JP4111000B2 - Ru−Ti−O微粉末、その製造方法、及びそれを用いた厚膜抵抗体組成物 - Google Patents
Ru−Ti−O微粉末、その製造方法、及びそれを用いた厚膜抵抗体組成物 Download PDFInfo
- Publication number
- JP4111000B2 JP4111000B2 JP2003045346A JP2003045346A JP4111000B2 JP 4111000 B2 JP4111000 B2 JP 4111000B2 JP 2003045346 A JP2003045346 A JP 2003045346A JP 2003045346 A JP2003045346 A JP 2003045346A JP 4111000 B2 JP4111000 B2 JP 4111000B2
- Authority
- JP
- Japan
- Prior art keywords
- fine powder
- compound
- thick film
- film resistor
- tio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Non-Adjustable Resistors (AREA)
Description
【発明の属する技術分野】
本発明は、Ru−Ti−O微粉末、その製造方法、及びそれを用いた厚膜抵抗体組成物に関し、さらに詳しくは、厚膜抵抗体に好適な、比抵抗が高く、かつ微細で粒径の揃った分散性に優れたRu−Ti−O微粉末の製造方法、及びそれを用いた静電気放電の耐性に優れた厚膜抵抗体組成物に関する。
【0002】
【従来の技術】
厚膜抵抗体組成物は、絶縁体基板の表面に形成された導電体回路パターン又は電極の上に該組成物を印刷しこれを焼成することにより、厚膜抵抗体を作製する工程において使用される。
厚膜抵抗体は、チップ抵抗器、厚膜ハイブリッドICや抵抗ネットワーク等に広く用いられている。近年、電子部品のサイズの極小化が進み、チップ抵抗器では主流となる大きさが、長さ1.6mm×幅0.8mmから長さ1.0mm×幅0.5mmへ移行しつつある。それに伴い厚膜抵抗体のサイズも長さ0.5mm×幅0.5mmから長さ0.3mm×幅0.3mmに移行している。抵抗体サイズが小さくなると電気的な負荷による抵抗値変化が大きくなり、抵抗器の信頼性が懸念される。このため、一般的にはサイズが小さい抵抗器は、定格の電力を軽減するなどの考慮がなされるが、静電気やサージ電流等はサイズが小さい抵抗器でも軽減されない。したがって、抵抗体のサイズが小さくても、静電気やサージ電流によって抵抗値変化が小さい厚膜抵抗体が望まれている。
【0003】
厚膜抵抗体組成物は、導電成分とガラス結合剤とをビヒクルと呼ばれる有機媒体中に分散させることにより製造されている。このうち、導電成分は、厚膜抵抗体の電気的特性を決定する最も重要な役割を担い、Ru酸化物粉末が、厚膜抵抗体の導電成分として広く用いられている。RuO2は金属的な電気伝導性を有しており、その比抵抗はおよそ3×10−5Ω・cmとされている。
【0004】
Ru酸化物粉末を導電成分として使用する厚膜抵抗体において、粒径が小さく分散性が良好なRu酸化物粉末を用いることが重要である。すなわち、前記Ru酸化物粉末を用いると、厚膜抵抗体の導電パスが、微細で均一になり、静電気やサージ電流によって抵抗値変化が小さくなる。また、厚膜抵抗体の導電パスが多いほうが、静電気やサージ電流に対し抵抗値変化が小さくなり、負荷特性を向上させることができる。そこで、厚膜抵抗体の導電パスを多くするため、導電成分の割合を多くした場合、厚膜抵抗体の抵抗値が低くなるので、高抵抗領域の抵抗体には、導電成分を多く含有させることができない。
したがって高抵抗領域の厚膜抵抗体の負荷特性を向上させるため、厚膜抵抗体の導電成分として用いるRu酸化物粉末としては、上記した粒径が小さく、分散性が良好であることのほかに、比抵抗が高いものが望まれている。
【0005】
比抵抗が高いRu酸化物として、薄膜抵抗体用の組成物としてルテニウム酸化物とチタン酸化物が固溶したルチル型の構造のものが提案されている。代表的なものとして、例えば、有機金属を熱分解してRu−Ti−O薄膜を形成させる方法(例えば、非特許文献1参照)、またルテニウム酸化物とチタン酸化物が完全固溶した単相のルチル構造を有する組成物(例えば、特許文献1参照)が挙げられる。
【0006】
しかしながら、これらのRu−Ti−O化合物は、熱分解法あるいはスパッタリング等蒸着法で基板上に形成される薄膜抵抗体材料であり、厚膜抵抗体の導電成分として用いることができる微粉末を形成することが出来ない。さらに、薄膜抵抗体では、面積抵抗値がRu−Ti−Oの比抵抗の値と膜厚でしか調整できないため、広い抵抗値範囲の抵抗体としての使用ができないという問題があった。
そのため、従来、Ru−Ti−Oの微粉末は、厚膜抵抗体の導電成分として使用されていなかった。
【0007】
この解決策として、RuO2粉末にTiO2粉末を混合し、800℃以上の温度で熱処理を行っても、RuO2とTiO2の混合物のままであり、RuO2とTiO2が互いに固溶したRu−Ti−O微粉末は得られない。このとき、RuO2粉末は、粒径が大きく成長してしまい、厚膜抵抗体の導電成分として好適な、粒径が小さく、分散性が良好である粉末は得られない。
以上の状況から、厚膜抵抗体の導電成分として好適な、比抵抗が高く、粒径が小さく、分散性に優れたRu−Ti−O微粉末の製造方法、及びそれを用いた、静電気放電に対する抵抗値変化が小さい即ち静電気放電の耐性に優れた厚膜抵抗体組成物が求められている。
【0008】
【非特許文献1】
「ジャーナル オブ ザ セラミック ソサイァティ オブ ジャパン」(Journal of the Ceramic Society ofJapan),1992年,第100巻,第5号,p.663−667
【特許文献1】
特開平11−329803号公報(第1頁、第2頁)
【0009】
【発明が解決しようとする課題】
本発明の目的は、上記の従来技術の問題点に鑑み、厚膜抵抗体に好適な、比抵抗が高く、かつ微細で粒径の揃った分散性に優れたRu−Ti−O微粉末の製造方法、それにより得られるRu−Ti−O微粉末、及びそれを用いた静電気放電の耐性に優れた厚膜抵抗体組成物を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記目的を達成するために、Ru−Ti−O微粉末の製造方法について、鋭意研究を重ねた結果、Ru化合物とTi化合物を、酸化ホウ素と混合し、熱処理した後、酸化ホウ素を溶解除去したところ、厚膜抵抗体の導電成分として好適な微粉末が得られることを見出し、本発明を完成した。
【0011】
すなわち、本発明の第1の発明によれば、Ru化合物とTi化合物からRu−Ti−O微粉末を製造する方法であって、Ru化合物とTi化合物を、酸化ホウ素又はホウ酸と混合する工程(A)、得られた混合物を熱処理する工程(B)、及び得られた熱処理物から酸化ホウ素を溶解除去する工程(C)を含むことを特徴とするRu−Ti−O微粉末の製造方法が提供される。
【0012】
また、本発明の第2の発明によれば、第1の発明において、前記Ru化合物が、Ru酸化物の水和物であることを特徴とするRu−Ti−O微粉末の製造方法が提供される。
【0013】
また、本発明の第3の発明によれば、第1の発明において、前記Ti化合物が、TiO2であることを特徴とするRu−Ti−O微粉末の製造方法が提供される。
【0014】
また、本発明の第4の発明によれば、第1の発明において、前記Ru化合物とTi化合物との使用割合が、RuO2とTiO2に換算したモル比で1.0:0.01〜1.0:1.0であることを特徴とする請求項1に記載のRu−Ti−O微粉末の製造方法が提供される。
【0015】
また、本発明の第5の発明によれば、第1の発明において、前記工程(A)において、Ru化合物とTi化合物の合計と酸化ホウ素又はホウ酸との混合割合が、RuO2、TiO2及びB2O3に換算した重量比で1.0:0.1〜1.0:2.0であることを特徴とする請求項1に記載のRu−Ti−O微粉末の製造方法が提供される。
【0016】
また、本発明の第6の発明によれば、第1の発明において、前記工程(B)における前記熱処理が、500〜1000℃の温度で行われることを特徴とするRu−Ti−O微粉末の製造方法が提供される。
【0017】
また、本発明の第7の発明によれば、第1〜6いずれかの製造方法により得られる、比抵抗が高く、かつ分散性に優れたRu−Ti−O微粉末が提供される。
【0018】
また、本発明の第8の発明によれば、第7の発明のRu−Ti−O微粉末を用いてなる、静電気放電の耐性に優れた厚膜抵抗体組成物が提供される。
【0019】
【発明の実施の形態】
以下、本発明のRu−Ti−O微粉末、その製造方法、及びそれを用いた厚膜抵抗体組成物を詳細に説明する。
本発明に係るRu−Ti−O微粉末の製造方法は、厚膜抵抗体に好適な、比抵抗が高く、かつ微細で粒径の揃った分散性の良好なRu−Ti−O微粉末の製造方法であり、また静電気放電の耐性に優れた厚膜抵抗体組成物は、この製造方法で得られたRu−Ti−O微粉末を用いたものである。
【0020】
1.Ru−Ti−O微粉末、及びその製造方法
本発明のRu−Ti−O微粉末は、以下に述べる特定の製造方法により製造される。
すなわち、本発明の製造方法は、Ru化合物とTi化合物を、酸化ホウ素又はホウ酸と混合する工程(A)、得られた混合物を熱処理する工程(B)、及び得られた熱処理物から酸化ホウ素を溶解除去する工程(C)を含む。
本発明において、酸化ホウ素又はホウ酸を用いることが重要である。Ru化合物とTi化合物を酸化ホウ素又はホウ酸と混合、熱処理することによって、生成されたRu−Ti−O粉末は、酸化ホウ素溶融体中に微細に分散される。Ru−Ti−Oが生成する理由は明らかではないが、Ru化合物が熱処理によってRuO2結晶になる過程において、酸化ホウ素が物質移動を阻害しRuO2の結晶成長を抑制する一方、Ti原子がRu原子に置き換わることによりRu−Ti−O結晶が生成すると思われる。
【0021】
(1)工程(A)
本発明の工程(A)は、Ru化合物とTi化合物を、酸化ホウ素又はホウ酸と混合する工程である。
本発明においては、酸化ホウ素又はホウ酸を用いる。酸化ホウ素としては、三酸化二ホウ素の他に各種酸化物及びその水和物が用いられる。
【0022】
本発明に用いるRu化合物としては、特に限定されるものではなく、例えば、ルテニウムの酸化物、あるいはルテニウム酸鉛、ルテニウム酸ビスマス等のパイロクロア型酸化物やルテニウム酸バリウム、ルテニウム酸カルシウム等のペロブスカイト型の複合酸化物が用いられるが、これらの中でも、特にRu酸化物の水和物が好ましい。
また、Ru酸化物の水和物の製造方法としては、特に限定されるものではなく、例えば、種々の原料Ru水溶液からの合成法が用いられるが、この中で、特にRuを含む水溶液からの湿式合成法が好ましい。この代表的な方法としては、K2RuO4水溶液にエタノールを加える方法及びRuCl3水溶液をKOH等で中和する方法が挙げられる。
【0023】
本発明に用いるTi化合物としては、特に限定されるものではなく、例えばルチル型、アナタ−ゼ型又はブルッカイト型のTiO2あるいは高温で熱処理したときにTiO2を生成するものが用いられるが、これらの中でも、特にTiO2が好ましい。
本発明に用いるRu化合物及びTi化合物の粉末の粒径は、特に限定されるものではなく、微細なものが用いられるが、1μm以下の粒径が好ましい。
【0024】
本発明において、Ru化合物とTi化合物との使用割合は、特に限定されるものではなく、RuO2とTiO2に換算したモル比で1.0:0.01〜1.0:1.0が好ましい。前記モル比が、1.0:0.01未満では比抵抗が高くならない。一方、1.0:1.0を超えるとRuO2とTiO2が完全に固溶しないで、Ru−Ti−O固溶体とルチル型TiO2の混合物となる。
【0025】
本発明において、Ru化合物とTi化合物の合計と酸化ホウ素又はホウ酸との混合割合は、特に限定されるものではなく、RuO2、TiO2及びB2O3に換算した重量比で1.0:0.1〜1.0:2.0が好ましい。前記重量比が、1.0:0.1未満では完全なRu−Ti−O固溶体が生成せず、かつ熱処理によって生成するRu−Ti−O粉末の粒径が大きくなる。また、前記重量比が、1.0:2.0を超えてもそれ以上の効果は見られず経済的でない。
本発明において、Ru化合物、Ti化合物、及び酸化ホウ素又はホウ酸の混合方法は、特に限定されるものではなく、ボールミルやライカイ機等の市販の粉砕装置が用いられる。
【0026】
(2)工程(B)
本発明の工程(B)は、工程(A)で得られる混合物を、熱処理する工程である。
本発明の熱処理の温度は、特に限定されるものではなく、Ru化合物からRuO2が生成し、さらにTiO2とRuO2が固溶する温度以上で行われ、例えばRu化合物及びTi化合物の種類、酸化ホウ素又はホウ酸との混合比、あるいは目的とする粒径によって異なるが、500〜1000℃が好ましい。すなわち、熱処理温度が500℃未満では、TiO2とRuO2が固溶しないのでRu−Ti−O固溶体が形成されない。一方1000℃を超えると、1μm以上の粗大粒子が生成するほか、揮発性のRuO4、RuO3が生成するのでロスとなる。また、熱処理の温度が高くなるに伴ない、生成するRu−Ti−Oの粒径は大きくなるので、熱処理の温度を調節することによって、生成するRu−Ti−Oの粒径が制御できる。
【0027】
本発明の熱処理の雰囲気は、特に限定されるものではなく、酸化性、中性又は還元性の雰囲気で行われるが、中性又は還元性ではRuO2が金属ルテニウムに還元されるので、酸化性雰囲気が好ましい。
工程(B)で得られる熱処理物は、一旦溶融した酸化ホウ素中にRu−Ti−O微粉末が分散した形態である。ここで、前記Ru−Ti−O微粉末は、酸化ホウ素中に分散した状態で合成されるので、粗大粒子の発生が無く、粒径がそろっており、凝集が少なく分散性に優れている。
【0028】
(3)工程(C)
本発明の工程(C)は、工程(B)で得られた熱処理物から酸化ホウ素を溶解除去し、Ru−Ti−O微粉末を回収する工程である。
本発明において、酸化ホウ素を溶解除去する方法は、特に限定されるものではなく、硝酸や蟻酸等の水溶液に溶解する方法が簡単な方法として挙げられる。回収されたRu−Ti−O微粉末は、必要に応じて洗浄、乾燥される。
【0029】
本発明の製造方法で得られるRu−Ti−O微粉末は、単一の相からなっており、RuO2とTiO2の中間の格子定数であるルチル型の結晶構造でRuO2又はTiO2のルチル構造のRuとTiが入れ替わった構造をしている。したがって、RuO2よりも比抵抗が高い厚膜抵抗体組成物用に好適な粉末である。また、粗大粒子が無く、粒径がそろっており、凝集が少なく分散性に優れている。
【0030】
2.厚膜抵抗体組成物
本発明の厚膜抵抗体組成物は、本発明のRu−Ti−O微粉末、ガラス結合体及び有機ビヒクルを含む。使用されるガラス結合体は、厚膜抵抗体組成物の対象部品、使用条件などで選定されるので限定されないが、例えば、PbO、SiO2、B2O3、Al2O3、CaOを含むガラスフリットが用いられる。また、使用される有機ビヒクルは、厚膜抵抗体組成物の対象部品、使用条件などで選定されるので限定されないが、例えば、セルロース系樹脂等の有機バインダーをタピネオール等の溶剤に溶解させたものが用いられる。
厚膜抵抗体組成物は、Ru−Ti−O微粉末、ガラス結合体及び有機ビヒクルを混合した後、スリーロールミル等によって混練、分散して得られる。
【0031】
このようにして得たRu−Ti−O微粉末を用いた厚膜抵抗体組成物を使用すると、従来のRuO2粉末を導電成分として用いる厚膜抵抗体に比べて、静電気放電に対する抵抗値変化が小さい即ち静電気放電の耐性が高い厚膜抵抗体が得られる。
【0032】
【実施例】
以下に、本発明の実施例および比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例および比較例で用いた微粉末の分析方法、格子定数、結晶子径及び比表面積の測定方法、並びに厚膜抵抗体の静電気放電後の抵抗値変化率の測定方法は、以下の通りである。
(1)金属の分析:得られた微粉末を過酸化ソーダと炭酸ソーダでアルカリ融解し、溶融物を塩酸で溶液にして、ICP発光分析法で行った。
(2)格子定数と結晶子径の測定:X線回折で行った。格子定数測定は、X線回折によって得られたルチル構造の(110)(101)(211)(301)(321)面のピークをKα1、Kα2に波形分離した後、Kα1のピークを用い、最小二乗法によって算出した。また、結晶子径は、X線回折によって得られたルチル構造のピークをKα1、Kα2に波形分離した後、Kα1のピークの広がりとして半価幅を測定し、Scherrerの式より算出した。
(3)比表面積の測定:B.E.T法で行った。
(4)静電気放電(ESD)後の抵抗値変化率(以下、ESD変化率と呼称することがある。)の測定:形成した抵抗体にレーザトリミングを施し、200pFのコンデンサに1kV、2kVで充電した静電気を2回放電し、抵抗値変化を測定した。レーザトリミング条件は、焼成後の抵抗値の1.5倍を目標値に、シングルカット、パワー2W、Qレート6kHz、ビームの移動スピードは20mm/sとした。
【0033】
(実施例1)
(1)Ru酸化物の水和物の合成
Ru粉末100g、KOH800g及びKNO3100gを混合した後、該混合物を銀坩堝中に入れて、700℃で3時間溶融処理して、ルテニウム酸カリウム(K2RuO4)を得た。このルテニウム酸カリウムを純水に溶解した後、エタノール100mLを加えて加水分解して沈殿物を得た。この沈殿物を、水洗、乾燥して、Ru酸化物の水和物を得た。
【0034】
(2)Ru−Ti−O微粉末の製造
上記Ru酸化物の水和物に、アナターゼ型のTiO2粉末6.6gと酸化ホウ素150gを加え、ライカイ機を用いて30分混合し、混合物を得た。この混合物をアルミナ坩堝に入れて、900℃で2時間熱処理を行った。得られたRu−Ti−Oと酸化ホウ素を含む熱処理物を、純水4.5Lと硝酸500mLの混合溶液に入れて、酸化ホウ素を溶解した。得られた粉末を、純水5Lを用いた撹拌洗浄、ろ過を3回繰り返した行った後、110℃で10時間乾燥して、微粉末を得た。得られた粉末は、1μm以上の粗大粒子がない、微細で粒径の揃った分散性の良好な粉末であった。得られたRu−Ti−O微粉末の分析、格子定数、結晶子径、比表面積の測定を行った。結果を表1に示す。
【0035】
(実施例2)
TiO2粉末を13.2gにした以外は、実施例1と同様に行った。得られた粉末は、1μm以上の粗大粒子がない、微細で粒径の揃った分散性の良好な粉末であった。得られたRu−Ti−O微粉末の分析、格子定数、結晶子径、比表面積の測定を行った。結果を表1に示す。
【0036】
(実施例3)
TiO2粉末を39.5gにした以外は、実施例1と同様に行った。得られた粉末は、1μm以上の粗大粒子がない、微細で粒径の揃った分散性の良好な粉末であった。得られたRu−Ti−O微粉末の分析、格子定数、結晶子径、比表面積の測定を行った。結果を表1に示す。
【0037】
(実施例4)
TiO2粉末を79.1gにした以外は、実施例1と同様に行った。得られた粉末は、1μm以上の粗大粒子がない、微細で粒径の揃った分散性の良好な粉末であった。得られたRu−Ti−O微粉末の分析、格子定数、結晶子径、比表面積の測定を行った。結果を表1に示す。
【0038】
(実施例5)
熱処理温度を600℃にした以外は、実施例2と同様に行った。得られた粉末は、1μm以上の粗大粒子がない、微細で粒径の揃った分散性の良好な粉末であった。得られたRu−Ti−O微粉末の分析、格子定数、結晶子径、比表面積の測定を行った。結果を表1に示す。
【0039】
(実施例6)
熱処理温度を800℃にした以外は、実施例2と同様に行った。得られた粉末は、1μm以上の粗大粒子がない、微細で粒径の揃った分散性の良好な粉末であった。得られたRu−Ti−O微粉末の分析、格子定数、結晶子径、比表面積の測定を行った。結果を表1に示す。
【0040】
(実施例7)
実施例2で得られたRu−Ti−O粉末12.0g、化学組成がPbO55重量%、SiO230重量%、B2O310重量%、Al2O35重量%であるガラスフリット48.0g及びエチルセルロースをターピネオールに溶解した有機ビヒクル40.0gを、3本ロールミルによって混練し厚膜抵抗体組成物を得た。
得られた厚膜抵抗体組成物を、予めAg/Pdぺースト(Ag/Pd重量比=98.5/1.5)によって電極を形成したアルミナ基板に印刷し、ピーク温度850℃、ピーク時間9分のベルト焼成炉によって焼成し厚膜抵抗体を形成した。前記抵抗体サイズは、幅0.3mm、電極間0.3mmとした。得られた厚膜抵抗体の焼成膜厚、面積抵抗値(静電気放電前の抵抗値)、ESD変化率を測定した。結果を表2に示す。
【0041】
(比較例1)
実施例1で用いたRu酸化物の水和物に、アナターゼ型のTiO2粉末13gを加え、ライカイ機を用いて30分混合した後、アルミナ坩堝に入れて、900℃で2時間熱処理を行った。得られた粉末を用いて、X線回折を行った。
この結果から、得られた粉末は、RuO2(ルチル型)とTiO2(アナターゼ型)の混合物であり、RuO2とTiO2が固溶したRu−Ti−Oではないこと、1μm以上の粗大粒子があることが分かった。
【0042】
(比較例2)
ルチル型のTiO2粉末を用いた以外は、比較例1と同様に行った。得られた粉末を用いて、X線回折を行った。この結果から、得られた粉末は、RuO2(ルチル型)とTiO2(ルチル型)の混合物であり、RuO2とTiO2が固溶したRu−Ti−Oではないこと、1μm以上の粗大粒子があることが分かった。
【0043】
(比較例3)
Ru−Ti−O粉末のかわりに結晶子径21.0nmのRuO2粉末10.0g及びガラスフリット50.0gを用いた以外は、実施例7と同様に行った。得られた厚膜抵抗体の焼成膜厚、面積抵抗値(静電気放電前の抵抗値)、ESD変化率を測定した。結果を表2に示す。
【0044】
(比較例4)
結晶子径21.0nmのRuO2粉末22.9g、ルチル型のTiO22.1g、及びガラスフリット35.0gを用いた以外は、実施例7と同様に行った。ここで、RuO2とTiO2の比が実施例7と同じとなるように配合している。得られた厚膜抵抗体の焼成膜厚、面積抵抗値(静電気放電前の抵抗値)、ESD変化率を測定した。結果を表2に示す。
【0045】
(比較例5)
TiO2にアナターゼ型のTiO2を用いた以外は、比較例4と同様に行った。得られた厚膜抵抗体の焼成膜厚、面積抵抗値(静電気放電前の抵抗値)、ESD変化率を測定した。結果を表2に示す。
【0046】
【表1】
【0047】
表1より、実施例1〜6で得られた粉末は、いずれもルチル構造の回折パターンを示し、RuO2とTiO2の中間の格子定数であるルチル型の結晶構造である比抵抗が高いRu−Ti−O粉末であるが分かる。これより、得られたRu−Ti−O粉末は、単一の相からなっており、RuO2あるいはTiO2のルチル構造のRuとTiが入れ替わった構造をしている。
【0048】
以上、実施例1〜6では、本発明の製造方法に従って行われたので、比抵抗が高い厚膜抵抗体組成物用に好適な、微細で粒径の揃った分散性の良好なRu−Ti−O微粉末が得られる。これに対して、比較例1又は2では、製造工程がこれらの条件に合わないので、RuO2(ルチル型)とTiO2の混合物が生成され、厚膜抵抗体組成物用として満足すべき結果が得られない。
【0049】
【表2】
【0050】
表2より、実施例7で得られた厚膜抵抗体は、Ru−Ti−O微粉末を用いた厚膜抵抗体組成物であるので、比較例3で得られたRuO2を導電成分にした厚膜抵抗体に比べてESD変化率が小さい。また、多い量の導電成分含有率で、同じ抵抗値を得られるので、Ru−Ti−Oの方がRuO2より比抵抗が高いことが分かる。さらに、実施例7の抵抗体膜では3kVの静電気放電しても、トリミング先端部分にクラックは確認されなかったが、比較例4及び5では、トリミング先端部分にクラックが入っていた。
【0051】
以上、実施例7では、本発明の製造方法に従って得られたRu−Ti−O微粉末を用いた厚膜抵抗体組成物を使用したので、静電気放電の耐性が高い厚膜抵抗体が得られる。これに対して、比較例3〜5では、導電成分が本発明の条件に合わないので、静電気放電の耐性において、厚膜抵抗体として満足すべき結果が得られない。
【0052】
【発明の効果】
以上説明したように、本発明によれば、静電気放電による抵抗値変化が小さい厚膜抵抗体用の厚膜抵抗体組成物に好適に用いられる、比抵抗が高く、かつ微細で粒径の揃った分散性の良好なRu−Ti−O微粉末が得られるので、その工業的価値は極めて大きい。
Claims (8)
- Ru化合物とTi化合物からRu−Ti−O微粉末を製造する方法であって、
Ru化合物とTi化合物を、酸化ホウ素又はホウ酸と混合する工程(A)、得られた混合物を熱処理する工程(B)、及び得られた熱処理物から酸化ホウ素を溶解除去する工程(C)を含むことを特徴とするRu−Ti−O微粉末の製造方法。 - 前記Ru化合物が、Ru酸化物の水和物であることを特徴とする請求項1に記載のRu−Ti−O微粉末の製造方法。
- 前記Ti化合物が、TiO2であることを特徴とする請求項1に記載のRu−Ti−O微粉末の製造方法。
- 前記Ru化合物とTi化合物との使用割合が、RuO2とTiO2に換算したモル比で1.0:0.01〜1.0:1.0であることを特徴とする請求項1に記載のRu−Ti−O微粉末の製造方法。
- 前記工程(A)において、Ru化合物とTi化合物の合計と酸化ホウ素又はホウ酸との混合割合が、RuO2、TiO2及びB2O3に換算した重量比で1.0:0.1〜1.0:2.0であることを特徴とする請求項1に記載のRu−Ti−O微粉末の製造方法。
- 前記工程(B)において、熱処理が、500〜1000℃の温度で行われることを特徴とする請求項1に記載のRu−Ti−O微粉末の製造方法。
- 請求項1〜6のいずれかに記載の製造方法により得られる、比抵抗が高く、かつ分散性に優れたRu−Ti−O微粉末。
- 請求項7に記載のRu−Ti−O微粉末を用いてなる、静電気放電の耐性に優れた厚膜抵抗体組成物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003045346A JP4111000B2 (ja) | 2003-02-24 | 2003-02-24 | Ru−Ti−O微粉末、その製造方法、及びそれを用いた厚膜抵抗体組成物 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003045346A JP4111000B2 (ja) | 2003-02-24 | 2003-02-24 | Ru−Ti−O微粉末、その製造方法、及びそれを用いた厚膜抵抗体組成物 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004259718A JP2004259718A (ja) | 2004-09-16 |
JP4111000B2 true JP4111000B2 (ja) | 2008-07-02 |
Family
ID=33112171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003045346A Expired - Lifetime JP4111000B2 (ja) | 2003-02-24 | 2003-02-24 | Ru−Ti−O微粉末、その製造方法、及びそれを用いた厚膜抵抗体組成物 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4111000B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104185323A (zh) * | 2014-08-30 | 2014-12-03 | 李高升 | 一种用于玻璃容器加热的电热膜、其制备方法及一种玻璃电热水壶 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4692028B2 (ja) * | 2005-03-09 | 2011-06-01 | 住友金属鉱山株式会社 | Ru−Mn−O微粉末、その製造方法、及びそれを用いた厚膜抵抗体組成物 |
JP5831055B2 (ja) * | 2011-09-02 | 2015-12-09 | 住友金属鉱山株式会社 | 板状酸化ルテニウム粉末とその製造方法、それを用いた厚膜抵抗組成物 |
JP7215334B2 (ja) * | 2019-05-30 | 2023-01-31 | 住友金属鉱山株式会社 | ルテニウム酸鉛粉末の製造方法 |
JP7568391B2 (ja) * | 2019-09-27 | 2024-10-16 | 住友金属鉱山株式会社 | 厚膜抵抗体用組成物、厚膜抵抗体用ペースト、及び厚膜抵抗体 |
-
2003
- 2003-02-24 JP JP2003045346A patent/JP4111000B2/ja not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104185323A (zh) * | 2014-08-30 | 2014-12-03 | 李高升 | 一种用于玻璃容器加热的电热膜、其制备方法及一种玻璃电热水壶 |
Also Published As
Publication number | Publication date |
---|---|
JP2004259718A (ja) | 2004-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6256636B2 (ja) | 酸化ルテニウム粉末の製造方法 | |
KR102512682B1 (ko) | 산화루테늄 분말, 후막 저항체용 조성물, 후막 저항체용 페이스트 및 후막 저항체 | |
JP5831055B2 (ja) | 板状酸化ルテニウム粉末とその製造方法、それを用いた厚膜抵抗組成物 | |
EP2727121B1 (en) | Thick film paste and use thereof | |
JP4111000B2 (ja) | Ru−Ti−O微粉末、その製造方法、及びそれを用いた厚膜抵抗体組成物 | |
JP4285315B2 (ja) | Ru−M−O微粉末、その製造方法、及びそれらを用いた厚膜抵抗体組成物 | |
JP4692028B2 (ja) | Ru−Mn−O微粉末、その製造方法、及びそれを用いた厚膜抵抗体組成物 | |
JP3474170B2 (ja) | ニッケル粉及び導電ペースト | |
JP7251068B2 (ja) | 厚膜抵抗体用組成物、厚膜抵抗体用ペースト、及び厚膜抵抗体 | |
TWI795545B (zh) | 厚膜電阻用組成物、厚膜電阻用膏體及厚膜電阻 | |
JP7279492B2 (ja) | 厚膜抵抗体用組成物、厚膜抵抗体用ペースト、及び厚膜抵抗体 | |
JP7183507B2 (ja) | 厚膜抵抗体用組成物、厚膜抵抗体用ペースト、及び厚膜抵抗体 | |
WO2019059290A1 (ja) | 厚膜抵抗体用組成物、厚膜抵抗ペースト及び厚膜抵抗体 | |
JP2004176120A (ja) | 導電粉末、その製造方法、及びそれを用いた導電ペースト | |
JP2007302498A (ja) | 酸化ルテニウム粉とその製造方法 | |
JP7390103B2 (ja) | 抵抗体用組成物、抵抗ペースト、厚膜抵抗体 | |
JP2013001623A (ja) | ルテニウム酸鉛微粉末の製造方法 | |
JP2018048052A (ja) | 金属酸化物粉末、金属酸化物粉末の製造方法、金属酸化物粉末を用いた厚膜抵抗体用組成物、厚膜抵抗体用ペースト、厚膜抵抗体、厚膜抵抗体の製造方法 | |
JP2007302499A (ja) | 酸化ルテニウム粉とその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050616 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080318 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080331 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4111000 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |