JP2000247719A - Production of hardened body and hardened body composition - Google Patents

Production of hardened body and hardened body composition

Info

Publication number
JP2000247719A
JP2000247719A JP5174599A JP5174599A JP2000247719A JP 2000247719 A JP2000247719 A JP 2000247719A JP 5174599 A JP5174599 A JP 5174599A JP 5174599 A JP5174599 A JP 5174599A JP 2000247719 A JP2000247719 A JP 2000247719A
Authority
JP
Japan
Prior art keywords
aggregate
cement
ash
hydraulic material
cured product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5174599A
Other languages
Japanese (ja)
Inventor
Noboru Shintani
新谷  登
Sunao Saito
直 斉藤
Tatsuo Kita
達夫 喜多
Kazuto Fukutome
和人 福留
Hajime Sasaki
肇 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Hazama Corp
Original Assignee
Hazama Gumi Ltd
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Gumi Ltd, Chugoku Electric Power Co Inc filed Critical Hazama Gumi Ltd
Priority to JP5174599A priority Critical patent/JP2000247719A/en
Publication of JP2000247719A publication Critical patent/JP2000247719A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To control the density of a hardened body and to enlarge applicability by formulating a hydraulic material containing cement, burned ash, a hardening accelerator and an aggregate with seawater and/or water in the range of an optimum water ratio + a specific %, placing the mixture in a frame mold to give a hydraulic material and compacting the hydraulic material by vibration. SOLUTION: A hydraulic material 3 containing cement, burned ash, a hardening accelerator and an aggregate is kneaded with seawater and/or water in the range of an optimum water ratio + (0-5)% to give a hydraulic material 3. The amount of the cement is 10-50 pts.wt. based on 100 pts.wt. of the burned ash such as coal ash. An inorganic salt such as sodium chloride is used as the hardening accelerator and its amount added is 1 to 2.5 pts.wt. based on 100 pts.wt. of the mixture of coal ash and cement. The amount of the aggregate such as metal slag is preferably 50-100 wt.%. The hydraulic material 3 is placed in a frame mold 1, vibrated by a vibrator 2 and compacted to give a hardened body. The density of the hardened body is controlled by the addition of the aggregate to give a high-density hardened body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、焼却灰を多量に
用いた高密度な硬化体製造方法及び硬化体組成物に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-density cured product using a large amount of incinerated ash and a cured product composition.

【0002】[0002]

【従来の技術】近年の電力需要の増加に伴い発電所の建
設が促進されているが、石油燃料の大量消費の抑制の観
点から、石炭火力発電所が見直されている。このような
状況から、今後石炭火力発電所の建設が増加し、それに
伴って石炭灰の発生量が大幅に増加することが予想され
ている。
2. Description of the Related Art The construction of power plants has been promoted in response to the increase in demand for electric power in recent years. However, coal-fired power plants have been reviewed from the viewpoint of suppressing mass consumption of petroleum fuel. Under such circumstances, it is expected that the construction of coal-fired power plants will increase in the future, and the amount of coal ash generated will increase significantly with the increase.

【0003】このような焼却灰としての石炭灰は、セメ
ント原料、コンクリー卜用混和材、その他で有効利用さ
れているが、依然として埋立て処分の比率が高いのが現
状であり、環境保全の観点からも石炭灰の有効利用の拡
大が重要な課題となっている。
[0003] Coal ash as such incinerated ash is effectively used as a raw material for cement, admixture for concrete, and the like, but at present, the ratio of landfill disposal is still high. Therefore, expanding the effective use of coal ash has become an important issue.

【0004】このため、この出願人は、石炭灰の有効利
用の一方法として、石炭灰の原粉を多量に用いた硬化体
の製造方法を開発し、特公昭62−16714号公報及
び特開平9−12348号公報等を提案した。この石炭
灰を用いた硬化体は、これまで主として海洋構造物、例
えば人工魚礁や漁場開発を目的とした人工海底山脈のブ
ロックの製造に用いられている。
[0004] For this reason, the present applicant has developed a method for producing a cured product using a large amount of raw coal ash powder as one method of effective utilization of coal ash. No. 9-12348 was proposed. The hardened material using this coal ash has been mainly used for the production of marine structures, for example, blocks of artificial undersea mountains for the purpose of developing artificial fish reefs and fishing grounds.

【0005】[0005]

【発明が解決しようとする課題】ところで、石炭灰を多
量に用いた硬化体の密度は、石炭灰の密度及び最適水粉
体比によって決定され、おおよそ比重は1.7〜1.9
の範囲にある。この値は、コンクリ―卜や天然骨材に比
べて小さく、軟弱地盤等へ適用する場合、沈下・埋設等
に対して優位となる。しかしながら、消波ブロック等、
波浪等の外力の影響を受ける箇所へ適用する場合、安定
性を確保する上で高い密度、例えば比重が2.2〜2.
8程度が必要とされるため、現状ではその適用は困難で
ある。
The density of a cured product using a large amount of coal ash is determined by the density of the coal ash and the optimum water powder ratio, and the specific gravity is approximately 1.7 to 1.9.
In the range. This value is smaller than concrete or natural aggregate, and when applied to soft ground, it is superior to settlement and burial. However, wave-dissipating blocks,
When applied to a location affected by an external force such as a wave, a high density, for example, a specific gravity of 2.2 to 2.
Since about 8 is required, its application is difficult at present.

【0006】この発明は、かかる点に鑑みてなされたも
ので、硬化体の密度、例えば比重が2.2〜2.8程度
の制御を可能とし、その適用性の拡大が可能である硬化
体製造方法及び硬化体組成物を提供することを目的とし
ている。
[0006] The present invention has been made in view of the above points, and enables the control of the density of a cured body, for example, the specific gravity of about 2.2 to 2.8, and the application of the cured body can be expanded. It is intended to provide a production method and a cured product composition.

【0007】[0007]

【課題を解決するための手段】前記課題を解決し、かつ
目的を達成するために、この発明は、以下のように構成
した。
Means for Solving the Problems In order to solve the above problems and achieve the object, the present invention has the following constitution.

【0008】請求項1に記載の発明は、『セメント、焼
却灰、硬化促進剤及び骨材とを含む水硬性材料を混練
し、海水及び/又は水を最適含水比+(0〜5)%の範
囲内にて添加して混練し、型枠に打設し、この型枠を振
動させて打設された水硬性材料を締め固めることを特徴
とする硬化体製造方法。』である。
[0008] The invention described in claim 1 is based on the idea that "a hydraulic material containing cement, incineration ash, a hardening accelerator and an aggregate is kneaded, and seawater and / or water is added to an optimum water content ratio of + (0 to 5)%. A method for producing a cured product, comprising adding and kneading within the range described above, kneading the mixture, placing the mixture in a mold, and vibrating the mold to compact the hydraulic material placed. ].

【0009】この請求項1に記載の発明によれば、セメ
ント、焼却灰及び硬化促進剤に、骨材を混入すること
で、硬化体の密度の制御が、例えば例えば比重が2.2
〜2.8程度にすることが可能で、高密度の硬化体組成
物を製造することができる。
According to the first aspect of the present invention, the density of the hardened body can be controlled, for example, by controlling the specific gravity to 2.2 by mixing the aggregate into the cement, the incinerated ash and the hardening accelerator.
To 2.8, and a high-density cured body composition can be produced.

【0010】請求項2に記載の発明は、『前記セメント
は、普通ポルトランドセメント、早強ポルトランドセメ
ント、超早強ポルトランドセメント、中庸熱ポルトラン
ドセメント等の各種ポルトランドセメントであることを
特徴とする請求項1に記載の硬化体製造方法。』であ
る。
[0010] The invention according to claim 2 is characterized in that the cement is a variety of Portland cements such as ordinary Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, and moderately heated Portland cement. 2. The method for producing a cured product according to 1. ].

【0011】この請求項2に記載の発明によれば、セメ
ントとして、普通ポルトランドセメント、早強ポルトラ
ンドセメント、超早強ポルトランドセメント、中庸熱ポ
ルトランドセメント等の各種ポルトランドセメントを利
用することができる。
According to the second aspect of the present invention, various portland cements such as ordinary portland cement, early-strength portland cement, ultra-high-strength portland cement, and moderately heated portland cement can be used as the cement.

【0012】請求項3に記載の発明は、『前記焼却灰
が、石炭灰、ゴミ、汚泥、スラッジ等の焼却灰、あるい
火山灰であることを特徴とする請求項1に記載の硬化体
製造方法。』である。
According to a third aspect of the present invention, there is provided a method for manufacturing a cured product according to the first aspect, wherein the incinerated ash is incinerated ash such as coal ash, trash, sludge, sludge, or volcanic ash. Method. ].

【0013】この請求項3に記載の発明によれば、焼却
灰として、石炭灰、ゴミ、汚泥、スラッジ等の焼却灰、
あるい火山灰を利用することができる。
According to the third aspect of the present invention, as the incinerated ash, incinerated ash such as coal ash, trash, sludge, sludge, etc.
Or you can use volcanic ash.

【0014】請求項4に記載の発明は、『前記硬化促進
剤が、無機塩類、または無機塩類の混練物であることを
特徴とする請求項1に記載の硬化体製造方法。』であ
る。
According to a fourth aspect of the present invention, there is provided a method for producing a cured product according to the first aspect, wherein the curing accelerator is an inorganic salt or a kneaded product of an inorganic salt. ].

【0015】この請求項4に記載の発明によれば、硬化
促進剤として、無機塩類、または無機塩類の混練物を利
用することができる。
According to the fourth aspect of the present invention, an inorganic salt or a kneaded product of an inorganic salt can be used as a curing accelerator.

【0016】請求項5に記載の発明は、前記骨材が、各
種金属スラグ、天然骨材、再生骨材があり、これらの骨
材を単独あるいは、組み合わせて用い、混入率は、実績
率に相当する量に対して50〜100%であることを特
徴とする請求項1に記載の硬化体製造方法。』である。
The invention according to claim 5 is characterized in that the aggregate includes various metal slags, natural aggregates and recycled aggregates, and these aggregates are used alone or in combination. The method for producing a cured product according to claim 1, wherein the amount is 50 to 100% with respect to a corresponding amount. ].

【0017】この請求項5に記載の発明によれば、骨材
が、各種金属スラグ、天然骨材、再生骨材があり、これ
らの骨材を単独あるいは、組み合わせて用いることがで
き、混入率は、実績率に相当する量に対して50〜10
0%が品質が均一で十分な締固めができる。
According to the fifth aspect of the present invention, the aggregate includes various metal slags, natural aggregates and recycled aggregates, and these aggregates can be used alone or in combination. Is 50 to 10 for the amount corresponding to the performance rate.
0% is uniform in quality and can be sufficiently compacted.

【0018】請求項6に記載の発明は、『前記締め固め
は、振動手段を用い、 振動加速度3g以上であること
を特徴とする請求項1に記載の硬化体製造方法。』であ
る。
According to a sixth aspect of the present invention, there is provided the method for producing a cured body according to the first aspect, wherein the compaction is performed by using a vibration means and having a vibration acceleration of 3 g or more. ].

【0019】この請求項6に記載の発明によれば、締め
固めは、振動手段を用い、振動加速度3g以上とするこ
とで、十分に締め固めることができる。
According to the sixth aspect of the invention, the compaction can be sufficiently compacted by using the vibration means and setting the vibration acceleration to 3 g or more.

【0020】請求項7に記載の発明は、『セメント、焼
却灰、硬化促進剤及び骨材とを含む水硬性材料を混練
し、海水及び/又は水を最適含水比+(0〜5)%の範
囲内にて添加して混練し、振動させて締め固めてなるこ
とを特徴とする硬化体組成物。』である。
[0020] The invention according to claim 7 is that "a hydraulic material containing cement, incineration ash, a hardening accelerator and an aggregate is kneaded, and seawater and / or water is added to an optimum water content ratio of + (0 to 5)%. A cured product composition which is added and kneaded in the range of and kneaded and vibrated to compact. ].

【0021】この請求項7に記載の発明によれば、セメ
ント、焼却灰及び硬化促進剤に、骨材を混入し、海水及
び/又は水を添加して混練して締め固めてなり、例えば
比重が2.2〜2.8程度の高密度の硬化体組成物であ
るため、消波ブロック等、波浪等の外力の影響を受ける
箇所への適用する場合でも、安定性を確保することがで
きる。
According to the invention of claim 7, aggregate is mixed with cement, incinerated ash and hardening accelerator, seawater and / or water are added, kneaded and compacted. Is a high-density cured body composition of about 2.2 to 2.8, so that stability can be ensured even when applied to a location that is affected by an external force such as a wave, such as a wave-dissipating block. .

【0022】[0022]

【発明の実施の形態】以下、この発明の硬化体製造方法
及び硬化体組成物の実施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a method for producing a cured product and a cured product composition according to the present invention will be described in detail.

【0023】この発明では、図1に示すように、セメン
ト、焼却灰、硬化促進剤及び骨材とを含む水硬性材料を
混練し、海水及び/又は水を最適含水比+(0〜5)%
の範囲内にて添加して混練し、型枠1に打設し、この型
枠1を振動機2により振動させて打設された水硬性材料
3を締め固める。
In the present invention, as shown in FIG. 1, a hydraulic material containing cement, incineration ash, a hardening accelerator and an aggregate is kneaded, and seawater and / or water are added to an optimum water content ratio of + (0 to 5). %
Is added and kneaded in the range, and the mixture is poured into the mold 1 and the mold 1 is vibrated by the vibrator 2 to compact the hydraulic material 3 placed.

【0024】この発明において使用できるセメントとし
ては、普通ポルトランドセメント、早強ポルトランドセ
メント、超早強ポルトランドセメント、中庸熱ポルトラ
ンドセメント等の各種ポルトランドセメント;アルミナ
セメント、石灰アルミナセメント等のアルミナセメン
ト;高炉スラグ混合セメント、ポゾラン混合セメント、
フライアツシユセメント等の各種混合セメントを挙げる
ことができる。
Examples of the cement that can be used in the present invention include various portland cements such as ordinary portland cement, early-strength portland cement, ultra-high-strength portland cement, and moderately heated portland cement; alumina cements such as alumina cement and lime alumina cement; blast furnace slag Mixed cement, pozzolan mixed cement,
Various mixed cements such as fly ash cement can be exemplified.

【0025】これらのうち、ポルトランドセメント、特
に普通ポルトランドセメントが一般的であり好ましく使
用できる。
Of these, Portland cement, particularly ordinary Portland cement, is generally and preferably used.

【0026】また、焼却灰としては、石炭灰、ゴミ、汚
泥、スラッジ等の焼却灰、あるい火山灰等を挙げること
ができ、特に石炭灰が好ましく、石炭灰中でも微粉炭燃
焼により発生したものを電気集塵機で集めた、いわゆる
EP灰、あるいはこれを粗粒化した既成灰などを挙げる
ことができる。これらのうち、EP灰が、最適含水比が
一定していること、取扱い易いなどの理由で好ましい。
Examples of the incinerated ash include incinerated ash such as coal ash, garbage, sludge, and sludge, and volcanic ash. In particular, coal ash is preferable. Examples thereof include so-called EP ash collected by an electric dust collector or pre-formed ash obtained by coarsening the so-called EP ash. Among them, EP ash is preferable because the optimum water content is constant and the handling is easy.

【0027】この発明では、前記セメントを焼却灰10
0重量部に対し、3〜150重量部、好ましくは10〜
50重量部添加する。セメントの添加量が3重量部未満
では強度が発現せず、また150重量部を越えて添加し
ても強度発現がさほど上昇しないばかりか、ひび割れ等
の問題を生ずる。
In the present invention, the cement is incinerated with ash 10
3 to 150 parts by weight, preferably 10 to 100 parts by weight,
Add 50 parts by weight. If the amount of cement added is less than 3 parts by weight, no strength is exhibited, and even if added over 150 parts by weight, not only does the strength not significantly increase, but also problems such as cracking occur.

【0028】この発明において使用できる硬化促進剤と
しては、無機塩類を挙げることができる。無機塩類とし
ては、塩化ナトリウム、臭化ナトリウム、塩化カリウ
ム、フッ化カリウムなどのアルカリ金属ハロゲン化物
類;塩化カルシウム、塩化マグネシウム、臭化マグネシ
ウム等のアルカリ土類金属ハロゲン化物類;並びにこれ
らの混練物を挙げることができる。これらの無機塩類は
粉末若しくは水溶液にて混和剤とすることができ、後者
の場合特に濃度は臨界的ではないが通常1〜20重量%
程度の水溶液として用いる。海水を添加混練すれば、無
機塩を含有させることができる。無機塩類の添加量は石
炭灰とセメントとの混練物100重量部に対し、0.1
〜5重量部(乾操基準)、好ましくは1〜2.5重量部
(乾操基準)とする。添加量が0.1重量部未満では強
度が発現せず、また一方5重量部を越えると添加量を増
しても強度増加が見られなくなる。石炭灰とセメントと
の混練物に対し、前記の範囲で無機塩類を添加すると強
度、特に圧縮強度が著しく増大し、短期材令後の強度ば
かりでなく、長期材令後の強度が著しく増大する。
Examples of the curing accelerator that can be used in the present invention include inorganic salts. Examples of the inorganic salts include alkali metal halides such as sodium chloride, sodium bromide, potassium chloride, and potassium fluoride; alkaline earth metal halides such as calcium chloride, magnesium chloride, and magnesium bromide; Can be mentioned. These inorganic salts can be used as an admixture in the form of a powder or an aqueous solution. In the latter case, the concentration is not particularly critical, but usually 1 to 20% by weight.
Used as an aqueous solution. If seawater is added and kneaded, an inorganic salt can be contained. The addition amount of the inorganic salts is 0.1% with respect to 100 parts by weight of the kneaded material of coal ash and cement.
To 5 parts by weight (dry basis), preferably 1 to 2.5 parts by weight (dry basis). If the added amount is less than 0.1 part by weight, no strength is exhibited, while if it exceeds 5 parts by weight, no increase in strength is observed even if the added amount is increased. For the kneaded material of coal ash and cement, when inorganic salts are added in the above range, the strength, particularly the compressive strength, increases remarkably, and not only the strength after short-term aging, but also the strength after long-term aging significantly increases. .

【0029】この発明において使用できる骨材として
は、各種金属スラグ(高炉スラグ、電炉スラグ、銅スラ
グ等)、天然骨材(川砂、砕石)、再生骨材(コクリー
トガラ)があり、微粒分が少ないものが好ましい。これ
らの骨材を単独あるいは、組み合わせて用いることがで
き、混入率は、実績率に相当する量に対して50〜10
0%が適当である。
The aggregates usable in the present invention include various metal slags (blast furnace slag, electric furnace slag, copper slag, etc.), natural aggregates (river sand, crushed stone), and recycled aggregates (cocrete glass). Less is preferred. These aggregates can be used alone or in combination. The mixing ratio is 50 to 10 with respect to the amount corresponding to the actual ratio.
0% is appropriate.

【0030】この骨材は、目標とする硬化体の密度によ
って混入量を決定することになるが、量が少ないと骨材
の沈降により品質が不均一となり、また、量が多いと十
分な締固めが困難となり、よって60〜90%程度がよ
り望ましい。
The amount of the aggregate to be mixed is determined according to the target density of the cured body. If the amount is small, the quality becomes non-uniform due to the sedimentation of the aggregate. Hardening becomes difficult, so about 60-90% is more desirable.

【0031】次に、水硬性材料を混練し、海水及び/又
は水を(最適合水比+0)〜(最適含水比+5)%の範
囲内にて添加して混練する。最適含水比とは含水比を変
化させながら各含水比の供試体を突固め、乾燥密度を測
定して最大の乾燥密度が得られる含水比を云う。(最適
含水比+5)%を越える含水比を用いると、プリーディ
ングが大きくなり、乾燥時にひび割れを生じたり又は硬
化体中に水分が残リヘアクラックが生ずる恐れがある。
一方、(最適含水比+0)%未満の含水比では締固めが
非常に困難であり、作業性が悪くなるので打設が困雛と
なり、充分な強度が発現しないおそれがある。混練に当
っては一般の生コンクリートを混練する強制練りミキサ
ー、二軸強制練りミキサー、低含水比用強制連続練りミ
キサー等の機器を用いると充分混練されるので好まし
い。
Next, the hydraulic material is kneaded, and seawater and / or water are added within the range of (optimum water content ratio +0) to (optimum water content ratio +5)% and kneaded. The optimum water content refers to the water content at which the maximum dry density is obtained by changing the water content and compacting the test specimens at each water content and measuring the dry density. If a water content ratio exceeding (optimal water content ratio +5)% is used, the pleating is increased, and cracks may occur during drying, or moisture may remain in the cured product to cause a re-hair crack.
On the other hand, if the water content is less than (optimal water content + 0)%, compaction is extremely difficult, and the workability is deteriorated, so that casting is difficult, and sufficient strength may not be exhibited. For kneading, it is preferable to use a device such as a forced kneading mixer for kneading general ready-mixed concrete, a twin-screw forced kneading mixer, a forced continuous kneading mixer for a low water content ratio, etc., since sufficient kneading is performed.

【0032】水硬性材料を充分に混練した後、型枠内に
打設し、この型枠を振動させて混練物を締め固める。こ
の混練物を締め固める程度は、所定時間によっても、あ
るいは目視によってもよい。目視による場合は、湿気の
ある粉体から流体に性状が変化する状況を観察する。さ
らに、型枠内に所定長離隔した±電極を型枠内に設配
し、各電極に通電して得られる電極間の電気抵抗値を測
定しながら、この電気抵抗値の絶対値は問題とせず、そ
れぞれの混練物自体の経時的な相対変化の傾向におい
て、電気祇抗値が低下するまで型枠を振動させて混練物
を締め固めるようにしてもよい。
After the hydraulic material is sufficiently kneaded, it is poured into a mold and the kneaded material is compacted by vibrating the mold. The degree of compaction of the kneaded material may be determined for a predetermined time or visually. In the case of visual observation, a situation in which the property changes from a humid powder to a fluid is observed. In addition, ± electrodes separated by a predetermined length in the mold are arranged in the mold, and while measuring the electric resistance between the electrodes obtained by energizing each electrode, the absolute value of the electric resistance is not considered. Instead, the kneaded material may be compacted by vibrating the form until the electric resistance value decreases in the tendency of the respective kneaded material itself to change over time.

【0033】ここで、振動は例えば油圧テーブルバイブ
レータ、振動パイルハンマ等の振動手段を用いることが
できる。振動加速度3g以上とすることが十分に締め固
める上で望ましいが、振動条件に応じて適切な水粉体比
を選定することで締め固め可能である。
Here, for the vibration, for example, a vibration means such as a hydraulic table vibrator or a vibration pile hammer can be used. Although it is desirable that the vibration acceleration is 3 g or more for compacting sufficiently, compacting is possible by selecting an appropriate water powder ratio according to the vibration conditions.

【0034】締め固め後に脱型して、強度を増強する場
合には硬化体組成物のブロックを60℃程度にて蒸気養
生しても良い。
In order to enhance the strength by removing the mold after compaction, the block of the cured composition may be steam-cured at about 60 ° C.

【0035】この発明では、セメント、焼却灰及び硬化
促進剤に、骨材を混入することで、硬化体の密度の制御
が可能で、高密度の硬化体組成物を製造することができ
る。また、セメント、焼却灰及び硬化促進剤に、骨材を
混入し、海水及び/又は水を添加して混練して締め固め
てなり、高密度の硬化体組成物であるため、消波ブロッ
ク等、波浪等の外力の影響を受ける箇所への適用する場
合でも、安定性を確保することができる。 [実施例]以下、この発明の実施例を説明する。
According to the present invention, the density of the cured product can be controlled by mixing the aggregate with the cement, the incinerated ash and the curing accelerator, and a high-density cured product composition can be produced. In addition, aggregate is mixed with cement, incinerated ash, and a hardening accelerator, and seawater and / or water is added, kneaded and compacted. Since it is a high-density hardened body composition, a wave-dissipating block, etc. In addition, stability can be ensured even when the present invention is applied to a location affected by external force such as waves. Embodiment An embodiment of the present invention will be described below.

【0036】普通ポルトランドセメント、石炭灰、並び
に、砕石、銅スラグ、フェロニッケルスラグ等の骨材
と、硬化促進剤を用いて、締め固めの試験、密度、圧縮
強度の測定を行った。 試験概要 <使用材料>表1に使用材料の一覧を示す。骨材には、
コンクリー卜に使用される一般的な天然骨材(以下、粗
骨材と呼称)及び2種類のスラグを使用した。
A compaction test, density and compressive strength were measured using ordinary Portland cement, coal ash, aggregates such as crushed stone, copper slag and ferronickel slag, and a hardening accelerator. Test overview <Materials used> Table 1 shows a list of materials used. In the aggregate,
General natural aggregate (hereinafter referred to as coarse aggregate) used for concrete and two types of slag were used.

【0037】[0037]

【表1】 [Table 1]

【0038】<練り混ぜ方法> (1)締め固め試験 容量51のモルタルミキサ強制練りミキサを用い、低速
で30秒、高速で150秒、計180秒間練混ぜる。
<Method of kneading> (1) Compaction test Using a mortar mixer forced kneading mixer having a capacity of 51, kneading is performed for 30 seconds at low speed and 150 seconds at high speed, for a total of 180 seconds.

【0039】(2)硬化後の物性試験 容量201のパン型強制練りミキサを用い、計180秒
間練混ぜる。ここで、硬化促進剤は、あらかじめ練り混
ぜ水に溶解する。 <試験項目及び試験方法> (1)骨材の品質試験 選定した2種類のスラグ骨材の品質を確認するために表
2に示す試験を実施した。
(2) Physical property test after curing Using a pan-type forced kneading mixer having a capacity of 201, the mixture is kneaded for a total of 180 seconds. Here, the curing accelerator is kneaded and dissolved in water in advance. <Test Items and Test Method> (1) Aggregate Quality Test The tests shown in Table 2 were performed to confirm the quality of the selected two types of slag aggregate.

【0040】[0040]

【表2】 [Table 2]

【0041】(2)締固め試験 JIS A l210−1979(突固めによる土の締
固め試験方法)で使用される型枠(内径100mm、容
積1,000ml)を大型VC試験装置の振動台に固定
し、振動による締め固めを行い、表面を平滑にならした
後、質量を測定する。
(2) Compaction test A formwork (inner diameter 100 mm, volume 1,000 ml) used in JIS A1201-1979 (test method for compaction of soil by compaction) is fixed to a shaking table of a large VC testing device. Then, after compacting by vibration and smoothing the surface, the mass is measured.

【0042】試料は、一層で型枠に投入する。また、目
視により湿気のある粉体から流体に性状が変化する状況
を観察し、振動開始から流体化するまでの時間を測定す
る。
The sample is put into a mold in one layer. In addition, the situation in which the property changes from a humid powder to a fluid is visually observed, and the time from the start of vibration to the fluidization is measured.

【0043】(3)硬化後の物性試験 型枠(φl0×20cm)を大型VC試験の振動台に固
定し、所定の振動条件で締固めを行う。養生条件は、標
準水中養生とする。試験項目及び試験方法を表3に示
す。
(3) Physical property test after curing The mold (φ10 × 20 cm) is fixed to a shaking table for a large VC test, and compaction is performed under predetermined vibration conditions. Curing conditions are standard underwater curing. Table 3 shows the test items and test methods.

【0044】[0044]

【表3】 [Table 3]

【0045】骨材の物理試験結果 表4に使用する骨材及びスラグの物理試験結果を、図2
及び図3に粒度分布を示す。
The physical test results of the aggregate and the slag used in Table 4 are shown in FIG.
FIG. 3 shows the particle size distribution.

【0046】[0046]

【表4】 [Table 4]

【0047】骨材の混入が最適含水比に及ぼす影響の試
験 <実験要因及び水準>表5に実験要因及び水準を示す。
ここで、実績率に相当する骨材量を100%とし、それ
に対する割合で骨材混入率を設定することとする。振動
条件は、振動数66.7Hz、振幅1mm(両振幅)、
振動時間5分の条件で、骨材の混入量、水粉体比を変化
させて、締固めの試験を行った。
Test of Influence of Aggregate Mixing on Optimal Moisture Content <Experimental Factors and Levels> Table 5 shows experimental factors and levels.
Here, it is assumed that the aggregate amount corresponding to the actual rate is 100%, and the aggregate mixing ratio is set as a ratio to the aggregate amount. The vibration conditions were a vibration frequency of 66.7 Hz, an amplitude of 1 mm (both amplitudes),
A compaction test was performed under the conditions of a vibration time of 5 minutes, while changing the amount of aggregate mixed and the water powder ratio.

【0048】[0048]

【表5】 [Table 5]

【0049】<試験方法>水粉体比を変化させて前記の
方法で締め固めを行い、水粉体比と乾燥密度の関係を求
め、乾燥密度が最大となる水粉体比を測定した。 <試験の組み合わせ>表6に試験の組み合わせを示す。
ここで、粒度、粒径を考慮して粗骨材及び銅スラブを選
定し、それらを組み合わせたケースで試験を実施した。
なお、この場合の骨材混入量は、単独使用の試験結果か
ら選定する。
<Test Method> The water powder ratio was changed and compaction was performed by the above-described method. The relationship between the water powder ratio and the dry density was determined, and the water powder ratio at which the dry density became the maximum was measured. <Test Combinations> Table 6 shows the test combinations.
Here, a coarse aggregate and a copper slab were selected in consideration of the particle size and the particle size, and a test was performed in a case where they were combined.
The amount of aggregate mixed in this case is selected from the test results of single use.

【0050】[0050]

【表6】 [Table 6]

【0051】<試験結果>図4乃至図7に粗骨材、スラ
グを混入した時の締固め曲線(水粉体比と乾燥密度の関
係)を示す。ここで、骨材無混入と比較するために、骨
材及びスラグを除いたペースト部分の乾燥密度を示方配
合から算定した。これらの締固め曲線から最適含水比及
び最大乾燥密度を求めた。
<Test Results> FIGS. 4 to 7 show compaction curves (relation between water powder ratio and dry density) when coarse aggregate and slag are mixed. Here, the dry density of the paste portion excluding the aggregate and the slag was calculated from the indicated mixture in order to compare with the case where the aggregate was not mixed. From these compaction curves, the optimum water content and the maximum dry density were determined.

【0052】図8に骨材、スラグ混入量と最適含水比の
関係を、図9に骨材、スラグ混入量と最大乾燥密度の関
係を、図10にスラグ混入量と硬化体密度の関係を示
す。
FIG. 8 shows the relationship between the amount of aggregate and slag mixed and the optimum water content, FIG. 9 shows the relationship between the amount of aggregate and slag mixed and the maximum dry density, and FIG. 10 shows the relationship between the amount of slag mixed and the cured body density. Show.

【0053】骨材、スラグの混入量の増大とともに最適
含水比が増大し、それとともに最大乾燥密度も低減す
る。混入量の増大に伴う最適含水比の増大及び最大乾燥
密度の低減割合は、混入する骨材・スラグの種類によっ
て差が見られる。その割合は、最も粒径の細かいフェロ
ニッケルスラグが最も大きく、銅スラグ、砕石の順に小
さくなる。銅スラグ及び砕石は、混入量80%では大き
な変化は見られず、混入量100%で変化が大きくなる
傾向が見られる。粒径の異なる砕石及びスラグを混合し
た場合、最適含水比及び最大乾燥密度が変化する混入量
はやや増加し、これは粒径の異なるものを混合すること
で、実績率が増大することによる。
As the amount of aggregate and slag mixed increases, the optimum water content increases, and the maximum dry density also decreases. The difference between the increase in the optimum water content and the decrease in the maximum dry density with the increase in the mixing amount differs depending on the type of aggregate and slag mixed. The ratio is the largest for ferronickel slag having the smallest particle size, and is smaller for copper slag and crushed stone in this order. For copper slag and crushed stone, a large change is not seen when the mixing amount is 80%, and a change tends to be large when the mixing amount is 100%. When crushed stones and slags having different particle diameters are mixed, the mixing amount at which the optimum water content and the maximum dry density change slightly increases, and this is because mixing with different particle diameters increases the performance rate.

【0054】このように、粒径の細かいフェロニッケル
スラグは、最適含水比の増大、最大乾燥密度の低減割合
が大きく、混入する骨材として不適である。また、銅ス
ラグ、砕石を単独で使用する場合、混入量80%程度以
下であれば、最適含水比、最大乾燥密度の大きな変化は
見られず、良好な締固めが可能である。さらに、粒径の
異なる骨材、スラグを混合することで、混入可能な骨材
量を大きくすることができる。また、比重の高いスラグ
を混入することで、有炭灰硬化体の比重を2.6程度に
まで増加することができる。 骨材混入量および振動条件が圧縮強度に及ぼす影響 <実験要因及び水準>表7に実験要因及び水準を示す。
Thus, ferronickel slag having a small particle size has a large increase in the optimum water content and a large reduction ratio in the maximum dry density, and is not suitable as an aggregate to be mixed. In addition, when copper slag and crushed stone are used alone, if the mixing amount is about 80% or less, there is no significant change in the optimum water content and the maximum dry density, and good compaction is possible. Further, by mixing aggregates and slags having different particle diameters, the amount of mixable aggregate can be increased. Further, by mixing slag having a high specific gravity, the specific gravity of the carbonized ash cured product can be increased to about 2.6. Effect of Aggregate Content and Vibration Conditions on Compressive Strength <Experimental Factors and Levels> Table 7 shows experimental factors and levels.

【0055】[0055]

【表7】 [Table 7]

【0056】<試験の組合せ>試験の組合せを表8に示
す。
<Test Combinations> Table 8 shows the combinations of the tests.

【0057】[0057]

【表8】 [Table 8]

【0058】<試験結果>試験配合を表9に、試験結果
の一覧を表10に示す。図11及び図12にスラグ、骨
材混入量と圧縮強度の関係を示す。図13及び図14に
セメント添加率と圧縮強度の関係を示す。図15にスラ
グ、骨材混入量と単位容積質量の関係を示す。
<Test Results> Table 9 shows the test formulations, and Table 10 shows a list of test results. 11 and 12 show the relationship between the amount of slag and aggregate mixed and the compressive strength. 13 and 14 show the relationship between the cement addition ratio and the compressive strength. FIG. 15 shows the relationship between the amount of slag and aggregate mixed and the unit volume mass.

【0059】図11及び図12に示すように、スラグ、
骨材混入量の増大とともに圧縮強度は直線的に低減す
る。その低減割合は、砕石、砕石+銅スラグ、銅スラグ
の順に大きくなる。骨材の混入に伴う圧縮強度の低減
は、骨材混入による破壊性状の変化による。すなわち、
骨材を混入した硬化体では、圧縮力が作用すると骨材周
囲に引張応力が生じ、付着ひびわれが進展する。そのた
め、骨材を混入することで、応力ひずみ関係が変化する
とともに、破壊時の最大応力(圧縮強度)が低減する。
一般のコンクリー卜では、骨材の最大寸法が大きいほど
低減割合が大きくなるとされているが、試験結果では、
粒径の細かい銅スラグの方が低減割合は、大きくなって
いる。これは、銅スラグの表面がガラス質で粗骨材に比
べて付着強度が低いためである。図15に示すようにス
ラグ、骨材を混入することにより、単位容積質量を増大
でき、また、スラグ、骨材の種類、混入量を適切に選定
すれば、任意の単位容積質量を持つ硬化体を製造するこ
とができる。さらに、スラグ、骨材の種類、混入量に応
じて適切にセメント添加量を調整することにより、強度
の制御が可能である。
As shown in FIG. 11 and FIG.
The compressive strength decreases linearly as the amount of aggregate mixed increases. The reduction ratio increases in the order of crushed stone, crushed stone + copper slag, and copper slag. The reduction in compressive strength due to the mixing of the aggregate is due to the change in the fracture properties due to the mixing of the aggregate. That is,
In a hardened body in which aggregate is mixed, when a compressive force acts, a tensile stress is generated around the aggregate, and the adhesive crack is developed. Therefore, by mixing the aggregate, the stress-strain relationship is changed, and the maximum stress (compression strength) at the time of fracture is reduced.
In general concrete, it is said that the larger the maximum dimension of the aggregate is, the larger the reduction ratio is, but according to the test results,
The rate of reduction is greater for copper slag with a finer grain size. This is because the surface of the copper slag is vitreous and has a lower adhesive strength than the coarse aggregate. As shown in FIG. 15, by mixing slag and aggregate, the unit volume mass can be increased, and if the type of slag and aggregate and mixing amount are appropriately selected, a cured body having an arbitrary unit volume mass Can be manufactured. Further, the strength can be controlled by appropriately adjusting the amount of cement added in accordance with the type of slag and aggregate and the amount of mixture.

【0060】[0060]

【表9】 硬化体の配合[Table 9] Formulation of cured product

【0061】 [0061]

【0062】[0062]

【表10】 試験結果一覧(振動数;66.7Hz
振動時間;5分)
[Table 10] List of test results (frequency: 66.7 Hz)
(Vibration time; 5 minutes)

【0063】 [0063]

【0064】[0064]

【発明の効果】前記したように、請求項1に記載の発明
では、セメント、焼却灰及び硬化促進剤に、骨材を混入
することで、硬化体の密度の制御が、例えば例えば比重
が2.2〜2.8程度にすることが可能で、高密度の硬
化体組成物を製造することができる。
As described above, according to the first aspect of the invention, the density of the hardened material can be controlled by mixing the aggregate with the cement, the incinerated ash and the hardening accelerator, for example, by controlling the specific gravity to 2 0.2 to 2.8, and a high-density cured body composition can be produced.

【0065】請求項2に記載の発明では、セメントとし
て、普通ポルトランドセメント、早強ポルトランドセメ
ント、超早強ポルトランドセメント、中庸熱ポルトラン
ドセメント等の各種ポルトランドセメントを利用するこ
とができる。
According to the second aspect of the present invention, various portland cements such as ordinary portland cement, early-strength portland cement, ultra-high-strength portland cement, and moderately heated portland cement can be used as the cement.

【0066】請求項3に記載の発明では、焼却灰とし
て、石炭灰、ゴミ、汚泥、スラッジ等の焼却灰、あるい
火山灰を利用することができる。
According to the third aspect of the present invention, incinerated ash such as coal ash, trash, sludge, sludge, or volcanic ash can be used as the incinerated ash.

【0067】請求項4に記載の発明では、硬化促進剤と
して、無機塩類、または無機塩類の混練物を利用するこ
とができる。
In the invention described in claim 4, inorganic salts or kneaded products of inorganic salts can be used as the curing accelerator.

【0068】請求項5に記載の発明では、骨材が、各種
金属スラグ、天然骨材、再生骨材があり、これらの骨材
を単独あるいは、組み合わせて用いることができ、混入
率は、実績率に相当する量に対して50〜100%が品
質が均一で十分な締固めができる。
According to the fifth aspect of the present invention, the aggregate includes various metal slags, natural aggregates, and recycled aggregates, and these aggregates can be used alone or in combination. 50 to 100% of the amount corresponding to the ratio is uniform in quality and can be sufficiently compacted.

【0069】請求項6に記載の発明では、締め固めは、
振動手段を用い、振動加速度3g以上とすることで、十
分に締め固めることができる。
In the invention according to claim 6, the compaction is
By using the vibration means and setting the vibration acceleration to 3 g or more, it is possible to sufficiently compact the body.

【0070】請求項7に記載の発明では、セメント、焼
却灰及び硬化促進剤に、骨材を混入し、海水及び/又は
水を添加して混練して締め固めてなり、例えば比重が
2.2〜2.8程度の高密度の硬化体組成物であるた
め、消波ブロック等、波浪等の外力の影響を受ける箇所
への適用する場合でも、安定性を確保することができ
る。
According to the invention of claim 7, aggregate is mixed with cement, incinerated ash and a hardening accelerator, and seawater and / or water are added, kneaded and compacted. Since the composition is a high-density cured body composition of about 2 to 2.8, stability can be ensured even when applied to a portion affected by external force such as a wave, such as a wave-dissipating block.

【図面の簡単な説明】[Brief description of the drawings]

【図1】硬化体製造方法を示す図である。FIG. 1 is a diagram showing a method for producing a cured body.

【図2】砕石の粒度分布を示す図である。FIG. 2 is a diagram showing a particle size distribution of crushed stone.

【図3】銅スラブの粒度分布を示す図である。FIG. 3 is a diagram showing a particle size distribution of a copper slab.

【図4】銅スラブ混入の締固め曲線を示す図である。FIG. 4 is a diagram showing a compaction curve in which a copper slab is mixed.

【図5】砕石混入の締固め曲線を示す図である。FIG. 5 is a diagram showing a compaction curve with crushed stones mixed therein.

【図6】フェロニッケルスラブ混入の締固め曲線を示す
図である。
FIG. 6 is a view showing a compaction curve in which ferronickel slab is mixed.

【図7】銅スラブと砕石スラブ混入の締固め曲線を示す
図である。
FIG. 7 is a diagram showing a compaction curve when a copper slab and a crushed stone slab are mixed.

【図8】骨材、スラグ混入量と最適含水比の関係を示す
図である。
FIG. 8 is a diagram showing the relationship between the amount of aggregate and slag mixed and the optimal water content.

【図9】スラグ混入量と硬化体密度の関係を示す図であ
る。
FIG. 9 is a diagram showing the relationship between the amount of mixed slag and the density of a cured body.

【図10】スラグ混入量と硬化体密度の関係を示す図で
ある。
FIG. 10 is a diagram showing the relationship between the amount of mixed slag and the density of a cured body.

【図11】スラグ、骨材混入量と圧縮強度の関係を示す
図である。
FIG. 11 is a diagram showing the relationship between the amount of slag and aggregate mixed and the compressive strength.

【図12】スラグ、骨材混入量と圧縮強度の関係を示す
図である。
FIG. 12 is a diagram showing the relationship between the amount of slag and aggregate mixed and the compressive strength.

【図13】セメント添加率と圧縮強度の関係を示す図で
ある。
FIG. 13 is a diagram showing a relationship between a cement addition rate and compressive strength.

【図14】セメント添加率と圧縮強度の関係を示す図で
ある。
FIG. 14 is a diagram showing a relationship between a cement addition rate and compressive strength.

【図15】スラグ、骨材混入量と単位容積質量の関係を
示す図である。
FIG. 15 is a diagram showing the relationship between the amount of slag and aggregate mixed and the unit volume mass.

【符号の説明】[Explanation of symbols]

1 型枠 2 振動機 3 水硬性材料 1 Formwork 2 Vibrator 3 Hydraulic material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 直 広島県広島市中区小町4−33 中国電力株 式会社内 (72)発明者 喜多 達夫 東京都港区北青山2−5−8 株式会社間 組内 (72)発明者 福留 和人 東京都港区北青山2−5−8 株式会社間 組内 (72)発明者 佐々木 肇 東京都港区北青山2−5−8 株式会社間 組内 Fターム(参考) 4G012 PA04 PA07 PA26 PA27 PA29 PB04 PB08 PC04  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nao Saito 4-33 Komachi, Naka-ku, Hiroshima City, Hiroshima Prefecture Inside Chugoku Electric Power Company (72) Inventor Tatsuo Kita 2-5-8 Kitaaoyama, Minato-ku, Tokyo Between companies Guminai (72) Inventor Kazuto Fukudome 2-5-8 Kitaaoyama, Minato-ku, Tokyo, Japan Gumi (72) Inventor Hajime Sasaki 2-5-8 Kitaaoyama, Minato-ku, Tokyo Gumauchi, F-term ( Reference) 4G012 PA04 PA07 PA26 PA27 PA29 PB04 PB08 PC04

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】セメント、焼却灰、硬化促進剤及び骨材と
を含む水硬性材料を混練し、海水及び/又は水を最適含
水比+(0〜5)%の範囲内にて添加して混練し、型枠
に打設し、この型枠を振動させて打設された水硬性材料
を締め固めることを特徴とする硬化体製造方法。
1. Kneading a hydraulic material containing cement, incineration ash, a hardening accelerator and an aggregate, and adding seawater and / or water within an optimum water content ratio of + (0-5)%. A method for producing a cured product, comprising: kneading, casting into a mold, and vibrating the mold to compact the cast hydraulic material.
【請求項2】前記セメントは、普通ポルトランドセメン
ト、早強ポルトランドセメント、超早強ポルトランドセ
メント、中庸熱ポルトランドセメント等の各種ポルトラ
ンドセメントであることを特徴とする請求項1に記載の
硬化体製造方法。
2. The method for producing a cured product according to claim 1, wherein the cement is a variety of Portland cements such as ordinary Portland cement, early-strength Portland cement, ultra-high-strength Portland cement, and moderately heated Portland cement. .
【請求項3】前記焼却灰が、石炭灰、ゴミ、汚泥、スラ
ッジ等の焼却灰、あるい火山灰であることを特徴とする
請求項1に記載の硬化体製造方法。
3. The method according to claim 1, wherein the incinerated ash is incinerated ash such as coal ash, trash, sludge, sludge, or volcanic ash.
【請求項4】前記硬化促進剤が、無機塩類、または無機
塩類の混練物であることを特徴とする請求項1に記載の
硬化体製造方法。
4. The method for producing a cured product according to claim 1, wherein the curing accelerator is an inorganic salt or a kneaded product of an inorganic salt.
【請求項5】前記骨材が、各種金属スラグ、天然骨材、
再生骨材があり、これらの骨材を単独あるいは、組み合
わせて用い、混入率は、実績率に相当する量に対して5
0〜100%であることを特徴とする請求項1に記載の
硬化体製造方法。
5. The method according to claim 1, wherein the aggregate comprises various metal slags, natural aggregates,
There are recycled aggregates, and these aggregates are used alone or in combination. The mixing ratio is 5% of the amount corresponding to the actual ratio.
The method for producing a cured product according to claim 1, wherein the content is 0 to 100%.
【請求項6】前記締め固めは、振動手段を用い、 振動
加速度3g以上であることを特徴とする請求項1に記載
の硬化体製造方法。
6. The method according to claim 1, wherein the compaction is performed by using a vibration means and at a vibration acceleration of 3 g or more.
【請求項7】セメント、焼却灰、硬化促進剤及び骨材と
を含む水硬性材料を混練し、海水及び/又は水を最適含
水比+(0〜5)%の範囲内にて添加して混練し、振動
させて締め固めてなることを特徴とする硬化体組成物。
7. A hydraulic material containing cement, incineration ash, a hardening accelerator and an aggregate is kneaded, and seawater and / or water is added within an optimum water content range of + (0 to 5)%. A cured product composition which is kneaded, vibrated and compacted.
JP5174599A 1999-02-26 1999-02-26 Production of hardened body and hardened body composition Pending JP2000247719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5174599A JP2000247719A (en) 1999-02-26 1999-02-26 Production of hardened body and hardened body composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5174599A JP2000247719A (en) 1999-02-26 1999-02-26 Production of hardened body and hardened body composition

Publications (1)

Publication Number Publication Date
JP2000247719A true JP2000247719A (en) 2000-09-12

Family

ID=12895475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5174599A Pending JP2000247719A (en) 1999-02-26 1999-02-26 Production of hardened body and hardened body composition

Country Status (1)

Country Link
JP (1) JP2000247719A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100383855B1 (en) * 2000-10-26 2003-05-14 진금수 Manufacture method of construction material make use of sewage sludge
JP2005139841A (en) * 2003-11-10 2005-06-02 Yoshikazu Fuji Composition for structure using waste roof tile as aggregate and method of manufacturing structure using this composition
JP2006225221A (en) * 2005-02-21 2006-08-31 Denki Kagaku Kogyo Kk Mortar composition
WO2009136518A1 (en) * 2008-05-07 2009-11-12 国立大学法人宇都宮大学 Hydraulic composition and concrete using the hydraulic composition
JP2013177276A (en) * 2012-02-28 2013-09-09 Ohbayashi Corp In-water inseparable concrete
JP2015083529A (en) * 2013-09-18 2015-04-30 宇部興産株式会社 Guiding trimming block and production method thereof
JP2018145089A (en) * 2017-02-27 2018-09-20 Next Innovation合同会社 Method for finely dividing air bubble in ready-mixed concrete
CN109437698A (en) * 2018-12-18 2019-03-08 西安建筑科技大学 A method of using Cha Er Han Salt Lake solution and slag, coal ash for manufacturing for cementitious material
JP2021116211A (en) * 2020-01-28 2021-08-10 住友大阪セメント株式会社 Mortar or concrete for marine product, and method of producing mortar or concrete for marine product

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100383855B1 (en) * 2000-10-26 2003-05-14 진금수 Manufacture method of construction material make use of sewage sludge
JP2005139841A (en) * 2003-11-10 2005-06-02 Yoshikazu Fuji Composition for structure using waste roof tile as aggregate and method of manufacturing structure using this composition
JP2006225221A (en) * 2005-02-21 2006-08-31 Denki Kagaku Kogyo Kk Mortar composition
JP4575187B2 (en) * 2005-02-21 2010-11-04 電気化学工業株式会社 Mortar composition
WO2009136518A1 (en) * 2008-05-07 2009-11-12 国立大学法人宇都宮大学 Hydraulic composition and concrete using the hydraulic composition
JP2009269786A (en) * 2008-05-07 2009-11-19 Utsunomiya Univ Hydraulic composition and concrete using the hydraulic composition
JP2013177276A (en) * 2012-02-28 2013-09-09 Ohbayashi Corp In-water inseparable concrete
JP2015083529A (en) * 2013-09-18 2015-04-30 宇部興産株式会社 Guiding trimming block and production method thereof
JP2018145089A (en) * 2017-02-27 2018-09-20 Next Innovation合同会社 Method for finely dividing air bubble in ready-mixed concrete
JP2018144470A (en) * 2017-02-27 2018-09-20 Next Innovation合同会社 Method for finely dividing air bubble
CN109437698A (en) * 2018-12-18 2019-03-08 西安建筑科技大学 A method of using Cha Er Han Salt Lake solution and slag, coal ash for manufacturing for cementitious material
CN109437698B (en) * 2018-12-18 2021-03-16 西安建筑科技大学 Method for preparing cementing material by using Kaolkh salt lake solution, slag and fly ash
JP2021116211A (en) * 2020-01-28 2021-08-10 住友大阪セメント株式会社 Mortar or concrete for marine product, and method of producing mortar or concrete for marine product
JP7402700B2 (en) 2020-01-28 2023-12-21 住友大阪セメント株式会社 Mortar or concrete for marine products and method for producing mortar or concrete for marine products

Similar Documents

Publication Publication Date Title
Wang Durability of self-consolidating lightweight aggregate concrete using dredged silt
CN110395963B (en) Construction waste recycled concrete
CN107879681A (en) A kind of concrete slurry, alkali-activated carbonatite lightweight rubber regeneration concrete and preparation method thereof
CN106927776A (en) A kind of ground builds reinforcement and repair natural hydraulic lime mortar of high-performance durable and preparation method thereof
JP2000247719A (en) Production of hardened body and hardened body composition
Hansen Recycled concrete aggregate and fly ash produce concrete without portland cement
JPH10167793A (en) Water-permeable concrete material for site fabrication and site fabrication of water-permeable concrete
JP2007246293A (en) Low shrinkage type light-weight concrete
JP3683826B2 (en) Method for producing hardened cement
JP2004026552A (en) Method for reinforcing telegraph pole made of concrete
JPH11268969A (en) Porous concrete
JP4112049B2 (en) Low shrinkage concrete composition
JP3201934B2 (en) Method for producing hardened body of fine powder
JP2003012361A (en) Instant stripping porous concrete compact
JPH11319894A (en) Solidifier for sludge, molded part using this and solidification process thereof
JP2001323436A (en) Wave-dissipating block
Verma et al. The Influence of Lime as Partial Replacement of Cement on Strength Characteristics of Mortar and Concrete Mixes
JP2019085860A (en) Construction method for water retentive pavement
JP2002356358A (en) Water permeable concrete
JP2000335950A (en) Concrete for structure of civil engineering and construction for recycling
JP2001226162A (en) Joint filler material for post-tension-prestressed concrete plate
JP2004238214A (en) Aerated mortar composition and work using the same
JP4358359B2 (en) Low shrinkage concrete
Reddy et al. A brief study on the strength properties of concrete modified with sintered fly ash aggregates and silicon dioxide (nano material)
JP2001253784A (en) Porous concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090930