JP4109000B2 - Electronic component mounting equipment - Google Patents

Electronic component mounting equipment Download PDF

Info

Publication number
JP4109000B2
JP4109000B2 JP2002087594A JP2002087594A JP4109000B2 JP 4109000 B2 JP4109000 B2 JP 4109000B2 JP 2002087594 A JP2002087594 A JP 2002087594A JP 2002087594 A JP2002087594 A JP 2002087594A JP 4109000 B2 JP4109000 B2 JP 4109000B2
Authority
JP
Japan
Prior art keywords
electronic component
mounting
ultrasonic vibration
working surface
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002087594A
Other languages
Japanese (ja)
Other versions
JP2003282632A (en
Inventor
昌三 南谷
貴晴 前
康晴 上野
山田  晃
晃 毛利
展久 渡辺
誠 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002087594A priority Critical patent/JP4109000B2/en
Priority to TW092105078A priority patent/TWI230102B/en
Priority to PCT/JP2003/003906 priority patent/WO2003081644A2/en
Priority to KR1020097002605A priority patent/KR100950619B1/en
Priority to EP03745015A priority patent/EP1488449B1/en
Priority to DE60308340T priority patent/DE60308340T2/en
Priority to US10/508,460 priority patent/US7229854B2/en
Priority to CNB038071347A priority patent/CN100377293C/en
Priority to KR1020047015150A priority patent/KR100934064B1/en
Publication of JP2003282632A publication Critical patent/JP2003282632A/en
Priority to US11/731,312 priority patent/US7861908B2/en
Application granted granted Critical
Publication of JP4109000B2 publication Critical patent/JP4109000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一面に複数の突起電極を有する電子部品を基板などの実装対象物に超音波振動にて実装する電子部品実装装置に関するものである。
【0002】
【従来の技術】
従来の超音波振動による電子部品実装装置としては、例えば特開2000−68327号公報に開示されているように、ボイスコイルモータ等の移動手段にて昇降可能に支持された支持ブラケットに水平姿勢で固定支持された超音波振動発生手段の出力端にホーンを結合するとともにそのホーンの先端に電子部品を吸着保持する吸着ノズルを装着して成る実装ヘッドと、実装ヘッドに電子部品を供給する手段と、基板などの実装対象物を固定支持する支持台と、実装ヘッドと支持台を水平方向に相対移動させて電子部品と実装対象物の位置合わせを行う位置決め手段とを備えたものが知られている。
【0003】
この種の電子部品実装装置は、電子部品の一面に突設された複数の突起電極を実装対象物に形成された電極に超音波接合して実装する場合に好適に適用され、部品供給手段にて突起電極を下向きにして供給された電子部品の上面を実装ヘッドの吸着ノズルにて吸着保持し、支持台上に実装対象物を供給して固定支持し、電子部品が実装対象物の実装位置の上方に位置するように実装ヘッドと支持台を相対移動させて位置決めし、実装ヘッドの移動手段にて電子部品の突起電極を実装対象物の電極に当接させ、さらに所定の押圧力を作用させた状態で超音波振動発生手段を作動させてホーンを介して吸着ノズルを水平方向に超音波振動させることで、電子部品と実装対象物の接合面に超音波振動エネルギーを付与して拡散溶融接合している。
【0004】
【発明が解決しようとする課題】
ところが、近年は電子回路の小型化を図るために、電子回路を構成する電子部品(チップ)の数を少なくすることが求められ、それに伴って各電子部品の高機能化・高集積化が進められる結果、単一の電子部品は逆に大型化・多電極化が進行しつつある。例えば、従来は電子部品(ベアICチップ)の大きさは、0.3mm角〜5mm角程度で、突起電極の数は2〜30個程度であったが、近い将来に10mm角から20mm角の大きさで、突起電極の数が50個〜100個から1000以上のものまでが実用されることが予想されるに至っている。
【0005】
このような電子部品を上記した従来の電子部品実装装置で実装する場合、多数の突起電極を実装対象物の電極に一度に超音波接合する必要があるため、吸着ノズルに負荷する押圧荷重を大きくする必要があるとともに、吸着ノズル下面の部品保持面と実装対象物の接合面との平行度を極めて高く保たないと、全ての突起電極を実装対象物の電極に確実に接合することができない。例えば、上記のような大型のベアICチップを実装する場合には、吸着ノズルの部品保持面と実装対象物の接合面の超音波振動の振動方向に対する平行度を全体にわたって5μm以内に納める必要がある。
【0006】
しかるに、上記のような構成では、支持ブラケットから超音波振動発生手段とホーンの結合箇所近傍に大きな押圧荷重を負荷すると、ホーンの先端に吸着ノズルが固定されているので、吸着ノズル下面の位置と押圧荷重の負荷位置との間に距離があるためホーンに曲げモーメントが作用し、ホーンの押圧荷重による撓みによって吸着ノズル下面の部品保持面が傾斜し、精度の高い平行度を得ることはできず、信頼性の高い接合が確保することができないという問題がある。これに対して、ホーンと吸着ノズルの部品保持面との間に可撓部を設けて平行度を確保することも考えられるが、そうすると超音波振動の伝播効率が一挙に低下し、接合効率が低下して信頼性の高い接合ができないという問題が発生する。
【0007】
また、突起電極の数が多い場合には、部品保持面と実装対象物の接合面の平行度をある程度確保しつつ大きな押圧荷重を負荷して超音波振動を付与しても、その超音波振動によって付与できる接合エネルギーが不足し易く、十分に信頼性の高い接合状態を得るのが困難な場合があるという問題がある。
【0008】
また、従来は電子部品の接合を行った後、実装対象物の間に封止材を充填し、封止材を加熱硬化させて封止する工程を後工程として別途に行っていたので、工程数が多く、コスト高となるという問題があった。
【0009】
本発明は、上記従来の問題点に鑑み、電子部品の一面に設けられた突起電極の数が多くても確実に高い信頼性をもって超音波接合することができる電子部品実装装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の電子部品実装装置は、一面に複数の突起電極を有する電子部品を実装対象物の電極に接合して実装する電子部品の実装装置であって、電子部品を突起電極配設面を下向きにして供給する部品供給手段と、供給された電子部品を保持して実装対象物に実装する実装ヘッドと、実装対象物を固定支持する支持台と、実装ヘッドと支持台を相対移動させて電子部品と実装対象物の位置合わせを行う位置決め手段とを備え、実装ヘッドは、超音波振動発生手段と、超音波振動発生手段から出力された超音波振動を電子部品を保持する作用面にその表面と平行な振動として伝播する超音波振動伝達手段と、超音波振動伝達手段の作用面に荷重を負荷する荷重負荷手段と、電子部品をその背面から加熱するために超音波振動伝達手段の作用面の近傍を非接触方式で加熱する加熱手段とを有するものである。
【0013】
このような構成によると、電子部品の背面に押圧荷重を負荷しつつその表面と略平行な振動方向の超音波振動を付与するとともに電子部品と実装対象物の接合部に熱エネルギーを付与することができ、電子部品の突起電極の数が多い場合にも全ての突起電極を確実に生産効率良く接合することができる。また、実装ヘッドに設けた加熱手段が超音波振動伝達手段に対して非接触方式であるので、振動系に影響を与えずに加熱でき、信頼性の高い超音波接合を容易に確保することができる。また、実装対象物の実装位置に予め封止材を塗布しておくことにより、電子部品を接合する工程で封止材が電子部品と実装対象物の隙間に充填されるとともに、接合時に熱を付与されて封止材が硬化されて封止工程も完了するので、別途の封止工程を削減できてコスト低下を図ることができる。
【0024】
また、本発明の電子部品実装装置は、上記実装ヘッドが、超音波振動発生手段と、超音波振動発生手段から出力された超音波振動を電子部品を保持する作用面にその表面と平行な振動として伝播する超音波振動伝達手段と、超音波振動伝達手段の作用面に荷重を負荷する荷重負荷手段と、作用面の近傍を加熱する加熱手段とを備え、さらに超音波振動発生手段の外周と共振体とを連結する連結軸の外周の少なくとも一部を取り囲むように、冷却部若しくは保温部としての冷却チャンバを配設したものである。このような構成により、加熱手段にて超音波振動伝達手段を介して超音波振動発生手段に熱が伝達され、超音波振動発生手段の温度が上昇してその性能が低下したり、損傷したりするのを確実に防止することができる。
【0026】
【発明の実施の形態】
以下、本発明の電子部品実装装の実施形態について、図1〜図を参照して説明する。
【0027】
まず、本実施形態の部品実装装置における従来例と共通の全体構成について、図1、図2を参照して説明する。1は、ベアICチップからなる電子部品2を実装対象物の基板3(図3参照)に実装する電子部品実装装置で、電子部品2はその一面に複数の突起電極2aが配列されており、基板3の部品実装位置には各突起電極2aを接合する電極が形成されている。電子部品2は、例えば10mm角〜20mm角の大きさで、突起電極2aは50〜100個以上、特に大型の電子部品2においては1000個以上設けられている。
【0028】
電子部品実装装置1の基台4上の後部には、電子部品2を保持して基板3に実装する実装ヘッド5をX軸方向に移動可能に支持するX方向テーブル6が配設されている。X方向テーブル6の所定箇所の下部とその前部の間にわたってY軸方向に移動可能なY方向テーブル7が配設され、このY方向テーブル7上に基板3を載置固定する支持台8が設けられている。X方向テーブル6の前部には基板3を基台4の一側からY方向テーブル7まで搬入するローダ9と、Y方向テーブル7から基台4の他側に搬出するアンローダ10が配設されている。ローダ9やアンローダ10は基板3の両側を支持する一対のレールを有し、支持台8の前後両側にはこれら一対のレールに接続可能でかつ昇降可能な部分レール11が設けられて基板3をこの部分レール11上に受けた後、支持台8上に載置固定するように構成されている。
【0029】
基台4の他側のX方向テーブル6より前方位置に、多数の電子部品2を形成され、エキスパンドシート上でダイシングされた半導体ウエハ12を収容した部品マガジン13を設置されて、所望の半導体ウエハ12を所定の供給高さ位置に位置決めするマガジンリフタ14が配設され、マカジンリフタ14とY方向テーブル7との間に、マガジンリフタ14から導入された半導体ウエハ12のエキスパンドシートを拡張させ、各部品2を間隔をあけて分離させるエキスパンド台15が、任意の部品2を所定の第1の部品供給位置に位置決めするXYテーブル16上に設置して配設されている。17は第1の部品供給位置の部品2を認識する認識カメラである。
【0030】
18は、エキスパンド台15上の第1の部品供給位置で電子部品2を吸着し、X方向に移動して第2の部品供給位置まで移載するとともに吸着した電子部品2を180度上向きに旋回させる部品反転手段で、X方向テーブル6とは別に設けられたX方向テーブルにて移動可能に構成されている。半導体ウエハ12の状態では、各電子部品2の突起電極2aは上面に形成されており、部品反転手段18にて各電子部品2の突起電極2aが形成された面を吸着した後上向きに180度旋回することによって、電子部品2の突起電極2aが形成された面が下向き、反対側の面が上向きとなり、その状態で第2の部品供給位置で実装ヘッド5に受け渡すように構成されている。以上のマガジンリフタ14、エキスパンド台15、部品反転手段18にて電子部品2を実装ヘッド5に供給する部品供給手段20が構成されている。尚、19は基板3の電子部品2の実装位置又は電子部品2に封止材を塗布するディスペンサである。
【0031】
実装ヘッド5は、ボイスコイルモータなどの移動手段22にて軸芯方向に昇降駆動可能なスプライン軸(図示せず)の下部に超音波ヘッド21が取付けられている。超音波ヘッド21は、支持ブラケット23に超音波振動発生手段24と共振体25を取付けて構成され、その共振体25又はそれに取付固定された吸着ノズルにて部品2を保持するように構成されている。
【0032】
以上の全体構成における部品実装動作を説明すると、部品供給手段20にて電子部品2をその突起電極2aを下向きにした状態で第2の部品供給位置に供給した後、実装ヘッド5の共振体25又はそれに取付固定された吸着ノズルにて電子部品2を保持し、次いで実装ヘッド5がX方向テーブル6にて基板3における電子部品2の実装位置のX方向位置まで移動する。一方、ローダ9にて供給された基板3はY方向テーブル7に設けられた部分レール11上に受け渡された後、部分レール11が所定高さ位置まで下降してこの基板3が支持台8上に載置固定され、次いでY方向テーブル7が基板3における電子部品2の実装位置のY方向位置が実装ヘッド5のY方向位置に一致するように移動する。次に、必要に応じてディスペンサ19にて実装位置に封止材を塗布した後、実装ヘッド5の移動手段22を作動させて電子部品2を下降させ、その突起電極2aを基板3の実装位置の電極に当接させるとともに、移動手段22にて所定の押圧荷重を負荷しながら超音波振動発生手段24を作動させることで、突起電極2aと基板3の電極の接合面に超音波エネルギーを供給して拡散及び溶融させて接合し、またディスペンサ19にて塗布された封止材が基板3と電子部品2の隙間に充填されて、電子部品2の基板3に対する実装が終了する。電子部品2の実装が終了すると、部分レール11が上昇して基板3が部分レール11上に受け渡されるとともに、部分レール11がアンローダ10に接続され、基板3がアンローダ10にて搬出される。
【0033】
次に、本実施形態の参考例における実装ヘッド5の要部である超音波ヘッド21の構成について、図3を参照して説明する。図3において、支持ブラケット23に共振体25を支持する一対の支持ブロック26a、26bがそれらの軸芯を水平にして取付けられ、共振体25の一端に振幅を拡大するホーン27の出力端面27aが同芯状に結合され、ホーン27の他端側に超音波振動発生手段24が結合されている。共振体25は、共振モードMの波長をλとして、(1+3/4)λの長さを有する軸体28から成り、一端からλ/4の位置と他端の振動モードの節の位置に支持部29a、29bが設けられて支持ブロック26a、26bにて支持され、支持部29a、29b間の中央の振動モードの腹となる位置に吸着ノズル30が垂直に貫通させて配設されている。30aは吸着ノズル30の軸芯部に形成された吸引通路である。吸着ノズル30の下端部には吸着保持すべき電子部品2の大きさに対応する平面形状の作用部31が形成され、この作用部31にカートリッジヒータなどの加熱手段32が埋設されるとともに、下面が電子部品2を保持する作用面33とされている。共振体25を構成する軸体28及び吸着ノズル30にて、超音波振動発生手段24にて発生された超音波振動を作用面33に伝播する超音波振動伝達手段34を構成している。
【0034】
なお、実装ヘッド5には、作用面33と支持台8の上面との平行度が5μm以下となるように調整するための調整機構(図示せず)が設けられている。また、超音波振動発生手段24にて発生され、超音波振動伝達手段34を介して作用面33に伝播された超音波振動は、作用面33においてその面に平行な水平方向の振動成分に対して垂直成分は3%未満となるように設定調整されている。また、ボイスコイルモータやシリンダなどの荷重負荷手段としての移動手段22により作用面33に負荷される押圧荷重は、電子部品2に設けられた各突起電極2aの直径やその数によって調整できるように構成されている。突起電極2aの径によるが、通常は1個の突起電極2a当たり30〜50gとして、それに突起電極2aの数を乗じた荷重を負荷するように構成されている。なお、1個の突起電極2a当たり30〜200gとして、それに突起電極2aの数を乗じた荷重が負荷される場合もある。
【0035】
以上の構成において、支持台8上に実装対象物の基板3を載置固定し、電子部品2を超音波ヘッド21の作用面33にて保持した状態で、移動手段22にて支持ブラケット23を下降移動させて吸着ノズル30を支持台8に向けて下降させ、その作用面33と支持台8の上面との間で基板3と電子部品2を挟圧し、さらに支持ブラケット23、一対の支持ブロック26a、26b、共振体25を構成する軸体28、及び吸着ノズル30を介して作用面33に上記した所定の押圧荷重を作用させる。この時、押圧荷重は作用面33に対して垂直な軸芯の直上位置から負荷されることになる。その状態で、超音波振動発生手段24から超音波振動を出力し、さらに加熱手段32を作動させて加熱する。
【0036】
すると、電子部品2の背面にその垂直方向の直上位置から押圧荷重が負荷されるので、大きな押圧荷重を作用させても電子部品2の多数の突起電極2aの端面と基板3の接合面との平行度を高精度に維持することができ、従って電子部品2の突起電極2aの数が多く、負荷する押圧荷重が大きくても各突起電極2aに均等に所要の押圧荷重を負荷した状態で超音波振動を印加することができ、全ての突起電極2aを確実に高い信頼性をもって接合することができる。
【0037】
また、上記のようにして電子部品2の突起電極2aと基板3の電極の間に超音波エネルギーを付与しながら、さらに加熱手段32にて電子部品2をその背面から加熱して熱エネルギーを付与することにより、電子部品2の突起電極2aの数が多い場合にも全ての突起電極2aを確実に生産効率良く接合することができる。
【0038】
その際、支持台8側にも加熱手段(図示せず)を配設して基板3側からも熱エネルギーを付与するように構成するのが好適である。しかし、支持台8側には必ずしも加熱手段を設けなくても良く、逆に場合によっては支持台8側にのみ加熱手段を設けて熱エネルギーを付与するようにしてもよい。
【0039】
また、基板3の実装位置にディスペンサ19にて塗布され、電子部品2の実装によって電子部品2と基板3の間の隙間に充填された封止材が同時に加熱によって硬化され、電子部品2の接合と同時に封止も完了する。これによって、後続の封止工程が削減され、コスト低下が図られる。
【0040】
また、上記したように作用面33における超音波振動のその面と平行な方向の成分に対して垂直な方向の成分が3%未満となるようにしているので、大きな押圧荷重を負荷しながら超音波接合する過程で突起電極2aが破損したり、大きく変形したりするのを防止して、適正な接合状態を確保することができる。なお、超音波振動エネルギーの水平方向成分に対して垂直方向成分が10%未満であれば、突起電極2aの数がかなり多い場合でも適正な接合状態を得ることができるが、垂直方向成分が10%以上になると、突起電極2aの数が多く、押圧荷重が大きい場合には突起電極2aの一部が大きく変形して適正な接合状態が得られない恐れが発生する。
【0041】
また、上記したように電子部品は、一面に50個以上の突起電極2aを有する電子部品2の場合、1つの突起電極2a当たり30〜50gとしてそれに突起電極2aの数を掛けた荷重を押圧荷重として負荷することにより、各突起電極2aに過大な荷重を作用せず、突起電極2aを大きく変形したりすることなく、効率的に超音波接合することができる。
【0042】
次に、本実施形態の電子部品実装装置の他の参考例について、図4を参照して説明する。なお、以下の実施形態の説明では、同一の構成要素については同一参照符号を付して説明を省略し、相違点のみを説明する。
【0043】
上記参考例では、軸体28から共振体25の両側部を支持ブロック26a、26bにて支持した状態で押圧荷重を負荷することにより、押圧荷重を作用面33の垂直方向直上から負荷するように構成した例を示したが、本参考例では超音波振動発生手段24が比較的剛性の大きなホーン27を有しており、このホーン27の入力端面からλ/2の位置に吸着ノズル30を垂直に貫通させて配設している。
【0044】
このように構成しても、作用部31に内蔵させた加熱手段32にて熱エネルギーを付与することで、その分付与すべき超音波エネルギーを小さくできて押圧荷重を低減でき、それによって押圧荷重を負荷した状態で作用面33と支持台8の平行度を所望の範囲に納め、また作用面33における超音波振動エネルギーの水平成分に対して垂直成分を10%未満に納めることが可能であり、全ての突起電極2aを適正に接合することができる。
【0045】
次に、本発明の電子部品実装装置の実施形態について、図5、図6を参照して説明する。
【0046】
上記参考例では、吸着ノズル30の作用部31に加熱手段32を埋設した例を示したが、本実施形態では作用面33の近傍に配設した部材に加熱手段を配設して、熱輻射にて加熱するようにしている。図5において、細長いブロック状の共振体35の一端の基端面36に連結軸37を介して超音波振動発生手段24が結合され、共振体35の他端部一側に作用面33が斜めに形成されている。共振体35及び連結軸37、超音波振動発生手段24は作用面33が水平になるように斜め上方に傾斜した姿勢で配設され、かつ共振体35の共振モードの節の位置に設けられた取付部35aを支持ブラケット23に固定して取付けられている。
【0047】
支持ブラケット23には、共振体35の両側に対向するように対向板部38が設けられ、この対向板部38の下部の作用面33の近傍に対向する部分にカートリッジヒータなどの間接加熱用の加熱手段39が埋設され、加熱手段39で対向板部38の下部を加熱し、その輻射熱で共振体35の作用面33近傍を加熱するように構成されている。
【0048】
また、超音波振動発生手段24の外周と連結軸37の外周の少なくとも一部を取り囲むように、冷却部若しくは保温部としての冷却チャンバ40が配設され、その流入口40aから冷却エアを導入し、流出口40bから排出することで、連結軸37や超音波振動発生手段24を冷却し、共振体35の加熱により伝わってくる熱を放熱させて超音波振動発生手段24の温度上昇を防止するように構成されている。また、連結軸37に温度監視部としての熱電対41を埋め込み配置し、その温度を監視できるように構成されている。
【0049】
本実施形態では、共振体35を間接加熱するようにしているので、超音波振動接合の振動系に影響を与えずに加熱することができるので、信頼性の高い超音波接合を容易に確保することができる。また、冷却部又は保温部として冷却チャンバ40を設けたことで、加熱手段39にて加熱した共振体35の熱が超音波振動発生手段24に熱が伝達され、超音波振動発生手段24の温度が上昇してその性能が低下したり、損傷したりするのを確実に防止することができる。また、超音波振動発生手段24の近傍に配設した熱電対41にて温度を監視するようにしているので、知らずに超音波振動発生手段24の温度が上昇して性能が低下し、接合不良が大量に発生してしまうというような事態の発生を未然に防止することができる。
【0050】
なお、上記実施形態の説明では、非接触間接加熱として、輻射熱で作用面33近傍を加熱するようにした例を示したが、熱風を吹き付けて加熱したり、レーザ光などの熱線を照射して加熱したり、電磁誘導加熱したりする手段を配設してもよい。
【0051】
【発明の効果】
本発明の電子部品実装装置によれば、電子部品の背面に押圧荷重を負荷しつつその表面と略平行な振動方向の超音波振動を付与するとともに電子部品と実装対象物の接合部に熱エネルギーを付与することができ、電子部品の突起電極の数が多い場合にも全ての突起電極を確実に生産効率良く接合することができる。また、実装ヘッドに設けた加熱手段が超音波振動伝達手段に対して非接触方式であるので、振動系に影響を与えずに加熱でき、信頼性の高い超音波接合を容易に確保することができる。
【0057】
また、本発明の電子部品実装装置において、その実装ヘッドに、上記加熱手段と、さらに超音波振動発生手段の外周と共振体とを連結する連結軸の外周の少なくとも一部を取り囲むように、冷却部若しくは保温部としての冷却チャンバを配設しているので、加熱手段にて超音波振動伝達手段を介して超音波振動発生手段に熱が伝達され、超音波振動発生手段の温度が上昇してその性能が低下したり、損傷したりするのを確実に防止することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態及び従来例に共通する電子部品実装装置における全体概略構成を示す斜視図である。
【図2】 図1における実装ヘッドの構成を示す斜視図である。
【図3】 本発明の参考例における実装ヘッドの要部構成を示す部分断面正面図である。
【図4】 本発明の他の参考例における実装ヘッドの要部構成を示す部分断面正面図である。
【図5】 本発明の実施形態における実装ヘッドの要部構成を示す部分断面正面図である。
【図6】 図5のA−A矢視図である。
【符号の説明】
1 電子部品実装装置
2 電子部品
2a 突起電極
3 基板(実装対象物)
5 実装ヘッド
6 X方向テーブル(位置決め手段)
7 Y方向テーブル(位置決め手段)
8 支持台
20 部品供給手段
22 移動手段(荷重負荷手段)
24 超音波振動発生手段
32 加熱手段
33 作用面
34 超音波振動伝達手段
39 加熱手段
40 冷却チャンバ(冷却部)
41 熱電対(温度監視部)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic component real SoSo location for mounting an ultrasonic vibration to an electronic component having a plurality of protruding electrodes on one side on a mounting object such as a substrate.
[0002]
[Prior art]
As a conventional electronic component mounting apparatus using ultrasonic vibration, for example, as disclosed in Japanese Patent Application Laid-Open No. 2000-68327, a horizontal position is supported on a support bracket supported by a moving means such as a voice coil motor. A mounting head in which a horn is coupled to the output end of the ultrasonic vibration generating means fixedly supported, and a suction nozzle for sucking and holding the electronic component is attached to the tip of the horn, and means for supplying the electronic component to the mounting head; And a support base for fixing and supporting a mounting object such as a substrate, and positioning means for aligning the electronic component and the mounting object by relatively moving the mounting head and the support base in the horizontal direction. Yes.
[0003]
This type of electronic component mounting apparatus is suitably applied to a case where a plurality of protruding electrodes protruding from one surface of an electronic component are ultrasonically bonded to an electrode formed on an object to be mounted, and used as a component supply means. The upper surface of the electronic component supplied with the protruding electrode facing downward is sucked and held by the suction nozzle of the mounting head, the mounting target is supplied and fixed on the support base, and the electronic component is mounted on the mounting target. The mounting head and the support base are moved relative to each other so that they are positioned, and the protruding electrode of the electronic component is brought into contact with the electrode of the mounting object by the moving means of the mounting head, and a predetermined pressing force is applied. In this state, the ultrasonic vibration generating means is operated and the suction nozzle is ultrasonically vibrated in the horizontal direction via the horn, so that ultrasonic vibration energy is imparted to the joint surface between the electronic component and the mounting object to diffuse and melt. It is joined.
[0004]
[Problems to be solved by the invention]
However, in recent years, in order to reduce the size of electronic circuits, it has been required to reduce the number of electronic components (chips) constituting the electronic circuit, and accordingly, higher functionality and higher integration of each electronic component have been promoted. As a result, a single electronic component is increasing in size and increasing in number. For example, in the past, the size of an electronic component (bare IC chip) was about 0.3 mm square to 5 mm square and the number of protruding electrodes was about 2 to 30, but in the near future it would be 10 mm square to 20 mm square. It has been expected that practical use of projection electrodes having a size of 50 to 100 to more than 1000 is expected.
[0005]
When mounting such an electronic component with the above-described conventional electronic component mounting apparatus, it is necessary to ultrasonically bond a large number of protruding electrodes to the electrode of the mounting target at a time, so that the pressing load applied to the suction nozzle is increased. All the projecting electrodes cannot be reliably bonded to the electrodes of the mounting object unless the parallelism between the component holding surface of the lower surface of the suction nozzle and the bonding surface of the mounting object is kept extremely high. . For example, when mounting such a large bare IC chip as described above, the parallelism of the component holding surface of the suction nozzle and the joint surface of the mounting object with respect to the vibration direction of the ultrasonic vibration must be within 5 μm as a whole. is there.
[0006]
However, in the configuration as described above, when a large pressing load is applied from the support bracket to the vicinity of the coupling portion between the ultrasonic vibration generating means and the horn, the suction nozzle is fixed to the tip of the horn. Since there is a distance between the load position of the pressing load, a bending moment acts on the horn, and the component holding surface on the lower surface of the suction nozzle is inclined due to the bending due to the pressing load of the horn, so that a high degree of parallelism cannot be obtained. There is a problem that a highly reliable joint cannot be secured. On the other hand, it is conceivable to provide a flexible part between the horn and the component holding surface of the suction nozzle to ensure parallelism. However, if this is done, the propagation efficiency of ultrasonic vibrations is reduced at once, and the joining efficiency is reduced. This causes a problem that the bonding cannot be performed with high reliability.
[0007]
In addition, when the number of protruding electrodes is large, even if ultrasonic vibration is applied by applying a large pressing load while ensuring a certain degree of parallelism between the component holding surface and the joint surface of the mounting object, the ultrasonic vibration However, there is a problem that it is difficult to obtain a sufficiently reliable bonding state because the bonding energy that can be imparted by this is easily insufficient.
[0008]
Further, conventionally, after joining electronic components, a step of filling a sealing material between mounting objects and heat-curing and sealing the sealing material is separately performed as a post-process. There was a problem that the number was large and the cost was high.
[0009]
The present invention is the light of the conventional problems, to provide an electronic component real SoSo location that with a number of at most surely reliable protruding electrodes provided on one surface of the electronic component can be ultrasonically bonded For the purpose.
[0010]
[Means for Solving the Problems]
Electronic component mounting apparatus of the present invention, downward The mounting apparatus of an electronic component to be mounted by bonding to the electrode of the electronic component mounting object, the electronic component protruding electrodes disposition surface having a plurality of protruding electrodes on one surface Component supply means to be supplied, a mounting head for holding the supplied electronic component and mounting it on the mounting target, a support base for fixing and supporting the mounting target, and the mounting head and the support base to move relative to each other The mounting head includes an ultrasonic vibration generating means and an ultrasonic vibration output from the ultrasonic vibration generating means on the working surface holding the electronic component. Ultrasonic vibration transmission means propagating as vibration parallel to the load, load loading means for applying a load to the working surface of the ultrasonic vibration transmission means, and the working surface of the ultrasonic vibration transmission means for heating the electronic components from the back side Near The one having a heating means for heating in a non-contact manner.
[0013]
With this configuration, applying thermal energy to the junction of the electronic component and the mounting object while applying ultrasonic vibration of the surface substantially parallel to the vibration direction while loading the pressing load to the back of the electronic component Even when the number of protruding electrodes of the electronic component is large, all the protruding electrodes can be reliably bonded with high production efficiency. In addition, since the heating means provided in the mounting head is a non-contact type with respect to the ultrasonic vibration transmission means, heating can be performed without affecting the vibration system, and reliable ultrasonic bonding can be easily ensured. it can. In addition, by applying a sealing material in advance to the mounting position of the mounting target, the sealing material is filled in the gap between the electronic component and the mounting target in the process of bonding the electronic component, and heat is applied during the bonding. Since the encapsulating material is applied and the encapsulating material is cured, the encapsulating process is completed, so that a separate encapsulating process can be reduced and the cost can be reduced.
[0024]
Further, in the electronic component mounting apparatus of the present invention, the mounting head vibrates the ultrasonic vibration output from the ultrasonic vibration generating means and the ultrasonic wave output from the ultrasonic vibration generating means parallel to the surface of the working surface holding the electronic component. An ultrasonic vibration transmission means that propagates as follows: a load loading means for applying a load to the working surface of the ultrasonic vibration transmission means; a heating means for heating the vicinity of the working surface; and an outer periphery of the ultrasonic vibration generating means; A cooling chamber as a cooling unit or a heat retaining unit is disposed so as to surround at least a part of the outer periphery of the connecting shaft that connects the resonator . With such a configuration, heat is transmitted from the heating means to the ultrasonic vibration generating means via the ultrasonic vibration transmitting means, and the temperature of the ultrasonic vibration generating means rises and its performance is reduced or damaged. Can be surely prevented.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION implementation of an electronic component real SoSo location of the present invention will be described with reference to FIGS.
[0027]
First, an overall configuration common to the conventional example in the component mounting apparatus of the present embodiment will be described with reference to FIGS. 1 and 2. 1 is an electronic component mounting apparatus for mounting an electronic component 2 composed of a bare IC chip on a substrate 3 (see FIG. 3) to be mounted. The electronic component 2 has a plurality of protruding electrodes 2a arranged on one surface thereof. Electrodes for joining the protruding electrodes 2 a are formed at the component mounting positions of the substrate 3. The electronic component 2 has a size of, for example, 10 mm square to 20 mm square, and 50 to 100 or more projecting electrodes 2 a, particularly 1000 in the large electronic component 2.
[0028]
An X-direction table 6 that supports a mounting head 5 that holds the electronic component 2 and mounts it on the substrate 3 so as to be movable in the X-axis direction is disposed on the rear portion of the base 4 of the electronic component mounting apparatus 1. . A Y-direction table 7 that is movable in the Y-axis direction is disposed between a lower portion of a predetermined portion of the X-direction table 6 and a front portion thereof, and a support base 8 for mounting and fixing the substrate 3 on the Y-direction table 7 Is provided. At the front part of the X direction table 6, a loader 9 that carries the substrate 3 from one side of the base 4 to the Y direction table 7 and an unloader 10 that carries the substrate 3 from the Y direction table 7 to the other side of the base 4 are arranged. ing. The loader 9 and the unloader 10 have a pair of rails that support both sides of the substrate 3, and partial rails 11 that can be connected to the pair of rails and that can be raised and lowered are provided on both front and rear sides of the support base 8. After being received on the partial rail 11, it is configured to be mounted and fixed on the support base 8.
[0029]
At a position ahead of the X-direction table 6 on the other side of the base 4, a component magazine 13 containing a semiconductor wafer 12 formed with a large number of electronic components 2 and diced on an expanded sheet is placed, and a desired semiconductor wafer is installed. A magazine lifter 14 for positioning 12 at a predetermined supply height position is disposed, and the expanded sheet of the semiconductor wafer 12 introduced from the magazine lifter 14 is expanded between the makadin lifter 14 and the Y-direction table 7 so that each component is expanded. An expand base 15 that separates 2 at an interval is disposed on an XY table 16 that positions an arbitrary component 2 at a predetermined first component supply position. A recognition camera 17 recognizes the component 2 at the first component supply position.
[0030]
18 picks up the electronic component 2 at the first component supply position on the expand base 15, moves in the X direction to transfer to the second component supply position, and turns the sucked electronic component 2 upward by 180 degrees. The component reversing means is configured to be movable by an X direction table provided separately from the X direction table 6. In the state of the semiconductor wafer 12, the protruding electrode 2a of each electronic component 2 is formed on the upper surface, and after the surface on which the protruding electrode 2a of each electronic component 2 is formed is attracted by the component reversing means 18, it is 180 degrees upward. By turning, the surface on which the protruding electrode 2a of the electronic component 2 is formed faces downward, and the surface on the opposite side faces upward. In this state, the electronic component 2 is delivered to the mounting head 5 at the second component supply position. . The above-described magazine lifter 14, the expand base 15, and the component reversing unit 18 constitute a component supply unit 20 that supplies the electronic component 2 to the mounting head 5. Reference numeral 19 denotes a dispenser for applying a sealing material to the mounting position of the electronic component 2 on the substrate 3 or the electronic component 2.
[0031]
The mounting head 5 has an ultrasonic head 21 attached to a lower portion of a spline shaft (not shown) that can be driven up and down in the axial direction by a moving means 22 such as a voice coil motor. The ultrasonic head 21 is configured by attaching an ultrasonic vibration generating means 24 and a resonator 25 to a support bracket 23, and is configured to hold the component 2 by the resonator 25 or a suction nozzle attached and fixed thereto. Yes.
[0032]
The component mounting operation in the overall configuration described above will be described. After supplying the electronic component 2 to the second component supply position with the protruding electrode 2a facing downward by the component supply means 20, the resonator 25 of the mounting head 5 is supplied. Alternatively, the electronic component 2 is held by the suction nozzle attached and fixed thereto, and then the mounting head 5 is moved to the X direction position of the mounting position of the electronic component 2 on the substrate 3 by the X direction table 6. On the other hand, the substrate 3 supplied by the loader 9 is transferred onto the partial rail 11 provided on the Y-direction table 7, and then the partial rail 11 is lowered to a predetermined height position so that the substrate 3 is supported by the support base 8. Then, the Y-direction table 7 moves so that the Y-direction position of the mounting position of the electronic component 2 on the substrate 3 coincides with the Y-direction position of the mounting head 5. Next, after applying a sealing material to the mounting position with the dispenser 19 as required, the moving means 22 of the mounting head 5 is operated to lower the electronic component 2, and the protruding electrode 2 a is mounted on the mounting position of the substrate 3. The ultrasonic vibration generating means 24 is operated while a predetermined pressing load is applied by the moving means 22, and ultrasonic energy is supplied to the joint surface between the protruding electrode 2 a and the substrate 3. Then, they are joined by diffusion and melting, and the sealing material applied by the dispenser 19 is filled in the gap between the substrate 3 and the electronic component 2 to complete the mounting of the electronic component 2 on the substrate 3. When the mounting of the electronic component 2 is completed, the partial rail 11 is raised and the substrate 3 is transferred onto the partial rail 11, the partial rail 11 is connected to the unloader 10, and the substrate 3 is unloaded by the unloader 10.
[0033]
Next, the configuration of the ultrasonic head 21 which is a main part of the mounting head 5 in the reference example of the present embodiment will be described with reference to FIG. In FIG. 3, a pair of support blocks 26 a and 26 b that support the resonator 25 are attached to the support bracket 23 with their axial centers horizontal, and an output end face 27 a of a horn 27 that expands the amplitude is formed at one end of the resonator 25. The ultrasonic vibration generating means 24 is coupled to the other end of the horn 27. The resonator 25 is composed of a shaft body 28 having a length of (1 + 3/4) λ where the wavelength of the resonance mode M is λ, and is supported at the position of λ / 4 from one end and the position of the node of the vibration mode at the other end. The portions 29a and 29b are provided and supported by the support blocks 26a and 26b, and the suction nozzle 30 is vertically penetrated at a position between the support portions 29a and 29b that becomes the antinode of the vibration mode in the center. Reference numeral 30 a denotes a suction passage formed in the axial center portion of the suction nozzle 30. A planar action portion 31 corresponding to the size of the electronic component 2 to be sucked and held is formed at the lower end of the suction nozzle 30, and heating means 32 such as a cartridge heater is embedded in the action portion 31, and the lower surface Is an action surface 33 for holding the electronic component 2. The shaft body 28 and the suction nozzle 30 constituting the resonator 25 constitute ultrasonic vibration transmitting means 34 for propagating the ultrasonic vibration generated by the ultrasonic vibration generating means 24 to the working surface 33.
[0034]
The mounting head 5 is provided with an adjustment mechanism (not shown) for adjusting the parallelism between the action surface 33 and the upper surface of the support base 8 to be 5 μm or less. Further, the ultrasonic vibration generated by the ultrasonic vibration generating means 24 and propagated to the working surface 33 via the ultrasonic vibration transmitting means 34 is applied to the horizontal vibration component parallel to the surface of the working surface 33. Thus, the vertical component is set and adjusted to be less than 3%. Further, the pressing load applied to the action surface 33 by the moving means 22 as a load loading means such as a voice coil motor or a cylinder can be adjusted by the diameter and the number of the protruding electrodes 2a provided on the electronic component 2. It is configured. Although it depends on the diameter of the protruding electrode 2a, it is usually configured to be 30 to 50 g per protruding electrode 2a and to be loaded with a load obtained by multiplying the protruding electrode 2a by the number of protruding electrodes 2a. In some cases, a load obtained by multiplying the number of protruding electrodes 2a by 30 to 200 g per protruding electrode 2a is applied.
[0035]
In the above-described configuration, the mounting bracket substrate 3 is placed and fixed on the support base 8, and the support bracket 23 is held by the moving means 22 while the electronic component 2 is held by the action surface 33 of the ultrasonic head 21. The suction nozzle 30 is moved downward toward the support base 8 to sandwich the substrate 3 and the electronic component 2 between the action surface 33 and the upper surface of the support base 8, and further, the support bracket 23 and a pair of support blocks The predetermined pressing load described above is applied to the working surface 33 through the shaft body 28 and the suction body 30 that constitute the resonator 25. At this time, the pressing load is applied from a position directly above the axis perpendicular to the working surface 33. In this state, ultrasonic vibration is output from the ultrasonic vibration generating means 24, and the heating means 32 is further operated to heat.
[0036]
Then, a pressing load is applied to the back surface of the electronic component 2 from a position directly above in the vertical direction. Therefore, even if a large pressing load is applied, the end surfaces of the numerous protruding electrodes 2a of the electronic component 2 and the bonding surface of the substrate 3 The parallelism can be maintained with high accuracy. Therefore, even when the number of protruding electrodes 2a of the electronic component 2 is large and the pressing load to be applied is large, each protruding electrode 2a is uniformly loaded with the required pressing load. Sonic vibration can be applied, and all the protruding electrodes 2a can be reliably bonded with high reliability.
[0037]
Further, while applying ultrasonic energy between the protruding electrode 2a of the electronic component 2 and the electrode of the substrate 3 as described above, the heating means 32 further heats the electronic component 2 from the back surface to apply thermal energy. By doing so, even when the number of protruding electrodes 2a of the electronic component 2 is large, all the protruding electrodes 2a can be reliably bonded with high production efficiency.
[0038]
At this time, it is preferable that a heating means (not shown) is also provided on the support base 8 side so that thermal energy is applied also from the substrate 3 side. However, it is not always necessary to provide the heating means on the support base 8 side, and conversely, in some cases, the heating means may be provided only on the support base 8 side to apply heat energy.
[0039]
Further, the sealing material applied to the mounting position of the substrate 3 by the dispenser 19 and filled in the gap between the electronic component 2 and the substrate 3 by the mounting of the electronic component 2 is simultaneously cured by heating, so that the electronic component 2 is joined. At the same time, sealing is completed. As a result, the subsequent sealing process is reduced, and the cost is reduced.
[0040]
In addition, as described above, the component in the direction perpendicular to the component in the direction parallel to the surface of the ultrasonic vibration on the working surface 33 is set to be less than 3%. It is possible to prevent the protruding electrode 2a from being damaged or greatly deformed during the sonic bonding process and to ensure an appropriate bonded state. If the vertical component is less than 10% with respect to the horizontal component of the ultrasonic vibration energy, an appropriate bonding state can be obtained even when the number of the protruding electrodes 2a is considerably large, but the vertical component is 10%. If it exceeds%, the number of the protruding electrodes 2a is large, and when the pressing load is large, a part of the protruding electrodes 2a may be greatly deformed and an appropriate bonded state may not be obtained.
[0041]
Further, as described above, when the electronic component is an electronic component 2 having 50 or more protruding electrodes 2a on one side, the load obtained by multiplying the number of protruding electrodes 2a by 30 to 50 g per protruding electrode 2a is pressed. Therefore, it is possible to perform ultrasonic bonding efficiently without applying an excessive load to each protruding electrode 2a and without greatly deforming the protruding electrode 2a.
[0042]
Next, another reference example of the electronic component mounting apparatus of the present embodiment will be described with reference to FIG. In the following description of the embodiments, the same components will be omitted with denoted by the same reference numerals, and only the differences will be described.
[0043]
In the above reference example , by applying a pressing load in a state where both side portions of the resonator 25 are supported by the support blocks 26 a and 26 b from the shaft body 28, the pressing load is applied from directly above the working surface 33 in the vertical direction. In this reference example , the ultrasonic vibration generating means 24 has a horn 27 having a relatively large rigidity, and the suction nozzle 30 is vertically positioned at a position of λ / 2 from the input end face of the horn 27. It is penetrated and arranged.
[0044]
Even if comprised in this way, by applying a thermal energy with the heating means 32 incorporated in the action part 31, the ultrasonic energy which should be provided can be made small and a press load can be reduced by that, and a press load is thereby produced. It is possible to keep the parallelism between the working surface 33 and the support base 8 within a desired range in a state where a load is applied, and to keep the vertical component below 10% with respect to the horizontal component of the ultrasonic vibration energy on the working surface 33. All the protruding electrodes 2a can be appropriately joined.
[0045]
Next, the implementation of an electronic component mounting apparatus of the present invention, FIG. 5 will be described with reference to FIG.
[0046]
In the above reference example , an example in which the heating means 32 is embedded in the action portion 31 of the suction nozzle 30 is shown. However, in the present embodiment, the heating means is provided on a member provided in the vicinity of the action surface 33, and the heat radiation is performed. It is made to heat with. In FIG. 5, the ultrasonic vibration generating means 24 is coupled to a base end face 36 at one end of an elongated block-like resonator 35 via a connecting shaft 37, and an action surface 33 is inclined at one end of the other end of the resonator 35. Is formed. The resonator 35, the connecting shaft 37, and the ultrasonic vibration generating means 24 are disposed in a posture inclined obliquely upward so that the action surface 33 is horizontal, and are provided at the position of the resonance mode node of the resonator 35. The attachment portion 35a is fixedly attached to the support bracket 23.
[0047]
The support bracket 23 is provided with a counter plate portion 38 so as to oppose both sides of the resonator 35, and a portion facing the vicinity of the action surface 33 at the bottom of the counter plate portion 38 is used for indirect heating such as a cartridge heater. A heating unit 39 is embedded, and the heating unit 39 is configured to heat the lower portion of the counter plate portion 38 and to heat the vicinity of the working surface 33 of the resonator 35 with the radiant heat.
[0048]
Further, a cooling chamber 40 as a cooling unit or a heat retaining unit is disposed so as to surround at least a part of the outer periphery of the ultrasonic vibration generating means 24 and the outer periphery of the connecting shaft 37, and cooling air is introduced from the inlet 40a. By discharging from the outlet 40b, the connecting shaft 37 and the ultrasonic vibration generating means 24 are cooled, and the heat transmitted by heating the resonator 35 is dissipated to prevent the ultrasonic vibration generating means 24 from rising in temperature. It is configured as follows. In addition, a thermocouple 41 as a temperature monitoring unit is embedded in the connecting shaft 37 so that the temperature can be monitored.
[0049]
In the present embodiment, since the resonator 35 is indirectly heated, it can be heated without affecting the vibration system of the ultrasonic vibration bonding, so that reliable ultrasonic bonding can be easily ensured. be able to. Further, since the cooling chamber 40 is provided as a cooling unit or a heat retaining unit, the heat of the resonator 35 heated by the heating unit 39 is transmitted to the ultrasonic vibration generating unit 24, and the temperature of the ultrasonic vibration generating unit 24 is increased. As a result, it is possible to surely prevent the performance from being lowered and damaged. Further, since the temperature is monitored by the thermocouple 41 disposed in the vicinity of the ultrasonic vibration generating means 24, the temperature of the ultrasonic vibration generating means 24 rises without knowing and the performance deteriorates, and the bonding failure. Can be prevented from occurring in a large amount.
[0050]
In the description of the above embodiment, an example in which the vicinity of the working surface 33 is heated by radiant heat as non-contact indirect heating has been described. Means for heating or electromagnetic induction heating may be provided.
[0051]
【The invention's effect】
According to the electronic component real SoSo location of the present invention, the junction of the electronic component and the mounting object while applying ultrasonic vibration of the surface substantially parallel to the vibration direction while loading the pressing load to the back of the electronic component Thermal energy can be applied, and even when the number of protruding electrodes of the electronic component is large, all the protruding electrodes can be reliably bonded with high production efficiency. In addition, since the heating means provided in the mounting head is a non-contact type with respect to the ultrasonic vibration transmission means, heating can be performed without affecting the vibration system, and reliable ultrasonic bonding can be easily ensured. it can.
[0057]
In the electronic component mounting apparatus of the present invention, the mounting head is cooled so as to surround at least a part of the outer periphery of the connecting shaft that connects the outer periphery of the heating means and the ultrasonic vibration generating means to the resonator. Since the cooling chamber is provided as a heating part or a heat retaining part , heat is transmitted to the ultrasonic vibration generating means via the ultrasonic vibration transmitting means by the heating means, and the temperature of the ultrasonic vibration generating means rises. It is possible to reliably prevent the performance from being deteriorated or damaged.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an overall schematic configuration of an electronic component mounting apparatus common to an embodiment of the present invention and a conventional example.
2 is a perspective view showing a configuration of a mounting head in FIG. 1. FIG.
FIG. 3 is a partial cross-sectional front view showing the main configuration of a mounting head in a reference example of the present invention.
FIG. 4 is a partial cross-sectional front view showing the main configuration of a mounting head according to another reference example of the present invention.
5 is a partial cross-sectional front view showing a configuration of a main part of the mounting head in the implementation of the invention.
6 is an AA arrow view of FIG. 5;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electronic component mounting apparatus 2 Electronic component 2a Projection electrode 3 Board | substrate (mounting object)
5 Mounting head 6 X direction table (positioning means)
7 Y direction table (positioning means)
8 Support base 20 Parts supply means 22 Moving means (load loading means)
24 Ultrasonic vibration generating means 32 Heating means 33 Working surface 34 Ultrasonic vibration transmitting means 39 Heating means 40 Cooling chamber (cooling part)
41 Thermocouple (Temperature monitoring unit)

Claims (2)

一面に複数の突起電極を有する電子部品を実装対象物の電極に接合して実装する電子部品の実装装置であって、電子部品を突起電極配設面を下向きにして供給する部品供給手段と、供給された電子部品を保持して実装対象物に実装する実装ヘッドと、実装対象物を固定支持する支持台と、実装ヘッドと支持台を相対移動させて電子部品と実装対象物の位置合わせを行う位置決め手段とを備え、実装ヘッドは、超音波振動発生手段と、超音波振動発生手段から出力された超音波振動を電子部品を保持する作用面にその表面と平行な振動として伝播する超音波振動伝達手段と、超音波振動伝達手段の作用面に荷重を負荷する荷重負荷手段と、電子部品をその背面から加熱するために超音波振動伝達手段の作用面の近傍を非接触方式で加熱する加熱手段とを有することを特徴とする電子部品実装装置。  An electronic component mounting apparatus for mounting and mounting an electronic component having a plurality of protruding electrodes on one surface to an electrode of a mounting object, and a component supply means for supplying the electronic component with the protruding electrode arrangement surface facing downward, A mounting head that holds the supplied electronic component and mounts it on the mounting target, a support base that fixes and supports the mounting target, and the mounting head and the support base are moved relative to each other to align the electronic component and the mounting target. The mounting head includes an ultrasonic vibration generating unit and an ultrasonic wave propagating the ultrasonic vibration output from the ultrasonic vibration generating unit to the working surface holding the electronic component as a vibration parallel to the surface thereof. The vibration transmitting means, the load loading means for applying a load to the working surface of the ultrasonic vibration transmitting means, and the vicinity of the working surface of the ultrasonic vibration transmitting means are heated in a non-contact manner in order to heat the electronic component from the back surface. heating An electronic component mounting apparatus characterized by comprising a stage. 一面に複数の突起電極を有する電子部品を実装対象物の電極に接合して実装する電子部品の実装装置であって、電子部品を突起電極配設面を下向きにして供給する部品供給手段と、供給された電子部品を保持して実装対象物に実装する実装ヘッドと、実装対象物を固定支持する支持台と、実装ヘッドと支持台を相対移動させて電子部品と実装対象物の位置合わせを行う位置決め手段とを備え、実装ヘッドは、超音波振動発生手段と、超音波振動発生手段から出力された超音波振動を電子部品を保持する作用面にその表面と平行な振動として伝播する超音波振動伝達手段と、超音波振動伝達手段の作用面に荷重を負荷する荷重負荷手段と、作用面の近傍を加熱する加熱手段とを備え、さらに超音波振動発生手段の外周と共振体とを連結する連結軸の外周の少なくとも一部を取り囲むように、冷却部若しくは保温部としての冷却チャンバを配設したことを特徴とする電子部品実装装置。An electronic component mounting apparatus for mounting and mounting an electronic component having a plurality of protruding electrodes on one surface to an electrode of a mounting object, and a component supply means for supplying the electronic component with the protruding electrode arrangement surface facing downward, A mounting head that holds the supplied electronic component and mounts it on the mounting target, a support base that fixes and supports the mounting target, and the mounting head and the support base are moved relative to each other to align the electronic component and the mounting target. The mounting head includes an ultrasonic vibration generating unit and an ultrasonic wave propagating the ultrasonic vibration output from the ultrasonic vibration generating unit to the working surface holding the electronic component as a vibration parallel to the surface thereof. A vibration transmitting means; a load loading means for applying a load to the working surface of the ultrasonic vibration transmitting means; and a heating means for heating the vicinity of the working surface. Further, the outer periphery of the ultrasonic vibration generating means is connected to the resonator. Consolidation At least a portion so as to surround the electronic component mounting apparatus characterized by a cooling chamber as a cooling unit or a heat insulating section is disposed on the outer circumference of.
JP2002087594A 2002-03-27 2002-03-27 Electronic component mounting equipment Expired - Fee Related JP4109000B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2002087594A JP4109000B2 (en) 2002-03-27 2002-03-27 Electronic component mounting equipment
TW092105078A TWI230102B (en) 2002-03-27 2003-03-10 Component mounting method, component mounting apparatus, and ultrasonic bonding head
KR1020097002605A KR100950619B1 (en) 2002-03-27 2003-03-27 Ultrasonic bonding headand, and component mounting apparatus
EP03745015A EP1488449B1 (en) 2002-03-27 2003-03-27 Component mounting method, component mounting apparatus, and ultrasonic bonding head
DE60308340T DE60308340T2 (en) 2002-03-27 2003-03-27 COMPONENT ATTACHING METHOD, COMPONENT ATTACHMENT DEVICE AND ULTRASOUND BONDING HEAD
US10/508,460 US7229854B2 (en) 2002-03-27 2003-03-27 Electronic component mounting method and apparatus and ultrasonic bonding head
PCT/JP2003/003906 WO2003081644A2 (en) 2002-03-27 2003-03-27 Electronic component mounting method and apparatus and ultrasondic bonding head
CNB038071347A CN100377293C (en) 2002-03-27 2003-03-27 Component mounting method, component mounting apparatus, and ultrasonic bonding head
KR1020047015150A KR100934064B1 (en) 2002-03-27 2003-03-27 Component mounting method and component mounting device
US11/731,312 US7861908B2 (en) 2002-03-27 2007-03-30 Component mounting method, component mounting apparatus, and ultrasonic bonding head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087594A JP4109000B2 (en) 2002-03-27 2002-03-27 Electronic component mounting equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007115127A Division JP4539678B2 (en) 2007-04-25 2007-04-25 Electronic component mounting method

Publications (2)

Publication Number Publication Date
JP2003282632A JP2003282632A (en) 2003-10-03
JP4109000B2 true JP4109000B2 (en) 2008-06-25

Family

ID=29233733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087594A Expired - Fee Related JP4109000B2 (en) 2002-03-27 2002-03-27 Electronic component mounting equipment

Country Status (1)

Country Link
JP (1) JP4109000B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4681351B2 (en) * 2005-05-20 2011-05-11 アスリートFa株式会社 Electronic component joining equipment
KR101210006B1 (en) * 2005-06-13 2012-12-07 파나소닉 주식회사 Semiconductor device bonding apparatus and method for bonding semiconductor device using the same
JP4609280B2 (en) * 2005-11-07 2011-01-12 パナソニック株式会社 Electronic component mounting apparatus, electronic component mounting method, and ultrasonic vibration device
JP4650309B2 (en) * 2006-03-20 2011-03-16 株式会社デンソー Ultrasonic bonding method and ultrasonic bonding apparatus

Also Published As

Publication number Publication date
JP2003282632A (en) 2003-10-03

Similar Documents

Publication Publication Date Title
US7861908B2 (en) Component mounting method, component mounting apparatus, and ultrasonic bonding head
US9016342B2 (en) Bonding apparatus and bonding method
KR100324652B1 (en) Ultrasonic vibration bonding method
US8028886B2 (en) Bonding tool, electronic component mounting apparatus and electronic component mounting method
JP6234277B2 (en) Crimping head, mounting apparatus and mounting method using the same
JP4109000B2 (en) Electronic component mounting equipment
JP4056276B2 (en) Component mounting method and apparatus
JP4539678B2 (en) Electronic component mounting method
JP4210269B2 (en) Ultrasonic flip chip mounting equipment
JP2006339198A (en) Ultrasonic bonding horn and ultrasonic bonding apparatus using same
JP3409630B2 (en) Apparatus and method for crimping electronic components with bumps
KR100950980B1 (en) Half-wavelength ultrasonic welder of horizontal vibration type, and ultrasonic bonding apparatus having the same
US10940645B2 (en) Vibration heat-pressing device
JP2004356419A (en) Device for manufacturing semiconductor and manufacturing method of semiconductor device
JP2002329752A (en) Electronic component bonding apparatus
JP2787057B2 (en) Die bonding equipment
JP3374855B2 (en) Electronic component bonding tool
JP3374854B2 (en) Electronic component bonding tool
JP2007234844A (en) Ultrasonic bonding method
JPH11265915A (en) Bonding tool and bonding device for electronic component with bump
JP2003197683A (en) Apparatus and method for bonding electronic component
JP2004095747A (en) Bonding method
JP2005064149A (en) Ultrasonic flip chip bonding device and bonding method
JP2003179102A (en) Bonding tool and bonding unit for electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees