作成する。
【0131】
なお、たとえば、第3の通電制御信号P1’,P2’,P3’は、第1の通電制御信号P1,P2,P3とスイッチングパルス信号Wpの論理積によって作成しても良い。また、たとえば、第4の通電制御信号Q1’,Q2’,Q3’は、第2の通電制御信号Q1,Q2,Q3をそのまま出力して作成しても良い。
【0132】
図15の通電駆動部601の3相の第3の通電制御信号P1’,P2’,P3’と3相の第4の通電制御信号Q1’,Q2’,Q3’は、電力供給部20に供給される。電力供給部20は、3個の第1の電力増幅器と3個の第2の電力増幅器を含んで構成され(図6参照)、ディスク1やロータ11の回転に伴ってコイル12,13,14への電流路を切り換えていく。第1の電力増幅器には図12に示した構成も使用可能であるが、図20に第1の電力増幅器の別の構成を示す。また、第2の電力増幅器には図13に示した構成も使用可能であるが、図21に第2の電力増幅器の別の構成を示す。
【0133】
図20の第1の電力増幅器660は、第1のパワートランジスタ661と第1のパワーダイオード661dにより構成されている。第1のパワートランジスタ661は、NチャンネルMOS形の電界効果型パワートランジスタにより形成され、その電流流出端子側から電流流入端子側に逆接続されて形成された寄生ダイオードによって第1のパワーダイオード661dを構成している。
【0134】
図21の第2の電力増幅器670は、第2のパワートランジスタ671と第2のパワーダイオード671dにより構成されている。第2のパワートランジスタ671は、NチャンネルMOS形の電界効果型パワートランジスタにより形成され、その電流流出端子側から電流流入端子側に逆接続されて形成された寄生ダイオードによって第2のパワーダイオード671dを構成している。
【0135】
電力供給器20の3個の第1の電力増幅器は、第3の通電制御信号P1’,P2’,P3’に応動して高周波スイッチング動作する。電力供給器20の3個の第2の電力増幅器は、第4の通電制御信号Q1’,Q2’,Q3’に応動して高周波スイッチング動作する。
【0136】
図15の電流検出部33は、電力供給部20の3個の第1の電力増幅器を介して電圧供給部25が3相のコイル12,13,14に供給する通電電流または合成供給電流Igを検出し、通電電流Igに応動した電流検出信号Adを出力する。スイッチング制御部37のスイッチングパルス信号Wpは、電流検出信号Adと指令信号Adの比較結果に応動した高周波スイッチング信号になる。スイッチングパルス信号Wpは、通常、20kHz〜500kHzの範囲内の高周波信号にされている。その結果、合成供給電流Igは指令信号Acに応動して電流制御される。これにより、3相のコイル12,13,14への駆動電流I1,I2,I3を指令信号Acに応動して正確に電流制御でき、発生駆動力の脈動を低減できる。すなわち、ディスク1やロータ11の振動・騒音を大幅に低減できる。
【0137】
また、通電制御部31の3相の第1の通電制御信号P1,P2,P3や3相の第2の通電制御信号Q1,Q2,Q3は、立ち上がり部分と立ち下がり部分のうちの少なくとも一方の部分を信号作成器614のスロープ信号に応動して実質的に傾斜を持って変化させている。3相の第1の通電制御信号P1,P2,P3とスイッチングパルス信号Wpに応動した3相の第3の通電制御信号P1’,P2’,P3’を作成し、3相の第3の通電制御信号P1’,P2’,P3’に応動して3個の第1の電力増幅器を高周波スイッチング動作させている。
【0138】
また、3相の第2の通電制御信号Q1,Q2,Q3とスイッチングパルス信号Wpに応動した3相の第4の通電制御信号Q1’,Q2’,Q3’を作成し、3相の第4の通電制御信号Q1’,Q2’,Q3’に応動して3個の第2の電力増幅器を動作させている。これにより、3相のコイル12,13,14への駆動電流I1,I2,I3は滑らかな変化を行い、発生駆動力の脈動は著しく小さくなる。すなわち、ディスク1やロータ11の振動・騒音を大幅に低減できる。
【0139】
本実施の形態では、上述の説明にて理解されるように、コイルに駆動電流を供給するパワートランジスタをオン・オフの高周波スイッチング動作させ、電力損失を大幅に低減した。すなわち、第1の電力増幅器の第1のパワートランジスタおよび/または第2の電力増幅器の第2のパワートランジスタをオン・オフの高周波スイッチング動作させ、パワートランジスタの電力損失を著しく小さくした。これにより、ディスク装置やモータの消費電力・発熱が著しく小さくなる。その結果、記録可能ディスクへの記録・再生を安定に実施できる。なお、電流検出部33とスイッチング制御部37によってスイッチング動作ブロック146を形成し、3個の第1のパワートランジスタと3個の第2のパワートランジスタのうちで少なくとも1個のパワートランジスタを高周波スイッチング動作させるようにしている。
【0140】
また、3相の第1の通電制御信号や3相の第2の通電制御信号や3相の第3の通電制御信号や3相の第4の通電制御信号をディジタル信号にし、各通電制御信号の立ち上がり部分と立ち下がり部分のうちで少なくとも一方の部分においてディジタル的なスロープ信号に応動して実質的に傾斜を有するように変化させた。これにより、3相のコイル12,13,14への電流路の切換動作を滑らかにした。すなわち、スロープ信号の立ち上がり部分または立ち下がり部分においてパルス幅を徐々に変化させるようにし、その平均的な電圧値が実質的に滑らかな傾斜を有するようにした。その結果、通電制御信号の立ち上がり部分または立ち下がり部分が実質的に傾斜を持って変化し、電力供給部の第1の電力増幅器と第2の電力増幅器を介して3相のコイル12,13,14に滑らかな傾斜を有する駆動電流を供給できる。従って、発生駆動力の脈動が小さくなり、ディスク1やロータ11の振動・騒音を大幅に低減できる。
【0141】
また、電流検出部33の電流検出信号Adと指令部32の指令信号Acを比較し、比較結果に応動したスイッチングパルス信号Wpを作成し、スイッチングパルス信号Wpに応動して第1の電力増幅器および/または第2の電力増幅器を高周波スイッチング動作させた。これにより、3相のコイル12,13,14への駆動電流I1,I2,I3の大きさを指令信号Acに応動して正確に電流制御できる。その結果、発生駆動力の脈動が小さくなり、ディスクやロータの振動・騒音の小さい、高性能なディスク装置やモータを実現できる。
また、本実施の形態でも、前述の実施の形態1または実施の形態2と同様な各種の利点を得ることができる。
【0142】
なお、実施の形態3において、スロープ信号Sa1,Sa2を単純なパルス信号にしても良く、本発明に含まれる。たとえば、第2の調整信号が第1の所定値以下の時に第1のスロープ信号Sa1を”Lb”にし、第2の調整信号が第1の所定値以上になると第1のスロープ信号Sa1を”Hb”にする。また、第2の調整信号が第2の所定値以下の時に第2のスロープ信号Sa2を”Hb”にし、第2の調整信号が第2の所定値以上になると第2のスロープ信号Sa2を”Lb”にする。ここに、(第1の所定値)<(第2の所定値)である。これにより、第1のスロープ信号Sa1の”Hb”の区間を”Lb”の区間よりも広くし、第2のスロープ信号Sa2の”Hb”の区間を”Lb”の区間よりも広くする。
【0143】
第1の通電制御信号や第2の通電制御信号は、第1の調整信号に応動してスロープ信号Sa1,Sa2,Sa3を合成したものであり、それぞれの通電制御信号の”Hb”の区間(通電区間)は電気角で120度よりもかなり大きくされる。その結果、第3の通電制御信号や第4の通電制御信号は、それぞれの通電区間が電気角で120度よりもかなり大きくなる。これにより、3相のコイルへの電流路を比較的滑らかに切り換えることができる。
【0144】
すなわち、第1の調整信号と第2の調整信号に応動して第1の通電制御信号や第2の通電制御信号を矩形波的に変化させ、それぞれの通電区間を120度よりも大きくすることにより、第3の通電制御信号や第4の通電制御信号の通電区間は120度よりも大きくなる。その結果、3相のコイルへの電流路の切り換えが比較的滑らかになり、ディスクの振動・騒音が比較的小さくなる。また、1個の位置信号に応動してこれらの通電制御信号を正確に作成することができる。この場合のスロープ信号Sa1,Sa2と第1の通電制御信号と第2の通電制御信号の関係を図23に示す。
【0145】
《実施例4》
図24に本発明の実施の形態4のモータを含んで構成されたディスク装置およびモータを示す。図24に全体構成を示す。本実施の形態では、前述の実施の形態1に電流検出部33と電流制御部700などを設けたものである。なお、前述の実施の形態1や実施の形態2や実施の形態3と同様なものには同一の番号を付し、説明を省略する。
【0146】
図24の電流検出部33は、電力供給部20の3個の第1の電力増幅器を介して電圧供給部25から3相のコイル12,13,14に供給される通電電流または合成供給電流Igを検出し、電流検出信号Adを出力する。電流制御部700は、電流検出部33の電流検出信号Adと指令部32の指令信号Acをアナログ的に比較し、その差電圧に応動した電流制御信号Afを出力する。
【0147】
通電制御ブロック45の通電制御部31は、位置検出部30の位置パルス信号Dtに応動した3相の第1の通電制御信号P1,P2,P3と3相の第2の通電制御信号Q1,Q2,Q3を作成する。通電制御部31の具体的な構成は、前述の図2に示したものと同様であり、スイッチ部701によって選択された入力信号Ac’が入力されている。スイッチ部701は、指令部32の指令信号Acと電流制御部700の電流制御信号Afのいずれか一方を選択し、通電制御部31の入力信号Ac’とする。
【0148】
スイッチ部701が指令部32の指令信号Acを選択した場合には、前述の実施の形態1と同様な構成になり、詳細な説明を省略する。
【0149】
スイッチ部701が電流制御部700の電流制御信号Afを選択した場合には、第1の通電制御信号P1,P2,P3や第2の通電制御信号Q1,Q2,Q3は、その振幅が電流制御信号Afに応動して変化する。これにより、電流検出部33と電流制御部700と通電制御部31と電力供給部20によって電流制御ループが形成され、3相のコイル12,13,14への合成供給電流Igは指令信号Acに応動して正確に電流制御される。
【0150】
また、3相の第1の通電制御信号P1,P2,P3や3相の第2の通電制御信号Q1,Q2,Q3は、位置パルス信号Dtに応動した第1の調整信号や第2の調整信号を用いて、スロープ信号に応動した実質的に傾斜を有する滑らかな電流信号になっている。これにより、発生駆動力の脈動が小さくなり、振動・騒音の小さなディスク装置やモータを実現できる。
また、本実施の形態でも、前述の実施の形態1と同様な各種の利点を得ることができる。
【0151】
《実施例5》
図25から図27に本発明の実施の形態5のモータを含んで構成されたディスク装置およびモータを示す。図25に全体構成を示す。本実施の形態では、前述の実施の形態4に通電駆動部801を設けたものである。なお、前述の実施の形態1や実施の形態2や実施の形態3や実施の形態4と同様なものには同一の番号を付し、説明を省略する。
【0152】
図25の通電制御ブロック805は、通電制御部31と通電駆動部801を含んで構成されている。通電制御部31は、位置検出部30の位置パルス信号Dtに応動した3相の第1の通電制御信号P1,P2,P3と3相の第2の通電制御信号Q1,Q2,Q3を作成する。通電制御部31の具体的な構成は、前述の図2に示したものと同様であり、スイッチ部701によって選択された入力信号Ac’が入力されている。スイッチ部701は、指令部32の指令信号Acと電流制御部700の電流制御信号Afのいずれか一方を選択し、通電制御部31の入力信号Ac’とする。
【0153】
通電駆動部801は、通電制御部31の第1の通電制御信号P1,P2,P3と第2の通電制御信号Q1,Q2,Q3に応動したパルス的な第3の通電制御信号P1’,P2’,P3’と第4の通電制御信号Q1’,Q2’,Q3’を作成する。図26に通電駆動部801の具体的な構成を示す。
【0154】
図26の通電駆動部801は、6個のコンパレータ回路811,812,813,815,816,817と三角波発生回路820を含んで構成されている。三角波発生回路820は、所定周波数ftの三角波信号Wtを出力する。三角波信号Wtの周波数は、10kHzから500kHz程度になされている。また、三角波信号Wtは鋸歯状であってもよい。コンパレータ回路811は、第1の通電制御信号P1と三角波信号Wtを比較し、第1の通電制御信号P1の大きさに応動したパルス幅を有するPWMパルス信号(PWM:パルス幅変調)である第3の通電制御信号P1’を作成する。なお、第3の通電制御信号P1’のパルス周波数は三角波信号Wtの周波数と一致する。
【0155】
また、第1の通電制御信号P1が零または最低レベルの時には、第3の通電制御信号P1’は”L”になされている。同様に、コンパレータ回路812は第1の通電制御信号P2に応動してPWM化された第3の通電制御信号P2’を作成し、コンパレータ回路813は第1の通電制御信号P3に応動してPWM化された第3の通電制御信号P3’を作成する。同様に、コンパレータ回路815は第2の通電制御信号Q1に応動してPWM化された第4の通電制御信号Q1’を作成し、コンパレータ回路816は第2の通電制御信号Q2に応動してPWM化された第4の通電制御信号Q2’を作成し、コンパレータ回路817は第2の通電制御信号Q3に応動してPWM化された第4の通電制御信号Q3’を作成する。
【0156】
これにより、3相の第3の通電制御信号P1’,P2’,P3’は3相の第1の通電制御信号P1,P2,P3に応動した3相のPWM信号になり、3相の第4の通電制御信号Q1’,Q2’,Q3’は3相の第2の通電制御信号Q1,Q2,Q3に応動した3相のPWM信号になる。たとえば、第3の通電制御信号P1’は、第1の通電制御信号P1の期間Tp1に第1の通電制御信号P1の大きさに応動したパルス幅変調をされたパルスを有し、期間Tp1以外では”L”になる。
【0157】
通電駆動部801の3相の第3の通電制御信号P1’,P2’,P3’は、電力供給部20の3個の第1の電力増幅器351,352,353の通電を制御する。第1の電力増幅器351,352,353は、図20に示したようにNチャンネルMOS構造の電界効果型パワートランジスタ661とパワーダイオード661dを有するように構成されている。従って、たとえば、第3の通電制御信号P1’の”H”の時に第1の電力増幅器351のパワートランジスタはオンになり、第3の通電制御信号P1’の”L”の時に第1の電力増幅器351のパワートランジスタはオフになる。
【0158】
通電駆動部801の3相の第4の通電制御信号Q1’,Q2’,Q3’は、電力供給部20の3個の第2の電力増幅器355,356,357の通電を制御する。第1の電力増幅器355,356,357は、図21に示したようにNチャンネルMOS構造の電界効果型パワートランジスタ671とパワーダイオード671dを有するように構成されている。従って、たとえば、第4の通電制御信号Q1’の”H”の時に第2の電力増幅器355のパワートランジスタはオンになり、第4の通電制御信号Q1’の”L”の時に第2の電力増幅器355のパワートランジスタはオフになる。
【0159】
従って、3相の第3の通電制御信号P1’,P2’,P3’と3相の第4の通電制御信号Q1’,Q2’,Q3’により電力供給部20の3個の第1の電力増幅器351,352,353と3個の第2の電力増幅器355,356,357は高周波スイッチング動作を行い、3相のコイル12,13,14にディジタル的な3相の駆動電圧V1,V2,V3を供給する。
【0160】
電流検出部33は、たとえば電流検出用の抵抗によって構成され、電圧供給部25から3相のコイル12,13,14に供給する通電電流または合成供給電流Igを検出し、合成供給電流Igに比例した電流検出信号Adを出力する。電力供給部20のパワートランジスタが高周波スイッチング動作して電圧供給部25から3相のコイル12,13,14に電力供給しているので、通電電流(または合成供給電流)Igおよび電流検出信号Adはパルス的な波形になる。
【0161】
電流制御部700は、電流検出信号Adと指令信号Acを比較し、比較結果に応動した電流制御信号Afを出力する。電流制御部700は、たとえばフィルタを含んで構成され、電流検出信号Adと指令信号Acの比較結果をフィルタを通し、電流制御信号Afを作成している。
【0162】
スイッチ部701が電流制御部700の電流制御信号Afを選択した場合には、第1の通電制御信号P1,P2,P3や第2の通電制御信号Q1,Q2,Q3は、その振幅が電流制御信号Afに応動して変化する。これにより、電流検出部33と電流制御部700と通電制御部31と通電駆動部801と電力供給部20によって電流制御ループが形成され、3相のコイル12,13,14への合成供給電流(または通電電流)Igは平均的に指令信号Acに応動して電流制御される。
【0163】
また、3相の第1の通電制御信号P1,P2,P3や3相の第2の通電制御信号Q1,Q2,Q3は、位置パルス信号Dtに応動した第1の調整信号や第2の調整信号を用いて、スロープ信号に応動した実質的に傾斜を有する滑らかな電流信号になっている。従って、3相の第1の通電制御信号P1,P2,P3や3相の第2の通電制御信号Q1,Q2,Q3に応動した3相の第3の通電制御信号P1’,P2’,P3’や3相の第4の通電制御信号Q1’,Q2’,Q3’は、位置パルス信号Dtに応動した第1の調整信号や第2の調整信号に応動してパルス幅変調された実質的に傾斜を有する滑らかなPWM信号になっている。これにより、発生駆動力の脈動が小さくなり、振動・騒音の小さなディスク装置やモータを実現できる。
【0164】
また、本実施の形態でも、前述の実施の形態1や実施の形態2や実施の形態3や実施の形態4と同様な各種の利点を得ることができる。
【0165】
本実施の形態では、通電制御ブロック805の通電駆動部801により作成された3相の第3の通電制御信号と3相の第4の通電制御信号によって電力供給部20の3個の第1の電力増幅器と3個の第2の電力増幅器を高周波スイッチング動作させているので、電力供給部20のパワートランジスタにおける電力損失が大幅に低減できる。従って、消費電力が小さく、振動・騒音の小さく、信頼性の高いディスク装置やモータを安価に実現できる。
【0166】
なお、通電駆動部801は図26の構成に限らず、各種の変形が可能である。図27に通電駆動部801の別の具体的な構成を示す。演算合成回路841は、第1の通電制御信号P1と第2の通電制御信号Q1を演算合成し、合成信号R1を作成する。図28(a),(b),(c)に第1の通電制御信号P1と第2の通電制御信号Q1と合成信号R1の波形関係を示す。同様に、演算合成回路842は第1の通電制御信号P2と第2の通電制御信号Q2を演算合成して合成信号R2を作成し、演算合成回路843は第1の通電制御信号P3と第2の通電制御信号Q3を演算合成して合成信号R3を作成する。三角波発生回路860は、所定周波数ftの三角波信号Wtを出力する。三角波信号Wtの周波数は、10kHzから500kHz程度になされている。
【0167】
また、三角波信号Wtは鋸歯状であってもよい。コンパレータ回路851は、合成信号R1と三角波信号Wtを比較し、比較パルス信号W1を出力する。比較パルス信号W1は、合成信号R1の大きさに応動したパルス幅を有するPWM信号になっている。同様に、コンパレータ回路852は合成信号R2と三角波信号Wtを比較して比較パルス信号W2を出力し、コンパレータ回路853は合成信号R3と三角波信号Wtを比較して比較パルス信号W3を出力する。
【0168】
駆動論理回路871は、比較パルス信号W1を反転させた第3の通電制御信号P1’と、比較パルス信号W1と一致する第4の通電制御信号Q1’を作成する。すなわち、第3の通電制御信号P1’と第4の通電制御信号Q1’は反転信号の関係にある。同様に、駆動論理回路872は比較パルス信号W2を反転させた第3の通電制御信号P2’と比較パルス信号W2と一致する第4の通電制御信号Q2’を作成し、駆動論理回路873は比較パルス信号W3を反転させた第3の通電制御信号P3’と比較パルス信号W3と一致する第4の通電制御信号Q3’を作成する。
【0169】
これにより、3相の第3の通電制御信号P1’,P2’,P3’は3相の合成信号R1,R2,R3に応動した3相のPWM信号になり、3相の第4の通電制御信号Q1’,Q2’,Q3’は3相の合成信号R1,R2,R3に応動した3相のPWM信号になる。また、3相の第3の通電制御信号P1’,P2’,P3’はそれぞれ、3相の第4の通電制御信号Q1’,Q2’,Q3’の反転信号になっている。
【0170】
3相の第3の通電制御信号P1’,P2’,P3’は電力供給部20の3個の第1の電力増幅器351,352,353のPWM動作させ、3相の第4の通電制御信号Q1’,Q2’,Q3’は電力供給部20の3個の第2の電力増幅器355,356,357をPWM動作させる。各電力増幅器は、図20または図21に示したようにNチャンネルMOS構造の電界効果型パワートランジスタと逆接続されたパワーダイオードを有するように構成されている。従って、たとえば、第3の通電制御信号P1’に応動して第1の電力増幅器351のパワートランジスタはオン・オフの高周波スイッチング動作し、第4の通電制御信号Q1’に応動して第2の電力増幅器355のパワートランジスタは相補的にオフ・オンの高周波スイッチング動作する。
【0171】
同様に、第3の通電制御信号P2’に応動して第1の電力増幅器352のパワートランジスタはオン・オフの高周波スイッチング動作し、第4の通電制御信号Q2’に応動して第2の電力増幅器356のパワートランジスタは相補的にオフ・オンの高周波スイッチング動作する。同様に、第3の通電制御信号P3’に応動して第1の電力増幅器353のパワートランジスタはオン・オフの高周波スイッチング動作し、第4の通電制御信号Q3’に応動して第2の電力増幅器357のパワートランジスタは相補的にオフ・オンの高周波スイッチング動作する。その結果、3相の第3の通電制御信号P1’,P2’,P3’と3相の第4の通電制御信号Q1’,Q2’,Q3’により電力供給部20の3個の第1の電力増幅器351,352,353と3個の第2の電力増幅器355,356,357は高周波スイッチング動作を行い、3相のコイル12,13,14にディジタル的な3相の駆動電圧V1,V2,V3を供給する。
【0172】
その他の動作は、前述の実施の形態5と同様であり、詳細な説明を省略する。
【0173】
なお、前述の実施の形態の具体的な構成については、各種の変形が可能である。たとえば、各相のコイルは複数個の部分コイルを直列もしくは並列に接続して構成しても良い。3相のコイルはスター結線に限らず、デルタ結線であってもよい。また、コイルの相数は3相に限定されない。一般に、複数相のコイルを有する構成を実現できる。また、ロータの界磁部の磁極数も2極に限定されるものではなく、多極にしても良い。
【0174】
また、電力供給部のパワートランジスタには、NPN形バイポーラトランジスタやPNP形バイポーラトランジスタやNチャンネル形電界効果型トランジスタやPチャンネル形電界効果型トランジスタやIGBTトランジスタなど各種の構成のトランジスタを使用可能である。パワートランジスタを高周波スイッチング動作させることにより、パワートランジスタの電力損失・発熱を低減し、集積回路化を容易にした。また、電力供給部の電力増幅器の構成やパワートランジスタの高周波スイッチング動作のさせ方は、各種の変形が可能である。また、電界効果型パワートランジスタをオン状態(フルオンもしくはハーフオン)とオフ状態の間で高周波スイッチング動作させ、パワートランジスタの電力損失を低減しながら、コイルへの駆動電流を滑らかに切り換えてもよい。
【0175】
また、電力供給部のパワートランジスタの高周波スイッチング動作のさせ方には、各種の変形が可能であり、本発明は含まれることは言うまでもない。たとえば、第1のパワートランジスタと第2のパワートランジスタを交互に高周波スイッチング動作させたり、第1のパワートランジスタと第2のパワートランジスタの両方を同時にオン・オフの高周波スイッチング動作させても良い。
【0176】
また、位置信号の1周期に対応した時間間隔T0を用いて第1のタイミング調整器を動作させる場合には、第1のタイミング調整器における第1の状態出力信号や第1の調整信号の状態数は、位置信号の1周期当たり6状態に限定されるものではなく、たとえば、12状態にしても良い。一般に、この状態数は、位置信号の1周期当たりコイル相数の整数倍にすることにより、正確度の高い第1のタイミング信号を発生することができる。
【0177】
また、位置信号の半周期に対応した時間間隔T0を用いて第1のタイミング調整器を動作させる場合には、第1のタイミング調整器における第1の状態出力信号や第1の調整信号の状態数は、位置信号の半周期当たり3状態に限定されるものではなく、たとえば、6状態にしても良い。一般に、この状態数は、位置信号の半周期当たりコイル相数の整数倍にすることにより、正確度の高い第1のタイミング信号を発生することができる。
【0178】
また、1個の位置信号に応動した第1の状態信号と第2の状態信号によって、正確な回転電気角推定値を得ることができる。従って、第1の状態信号と第2の状態信号に応動した回転電気角推定値を得てモータの回転駆動信号を出力するならば、低速回転から高速回転までの広い回転数範囲においてモータを高精度に回転駆動でき、本発明に含まれることは言うまでもない。特に、モータの高速回転時においても、第1の状態信号を正確に得ることが出来るので、駆動信号の脈動が小さくなり、高速回転時の振動・騒音が大幅に小さくなる。
【0179】
なお、本発明のモータは、ディスク装置に好適であるが、その用途はOA・AV機器などの回転駆動用にも幅広く使用可能である。さらに、一般に、速度制御を行うモータとして、幅広く利用することができる。
【0180】
その他、本発明の主旨を変えずして種々の変形が可能であり、本発明に含まれることはいうまでもない。
【0181】
【発明の効果】
本発明のディスク装置やモータでは、単一の位置信号に基づいてコイルへの電流路を正確なタイミングにて切り換えている。また、コイルへの駆動電流を滑らかにし、ディスクの振動・騒音を低減している。その結果、簡素な構成により、ディスクやロータを低振動・低騒音に回転駆動するディスク装置やモータを実現できる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における全体構成を示す図である。
【図2】実施の形態1における通電制御部31の構成図である。
【図3】実施の形態1における時間計測器101と第1のタイミング調整器102と第2のタイミング調整器103の構成図である。
【図4】実施の形態1における信号作成器104のスロープ器111の構成図である。
【図5】実施の形態1における信号作成器104の形成器112の一部の構成図である。
【図6】実施の形態1における電力供給部20の構成図である。
【図7】実施の形態1における第1の電力増幅器351の回路図である。
【図8】実施の形態1における第2の電力増幅器355の回路図である。
【図9】実施の形態におけるディスク装置の情報信号に関係するブロック図である。
【図10】実施の形態1における通電制御部31の動作を説明するための波形図である。
【図11】本発明の実施の形態2における全体構成を示す図である。
【図12】実施の形態2における第1の電力増幅器500の回路図である。
【図13】実施の形態2における第2の電力増幅器510の回路図である。
【図14】実施の形態2における通電駆動部38の構成図である。
【図15】本発明の実施の形態3における全体構成を示す図である。
【図16】実施の形態3における通電制御部600の構成図である。
【図17】実施の形態3における信号作成器614のスロープ器621の構成図である。
【図18】実施の形態3における信号作成器614の形成器622の一部の構成図である。
【図19】実施の形態3における通電駆動部601の構成図である。
【図20】実施の形態3における第1の電力増幅器660の回路図である。
【図21】実施の形態3における第2の電力増幅器670の回路図である。
【図22】実施の形態3における通電制御部600の動作を説明するための波形図である。
【図23】実施の形態3における動作を説明するための別の波形図である。
【図24】本発明の実施の形態4における全体構成を示す図である。
【図25】本発明の実施の形態5における全体構成を示す図である。
【図26】実施の形態5における通電駆動部801の構成図である。
【図27】実施の形態5における通電駆動部801の別の構成図である。
【図28】実施の形態5における通電駆動部801の動作を説明するための波形図である。
【図29】従来のディスク装置に使用されるモータの構成を示す図である。
【符号の説明】
1 ディスク
2 ヘッド
3 情報処理部
11 ロータ
12,13,14 コイル
20 電力供給部
25 電圧供給部
30 位置検出部
31,600 通電制御部
32 指令部
33 電流検出部
37 スイッチング制御部
38,601,801 通電駆動部
45,145,605,805 通電動作ブロック
146 スイッチング動作ブロック
101 時間計測器
102 第1のタイミング調整器
103 第2のタイミング調整器
104,614 信号作成器
111,621 スロープ器
112,622 形成器
351,352,353,500,660 第1の電力増幅器
355,356,357,510,670 第2の電力増幅器
700 電流制御部

Claims (18)

  1. 少なくとも、ディスクから信号再生を行う、または、前記ディスクに信号記録を行うヘッド手段と、
    少なくとも、前記ヘッド手段の出力信号を処理して再生情報信号を出力する、または、記録情報信号を信号処理して前記ヘッド手段に出力する情報処理手段と、
    前記ディスクを回転駆動し、界磁磁束を発生する界磁部分を取り付けられたロータと、
    Q相(ここに、Qは3以上の整数)のコイルと、
    直流電圧を供給する2つの出力端子を有する電圧供給手段と、
    前記電圧供給手段の一方の出力端子側と前記コイルの一端への電流路を形成する第1のパワートランジスタをそれぞれ含んで構成されたQ個の第1の電力増幅手段と、
    前記電圧供給手段の他方の出力端子側と前記コイルの一端への電流路を形成する第2のパワートランジスタをそれぞれ含んで構成されたQ個の第2の電力増幅手段と、
    前記ロータの回転に応動した位置信号を得る位置検出手段と、
    前記位置信号に応動して前記Q個の第1の電力増幅手段と前記Q個の第2の電力増幅手段の通電区間を制御し、各前記通電区間を電気角の360/Q度相当よりも大きくする通電動作手段と、
    を具備するディスク装置であって、
    前記通電動作手段は、前記位置信号に応動した時間間隔T0を計測する時間計測手段と、
    前記時間間隔T0に応動した第1の調整時間T1であって、前記時間間隔の半分T0/2よりも小さい前記第1の調整時間T1(ここに、T1<T0/2)毎に第1の状態信号を変化させ、前記第1の状態信号が前記時間間隔T0当たりに複数状態の状態変化を行うようにし、前記時間計測手段の計測動作に応動して前記第1の状態信号を第1の所定状態にする第1のタイミング調整手段と、
    前記時間間隔T0に応動した第2の調整時間T2であって、前記第1の調整時間の半分T1/2よりも小さい前記第2の調整時間T2(ここに、T2<T1/2)毎に第2の状態信号を変化させ、前記第2の状態信号が前記第1の調整時間T1当たりに複数状態の状態変化を行うようにし、前記第1の状態信号の変化に応動して前記第2の状態信号を第2の所定状態にする第2のタイミング調整手段と、
    前記第1の状態信号と前記第2の状態信号に応動した少なくとも1個の通電制御信号を作成し、前記Q個の第1の電力増幅手段と前記Q個の第2の電力増幅手段のうちで少なくとも1個の電力増幅手段の通電区間を前記少なくとも1個の通電制御信号に応動して制御する信号作成手段と、を含んで構成され、
    前記信号作成手段は、前記第2の状態信号に応動して傾斜を有するスロープ信号を作成するスロープ手段と、
    前記第1の状態信号と前記スロープ信号に応動した前記少なくとも1個の通電制御信号を作成し、立ち上がり部分と立ち下がり部分のうちの少なくとも一方の部分において前記スロープ信号に応動して前記少なくとも1個の通電制御信号を変化させる形成手段と、
    を含んで構成されたディスク装置。
  2. 前記時間計測手段は、前記位置信号の1周期に対応した前記時間間隔T0を計測する構成とされ、
    前記第1のタイミング調整手段は、前記第1の状態信号が前記位置信号の1周期当たりMQ状態(ここに、Mは2以上の正数)の変化を起こすように、前記時間計測手段の計測結果に応動して前記第1の調整時間T1を変化させる構成とされ、
    前記信号作成手段は、前記第1の状態信号と前記スロープ信号に応動したQ相の通電制御信号を作成する構成とされた、
    請求項1に記載のディスク装置。
  3. 前記時間計測手段は、前記位置信号の半周期に対応した前記時間間隔T0を計測する構成とされ、
    前記第1のタイミング調整手段は、前記第1の状態信号が前記位置信号の半周期当たりNQ状態(ここに、Nは正数)の変化を起こすように、前記時間計測手段の計測結果に応動して前記第1の調整時間T1を変化させる構成とされ、
    前記信号作成手段は、少なくとも前記第1の状態信号と前記スロープ信号に応動したQ相の通電制御信号を作成する構成とされた、
    請求項1に記載のディスク装置。
  4. 前記信号作成手段は、前記第1の状態信号と前記スロープ信号に応動したQ相の第1の通電制御信号を作成し、各前記第1の通電制御信号は立ち上がり部分と立ち下がり部分のうちの少なくとも一方の部分において前記スロープ信号に応動して変化するようにされ、前記Q相の第1の通電制御信号に応動して前記Q個の第1の電力増幅手段の通電区間を制御する構成とされた、
    請求項1から請求項3のいずれかに記載のディスク装置。
  5. 前記信号作成手段は、前記第1の状態信号と前記スロープ信号に応動したQ相の第2の通電制御信号を作成し、各前記第2の通電制御信号は立ち上がり部分と立ち下がり部分のうちの少なくとも一方の部分において前記スロープ信号に応動して変化するようにされ、前記Q相の第2の通電制御信号に応動して前記Q個の第2の電力増幅手段の通電区間を制御する構成とされた、
    請求項1から請求項4のいずれかに記載のディスク装置。
  6. 少なくとも、ディスクから信号再生を行う、または、前記ディスクに信号記録を行うヘッド手段と、
    少なくとも、前記ヘッド手段の出力信号を処理して再生情報信号を出力する、または、記録情報信号を信号処理して前記ヘッド手段に出力する情報処理手段と、
    前記ディスクを回転駆動し、界磁磁束を発生する界磁部分を取り付けられたロータと、
    Q相(ここに、Qは3以上の整数)のコイルと、
    直流電圧を供給する2つの出力端子を有する電圧供給手段と、
    前記電圧供給手段の一方の出力端子側と前記コイルの一端への電流路を形成する第1のパワートランジスタをそれぞれ含んで構成されたQ個の第1の電力増幅手段と、
    前記電圧供給手段の他方の出力端子側と前記コイルの一端への電流路を形成する第2のパワートランジスタをそれぞれ含んで構成されたQ個の第2の電力増幅手段と、
    前記ロータの回転に応動した位置信号を得る位置検出手段と、
    前記位置信号に応動して前記Q個の第1の電力増幅手段と前記Q個の第2の電力増幅手段の通電区間を制御し、各前記通電区間を電気角の360/Q度相当よりも大きくする通電動作手段と、
    を具備するディスク装置であって、
    前記通電動作手段は、前記位置信号に応動した時間間隔T0を計測する時間計測手段と、
    前記時間間隔T0に応動した第1の調整時間T1であって、前記時間間隔の半分T0/2よりも小さい前記第1の調整時間T1(ここに、T1<T0/2)毎に第1の状態信号を変化させ、前記第1の状態信号が前記時間間隔T0当たりに複数状態の状態変化を行うようにし、前記時間計測手段の計測動作に応動して前記第1の状態信号を第1の所定状態にする第1のタイミング調整手段と、
    前記時間間隔T0に応動した第2の調整時間T2であって、前記第1の調整時間の半分T1/2よりも小さい前記第2の調整時間T2(ここに、T2<T1/2)毎に第2の状態信号を変化させ、前記第2の状態信号が前記第1の調整時間T1当たりに複数状態の状態変化を行うようにし、前記第1の状態信号の変化に応動して前記第2の状態信号を第2の所定状態にする第2のタイミング調整手段と、
    前記第1の状態信号と前記第2の状態信号に応動した少なくとも1個の通電制御信号を作成し、前記Q個の第1の電力増幅手段と前記Q個の第2の電力増幅手段のうちで少なくとも1個の電力増幅手段の通電区間を前記少なくとも1個の通電制御信号に応動して制御する信号作成手段と、
    を含んで構成されたディスク装置。
  7. 前記時間計測手段は、前記位置信号の1周期に対応した前記時間間隔T0を計測する構成とされ、
    前記第1のタイミング調整手段は、前記第1の状態信号が前記位置信号の1周期当たりMQ状態(ここに、Mは2以上の正数)の変化を起こすように、前記時間計測手段の計測結果に応動して前記第1の調整時間T1を変化させる構成とされた、
    請求項6に記載のディスク装置。
  8. 前記時間計測手段は、前記位置信号の半周期に対応した前記時間間隔T0を計測する構成とされ、
    前記第1のタイミング調整手段は、前記第1の状態信号が前記位置信号の半周期当たりNQ状態(ここに、Nは正数)の変化を起こすように、前記時間計測手段の計測結果に応動して前記第1の調整時間T1を変化させる構成とされた、
    請求項6に記載のディスク装置。
  9. 前記信号作成手段は、前記第2の状態信号に応動して傾斜を有するスロープ信号を作成するスロープ手段と、
    前記第1の状態信号と前記スロープ信号に応動した前記少なくとも1個の通電制御信号を作成し、立ち上がり部分と立ち下がり部分のうちの少なくとも一方の部分において前記スロープ信号に応動して前記少なくとも1個の通電制御信号を変化させる形成手段と、を含んで構成された、
    請求項6から請求項8のいずれかに記載のディスク装置。
  10. 界磁磁束を発生する界磁部分を取り付けられたロータと、
    Q相(ここに、Qは3以上の整数)のコイルと、
    直流電圧を供給する2つの出力端子を有する電圧供給手段と、
    前記電圧供給手段の一方の出力端子側と前記コイルの一端への電流路を形成する第1のパワートランジスタをそれぞれ含んで構成されたQ個の第1の電力増幅手段と、
    前記電圧供給手段の他方の出力端子側と前記コイルの一端への電流路を形成する第2のパワートランジスタをそれぞれ含んで構成されたQ個の第2の電力増幅手段と、
    前記ロータの回転に応動した位置信号を得る位置検出手段と、
    前記位置信号に応動して前記Q個の第1の電力増幅手段と前記Q個の第2の電力増幅手段の通電区間を制御し、各前記通電区間を電気角の360/Q度相当よりも大きくする通電動作手段と、
    を具備するモータであって、
    前記通電動作手段は、前記位置信号に応動した時間間隔T0を計測する時間計測手段と、
    前記時間間隔T0に応動した第1の調整時間T1であって、前記時間間隔の半分T0/2よりも小さい前記第1の調整時間T1(ここに、T1<T0/2)毎に第1の状態信号を変化させ、前記第1の状態信号が前記時間間隔T0当たりに複数状態の状態変化を行うようにし、前記時間計測手段の計測動作に応動して前記第1の状態信号を第1の所定状態にする第1のタイミング調整手段と、
    前記時間間隔T0に応動した第2の調整時間T2であって、前記第1の調整時間の半分T1/2よりも小さい前記第2の調整時間T2(ここに、T2<T1/2)毎に第2の状態信号を変化させ、前記第2の状態信号が前記第1の調整時間T1当たりに複数状態の状態変化を行うようにし、前記第1の状態信号の変化に応動して前記第2の状態信号を第2の所定状態にする第2のタイミング調整手段と、
    前記第1の状態信号と前記第2の状態信号に応動した少なくとも1個の通電制御信号を作成し、前記Q個の第1の電力増幅手段と前記Q個の第2の電力増幅手段のうちで少なくとも1個の電力増幅手段の通電区間を前記少なくとも1個の通電制御信号に応動して制御する信号作成手段と、を含んで構成され、
    前記信号作成手段は、前記第2の状態信号に応動して傾斜を有するスロープ信号を作成するスロープ手段と、
    前記第1の状態信号と前記スロープ信号に応動した前記少なくとも1個の通電制御信号を作成し、立ち上がり部分と立ち下がり部分のうちの少なくとも一方の部分において前記スロープ信号に応動して前記少なくとも1個の通電制御信号を変化させる形成手段と、
    を含んで構成されたモータ。
  11. 前記時間計測手段は、前記位置信号の1周期に対応した前記時間間隔T0を計測する構成とされ、
    前記第1のタイミング調整手段は、前記第1の状態信号が前記位置信号の1周期当たりMQ状態(ここに、Mは2以上の正数)の変化を起こすように、前記時間計測手段の計測結果に応動して前記第1の調整時間T1を変化させる構成とされ、
    前記信号作成手段は、前記第1の状態信号と前記スロープ信号に応動したQ相の通電制御信号を作成する構成とされた、
    請求項10に記載のモータ。
  12. 前記時間計測手段は、前記位置信号の半周期に対応した前記時間間隔T0を計測する構成とされ、
    前記第1のタイミング調整手段は、前記第1の状態信号が前記位置信号の半周期当たりNQ状態(ここに、Nは正数)の変化を起こすように、前記時間計測手段の計測結果に応動して前記第1の調整時間T1を変化させる構成とされ、
    前記信号作成手段は、少なくとも前記第1の状態信号と前記スロープ信号に応動したQ相の通電制御信号を作成する構成とされた、請求項10に記載のモータ。
  13. 前記信号作成手段は、前記第1の状態信号と前記スロープ信号に応動したQ相の第1の通電制御信号を作成し、各前記第1の通電制御信号は立ち上がり部分と立ち下がり部分のうちの少なくとも一方の部分において前記スロープ信号に応動して変化するようにされ、前記Q相の第1の通電制御信号に応動して前記Q個の第1の電力増幅手段の通電区間を制御する構成とされた、請求項10から請求項12のいずれかに記載のモータ。
  14. 前記信号作成手段は、前記第1の状態信号と前記スロープ信号に応動したQ相の第2の通電制御信号を作成し、各前記第2の通電制御信号は立ち上がり部分と立ち下がり部分のうちの少なくとも一方の部分において前記スロープ信号に応動して変化するようにされ、前記Q相の第2の通電制御信号に応動して前記Q個の第2の電力増幅手段の通電区間を制御する構成とされた、請求項10から請求項13のいずれかに記載のモータ。
  15. 界磁磁束を発生する界磁部分を取り付けられたロータと、
    Q相(ここに、Qは3以上の整数)のコイルと、
    直流電圧を供給する2つの出力端子を有する電圧供給手段と、
    前記電圧供給手段の一方の出力端子側と前記コイルの一端への電流路を形成する第1のパワートランジスタをそれぞれ含んで構成されたQ個の第1の電力増幅手段と、
    前記電圧供給手段の他方の出力端子側と前記コイルの一端への電流路を形成する第2のパワートランジスタをそれぞれ含んで構成されたQ個の第2の電力増幅手段と、
    前記ロータの回転に応動した位置信号を得る位置検出手段と、
    前記位置信号に応動して前記Q個の第1の電力増幅手段と前記Q個の第2の電力増幅手段の通電区間を制御し、各前記通電区間を電気角の360/Q度相当よりも大きくする通電動作手段と、
    を具備するモータであって、
    前記通電動作手段は、前記位置信号に応動した時間間隔T0を計測する時間計測手段と、
    前記時間間隔T0に応動した第1の調整時間T1であって、前記時間間隔の半分T0/2よりも小さい前記第1の調整時間T1(ここに、T1<T0/2)毎に第1の状態信号を変化させ、前記第1の状態信号が前記時間間隔T0当たりに複数状態の状態変化を行うようにし、前記時間計測手段の計測動作に応動して前記第1の状態信号を第1の所定状態にする第1のタイミング調整手段と、
    前記時間間隔T0に応動した第2の調整時間T2であって、前記第1の調整時間の半分 T1/2よりも小さい前記第2の調整時間T2(ここに、T2<T1/2)毎に第2の状態信号を変化させ、前記第2の状態信号が前記第1の調整時間T1当たりに複数状態の状態変化を行うようにし、前記第1の状態信号の変化に応動して前記第2の状態信号を第2の所定状態にする第2のタイミング調整手段と、
    前記第1の状態信号と前記第2の状態信号に応動した少なくとも1個の通電制御信号を作成し、前記Q個の第1の電力増幅手段と前記Q個の第2の電力増幅手段のうちで少なくとも1個の電力増幅手段の通電区間を前記少なくとも1個の通電制御信号に応動して制御する信号作成手段と、
    を含んで構成されたモータ。
  16. 前記時間計測手段は、前記位置信号の1周期に対応した前記時間間隔T0を計測する構成とされ、
    前記第1のタイミング調整手段は、前記第1の状態信号が前記位置信号の1周期当たりMQ状態(ここに、Mは2以上の正数)の変化を起こすように、前記時間計測手段の計測結果に応動して前記第1の調整時間T1を変化させる構成とされた、
    請求項15に記載のモータ。
  17. 前記時間計測手段は、前記位置信号の半周期に対応した前記時間間隔T0を計測する構成とされ、
    前記第1のタイミング調整手段は、前記第1の状態信号が前記位置信号の半周期当たりNQ状態(ここに、Nは正数)の変化を起こすように、前記時間計測手段の計測結果に応動して前記第1の調整時間T1を変化させる構成とされた、
    請求項15に記載のモータ。
  18. 前記信号作成手段は、前記第2の状態信号に応動して傾斜を有するスロープ信号を作成するスロープ手段と、
    前記第1の状態信号と前記スロープ信号に応動した前記少なくとも1個の通電制御信号を作成し、立ち上がり部分と立ち下がり部分のうちの少なくとも一方の部分において前記スロープ信号に応動して前記少なくとも1個の通電制御信号を変化させる形成手段と、を含んで構成された、
    請求項15から請求項17のいずれかに記載のモータ。
JP2001328524A 2000-10-27 2001-10-26 ディスク装置とモータ Expired - Fee Related JP4112209B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001328524A JP4112209B2 (ja) 2000-10-27 2001-10-26 ディスク装置とモータ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000328593 2000-10-27
JP2000-328593 2000-10-27
JP2001328524A JP4112209B2 (ja) 2000-10-27 2001-10-26 ディスク装置とモータ

Publications (2)

Publication Number Publication Date
JP2002204591A JP2002204591A (ja) 2002-07-19
JP4112209B2 true JP4112209B2 (ja) 2008-07-02

Family

ID=26602915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001328524A Expired - Fee Related JP4112209B2 (ja) 2000-10-27 2001-10-26 ディスク装置とモータ

Country Status (1)

Country Link
JP (1) JP4112209B2 (ja)

Also Published As

Publication number Publication date
JP2002204591A (ja) 2002-07-19

Similar Documents

Publication Publication Date Title
US7110206B2 (en) Brushless motor and disk drive apparatus
EP0989552A2 (en) Disk drive apparatus and motor
US6680593B2 (en) Disk drive apparatus and motor
EP1202270B1 (en) Disk drive apparatus and motor thereof
US6639372B2 (en) Motor and disk drive apparatus
US6586902B2 (en) Disk drive apparatus and motor
JP4112209B2 (ja) ディスク装置とモータ
JP4676171B2 (ja) モータ駆動装置及びそれを用いたディスク装置
JP2003259684A (ja) モータ及びディスク装置
JP4079702B2 (ja) モータ駆動制御回路及びモータ駆動装置
JP2003088162A (ja) ディスク装置およびモータ
JP2001231284A (ja) モータおよびモータをもつディスク装置
JP3647684B2 (ja) ディスク装置
JP3771824B2 (ja) ディスク装置
JP2005184932A (ja) ディスク装置
JP3741629B2 (ja) ディスク装置
US6320343B1 (en) Fine phase frequency multipiler for a brushless motor and corresponding control method
JP2002330599A (ja) モータとディスク装置
JP2002084775A (ja) モータをもつディスク装置、およびモータ
JPH0241695A (ja) 情報記録ディスク駆動用モータ制御装置
JP2002112583A (ja) ディスク装置およびモータ
JP2003023793A (ja) ディスク装置
JP2002142487A (ja) ディスク装置
JP2002125386A (ja) モータ
JPH11225494A (ja) モータをもつディスク装置、および、モータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees