JP4112049B2 - Low shrinkage concrete composition - Google Patents

Low shrinkage concrete composition Download PDF

Info

Publication number
JP4112049B2
JP4112049B2 JP25311597A JP25311597A JP4112049B2 JP 4112049 B2 JP4112049 B2 JP 4112049B2 JP 25311597 A JP25311597 A JP 25311597A JP 25311597 A JP25311597 A JP 25311597A JP 4112049 B2 JP4112049 B2 JP 4112049B2
Authority
JP
Japan
Prior art keywords
water
concrete
shrinkage
concrete composition
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25311597A
Other languages
Japanese (ja)
Other versions
JPH1192200A (en
Inventor
昭 庄野
Original Assignee
株式会社間組
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社間組 filed Critical 株式会社間組
Priority to JP25311597A priority Critical patent/JP4112049B2/en
Publication of JPH1192200A publication Critical patent/JPH1192200A/en
Application granted granted Critical
Publication of JP4112049B2 publication Critical patent/JP4112049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コンクリート組成物に関し、より詳細には高強度、高密度で低収縮のコンクリート組成物に関する。
【0002】
【従来の技術】
従来、高強度コンクリート、高流動コンクリート等においては、高い密度、強度等を得る等の目的で、骨材として通常絶乾比重2.5以上の粗骨材が用いられ、また配合時の水/粉体比が25〜50%程度の低い値とされる。しかしながら、このような低い水/粉体比でコンクリートを硬化させた場合、自己収縮に伴うひび割れが発生し、強度発現が却って阻害されることが問題となる。
【0003】
自己収縮は、表面からの乾燥の有無によらず、むしろ水粉体比の影響を著しく受ける。自己収縮によるひび割れの発生を防ぐためには、硬化の初期の過程(材令1週間以内)で、セメント粒子近傍に水分を十分存在させることが必要となるが、外部からの水の供給は困難である。また、外部から養生水を供給し、湿潤養生を行うとしても、工程が煩雑となり、また工期が延長する。また、マスコンクリートの場合や、型枠面、左官仕上面、地盤に直接接する面等を多く有するコンクリートの場合は、養生水の供給自体が困難であるため、養生水が供給できない内部でのひび割れが発生し、貫通ひび割れの原因となる。
【0004】
あるいは、乾燥収縮によるひび割れの発生を防ぐためにも、上記と同様なことが言える。
【0005】
従って、高強度且つ高密度であっても、自己収縮、乾燥収縮が少なく、ひび割れが発生しないコンクリートが求められている。
【0006】
なお、粗骨材として絶乾比重1.4未満の軽量粗骨材のみを含み、低い密度を得ることが意図される軽量コンクリートにおいて、さらなる軽量化を意図し、細骨材として絶乾比重1.8未満の軽量細骨材を用いることは知られているが、絶乾比重2.5以上の粗骨材を含む通常のコンクリートにおいて、収縮性を低減することを意図して軽量細骨材を含有させることは従来知られていない。
【0007】
【発明が解決しようとする課題】
本発明の目的は、高強度コンクリート、高流動コンクリート等の高い密度及び強度が求められるコンクリートにおいて、養生水の供給を行わなくても自己収縮や乾燥収縮を低減でき、ひび割れが少なく、少ない工程で高強度を発現できるコンクリートを提供することにある。
【0008】
【課題を解決するための手段】
本発明者は、上記課題を解決するために鋭意検討を重ねた結果、意外なことに、従来軽量コンクリートのさらなる軽量化に用いられていた軽量細骨材を、高強度コンクリート等に若干量添加することにより、水分を含みやすい軽量細骨材が硬化の過程においてコンクリート内部でコンクリート中に水分を供給し、養生水を供給しなくてもひび割れを防ぐことができることを見いだし、本発明を完成した。
【0009】
即ち、本発明によれば、比重2.5以上の粗骨材、15%以上の空隙率を有するか、水分を10%以上含有することができる軽量細骨材、セメント及び水を含有することを特徴とする低収縮コンクリート組成物が提供される。
【0010】
【発明の実施の形態】
本発明の低収縮コンクリート組成物は、粗骨材、軽量細骨材、セメント及び水を含有する。
【0011】
前記粗骨材は、絶乾比重2.5以上であれば特に限定されず、砕石、高炉スラグ、川砂利等の通常の粗骨材を用いることができる。
【0012】
本発明の低収縮コンクリート組成物中の前記粗骨材の配合割合は、800〜1200kg/m3、特に900〜1100kg/m3であることが好ましい。
【0013】
前記軽量細骨材とは、絶乾比重1.8以下の細骨材である。前記軽量細骨材は、15%以上の空隙率を有するか、水分を10%以上含有することができる細骨材であることが好ましい。空隙率とは、骨材粒子内部の空隙の量を示し、体積割合で表す。また、水分を10%以上含有することができるとは、前記空隙に浸入し、内部気泡の空気を置換して内部に浸透した水量が、骨材重量の10%以上となりうることをいう。
【0014】
前記軽量細骨材の材質は、特に限定されず、膨脹性粘土、頁岩の焼成品等の人工軽量細骨材、火山礫、軽石等の天然軽量細骨材、膨脹スラグ等の副産軽量細骨材等を用いることができる。
【0015】
本発明の低収縮コンクリート組成物中の前記軽量細骨材の配合割合は、300〜900kg/m3、特に300〜600kg/m3であることが好ましい。300kg/m3以上とすることにより十分に水分を供給し本発明の効果を得ることができ、また600kg/m3以下とすることにより、強度、密度等が低下しないようにすることができ好ましい。
【0016】
本発明の低収縮コンクリート組成物中の前記軽量細骨材の最適な含有割合は、前記軽量細骨材がどれだけ含水できるかに応じて異なる。具体的には、本発明の効果を得るためには、前記軽量細骨材中に、コンクリート組成物1m3当り50kg程度にあたる量の水分が含まれていれば十分である。従って、例えば水分を15重量%程度含有することができる軽量細骨材であれば、300〜400kg/m3、最適には333kg/m3程度含有させることにより、十分な本発明の効果を得ることができる。
【0017】
本発明の低収縮コンクリート組成物に含まれるセメントとしては、ポルトランドセメントや混合セメント等を用いることができる。
【0018】
本発明の低収縮コンクリート組成物中の前記セメントの配合割合は、他に粉体成分を配合しない場合であれば450〜700kg/m3とすることが好ましいが、他に石粉等の粉体成分を配合する場合であれば、粉体成分の合計として450〜700kg/m3の範囲とすることが好ましい。
【0019】
本発明の低収縮コンクリート組成物に含まれる水の配合割合は、140〜185kg/m3とすることができる。
【0020】
本発明の低収縮コンクリート組成物は、前記特定の粗骨材、前記特定の軽量細骨材、セメント及び水を含有するが、これらに加えて、フライアッシュ、高炉スラグ微粉末、シリカフューム、石粉等の混和材、減水剤、高性能AE減水剤、増粘剤等の混和剤等の他の成分を含有してもよい。これら他の成分の配合割合は、混和材については30〜300kg/m3、混和剤については0.1〜20 l/m3が好ましい。
【0021】
本発明の低収縮コンクリートは、水/粉体比が40%以下であることが好ましい。ここで水/粉体比とは、セメント及び石粉等の粉体成分に対する水の配合割合をいう。
【0022】
通常、低水粉体比(W/C=30〜20%)のコンクリートの自己収縮率は、硬化開始後材令2週程度で400〜800×10-6程度生じる。これに対して本発明の低収縮コンクリートは、自己収縮率を100×10-6程度以下とすることができ、もしくは収縮を膨脹側に転ずることができる。
【0023】
【発明の効果】
本発明の低収縮コンクリート組成物は、特定の高比重の粗骨材に加えて、特定の軽量細骨材を含むので、養生水の供給を行わなくても自己収縮や乾燥収縮を低減しながら硬化し、ひび割れが少なく、少ない工程で高強度を発現できる。従って、RC高層建物、PC構造物等に用いる高強度コンクリート、締め固めが困難な施工条件に適合させるべく締め固め作業を不要とするために、粉体量を多くし水粉体比を小さくした高流動コンクリート等として有用である。
【0024】
【実施例】
以下実施例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。
【0025】
【実施例1】
(高強度コンクリート)
表乾比重2.6、粒径25mmの粗骨材(砕石)1092kg/m3、表乾比重2.6の細骨材(砕砂)100kg/m3、空隙率30%の軽量細骨材(商品名「メサライト」、日本メサライト工業株式会社製)330kg/m3、セメント(普通セメント)550kg/m3、水165kg/m3(水/粉体比30%)及び高性能減水剤5.5kg/m3を配合し、コンクリート組成物を得た。この組成物を、通常の打設の手順に従って硬化させた。但し、養生水の供給は行わなかった。
【0026】
得られた硬化物について、材令28日における圧縮強度を測定したところ、750kg/cm2であった。また、得られた硬化物には、ひび割れは認められなかった。
【0027】
【実施例2】
(高強度コンクリート)
表乾比重2.65、粒径20mmの粗骨材(砕石)996kg/m3、空隙率30%の軽量細骨材(商品名「メサライト」、日本メサライト工業株式会社製)440kg/m3、セメント(中庸熱ポルトランドセメント)660kg/m3、水165kg/m3(水/粉体比25%)及び高性能減水剤11.22kg/m3を配合し、コンクリート組成物を得た。この組成物を、通常の打設の手順に従って硬化させた。但し、養生水の供給は行わなかった。
【0028】
得られた硬化物について、材令28日における圧縮強度を測定したところ、900kg/cm2であった。また、得られた硬化物には、ひび割れは認められなかった。
【0029】
【実施例3】
(高流動コンクリート)
表乾比重2.60、粒径20mmの粗骨材(砕石)800kg/m3、表乾比重2.56の細骨材(海砂)360kg/m3、空隙率30%の軽量細骨材(商品名「メサライト」、日本メサライト工業株式会社製)300kg/m3、セメント(高炉セメントB種)200kg/m3、石灰石粉331kg/m3、水159kg/m3(水/粉体比29.9%)、高性能AE減水剤14.34kg/m3及び増粘剤0.1kg/m3を配合し、コンクリート組成物を得た。この組成物を、通常の打設の手順に従って硬化させた。但し、養生水の供給は行わなかった。
【0030】
得られた硬化物について、材令28日における圧縮強度を測定したところ、300kg/cm2であった。また、得られた硬化物には、ひび割れは認められなかった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a concrete composition, and more particularly to a high strength, high density, low shrinkage concrete composition.
[0002]
[Prior art]
Conventionally, in high-strength concrete, high-fluidity concrete, etc., for the purpose of obtaining high density, strength, etc., a coarse aggregate having an absolute dry specific gravity of 2.5 or more is usually used as the aggregate, The powder ratio is a low value of about 25 to 50%. However, when concrete is cured at such a low water / powder ratio, there is a problem that cracks due to self-shrinkage occur and the strength development is hindered.
[0003]
Self-shrinkage is significantly affected by the water-powder ratio, regardless of whether or not it is dried from the surface. In order to prevent the occurrence of cracks due to self-shrinkage, it is necessary to allow sufficient moisture in the vicinity of the cement particles in the initial stage of curing (within 1 week of age), but it is difficult to supply water from the outside. is there. Further, even if the curing water is supplied from the outside and the wet curing is performed, the process becomes complicated and the construction period is extended. In addition, in the case of mass concrete, or concrete that has a lot of formwork, plastering surface, surface directly in contact with the ground, etc., it is difficult to supply curing water, so internal cracks cannot be supplied. Will occur and cause cracks.
[0004]
Alternatively, the same can be said for preventing the occurrence of cracks due to drying shrinkage.
[0005]
Accordingly, there is a need for a concrete that has little self-shrinkage and drying shrinkage even at high strength and high density and does not generate cracks.
[0006]
It should be noted that, in light-weight concrete intended to obtain a low density, including only light-weight coarse aggregate having an absolute dry specific gravity of less than 1.4 as the coarse aggregate, an absolute dry specific gravity of 1 is intended as a fine aggregate. Although it is known to use a lightweight fine aggregate of less than .8, it is intended to reduce shrinkage in ordinary concrete containing coarse aggregate having an absolute dry specific gravity of 2.5 or more. It has not been conventionally known to contain.
[0007]
[Problems to be solved by the invention]
The object of the present invention is to reduce self-shrinkage and drying shrinkage without supplying curing water in concrete requiring high density and strength, such as high-strength concrete and high-fluidity concrete, with less cracking and fewer steps. The object is to provide concrete capable of developing high strength.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor surprisingly added a small amount of lightweight fine aggregate, which has been conventionally used for further weight reduction of lightweight concrete, to high-strength concrete and the like. As a result, it was found that a lightweight fine aggregate that easily contains moisture can supply moisture to the concrete inside the concrete during the curing process, and can prevent cracking without supplying curing water, thereby completing the present invention. .
[0009]
That is, according to the present invention, a coarse aggregate having a specific gravity of 2.5 or more, a lightweight fine aggregate having a porosity of 15% or more, or containing 10% or more of moisture , cement, and water. A low shrinkage concrete composition is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The low shrinkage concrete composition of the present invention contains coarse aggregate, lightweight fine aggregate, cement and water.
[0011]
The coarse aggregate is not particularly limited as long as it has an absolute dry specific gravity of 2.5 or more, and ordinary coarse aggregates such as crushed stone, blast furnace slag, river gravel and the like can be used.
[0012]
The blending ratio of the coarse aggregate in the low shrinkage concrete composition of the present invention is preferably 800 to 1200 kg / m 3 , particularly 900 to 1100 kg / m 3 .
[0013]
The lightweight fine aggregate is a fine aggregate having an absolute dry specific gravity of 1.8 or less. The lightweight fine aggregate is preferably a fine aggregate having a porosity of 15% or more or containing 10% or more of moisture. The porosity indicates the amount of voids in the aggregate particles and is expressed as a volume ratio. Further, the phrase “can contain 10% or more moisture” means that the amount of water that penetrates into the voids and replaces the air in the internal bubbles and penetrates into the interior can be 10% or more of the aggregate weight.
[0014]
The material of the lightweight fine aggregate is not particularly limited. Artificial lightweight fine aggregates such as expansive clay and shale fired products, natural lightweight fine aggregates such as volcanic gravel and pumice, and by-product lightweight fine aggregates such as expanded slag. Aggregates can be used.
[0015]
The blending ratio of the lightweight fine aggregate in the low shrinkage concrete composition of the present invention is preferably 300 to 900 kg / m 3 , particularly preferably 300 to 600 kg / m 3 . By setting it to 300 kg / m 3 or more, it is possible to sufficiently supply water and obtain the effects of the present invention, and by setting it to 600 kg / m 3 or less, it is possible to prevent the strength, density, etc. from being lowered, which is preferable. .
[0016]
The optimum content ratio of the lightweight fine aggregate in the low shrinkage concrete composition of the present invention varies depending on how much the lightweight fine aggregate can contain water. Specifically, in order to obtain the effects of the present invention, it is sufficient that the lightweight fine aggregate contains an amount of water corresponding to about 50 kg per 1 m 3 of the concrete composition. Therefore, for example, if it is a lightweight fine aggregate that can contain about 15% by weight of water, sufficient effects of the present invention can be obtained by containing about 300 to 400 kg / m 3 , optimally about 333 kg / m 3. be able to.
[0017]
As the cement contained in the low shrinkage concrete composition of the present invention, Portland cement, mixed cement or the like can be used.
[0018]
The blending ratio of the cement in the low-shrinkage concrete composition of the present invention is preferably 450 to 700 kg / m 3 if no other powder component is blended. Is preferably in the range of 450 to 700 kg / m 3 as the total of the powder components.
[0019]
The mixing ratio of water contained in the low shrinkage concrete composition of the present invention can be 140 to 185 kg / m 3 .
[0020]
The low-shrinkage concrete composition of the present invention contains the specific coarse aggregate, the specific lightweight fine aggregate, cement and water, but in addition to these, fly ash, blast furnace slag fine powder, silica fume, stone powder and the like Other components such as admixtures, water reducing agents, high-performance AE water reducing agents, thickeners and the like may be contained. The blending ratio of these other components is preferably 30 to 300 kg / m 3 for the admixture and 0.1 to 20 l / m 3 for the admixture.
[0021]
The low shrinkage concrete of the present invention preferably has a water / powder ratio of 40% or less. Here, the water / powder ratio refers to the mixing ratio of water to powder components such as cement and stone powder.
[0022]
Usually, the self-shrinkage ratio of concrete having a low water powder ratio (W / C = 30 to 20%) is about 400 to 800 × 10 −6 after about 2 weeks after the start of curing. On the other hand, the low shrinkage concrete of the present invention can have a self-shrinkage rate of about 100 × 10 −6 or less, or can shrink the shrinkage to the expansion side.
[0023]
【The invention's effect】
The low-shrinkage concrete composition of the present invention includes a specific lightweight fine aggregate in addition to a specific high specific gravity coarse aggregate, and thus reduces self-shrinkage and dry shrinkage without supplying curing water. It is hardened, has few cracks, and can produce high strength with few steps. Therefore, the amount of powder was increased and the water-to-powder ratio was reduced in order to eliminate the need for compaction work to meet high-strength concrete used for RC high-rise buildings, PC structures, and other construction conditions that are difficult to compact. Useful as high fluid concrete.
[0024]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
[0025]
[Example 1]
(High-strength concrete)
Table dry specific gravity 2.6, coarse aggregate particle size 25 mm (crushed stone) 1092kg / m 3, fine aggregates-dry specific gravity 2.6 (crushed sand) 100 kg / m 3, porosity of 30% weight fine aggregate ( Product name “Mesalite” (manufactured by Nippon Mesalite Industrial Co., Ltd.) 330 kg / m 3 , cement (ordinary cement) 550 kg / m 3 , water 165 kg / m 3 (water / powder ratio 30%) and high-performance water reducing agent 5.5 kg / M 3 was blended to obtain a concrete composition. The composition was cured according to normal casting procedures. However, no curing water was supplied.
[0026]
About the obtained hardened | cured material, it was 750 kg / cm < 2 > when the compressive strength in material age 28th was measured. Further, no cracks were observed in the obtained cured product.
[0027]
[Example 2]
(High-strength concrete)
Coarse aggregate (crushed stone) of 996 kg / m 3 with a surface dry specific gravity of 2.65, particle size of 20 mm, lightweight fine aggregate with a porosity of 30% (trade name “Mesalite”, manufactured by Nippon Mesalite Industrial Co., Ltd.) 440 kg / m 3 , Cement (medium heat Portland cement) 660 kg / m 3 , water 165 kg / m 3 (water / powder ratio 25%) and high performance water reducing agent 11.22 kg / m 3 were blended to obtain a concrete composition. The composition was cured according to normal casting procedures. However, no curing water was supplied.
[0028]
About the obtained hardened | cured material, it was 900 kg / cm < 2 > when the compressive strength in material age 28th was measured. Further, no cracks were observed in the obtained cured product.
[0029]
[Example 3]
(High fluidity concrete)
Coarse aggregate (crushed stone) 800 kg / m 3 with a surface dry specific gravity of 2.60, a particle size of 20 mm, fine aggregate (sea sand) with a surface dry specific gravity of 2.56, 360 kg / m 3 , and a lightweight fine aggregate with a porosity of 30% (Product name “Mesalite”, manufactured by Nippon Mesalite Industry Co., Ltd.) 300 kg / m 3 , Cement (Blast Furnace Cement B Type) 200 kg / m 3 , Limestone Powder 331 kg / m 3 , Water 159 kg / m 3 (Water / Powder Ratio 29 .9%), blended high AE water reducing agent 14.34kg / m 3 and a thickening agent 0.1 kg / m 3, to obtain a concrete composition. The composition was cured according to normal casting procedures. However, no curing water was supplied.
[0030]
About the obtained hardened | cured material, it was 300 kg / cm < 2 > when the compressive strength in material age 28th was measured. Further, no cracks were observed in the obtained cured product.

Claims (1)

絶乾比重2.5以上の粗骨材、15%以上の空隙率を有するか、水分を10%以上含有することができる軽量細骨材、セメント及び水を含有することを特徴とする低収縮コンクリート組成物。Coarse aggregate having an absolute dry specific gravity of 2.5 or more, lightweight fine aggregate having a porosity of 15% or more, or containing 10% or more of moisture , cement and water Concrete composition.
JP25311597A 1997-09-18 1997-09-18 Low shrinkage concrete composition Expired - Fee Related JP4112049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25311597A JP4112049B2 (en) 1997-09-18 1997-09-18 Low shrinkage concrete composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25311597A JP4112049B2 (en) 1997-09-18 1997-09-18 Low shrinkage concrete composition

Publications (2)

Publication Number Publication Date
JPH1192200A JPH1192200A (en) 1999-04-06
JP4112049B2 true JP4112049B2 (en) 2008-07-02

Family

ID=17246717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25311597A Expired - Fee Related JP4112049B2 (en) 1997-09-18 1997-09-18 Low shrinkage concrete composition

Country Status (1)

Country Link
JP (1) JP4112049B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176742A (en) * 2005-12-28 2007-07-12 Taiheiyo Material Kk Shearing strength-reinforced type lightweight concrete
JP6308581B2 (en) * 2013-12-05 2018-04-11 株式会社トクヤマエムテック Concrete composition
JP6180946B2 (en) * 2014-01-17 2017-08-16 大成建設株式会社 Concrete composition
JP6478759B2 (en) * 2015-03-27 2019-03-06 三井住友建設株式会社 Cement composition
JP7074527B2 (en) * 2018-03-27 2022-05-24 太平洋マテリアル株式会社 Cement composite
JP7390274B2 (en) * 2020-11-17 2023-12-01 大成建設株式会社 concrete
CN115716731B (en) * 2022-11-14 2023-11-17 中铁建大桥工程局集团第四工程有限公司 Low-shrinkage creep mechanism sandstone aggregate C55 concrete suitable for ultrahigh pumping

Also Published As

Publication number Publication date
JPH1192200A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
US5378279A (en) Enhanced cement mixed with selected aggregates
CA2160917C (en) Method for producing cement
JP5633044B2 (en) Fly ash concrete and manufacturing method thereof
JP4112049B2 (en) Low shrinkage concrete composition
JP2002362958A (en) Water-permeable concrete
JP2007246293A (en) Low shrinkage type light-weight concrete
JP2004284873A (en) Hydraulic complex material
JP2000247719A (en) Production of hardened body and hardened body composition
JP2002128574A (en) Lightweight concrete
JP2000072518A (en) Cement for high-fluidity spray concrete
JP4651134B2 (en) Quick setting agent for high fluid spraying concrete
JP2005213085A (en) Ultra-lightweight mortar
JP2001019529A (en) Cement hardened product
JPH08277157A (en) Concrete composition
JP2001226958A (en) Steel pipe concrete pile
JP2001207794A (en) Concrete-made segment
JP3290171B2 (en) Manufacturing method of porous concrete
JPS63129052A (en) Cementitious self-leveling material composition
JP2001206754A (en) Highly flowable concrete
JP2002356358A (en) Water permeable concrete
JP2001226162A (en) Joint filler material for post-tension-prestressed concrete plate
JP2006182629A (en) Mortar for fire-proofing coating
JP2003063847A (en) Expansive material
JPH0542383B2 (en)
JP2001213654A (en) Quick-setting mortar or concrete with ultra high strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees