JP4108403B2 - Aluminum extruded section manufacturing apparatus and manufacturing method - Google Patents
Aluminum extruded section manufacturing apparatus and manufacturing method Download PDFInfo
- Publication number
- JP4108403B2 JP4108403B2 JP2002220331A JP2002220331A JP4108403B2 JP 4108403 B2 JP4108403 B2 JP 4108403B2 JP 2002220331 A JP2002220331 A JP 2002220331A JP 2002220331 A JP2002220331 A JP 2002220331A JP 4108403 B2 JP4108403 B2 JP 4108403B2
- Authority
- JP
- Japan
- Prior art keywords
- small area
- aluminum extruded
- aluminum
- scanning direction
- average density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Extrusion Of Metal (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、アルミニウム押出形材の製造装置において、アルミニウム押出形材に発生する欠陥、特にストリークと称される帯状の外観欠陥が発生していないかどうかについて、アルミニウム押出形材の製造ライン中で検査し、良品であるアルミニウム押出形材を選択的に製造することができるアルミニウム押出形材の製造装置に関する。
【0002】
【従来の技術】
アルミニウム又はアルミニウム合金からなるアルミニウム材のアルミニウム押出形材は、アルミニウム材の特性であるその表面の美しさに加えて、軽量であって加工性や成形性に優れ、しかも、その表面に酸化皮膜や塗装等を形成せしめると優れた耐蝕性が付与されることから、サッシ、カーテンウオール、ドア等の建材、新幹線車両、航空機等のボディ材等として幅広く利用されている。
【0003】
そして、このようなアルミニウム押出形材は、ビレットと呼ばれるアルミニウム材の鋳塊を加熱し、押出装置により圧力をかけて各種の形状をもつダイス穴から押出すことで製造する。この方法によれば、他の加工方法では製造が困難な中空部を有した形材や、複雑な断面形状をもつ形材を比較的容易に製造することができ、また、寸法精度の厳しい形材を製造することもできるため、長手方向に一定形状を保つアルミニウム形材の製造方法として広く利用されている。
【0004】
ところが、ビレットの溶体化処理が不十分でマクロ又はミクロの組織が不均一である場合、熱履歴を含む押出条件が不適当である場合、押出金型の状態が不適切である場合等には、押出装置によって成形されたアルミニウム押出形材の表面に、ストリークと称される外観欠陥であって、押出方向に沿って色調の異なる帯状模様が発生することがある。
そして、このようなアルミニウム押出形材の欠陥は、アルミニウム押出形材に外観上の目視の違和感を生じさせるといった問題を引き起こし、製品不良となってアルミニウム押出形材の歩留りを低下させるほか、再製造のための時間的、経済的な損害を与える。
【0005】
このため、多くのアルミニウム押出形材の製造現場では、製品の抜き取り検査や全数検査等を実施して目視による製品検査を行い、製品中に不良品が混入しないようにしている。ところが、製品の抜き取り検査等で製品に欠陥が発生していることを発見したとしても、不良品の分は再び製造しなければならず、このような再製造をできるだけ減らすためには、欠陥の発生場所と考えられる押出装置付近で常時観察を行う必要が生じ、そのために各工程に専用の検査員を配置する等の必要があり、人件費等が問題とされていた。また、検査員による判定には個人差があるため、判定結果にばらつきが生じ、製品の品質を一定に保つのが難しく、良品と判定すべきものを不良品と判定したり、反対に、不良品と判定すべきものを良品と判定してしまい、後の工程で製品不良と判定されたときには、既にいくつかの処理を経ているため、結果的に余計なコストを掛けてしまうことがあるといった問題も生じていた。
【0006】
そこで、目視による製品検査以外の方法がいくつか検討されている。例えば、特開平8-86,760号公報では、アルミニウム押出形材の平坦面に二方向から光を入射し、それぞれの反射光を受光して得られる明度の比率若しくは明度差を利用してアルミニウム押出形材の表面に発生する欠陥を評価する技術を教えている。この方法によれば、アルミニウム押出形材の表面の状態を客観的に評価することができるため、これまでの人による目視検査に比べて正確に検査することができる。しかし、この方法では、一つの検査対象に対し照射する光源の方向が互いに直交する二方向になるように少なくとも2回の測定が必要となるため、一つの検査対象に対する測定に時間がかかり、実際に押出形材を製造する製造ライン中で検査する、いわゆるインラインでの製品検査には使用できない。
【0007】
また、特開2001-281,155号公報では、光源からの放射光束を所定幅の均等光束に集束して検査対象である金属表面に放射し、集光レンズ等により所定幅にした正反射光束をラインセンサ上に結像させる検査装置が開示されている。この技術によれば、検査対象の金属表面に所定幅の照射スポットラインに同一光量を均等に照射して照射むらを回避することで、検出精度の低下を防止し、インライン状態での製品検査を可能としている。しかし、この検査装置では、所定幅の金属表面における正常部の正反射光と表面欠陥部によって減衰される散乱光との比較によるため、正常部の正反射光の安定化が重要になるが、アルミニウム押出形材の場合にはその表面特性のために比較的大きな所定幅ではベースラインとなる正常部の正反射光が安定しない。
【0008】
【発明が解決しようとする課題】
そこで、本発明者らは、アルミニウム押出形材に発生する外観欠陥(ストリーク)を客観的にかつ確実に検出することができる外観検査の方法について鋭意検討した結果、アルミニウム押出形材の平坦面に光を照射し、この平坦面を検査画像として撮像し、得られた検査画像を小領域に分割して小領域毎の平均濃度を算出し、また、この算出した小領域の平均濃度を検査画像内で少なくとも他の2つの小領域と比較し、比較した平均濃度の差の絶対値が最大となるものを小領域の濃度差代表値とし、更に、このようにして求められた各小領域毎の濃度差代表値の中から最大のもの、すなわち検査画像内の中から濃度差代表値が最大のものに着目してこれを欠陥度とし、この欠陥度を指標として評価することにより、目視検査と整合性のとれた判定が可能であることを見出した。
【0009】
更に、本発明者らは、このような外観検査をアルミニウム押出形材の製造工程の中でどのように実施するのが効果的かについて検討した結果、外観検査装置をアルミニウム押出形材の押出装置及び/又は切断装置の後に引き続いて配置することにより、製造ライン中で外観検査を行うことができると共に、不良品の発生を可及的に防止することができることを見出し、本発明を完成した。
【0010】
従って、本発明の目的は、アルミニウム押出形材に発生する欠陥、特にストリークと称される帯状の外観欠陥の有無をこのアルミニウム押出形材の製造ライン中で検査し、不良品の発生を可及的に抑制して良品であるアルミニウム押出形材を選択的に製造することができるようにしたアルミニウム押出形材の製造装置を提供することにある。
【0011】
また、本発明の他の目的は、アルミニウム押出形材に発生する欠陥、特にストリークと称される帯状の外観欠陥の有無をこのアルミニウム押出形材の製造ライン中で検査し、不良品の発生を可及的に抑制して良品であるアルミニウム押出形材を選択的に製造することができるアルミニウム押出形材の製造方法を提供することにある。
【0012】
【課題を解決するための手段】
すなわち、本発明は、アルミニウム又はアルミニウム合金からなるアルミニウム押出形材を成形する押出装置及び/又はアルミニウム押出形材を所定の長さに切断する切断装置に続いて、アルミニウム押出形材の平坦面を検査する外観検査装置が配設されているアルミニウム押出形材の製造装置であり、上記外観検査装置が、アルミニウム押出形材の平坦面に光を照射する照明手段と、この平坦面を撮像して検査画像を得る撮像手段と、上記検査画像を押出方向に直交する主走査方向及び押出方向に平行な副走査方向にそれぞれ所定の幅を有する小領域に分割し、この分割された小領域に従って検査画像内を主走査方向及び副走査方向に走査する走査手段と、上記走査手段により得られた走査結果から検査画像の欠陥度を検出する欠陥度検出手段と、上記欠陥度を予め定めた基準値と比較し、欠陥度が基準値以上の場合にアルミニウム押出形材を不良品と判定する不良品判定手段とを備えており、上記走査手段が、小領域の主走査方向幅寸法の1/2の割合で主走査方向に互いに重なり合うように、検査画像を小領域に分割しながら走査する手段であり、上記欠陥度検出手段が、検査画像内の小領域毎の平均濃度を算出する平均濃度算出部と、小領域毎の平均濃度を記録する平均濃度記録部と、検査画像内のいずれか1つの小領域に注目して、この注目小領域の平均濃度と注目小領域から主走査方向に同一直線上に位置し、かつ、注目小領域との間に所定の小領域分の間隔を有する第1の対照小領域の平均濃度とを比べて第1の平均濃度の差を求めると共に、注目小領域の平均濃度と注目小領域から副走査方向に同一直線上に位置し、かつ、注目小領域との間に所定の小領域分の間隔を有する第2の対照小領域の平均濃度とを比べて第2の平均濃度の差を求め、得られた第1及び第2の平均濃度の差の絶対値が最大の値を上記注目小領域の濃度差代表値として検出する濃度差代表値検出部と、走査終了後に検査画像内の小領域毎に検出された濃度差代表値からその最大値を検査画像の欠陥度として記録する欠陥度記録部と、を備えていることを特徴とするアルミニウム押出形材の製造装置である。
【0013】
また、本発明は、アルミニウム又はアルミニウム合金からなるアルミニウム押出形材を成形する押出装置及び/又はアルミニウム押出形材を所定の長さに切断する切断装置に続いて、アルミニウム押出形材の平坦面を検査する外観検査装置が配設されているアルミニウム押出形材の製造装置を用いて、アルミニウム押出形材を製造するアルミニウム押出形材の製造方法において、上記外観検査装置において、照明手段によりアルミニウム押出形材の平坦面に光を照射し、この光が照射された平坦面から撮像手段により検査画像を撮像し、次いで走査手段により上記検査画像を押出方向に直交する主走査方向及び押出方向に平行な副走査方向にそれぞれ所定の幅を有する小領域に分割すると共に、この分割された小領域に従って検査画像内を主走査方向及び副走査方向に走査し、この走査手段により得られた走査結果から欠陥度検出手段により検査画像の欠陥度を検出し、不良品判定手段により上記走査手段で検出された欠陥度を予め定めた基準値と比較し、欠陥度が基準値以上の場合にアルミニウム押出形材を不良品と判定するに際し、上記走査手段が、小領域の主走査方向幅寸法の1/2の割合で主走査方向に互いに重なり合うように、検査画像を小領域に分割しながら走査する手段であり、上記欠陥度検出手段では、その平均濃度算出部で検査画像内の小領域毎の平均濃度を算出し、この算出された小領域毎の平均濃度を平均濃度記録部に記録すると共に、濃度差代表値検出部において、検査画像内のいずれか1つの小領域に注目して、この注目小領域の平均濃度と注目小領域から主走査方向に同一直線上に位置し、かつ、注目小領域との間に所定の小領域分の間隔を有する第1の対照小領域の平均濃度とを比べて第1の平均濃度の差を求めると共に、注目小領域の平均濃度と注目小領域から副走査方向に同一直線上に位置し、かつ、注目小領域との間に所定の小領域分の間隔を有する第2の対照小領域の平均濃度とを比べて第2の平均濃度の差を求め、得られた第1及び第2の平均濃度の差の絶対値が最大の値を上記注目小領域の濃度差代表値として検出し、走査終了後に上記検査画像内の小領域毎に検出された濃度差代表値からその最大値を検査画像の欠陥度として欠陥度記録部に記録することを特徴とするアルミニウム押出形材の製造方法である。
【0014】
本発明において、アルミニウム押出形材の製造装置については、アルミニウム押出形材を成形する押出装置及び/又は成形されたアルミニウム押出形材を所定の長さに切断する切断装置に引き続いて、アルミニウム押出形材の平坦面を検査する外観検査装置を備えた構成であればよく、通常は、上記押出装置、切断装置及び外観検査装置以外にも、アルミニウム押出形材を製造するために一般的に使用される各種の装置を含むものである。具体的には、押出装置に続いて、例えば、成形されたアルミニウム押出形材を牽引走行する引取装置、アルミニウム押出形材を冷却しながら整直装置へ移動させる移載装置、アルミニウム押出形材の曲がりを矯正する整直装置、外観検査装置により不良品と判定されたアルミニウム押出形材を製造ラインから払い出す不良品排出装置、及び良品のアルミニウム押出形材をパレットに積載する積載装置等を含むことができる。
【0015】
また、本発明のアルミニウム押出形材の製造装置においては、押出装置に続いて配設された外観検査装置がアルミニウム押出形材を不良品と判定した場合に、この押出装置の稼動を中止するのがよく、押出装置で成形されたアルミニウム押出形材の外観を直ちに検査し、不良品であると判定された場合に直ちにこの押出装置の稼動を停止することにより、押出装置により不良品が製造されるのを可及的に低減せしめることができる。また、切断装置に続いて配設された外観検査装置が切断されたアルミニウム押出形材を不良品と判定した場合に、この不良品と判定されたアルミニウム押出形材を選別装置により取り除くようにするのがよく、これによって不良品のアルミニウム押出形材が良品のアルミニウム押出形材中に紛れ込む虞がなくなり、良品のアルミニウム押出形材のみを選択的に製造することができる。
【0016】
本発明において、押出装置及び/又は切断装置に引き続いて配設される外観検査装置は、基本的には、照明手段、撮像手段、走査手段、欠陥度検出手段及び不良品判定手段を備えており、先ず、その照明手段によりアルミニウム押出形材の平坦面に光を照射して撮像手段により上記平坦面から所定の面積の検査画像を撮像し、次いで、走査手段により、撮像した検査画像を押出方向に直交する主走査方向及び押出方向に平行な副走査方向にそれぞれ所定の幅を有する小領域に分割しつつ、この分割された小領域に従って検査画像内を主走査方向及び副走査方向に走査し、各小領域毎の平均濃度を算出し、更に、欠陥度検出手段により、走査手段の走査結果から、検査画像の欠陥度、すなわち検査対象となったアルミニウム押出形材の欠陥度を求め、そして、不良品判定手段により、この欠陥度を予め定めた基準値と比較し、欠陥度が基準値を上回る場合にこのアルミニウム押出形材を不良品と判定するように構成されている。
【0017】
そして、上記欠陥度検出手段においては、検査画像内のある小領域に注目し、この注目した小領域(注目小領域)の平均濃度をこの注目小領域の周辺に存在し、かつ、主走査方向又は副走査方向に互いに一直線上に並ばない少なくとも2つの小領域である対照小領域(このうち一方を「第1の対照小領域」といい、他方を「第2の対照小領域」という場合がある。)の平均濃度と比較し、比較した平均濃度の濃度差(注目小領域の平均濃度と第1の対照小領域の平均濃度との差を「第1の平均濃度の差」という場合がある。同様に第2の対照小領域との比較から得られたものを「第2の平均濃度の差」という場合がある。)の絶対値が最大となる値を注目小領域の濃度差代表値とし、更に、検査画像内の小領域毎に上記濃度差代表値を求め、この濃度差代表値が検査画像内で最大となるものを欠陥度として検出する。
【0018】
ここで、上記の欠陥度については、次のように考えることができる。すなわち、予め目視検査により外観欠陥が存在すると判定されたアルミニウム押出形材のサンプルと、目視検査により外観欠陥が存在しないと判定されたアルミニウム押出形材のサンプルとを比較した場合、外観欠陥を有するサンプルの方が外観欠陥を有さないサンプルに比べて濃度差の値が大きくなる。これは、アルミニウム押出形材の表面に発生するストリーク等の外観欠陥は、正常な部分と比べてコントラストが強く発現する傾向にあるため、アルミニウム押出形材を検査画像として撮像した場合、欠陥部分と正常な部分との間の濃度差から生じていると考えられる。そのため、上記のようにして得た欠陥度が、予め定めた基準値以上である場合に、アルミニウム押出形材にストリーク等の外観欠陥が存在すると判定することができる。
【0019】
以下、本発明の外観検査装置が備える各手段について説明する。
本発明の外観検査装置は、アルミニウム押出形材の平坦面に光を照射する照明手段を備えている。上記照明手段は、光を照射したアルミニウム押出形材の平坦面の照度を40〜80ルクス、好ましくは60〜80ルクスにする光源であるのがよい。アルミニウム押出形材の平坦面の照度が40ルクスより小さいと、アルミニウム押出形材からの反射光が少なく、検査画像から検出できる欠陥度が小さくなって、外観欠陥の有無を正しく判定することができない。反対に、80ルクスより大きいと、アルミニウム押出形材からの反射光が多くなり、ストリークのような色調の変化を検査画像に取り込むことができず、外観欠陥の有無を正しく判定することができない。
【0020】
このような照明手段としては、具体的には、発光ダイオードを光源としたものが好ましく、発光ダイオードを光源とすれば、均一性と特定波長以外の波長をカットするフィルタをカメラに装着することにより外乱光を防止できる点で有利である。
【0021】
また、本発明の照明手段は、照明手段による光の照射角度が、アルミニウム押出形材の平坦面の垂線方向に対して、15〜40度、好ましくは20〜30度であるのがよい。アルミニウム押出形材への光の照射角度がアルミニウム押出形材の平坦面の垂線方向に対し15度より小さくても40度より大きくてもストリークによるコントラストの変化が検査画像中で現われ難いという問題がある。
【0022】
また、本発明の外観検査装置で用いる撮像手段は、アルミニウム押出形材の平坦面が反射した反射光を受光できるように上記照明手段と対峙してアルミニウム押出形材の平坦面の垂線方向に対し15〜40度、好ましくは20〜30度の角度で配設するのがよい。撮像手段を配設する位置が、アルミニウム押出形材の平坦面の垂線方向に対し15度より小さくても40度より大きくてもストリークによるコントラストの変化が検査画像中で明瞭に現われ難いという問題がある。
【0023】
そして、この撮像手段は、アルミニウム押出形材の平坦面を検査画像として撮像する際、アルミニウム押出形材の押出方向に対し平行方向に10〜50mm、好ましくは20〜30mmであって、押出方向に対し直交方向に10〜50mm、好ましくは20〜30mmの範囲を検査画像として撮像するのがよい。このアルミニウム押出形材の平坦面を撮像する範囲が10mmより小さいと、注目小領域と対照小領域の濃度差が小さくなり、欠陥度が目視判定と整合させ難くなるという問題が生じ、また反対に50mmより大きいと、検査画像の解像度が悪くなるという問題が生じる。
【0024】
本発明で用いる撮像手段としては、好ましくは、CCDカメラであるのがよい。このCCDカメラとしては、検査画像を512画素以上×484画素以上で撮像することができるものがよい。撮像した検査画像が512画素×484画素より少なくなると解像度が落ちるという問題が生じる。また、撮像手段と検査するアルミニウム押出形材の平坦面との距離は、80〜250mmであるのがよく、アルミニウム押出形材の平坦面との距離が80mmより近いと検査領域が狭くなりすぎてアルミニウム押出形材全体の評価ができず、反対に250mmより遠くなると検査画像が小さくなり、判定の分解能が低下する。
また、上記検査画像は、CCDカメラに接続したA/D変換装置によりA/D変換してもよく、下記で説明する走査手段側でA/D変換してもよい。このようなA/D変換については、256階調に変換するのが好ましい。256階調のものであれば、判定の定量化の点で有利である。
【0025】
また、本発明の外観検査装置に設けられた走査手段においては、検査画像を分割する小領域が矩形状の小領域であるのが好ましく、この場合、当該小領域は主走査方向に0.5〜3.0mm、好ましくは1.0〜2.0mm及び副走査方向に0.5〜3.0mm、好ましくは1.0〜2.0mmの幅を有するのがよく、この矩形状の小領域が有する幅が上記範囲内であると、注目小領域と対照小領域との距離を比較的大きくとることが可能になって、良品と不良品とを正しく判定することができる。
【0026】
また、本発明の走査手段において、検査画像を小領域に分割しながら走査する際に、好ましくは、先に走査した小領域と次に走査する小領域とが当該小領域の主走査方向幅寸法の1/2の割合でその主走査方向に互いに重なり合うようにするのがよく、これによって、押出方向に発生する帯状の外観欠陥に対し、この帯状の外観欠陥が限りなく細いものであっても、これを確実に検出することができる。
【0027】
上記のような走査手段として、好ましくは、撮像手段により撮像した検査画像を画素単位の情報として処理することができる装置であるのがよい。
【0028】
そして、上記欠陥度検出手段は、上述のように、検査画像内の注目小領域の平均濃度を対照小領域の平均濃度と比較し、その濃度差の絶対値が最大となる値を注目小領域の濃度差代表値とし、検査画像内で最大の値を示す濃度差代表値を欠陥度として検出するものであり、検査画像内の小領域毎の平均濃度を算出する平均濃度算出部と、小領域毎の平均濃度を記録する平均濃度記録部と、検査画像内の注目小領域の平均濃度と少なくとも2つの対照小領域の平均濃度とを比較し、この平均濃度の差の絶対値が最大となる値を注目小領域の濃度差代表値として検出する濃度差代表値検出部と、濃度差代表値を検査画像内の小領域毎に検出し、検査画像内の濃度差代表値の最大を検査画像の欠陥度として記録する欠陥度記録部とを備えている。
【0029】
ここで、この欠陥度検出手段については、好ましくは、注目小領域に対して2つの対照小領域と比較するものであって、これら2つの対照小領域の注目小領域に対する位置関係は、その一方が注目小領域に対してその主走査方向所定の間隔を有して直線上に位置し、また、他方が注目小領域に対してその副走査方向所定の間隔を有して直線上に位置するものであるのがよく、より好ましくは、2つの対照小領域がそれぞれ注目小領域に対して主走査方向の進行方向手前側及び副走査方向の進行方向手前側に位置するのがよい。これら注目小領域と2つの対照小領域とがこのような位置関係にあることにより、検査画像域全体の検索が可能になるという点で有利である。
【0030】
また、上記注目小領域と対照小領域との間隔については、好ましくは、主走査方向及び副走査方向に共に4〜6小領域分の間隔を有するのがよい。これら注目小領域と対照小領域との間隔が4小領域分より短くなると注目小領域と対照小領域との間隔が近くなりすぎ、互いに同じ部分を比較することになり、反対に、6小領域分より長くなると検査画像内における注目小領域と対照小領域の比較量が少なくなるという点で好ましくない。
【0031】
本発明における平均濃度算出部は、上記のように平均濃度を算出することができる算出装置であればよく、また、平均濃度記録部は、上記平均濃度を小領域毎に記録することができる記録装置であればよく、更に、濃度差代表値検出部は、記録された複数の小領域の平均濃度を比較し、比較した平均濃度の差のなかで絶対値が最大となるものを検出することができるような検出装置であればよく、更にまた、欠陥度記録部は、上記濃度差代表値検出装置によって検出した濃度差代表値のうち、検査画像内で最大のものを欠陥度して記録することができる記録装置であればよい。これらの装置は、各機能を発揮するような独立した装置であって、互いに算出した情報や記録情報を通信することができるように接続されたものであってもよく、また、上記いずれかの機能のうち複数を集約して処理する装置を用いてもよく、更に、欠陥度検出手段をすべて一台のパーソナルコンピューター(パソコン)等に集約させたものであってもよい。
【0032】
更に、本発明で用いる不良品判定手段は、上記欠陥度検出手段で求められ検出された欠陥度を予め定めた基準値と比較し、この欠陥度が基準値以上の場合に検査したアルミニウム押出形材を不良品と判定できるものであればよい。そして、この不良品判定手段については、好ましくは、あるアルミニウム押出形材が不良品であると判定した場合に、その情報を押出装置及び/又は切断装置に送信することができる送信手段を有するのがよく、押出装置及び/又は切断装置側にこの情報に基づいて装置の稼動を停止するための手段を設けておくことで、不良品検出後に直ちに装置を停止させることができ、また、不良品と判定されたアルミニウム押出形材を排除するための手段を設けておくことで、不良品を製造ライン中から排除することができる。
【0033】
ここで、不良品判定手段に予め設定する欠陥度の基準値については、好ましくは濃度差20%以上、より好ましくは濃度差30%以上に設定するのがよい。例えば、撮像手段がCCDカメラであって、A/D変換装置により256階調に変換した場合、64階調は濃度差25%を意味する。基準値を濃度差20%より小さい値で設定すると、目視による判定との不一致が生じる。
【0034】
上記のように不良品判定のための欠陥度の基準値を設定することにより、外観欠陥が発生した不良品と発生していない良品とを正しく判定することができ、また、人による目視検査では、不良品と良品との区別がつきにくいものについても、客観的に判定することができるため、製品の品質を一定に保つことができる。このため、アルミニウム押出形材の製造において、品質管理の面からも有効である。また、本発明による外観検査装置では、上記のように検査画像から検出した欠陥度を基準値と比較することでアルミニウム押出形材を良品と不良品とに判別できるため、標準画像のような基準画像を予め記録して保持する必要がなく、検査画像を標準画像等と比較して判定する場合とくらべ、判定の処理に要する時間が短くてすむ。その結果、アルミニウム押出形材を製造する製造ライン中に本発明における外観検査装置を配設しても、製品の製造速度に追従して検査することができ、いわゆるインラインの状態で製品検査が可能なアルミニウム押出形材の製造装置とすることができる。
【0035】
また、上記のアルミニウム押出形材の製造装置を用いてアルミニウム押出形材を製造するに際しては、撮像手段で検査画像を撮像する際に、アルミニウム押出形材の平坦面を1/2,000〜1/10,000秒の間隔で検査画像として撮像するのがよく、検査画像を撮像する間隔が1/10,000秒より短いと画像が暗くなるという問題が生じ、反対に、1/2,000秒より長くなると画像が粗くなるという問題が生じる。
【0036】
本発明のアルミニウム押出形材の製造装置によれば、アルミニウム押出形材に発生する外観欠陥を客観的に判定することができるため、本来不良品と判定すべきものを誤って良品と判定する判定ミスを可及的に減らすことができ、良品のみを選択して製造することができるほか、製造されるアルミニウム押出形材の品質を一定に保つことができるので、品質管理の面からも有効である。
【0037】
また、本発明の外観検査装置では、上記のように検査画像から検出した濃度差に基づく欠陥度を予め設定した欠陥度の基準値と比較してアルミニウム押出形材を良品と不良品とに判別するため、標準画像を予め記録しておき、検査毎にこの標準画像と比較して判定していくような場合と比較して、判定の処理に要する時間が短くてすむ。このため、アルミニウム押出形材を製造する製造ライン中に本発明における外観検査装置を配設しても、製品の生産速度に追従して検査することができ、いわゆるインラインの状態で製品検査が可能なアルミニウム押出形材の製造装置とすることができる。
【0038】
【発明の実施の形態】
以下、実施例に基づいて、本発明の好適な実施の形態を具体的に説明する。
【0039】
〔試験例1〕
図1は、予め人による目視検査で外観欠陥が発生していると判定されたアルミニウム押出形材のサンプル30個と、目視検査により外観欠陥が発生していないと判定されたアルミニウム押出形材のサンプル45個とを用意し、それぞれについて本発明の外観検査装置を用いて求めた欠陥度をグラフ化したものである。
【0040】
ここで、上記欠陥度を検出した条件は次のとおりである。
先ず、各サンプルに対し、赤色LED(波長660nm)を並べて180mm×135mmとした光源を、光の照射角度が平坦面の垂線方向に対して30度となり、また、サンプルの平坦面までの距離が200mmとなるように配置し、更に、CCDカメラ(247808画素)を、サンプルの平坦面が反射する反射光が正面から入射するように平坦面の垂線方向に対して30度となり、サンプルの平坦面までの距離が200mmとなるように配置した。
【0041】
光源から発射され、平坦面で反射された反射光をCCDカメラで受光し、A/D変換装置にて256階調に変換して検査画像(20mm×40mm)を撮像した。得られた検査画像(20mm×40mm)をサンプル(アルミニウム押出形材)の押出方向に対して直交する主走査方向に10画素(1.5mm)及び押出方向に対し平行な副走査方向に10画素(1.5mm)の正方形状の小領域に分割し、主走査方向の検査画像の走査については、上記の如く分割して走査する小領域が先に主走査方向に走査した隣接小領域とこの小領域の幅の1/2(半分)づつ重なり合うように走査した。
【0042】
次いで、上記走査による矩形状の小領域について平均濃度を算出し、検査画像内の小領域毎について平均濃度を記録した。そして、検査画像内のある1つの小領域に注目し、この注目小領域の平均濃度を、この注目小領域と主走査進行方向手前側に6小領域分の間隔を有して注目小領域と直線上に並んだ主走査方向対照小領域の平均濃度と比較して平均濃度の差を求め、また、この注目小領域と副走査進行方向手前側に6小領域分の間隔を有して注目小領域と直線上に並んだ副走査方向対照小領域の平均濃度と比較して平均濃度の差を求めた。そして、上記平均濃度の差のうち、その絶対値が大きい方を当該注目小領域の濃度差代表値とした。上記と同様にして、検査画像内のすべての小領域について濃度差代表値を求め、この濃度差代表値が検査画像内で最大のものを当該検査画像の欠陥度として求めた。
【0043】
上記のようにして各サンプルについて求めた欠陥度は、図1から分かるように、欠陥度80(濃度差31.25%)を境にして二極に分布しており、欠陥度が大きい方に目視検査で外観欠陥あり(不良品)と判定されたサンプルが分布し、欠陥度が小さい方に目視検査で外観欠陥なし(良品)と判定されたサンプルが分布している。したがって、欠陥度80付近を基準値とすることで、アルミニウム押出形材の外観検査が可能であることが分かる。
【0044】
〔実施例1〕
図2に、本発明が適用された実施例1に係るアルミニウム押出形材の製造装置が示されている。
このアルミニウム押出形材の製造装置は、アルミニウムビレットからアルミニウム押出形材を成形する押出装置1と、この押出装置1のエンドプラテン出口1aに配設された第1の外観検査装置2と、この第1の外観検査装置2の製造ライン下流側に配設されて押出装置1で成形されたアルミニウム押出形材を引き取る引取装置3と、この引取装置3により押出装置1から引き取られたアルミニウム押出形材を冷却する目的で所定時間保持する移載装置4と、頭部ストレッチャ5aと尾部ストレッチャ5bとを有してアルミニウム押出形材を真直ぐに整える整直装置5と、アルミニウム押出形材を所定の長さに切り揃える切断装置6と、この切断装置6の切断テーブル6a下流側に配設された第2の外観検査装置7とを備えており、上記押出装置1の製造ライン上流側には長尺なアルミニウムビレットを適当な寸法に切断して押出装置1に供給するビレット切断機8が、また、上記第2の外観検査装置7の製造ライン下流側には積載前の空ペレットを供給するパレット解載機9がそれぞれ配設されている。
【0045】
また、押出装置1及び切断装置6の製造ライン下流側に配設された第1及び第2の外観検査装置2及び7は、それぞれ、赤色LED(波長660nm)を並べて180mm×135mmの大きさの光源とし、製造ライン上を20〜200m/分の速度で移動するアルミニウム押出形材の平坦面への光の照射角度が当該平坦面の垂線方向に対して30度となり、かつ、この平坦面までの距離が200mmとなる位置に配置された図示外の照明と、上記アルミニウム押出形材の平坦面が反射した反射光を正面から受光するように当該平坦面の垂線方向に対して30度となり、かつ、この平坦面までの距離が200mmとなる位置に配置され、アルミニウム押出形材の平坦面から検査画像を1/2,000〜1/10,000秒間隔で撮像する図示外のCCDカメラ(247808画素)と、このCCDカメラに接続される図示外のA/D変換装置と、A/D変換後の検査画像を採り込む図示外のパソコンとから構成されており、このパソコンには、採り込んだ検査画像を押出方向に直交する主走査方向及び押出方向に平行な副走査方向にそれぞれ所定の幅を有する小領域に分割し、この分割された小領域に従って検査画像内を主走査方向及び副走査方向に走査する走査手段と、この走査手段により得られた走査結果から検査画像の欠陥度を検出する欠陥度検出手段と、上記欠陥度を予め定めた基準値と比較し、欠陥度が基準値以上の場合にアルミニウム押出形材を不良品と判定する不良品判定手段と、液晶モニタ画面とが設けられている。
【0046】
そして、上記走査手段においては、図3に示すように、検査画像を押出方向に直交する主走査方向MD及び押出方向に平行な副走査方向SDにそれぞれ10画素(1.5mm)×10画素(1.5mm)の大きさを有する多数の小領域10に分割し、この分割された小領域10に従って、主走査方向MDには小領域の幅寸法の1/2づつ〔すなわち、5画素(0.75mm)〕、また、検査画副走査方向SDには小領域の幅寸法の1/2づつ〔すなわち、5画素(0.75mm)〕走査するようになっている。
【0047】
また、上記欠陥度検出手段は、図3に示すように、検査画像内の小領域10毎の平均濃度を算出する平均濃度算出部と、小領域10毎の平均濃度を記録する平均濃度記録部と、検査画像内のいずれか1つの小領域10aに注目し、この注目小領域10aの平均濃度と、この注目小領域10aから小領域4個分の比較間隔x及びyだけ主走査方向MD及び副走査方向SDの進行方向手前側に位置する2つの対照小領域10b,10cの平均濃度とを比較し、その平均濃度の差の絶対値が最大の値を上記注目小領域の濃度差代表値として検出する図示外の濃度差代表値検出部と、走査終了後に検査画像内の小領域毎に検出された濃度差代表値からその最大値を検査画像の欠陥度として記録する図示外の欠陥度記録部とを備えている。
【0048】
更に、上記不良品判定手段には、良品と不良品とを判別するための欠陥度の基準値として上記試験例1で得られた欠陥度80の値が記憶されており、上記欠陥度検出手段で求められ検出された欠陥度がこの欠陥度の基準値80と比較され、欠陥度がこの基準値未満である場合には良品と判定され、また、この基準値以上である場合には不良品として判定されるようになっている。
【0049】
この実施例1においては、上記第1の外観検査装置2がアルミニウム押出形材を不良品であると判定した場合には、その際の不良品検知情報が押出装置1の図示外の制御部に入力され、この押出装置1の稼動を停止させるようになっているほか、上記第2の外観検査装置7がアルミニウム押出形材を不良品であると判定した場合には、その際の不良品検知情報が切断装置6の図示外の制御部に入力され、この切断装置6の稼動を停止させると共に、押出装置1の稼動も停止させるようになっている。
【0050】
ここで、図4には上記第1の外観検査装置2がアルミニウム押出形材を検査して、アルミニウム押出形材の製造装置の稼動を制御する場合のフローチャート図が示されている。
この実施例1におけるアルミニウム押出形材の製造装置がアルミニウム押出形材の製造を開始すると、押出装置1にはビレット切断機8により適当な寸法に切断されたアルミニウムビレットが供給されて押出装置1の準備がされる。次いで、アルミニウム押出形材の製造装置における生産管理情報が集約された図示外の生産管理情報部が生産ロットと製造完了数との比較を行い、ロットが全て終了していなければ押出装置1が稼動する。これと同時に、押出装置1から押出されたアルミニウム押出形材の平坦面を検査する外観検査装置2が始動し、押出装置1により押出されたアルミニウム押出形材の外観検査を行う。そして、上記外観検査措置2の不良品判定手段が外観欠陥なし(良品)と判定しつづけ、1つのアルミニウムビレットの押出しが全て終了した時点で、アルミニウム押出形材の製造装置を操作する操作員(オペレータ)によりアルミニウム押出形材の製造(押出しサイクル)を継続するかどうかが判断され、継続すると判断された場合には、押出装置1の稼動が続けられる。また、外観検査装置2の不良品判定手段が外観欠陥あり(不良)と判定した場合には、1つのアルミニウムビレットの押出しが全て終了した時点で、押出装置1が停止され、アルミニウム押出形材の製造装置の稼動が全て終了される。
【0051】
【発明の効果】
本発明のアルミニウム押出形材の製造装置及び製造方法によれば、アルミニウム押出形材に発生する欠陥、特にストリークと称される帯状の外観欠陥の有無をこのアルミニウム押出形材の製造ライン中で検査し、不良品の発生を可及的に抑制して良品であるアルミニウム押出形材を選択的に製造することができる。
【図面の簡単な説明】
【図1】 図1は、目視検査で不良品と判定したアルミニウム押出形材と、良品と判定したアルミニウム押出形材の欠陥度を表すグラフである。
【図2】 図2は、本発明の実施例1に係るアルミニウム押出形材の製造装置を示す概略説明図である。
【図3】 図3は、実施例1の外観検査装置に搭載されている走査手段における走査方法と欠陥度検出手段における注目小領域と対照小領域との位置関係を示す説明図である。
【図4】 図4は、実施例1における第1の外観検査装置によるアルミニウム押出形材の製造装置の稼動制御を説明するフローチャート図である。
【符号の説明】
1…押出装置、1a…エンドプラテン出口、2…第1の外観検査装置、3…引取装置、4…移載装置、5…整直装置、5a…頭部ストレッチャ、5b…尾部ストレッチャ、6…切断装置、6a…切断テーブル、7…第2の外観検査装置、8…ビレット切断機、9…パレット解載機、10…小領域、10a…注目小領域、10b,10c…対照小領域、MD…主走査方向、SD…副走査方向、x,y…比較間隔。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a production line for aluminum extruded profiles, in the production line for aluminum extruded profiles, as to whether defects occurring in aluminum extruded profiles, particularly strip-like appearance defects called streaks, have occurred. The present invention relates to an aluminum extruded profile manufacturing apparatus that can inspect and selectively manufacture non-defective aluminum extruded profiles.
[0002]
[Prior art]
Aluminum extrusions made of aluminum or aluminum alloys are lightweight and have excellent workability and formability in addition to the beauty of the surface, which is a characteristic of aluminum materials. Since excellent corrosion resistance is imparted when a coating is formed, it is widely used as a building material for sashes, curtain walls, doors, etc., as a body material for Shinkansen vehicles, aircraft, etc.
[0003]
And such an aluminum extrusion shape material is manufactured by heating the ingot of aluminum material called a billet, and extruding it from the die hole which has various shapes, applying a pressure with an extrusion apparatus. According to this method, it is possible to relatively easily manufacture a shape having a hollow portion, which is difficult to manufacture by other processing methods, or a shape having a complicated cross-sectional shape. Since a material can also be manufactured, it is widely used as a method for manufacturing an aluminum profile that maintains a constant shape in the longitudinal direction.
[0004]
However, when the billet solution treatment is inadequate and the macro or micro structure is uneven, the extrusion conditions including the heat history are inappropriate, the extrusion mold is in an inappropriate condition, etc. On the surface of the aluminum extruded shape formed by the extrusion apparatus, there may be a band-like pattern having an appearance defect called streak and having a different color tone along the extrusion direction.
Such defects in the extruded aluminum profile cause problems such as a visually uncomfortable appearance on the extruded aluminum profile, resulting in a defective product and reducing the yield of the extruded aluminum profile. For time and economic damage.
[0005]
For this reason, in many aluminum extrusion shape manufacturing sites, product sampling inspections, 100% inspections, etc. are performed to visually inspect products so that defective products are not mixed in the products. However, even if it is discovered that the product is defective by sampling inspection etc., the defective product must be remanufactured. To reduce such remanufacturing as much as possible, It has become necessary to constantly observe the vicinity of the extrusion device, which is considered to be the place of occurrence, and for that purpose, it is necessary to arrange a dedicated inspector for each process, and labor costs have been a problem. In addition, because there are individual differences in the judgment by the inspector, the judgment results vary, making it difficult to keep the quality of the product constant. When it is determined that the product to be determined as a non-defective product and it is determined that the product is defective in the subsequent process, there is a problem that, as a result, some processing has already been performed, and as a result, extra costs may be added. It was happening.
[0006]
Therefore, several methods other than visual product inspection have been studied. For example, in JP-A-8-86,760, light is incident on a flat surface of an aluminum extruded shape member from two directions, and the ratio of brightness obtained by receiving each reflected light or the difference in brightness is used to make an aluminum extruded shape. Teaching techniques for evaluating defects on the surface of materials. According to this method, since the surface state of the aluminum extruded profile can be objectively evaluated, it can be inspected more accurately than conventional visual inspections by humans. However, this method requires at least two measurements so that the direction of the light source irradiating one inspection object is two directions orthogonal to each other. In addition, it cannot be used for so-called in-line product inspection, which is inspected in a production line for producing extruded profiles.
[0007]
In JP-A-2001-281,155, a radiated light beam from a light source is converged to a uniform light beam having a predetermined width and radiated to a metal surface to be inspected, and a regular reflected light beam having a predetermined width is collected by a condenser lens or the like. An inspection apparatus that forms an image on a sensor is disclosed. According to this technology, the same amount of light is evenly irradiated onto the surface of the metal to be inspected to avoid irradiation unevenness, thereby preventing a reduction in detection accuracy, and in-line product inspection. It is possible. However, in this inspection apparatus, because of the comparison between the regular reflected light of the normal part on the metal surface of a predetermined width and the scattered light attenuated by the surface defect part, stabilization of the regular reflected light of the normal part becomes important. In the case of an aluminum extruded shape, the regular reflection light of the normal part serving as the baseline is not stable at a relatively large predetermined width because of the surface characteristics.
[0008]
[Problems to be solved by the invention]
Therefore, as a result of intensive studies on an appearance inspection method capable of objectively and reliably detecting appearance defects (streaks) occurring in an aluminum extruded shape, the present inventors have found that the flat surface of the aluminum extruded shape is Light is irradiated, this flat surface is imaged as an inspection image, the obtained inspection image is divided into small areas, the average density for each small area is calculated, and the calculated average density of the small areas is also inspected image Compared with at least the other two small regions, the one having the largest absolute value of the difference in the average density compared is set as the representative value of the density difference of the small region. Further, for each small region thus obtained, Focusing on the largest density difference representative value, that is, the largest density difference representative value in the inspection image, this is regarded as the defect degree, and this defect degree is evaluated as an index, thereby visual inspection. And consistent Was found to be constant is possible.
[0009]
Furthermore, as a result of examining how it is effective to carry out such an appearance inspection in the manufacturing process of an aluminum extruded shape, the present inventors have determined that the appearance inspection device is an extrusion device for an aluminum extruded shape. Further, the present invention has been completed by discovering that the appearance inspection can be performed in the production line and the occurrence of defective products can be prevented as much as possible by arranging them successively after the cutting device.
[0010]
Therefore, the object of the present invention is to inspect the presence of defects occurring in the aluminum extruded profile, particularly the strip-shaped appearance defect called streak, in the production line of this aluminum extruded profile, and to allow the generation of defective products. It is an object of the present invention to provide an aluminum extruded profile manufacturing apparatus capable of selectively manufacturing a non-defective aluminum extruded profile.
[0011]
Another object of the present invention is to inspect the presence of defects in the aluminum extruded shape, particularly the strip-like appearance defect called streak, in the production line of the aluminum extruded shape, and to detect the occurrence of defective products. An object of the present invention is to provide a method for producing an aluminum extruded shape which can be selectively produced as a good quality aluminum extruded shape while suppressing as much as possible.
[0012]
[Means for Solving the Problems]
That is, the present invention provides an extrusion device for forming an aluminum extruded shape made of aluminum or an aluminum alloy and / or a cutting device for cutting an aluminum extruded shape material to a predetermined length, and then provides a flat surface of the aluminum extruded shape. An aluminum extruded profile manufacturing apparatus in which a visual inspection apparatus to be inspected is disposed, and the visual inspection apparatus images the flat surface by illuminating means for irradiating light onto the flat surface of the aluminum extruded profile. Imaging means for obtaining an inspection image, and the inspection image is divided into small regions each having a predetermined width in the main scanning direction orthogonal to the extrusion direction and the sub-scanning direction parallel to the extrusion direction, and inspection is performed according to the divided small regions Scanning means for scanning the image in the main scanning direction and the sub-scanning direction, and defect degree detection for detecting the defect degree of the inspection image from the scanning result obtained by the scanning means. And a defective product determining means for comparing the defect degree with a predetermined reference value and determining that the aluminum extruded profile is defective when the defect degree is equal to or greater than the reference value, and the scanning means, A means for scanning the inspection image while dividing the inspection image into small regions so as to overlap each other in the main scanning direction at a ratio of 1/2 of the width dimension of the small region in the main scanning direction. Focusing on any one small area in the inspection image, an average density calculating section for calculating the average density for each small area, an average density recording section for recording the average density for each small area, The average density is compared with the average density of the first control small area that is located on the same straight line in the main scanning direction from the target small area and has a predetermined small area interval between the average small density and the target small area. The difference between the average density of 1 and the average density of the small area of interest The second average density is compared with the average density of the second control small area located on the same straight line from the small area in the sub-scanning direction and having a predetermined small area distance from the small area of interest. Find the difference between Obtained first and second A density difference representative value detection unit that detects a value with the maximum absolute value of the average density difference as a density difference representative value of the target small area, and a density difference representative value detected for each small area in the inspection image after the scan is completed. And a defect degree recording unit that records the maximum value as the defect degree of the inspection image.
[0013]
The present invention also provides an extrusion device for forming an aluminum extruded shape made of aluminum or an aluminum alloy and / or a cutting device for cutting the aluminum extruded shape material to a predetermined length, and then a flat surface of the aluminum extruded shape material. In the manufacturing method of an aluminum extruded shape member for manufacturing an aluminum extruded shape member using an aluminum extruded shape member manufacturing apparatus provided with an appearance inspection device to be inspected. The flat surface of the material is irradiated with light, the inspection image is picked up by the imaging means from the flat surface irradiated with this light, and then the inspection image is parallel to the main scanning direction and the extrusion direction perpendicular to the extrusion direction by the scanning means. The image is divided into small areas each having a predetermined width in the sub-scanning direction, and the inspection image is mainly divided in accordance with the divided small areas. Scanning is performed in the inspection direction and the sub-scanning direction, the defect degree of the inspection image is detected by the defect degree detection means from the scanning result obtained by the scanning means, and the defect degree detected by the scanning means is previously detected by the defective product determination means. When the aluminum extruded profile is determined to be defective when the degree of defect is equal to or greater than the reference value compared with the set reference value, the scanning means has a ratio of 1/2 of the width dimension in the main scanning direction of the small area. The inspection image is divided into small areas so as to overlap each other in the scanning direction, and the defect degree detection means calculates an average density for each small area in the inspection image by the average density calculation unit, The calculated average density for each small area is recorded in the average density recording unit, and at the density difference representative value detecting unit, attention is paid to any one small area in the inspection image, and the average density of the target small area is recorded. And from a small area of attention The difference in the first average density is obtained by comparing with the average density of the first control small area located on the same straight line in the scanning direction and having a predetermined small area distance from the small area of interest. And the average density of the second control small region that is located on the same straight line from the target small region in the sub-scanning direction and has a predetermined small region distance from the target small region. Compare the concentration to find the second average concentration difference, Obtained first and second The maximum absolute value of the average density difference is detected as the representative density difference value of the target small area, and the maximum value is inspected from the representative density difference value detected for each small area in the inspection image after the scan is completed. It is a method for producing an aluminum extruded shape, wherein the defect degree is recorded in a defect degree recording section as an image defect degree.
[0014]
In the present invention, an aluminum extruded shape manufacturing apparatus is an aluminum extruded shape following an extrusion device for forming an aluminum extruded shape and / or a cutting device for cutting the formed aluminum extruded shape to a predetermined length. Any configuration that includes an appearance inspection device for inspecting a flat surface of a material may be used. Usually, in addition to the above-described extrusion device, cutting device, and appearance inspection device, it is generally used for manufacturing an aluminum extruded shape. Including various devices. Specifically, following the extrusion device, for example, a take-up device that pulls and runs the formed aluminum extruded profile, a transfer device that moves the aluminum extruded profile to a straightening device, and an aluminum extruded profile Includes a straightening device that corrects bending, a defective product discharge device that discharges aluminum extrusions that have been determined to be defective by the appearance inspection device, and a loading device that loads non-defective aluminum extrusions on a pallet. be able to.
[0015]
Further, in the aluminum extruded shape manufacturing apparatus of the present invention, the operation of the extrusion device is stopped when the appearance inspection device arranged subsequent to the extrusion device determines that the aluminum extruded shape is defective. The appearance of the aluminum extruded shape formed by the extrusion device is immediately inspected, and if it is determined to be defective, the operation of the extrusion device is immediately stopped to produce a defective product. Can be reduced as much as possible. In addition, when the appearance inspection apparatus disposed subsequent to the cutting device determines that the aluminum extruded profile cut is defective, the aluminum extruded profile determined to be defective is removed by the sorting device. As a result, there is no possibility that a defective aluminum extruded shape is mixed into a good aluminum extruded shape, and only a good aluminum extruded shape can be selectively produced.
[0016]
In the present invention, the appearance inspection apparatus disposed subsequent to the extrusion apparatus and / or the cutting apparatus basically includes illumination means, imaging means, scanning means, defect degree detection means, and defective product determination means. First, light is irradiated to the flat surface of the aluminum extruded shape member by the illumination means, and an inspection image of a predetermined area is picked up from the flat surface by the image pickup means, and then the picked-up inspection image is pushed out by the scanning means. The inspection image is scanned in the main scanning direction and the sub-scanning direction according to the divided small areas, while being divided into small areas each having a predetermined width in the main scanning direction orthogonal to the sub-scanning direction and in the sub-scanning direction parallel to the extrusion direction. Then, the average density for each small area is calculated, and further, the defect degree detection means obtains the defect degree of the inspection image, that is, the defect degree of the aluminum extruded shape member to be inspected from the scanning result of the scanning means. Therefore, the defective product judging means compares the defect degree with a predetermined reference value, and when the defect degree exceeds the reference value, the aluminum extruded profile is judged as a defective product.
[0017]
Then, in the defect degree detection means, attention is paid to a certain small area in the inspection image, and the average density of the focused small area (focused small area) exists around the focused small area, and the main scanning direction Or at least two small areas that are not aligned with each other in the sub-scanning direction (One of these may be referred to as a “first control subregion” and the other may be referred to as a “second control subregion”.) Compared with the average concentration of, the difference in concentration of the compared average concentration (The difference between the average density of the target small area and the average density of the first control small area is sometimes referred to as “first average density difference.” Similarly, the difference was obtained from the comparison with the second control small area. (In some cases, this is referred to as “second average density difference”.) As a representative value of the density difference of the target small area, the density difference representative value is obtained for each small area in the inspection image, and this density difference representative value becomes the maximum in the inspection image. A thing is detected as a defect degree.
[0018]
Here, the above-described defect degree can be considered as follows. That is, when comparing a sample of an aluminum extruded profile that has been determined in advance by visual inspection to have an appearance defect and a sample of an aluminum extruded profile that has been determined by visual inspection to have no appearance defect, the sample has an appearance defect. The sample has a larger density difference value than the sample having no appearance defect. This is because appearance defects such as streaks that occur on the surface of the aluminum extruded profile tend to exhibit a stronger contrast than normal portions, so when an aluminum extruded profile is imaged as an inspection image, It is thought that it is caused by the difference in density from the normal part. Therefore, when the degree of defect obtained as described above is equal to or greater than a predetermined reference value, it can be determined that there are appearance defects such as streaks in the aluminum extruded profile.
[0019]
Hereinafter, each means with which the external appearance inspection apparatus of this invention is provided is demonstrated.
The appearance inspection apparatus according to the present invention includes illumination means for irradiating light onto a flat surface of an aluminum extruded profile. The illuminating means may be a light source that adjusts the illuminance of the flat surface of the aluminum extruded profile irradiated with light to 40 to 80 lux, preferably 60 to 80 lux. If the illuminance on the flat surface of the aluminum extruded profile is less than 40 lux, the reflected light from the aluminum extruded profile is small, the degree of defects that can be detected from the inspection image is small, and the presence or absence of appearance defects cannot be determined correctly. . On the other hand, if it is larger than 80 lux, the amount of reflected light from the aluminum extruded profile increases, so that a change in color tone such as streak cannot be taken into the inspection image, and the presence or absence of an appearance defect cannot be determined correctly.
[0020]
Specifically, such illumination means preferably uses a light emitting diode as a light source. If the light emitting diode is used as a light source, a filter that cuts off wavelengths other than the uniformity and specific wavelength can be mounted on the camera. This is advantageous in that ambient light can be prevented.
[0021]
In the illumination means of the present invention, the irradiation angle of light by the illumination means is such that the flat surface of the aluminum extruded profile is Normal direction On the other hand, it is 15 to 40 degrees, preferably 20 to 30 degrees. The angle of light irradiation on the aluminum extruded profile is the flat surface of the aluminum extruded profile. Normal direction On the other hand, there is a problem that the contrast change due to the streak hardly appears in the inspection image even if it is smaller than 15 degrees or larger than 40 degrees.
[0022]
Further, the imaging means used in the appearance inspection apparatus of the present invention is adapted to face the illumination means so as to receive the reflected light reflected by the flat surface of the aluminum extruded shape member. Normal direction It is good to arrange | position with respect to 15-40 degree | times with respect to this, Preferably it is 20-30 degree | times. The position where the imaging means is disposed is the flat surface of the aluminum extruded profile. Normal direction On the other hand, there is a problem that the contrast change due to the streak hardly appears clearly in the inspection image even if it is smaller than 15 degrees or larger than 40 degrees.
[0023]
And when this imaging means images the flat surface of an aluminum extrusion shape material as a test | inspection image, it is 10-50 mm in a parallel direction with respect to the extrusion direction of an aluminum extrusion shape material, Preferably it is 20-30 mm, Comprising: On the other hand, a range of 10 to 50 mm, preferably 20 to 30 mm in the orthogonal direction may be taken as an inspection image. If the range for imaging the flat surface of the aluminum extruded profile is less than 10 mm, the density difference between the target small area and the control small area becomes small, and the defect degree becomes difficult to match with the visual judgment. If it is larger than 50 mm, there arises a problem that the resolution of the inspection image is deteriorated.
[0024]
The imaging means used in the present invention is preferably a CCD camera. As this CCD camera, a camera capable of capturing an inspection image with 512 pixels or more × 484 pixels or more is preferable. When the captured inspection image is smaller than 512 pixels × 484 pixels, there is a problem that the resolution is lowered. The distance between the imaging means and the flat surface of the aluminum extruded profile to be inspected should be 80 to 250 mm. If the distance between the flat surface of the aluminum extruded profile is closer than 80 mm, the inspection area becomes too narrow. The entire aluminum extruded profile cannot be evaluated. Conversely, when the distance is longer than 250 mm, the inspection image becomes small, and the determination resolution is lowered.
The inspection image may be A / D converted by an A / D conversion device connected to a CCD camera, or A / D converted on the scanning means side described below. Such A / D conversion is preferably converted to 256 gradations. The 256 gradations are advantageous in terms of quantification of the determination.
[0025]
In the scanning means provided in the appearance inspection apparatus of the present invention, it is preferable that the small area for dividing the inspection image is a rectangular small area. In this case, the small area is 0.5 in the main scanning direction. This rectangular small region should have a width of ~ 3.0 mm, preferably 1.0-2.0 mm and 0.5-3.0 mm in the sub-scanning direction, preferably 1.0-2.0 mm. If the width of the is within the above range, the distance between the target small region and the control small region can be made relatively large, and a good product and a defective product can be correctly determined.
[0026]
In the scanning means of the present invention, when the inspection image is scanned while being divided into small areas, the first scanned small area and the next scanned small area are preferably the width dimension in the main scanning direction of the small area. It is preferable to overlap each other in the main scanning direction at a ratio of 1/2 of this, even if the band-like appearance defect is extremely narrow with respect to the band-like appearance defect generated in the extrusion direction. This can be reliably detected.
[0027]
Preferably, the scanning unit as described above is a device that can process an inspection image captured by the imaging unit as information in units of pixels.
[0028]
Then, as described above, the defect degree detection means compares the average density of the target small area in the inspection image with the average density of the control small area, and determines the value with the maximum absolute value of the density difference as the target small area. A density difference representative value indicating the maximum value in the inspection image is detected as a defect degree, and an average density calculating unit for calculating an average density for each small region in the inspection image; The average density recording unit for recording the average density for each area, the average density of the target small area in the inspection image and the average density of at least two control small areas are compared, and the absolute value of the difference between the average densities is the maximum A density difference representative value detection unit that detects the value as a representative value of the density difference of the target small area, and a density difference representative value is detected for each small area in the inspection image, and the maximum density difference representative value in the inspection image is inspected. A defect degree recording unit that records the defect degree of the image.
[0029]
Here, the defect degree detection means preferably compares the small target area with two control small areas, and the positional relationship between the two small control areas with respect to the small target area is one of them. Is positioned on a straight line with a predetermined interval in the main scanning direction with respect to the small target region, and the other is positioned on a straight line with a predetermined interval in the sub scanning direction with respect to the small target region. More preferably, the two small control areas are respectively positioned on the front side in the main scanning direction and the front side in the sub scanning direction with respect to the target small area. This positional relationship between the target small area and the two small control areas is advantageous in that the entire inspection image area can be searched.
[0030]
In addition, the interval between the target small region and the control small region preferably has an interval of 4 to 6 small regions in both the main scanning direction and the sub-scanning direction. If the interval between the target small region and the control small region is shorter than the size of the four small regions, the interval between the target small region and the control small region becomes too close, and the same part is compared with each other. If the length is longer than 5 minutes, the amount of comparison between the target small area and the control small area in the inspection image is not preferable.
[0031]
The average density calculation unit in the present invention may be a calculation device that can calculate the average density as described above, and the average density recording unit is a recording that can record the average density for each small area. In addition, the density difference representative value detection unit compares the average densities of a plurality of recorded small areas, and detects the maximum difference among the compared average density differences. In addition, the defect level recording unit records the maximum density difference value detected by the density difference representative value detection apparatus as the defect level in the inspection image. Any recording device that can do this is acceptable. These devices are independent devices that perform each function, and may be connected so that information calculated or recorded information can be communicated with each other. A device that aggregates and processes a plurality of functions may be used, and all defect degree detection means may be integrated into one personal computer (personal computer) or the like.
[0032]
Furthermore, the defective product determination means used in the present invention compares the defect degree obtained and detected by the defect degree detection means with a predetermined reference value, and inspected when the defect degree is equal to or greater than the reference value. Any material can be used as long as it can determine that the material is defective. And about this defective product determination means, Preferably, when it determines with a certain aluminum extrusion shape material being inferior goods, it has a transmission means which can transmit the information to an extrusion apparatus and / or a cutting device. It is possible to stop the apparatus immediately after the defective product is detected by providing means for stopping the operation of the device based on this information on the extrusion device and / or cutting device side. By providing a means for eliminating the aluminum extruded shape determined to be, defective products can be excluded from the production line.
[0033]
Here, the reference value of the degree of defect preset in the defective product determination means is preferably set to a density difference of 20% or more, more preferably a density difference of 30% or more. For example, when the imaging means is a CCD camera and converted to 256 gradations by an A / D converter, 64 gradations means a density difference of 25%. If the reference value is set to a value smaller than the density difference of 20%, a discrepancy with the visual judgment occurs.
[0034]
By setting the standard value of the defect degree for defective product determination as described above, it is possible to correctly determine defective products with appearance defects and non-defective products that have not occurred. Since it is also possible to objectively determine a product that is difficult to distinguish between a defective product and a non-defective product, the quality of the product can be kept constant. For this reason, it is effective from the viewpoint of quality control in the manufacture of the aluminum extruded profile. Further, in the appearance inspection apparatus according to the present invention, the aluminum extruded profile can be discriminated as a non-defective product and a defective product by comparing the degree of defect detected from the inspection image with a reference value as described above. There is no need to record and hold an image in advance, and the time required for the determination process can be shortened as compared with the case where the inspection image is compared with a standard image or the like. As a result, even if the appearance inspection device according to the present invention is installed in a production line for producing an aluminum extruded profile, it can be inspected following the production speed of the product, and so-called in-line product inspection is possible. It can be set as the manufacturing apparatus of a proper aluminum extrusion shape material.
[0035]
Further, when manufacturing an aluminum extruded shape using the above-described aluminum extruded shape manufacturing apparatus, the flat surface of the aluminum extruded shape is set to 1 / 2000-1 when an inspection image is taken by the imaging means. It is preferable that the inspection image is taken at an interval of / 10,000 seconds, and if the interval at which the inspection image is taken is shorter than 1 / 10,000 seconds, there arises a problem that the image becomes dark. If the time is longer than 2 seconds, there is a problem that the image becomes rough.
[0036]
According to the aluminum extruded profile manufacturing apparatus of the present invention, since an appearance defect occurring in an extruded aluminum profile can be determined objectively, a determination error for erroneously determining what should be determined as a defective product is a non-defective product. In addition to being able to select and manufacture only non-defective products, the quality of the manufactured aluminum extrusions can be kept constant, which is also effective from the standpoint of quality control. .
[0037]
Further, in the appearance inspection apparatus according to the present invention, the degree of defect based on the density difference detected from the inspection image as described above is compared with a preset reference value of the degree of defect to determine whether the aluminum extruded profile is good or defective. Therefore, the time required for the determination process can be shortened as compared with the case where a standard image is recorded in advance and compared with the standard image for each inspection. For this reason, even if the appearance inspection device according to the present invention is installed in the production line for producing an aluminum extruded shape, inspection can be performed following the production speed of the product, so that product inspection can be performed in a so-called in-line state. It can be set as the manufacturing apparatus of a proper aluminum extrusion shape material.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be specifically described based on examples.
[0039]
[Test Example 1]
FIG. 1 shows 30 samples of aluminum extruded profiles that have been determined in advance by visual inspection by humans and aluminum extruded profiles that have been determined by visual inspection to have no appearance defects. 45 samples are prepared, and the degree of defects obtained by using the appearance inspection apparatus of the present invention for each sample is graphed.
[0040]
Here, the conditions for detecting the defect degree are as follows.
First, for each sample, a red LED (wavelength 660 nm) is arranged in a 180 mm × 135 mm light source, and the light irradiation angle is flat. Normal direction The CCD camera (247808 pixels) is arranged so that the reflected light reflected by the flat surface of the sample is incident from the front. Flat surface Normal direction The sample was placed so that the distance to the flat surface of the sample was 200 mm.
[0041]
The reflected light emitted from the light source and reflected by the flat surface was received by a CCD camera, converted into 256 gradations by an A / D converter, and an inspection image (20 mm × 40 mm) was taken. The obtained inspection image (20 mm × 40 mm) is 10 pixels (1.5 mm) in the main scanning direction orthogonal to the extrusion direction of the sample (aluminum extruded profile) and 10 pixels in the sub-scanning direction parallel to the extrusion direction. (1.5 mm) is divided into small square areas, and the scan of the inspection image in the main scanning direction is performed by dividing the small area to be scanned as described above with the adjacent small area previously scanned in the main scanning direction. Scanning was performed so as to overlap by half (half) of the width of the small region.
[0042]
Next, the average density was calculated for the rectangular small areas obtained by the scanning, and the average density was recorded for each small area in the inspection image. Then, attention is paid to one small area in the inspection image, and the average density of the small area of interest is determined as the small area of interest with an interval of six small areas on the front side in the main scanning direction with respect to the small area of interest. A difference in average density is obtained by comparison with the average density of the reference small areas in the main scanning direction arranged on a straight line, and there is an interval corresponding to the six small areas on the front side in the sub-scanning traveling direction. The difference in average density was obtained by comparing with the average density of the sub-scanning direction control small areas arranged in a line with the small area. Of the average density differences, the larger absolute value is used as the density difference representative value of the target small area. In the same manner as described above, the density difference representative value was obtained for all the small areas in the inspection image, and the density difference representative value having the maximum value in the inspection image was obtained as the defect degree of the inspection image.
[0043]
As can be seen from FIG. 1, the degree of defect obtained for each sample as described above is distributed in two poles with a defect degree of 80 (concentration difference of 31.25%) as a boundary. Samples that are judged to have an appearance defect (defective product) by visual inspection are distributed, and samples that are judged to have no visual defect (good product) by visual inspection are distributed in a smaller defect degree. Therefore, it is understood that the appearance inspection of the aluminum extruded shape can be performed by setting the vicinity of the
[0044]
[Example 1]
FIG. 2 shows an apparatus for producing an aluminum extruded profile according to Example 1 to which the present invention is applied.
The aluminum extruded shape manufacturing apparatus includes an extrusion device 1 for forming an aluminum extruded shape from an aluminum billet, a first
[0045]
Further, the first and second
[0046]
In the scanning means, as shown in FIG. 3, the inspection image is respectively 10 pixels (1.5 mm) × 10 pixels in the main scanning direction MD orthogonal to the extrusion direction and the sub-scanning direction SD parallel to the extrusion direction. Is divided into a large number of
[0047]
Further, as shown in FIG. 3, the defect degree detection means includes an average density calculation unit that calculates an average density for each
[0048]
Further, the defective product determination means stores the value of the
[0049]
In the first embodiment, when the first
[0050]
Here, FIG. 4 shows a flowchart in the case where the first
When the apparatus for producing an aluminum extruded shape in Example 1 starts production of an aluminum extruded shape, an aluminum billet cut to an appropriate size by a
[0051]
【The invention's effect】
According to the aluminum extrusion profile manufacturing apparatus and method of the present invention, the presence or absence of defects in the aluminum extrusion profile, particularly the presence of strip-like appearance defects called streaks, is inspected in the aluminum extrusion profile manufacturing line. In addition, it is possible to selectively produce a non-defective aluminum extruded profile by suppressing the occurrence of defective products as much as possible.
[Brief description of the drawings]
FIG. 1 is a graph showing the degree of defect between an aluminum extruded shape determined to be defective by visual inspection and an aluminum extruded shape determined to be good.
FIG. 2 is a schematic explanatory view showing an aluminum extruded profile manufacturing apparatus according to Embodiment 1 of the present invention.
FIG. 3 is an explanatory diagram illustrating a positional relationship between a scanning method in a scanning unit mounted on the appearance inspection apparatus according to the first embodiment and a target small region and a control small region in a defect degree detection unit;
FIG. 4 is a flowchart for explaining the operation control of the aluminum extruded shape manufacturing apparatus by the first appearance inspection apparatus according to the first embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Extrusion apparatus, 1a ... End platen exit, 2 ... 1st external appearance inspection apparatus, 3 ... Pick-up apparatus, 4 ... Transfer apparatus, 5 ... Straightening apparatus, 5a ... Head stretcher, 5b ... Tail stretcher, 6 ... Cutting device, 6a ... cutting table, 7 ... second appearance inspection device, 8 ... billet cutting machine, 9 ... pallet unloader, 10 ... small area, 10a ... attention small area, 10b, 10c ... control small area, MD ... main scanning direction, SD ... sub-scanning direction, x, y ... comparison interval.
Claims (12)
上記外観検査装置が、アルミニウム押出形材の平坦面に光を照射する照明手段と、この平坦面を撮像して検査画像を得る撮像手段と、上記検査画像を押出方向に直交する主走査方向及び押出方向に平行な副走査方向にそれぞれ所定の幅を有する小領域に分割し、この分割された小領域に従って検査画像内を主走査方向及び副走査方向に走査する走査手段と、上記走査手段により得られた走査結果から検査画像の欠陥度を検出する欠陥度検出手段と、上記欠陥度を予め定めた基準値と比較し、欠陥度が基準値以上の場合にアルミニウム押出形材を不良品と判定する不良品判定手段とを備えており、
上記走査手段が、小領域の主走査方向幅寸法の1/2の割合で主走査方向に互いに重なり合うように、検査画像を小領域に分割しながら走査する手段であり、
上記欠陥度検出手段が、
検査画像内の小領域毎の平均濃度を算出する平均濃度算出部と、
小領域毎の平均濃度を記録する平均濃度記録部と、
検査画像内のいずれか1つの小領域に注目して、この注目小領域の平均濃度と注目小領域から主走査方向に同一直線上に位置し、かつ、注目小領域との間に所定の小領域分の間隔を有する第1の対照小領域の平均濃度とを比べて第1の平均濃度の差を求めると共に、注目小領域の平均濃度と注目小領域から副走査方向に同一直線上に位置し、かつ、注目小領域との間に所定の小領域分の間隔を有する第2の対照小領域の平均濃度とを比べて第2の平均濃度の差を求め、得られた第1及び第2の平均濃度の差の絶対値が最大の値を上記注目小領域の濃度差代表値として検出する濃度差代表値検出部と、
走査終了後に検査画像内の小領域毎に検出された濃度差代表値からその最大値を検査画像の欠陥度として記録する欠陥度記録部と、
を備えていることを特徴とするアルミニウム押出形材の製造装置。An appearance inspection device for inspecting a flat surface of an aluminum extruded shape is provided following an extrusion device for forming an aluminum extruded shape made of aluminum or an aluminum alloy and / or a cutting device for cutting the aluminum extruded shape to a predetermined length. It is an apparatus for producing an aluminum extruded profile,
The appearance inspection apparatus includes an illuminating unit that irradiates light on a flat surface of an aluminum extruded shape member, an imaging unit that captures the flat surface to obtain an inspection image, a main scanning direction orthogonal to the extrusion direction, and the inspection image. A scanning means for dividing the inspection image in the main scanning direction and the sub-scanning direction in accordance with the divided small areas in the sub-scanning direction parallel to the extrusion direction; Defect degree detecting means for detecting the defect degree of the inspection image from the obtained scanning result, and comparing the defect degree with a predetermined reference value, and when the defect degree is equal to or more than the reference value, the aluminum extruded shape is regarded as a defective product. A defective product judging means for judging,
The scanning means is a means for scanning while dividing the inspection image into small areas so that they overlap each other in the main scanning direction at a ratio of 1/2 of the width dimension of the small area in the main scanning direction,
The defect degree detecting means is
An average density calculator for calculating an average density for each small area in the inspection image;
An average density recording section for recording the average density for each small area;
Paying attention to any one of the small areas in the inspection image, the average density of the small area of interest is located on the same line in the main scanning direction from the small area of interest, and a predetermined small area between the small area of interest. Comparing the average density of the first control small area having an interval of the area to obtain the difference of the first average density, the average density of the target small area is located on the same straight line from the target small area in the sub-scanning direction. and, and, of interest determines the difference between the second average density than the average density of the second control small area having a predetermined distance of a small area fraction between the small area, the first and second obtained A density difference representative value detection unit that detects a value having a maximum absolute value of the difference between the average densities of the two as a density difference representative value of the small region of interest;
A defect degree recording unit for recording the maximum value as the defect degree of the inspection image from the density difference representative value detected for each small region in the inspection image after the end of scanning;
An apparatus for producing an aluminum extruded profile, comprising:
上記外観検査装置において、照明手段によりアルミニウム押出形材の平坦面に光を照射し、この光が照射された平坦面から撮像手段により検査画像を撮像し、次いで走査手段により上記検査画像を押出方向に直交する主走査方向及び押出方向に平行な副走査方向にそれぞれ所定の幅を有する小領域に分割すると共に、この分割された小領域に従って検査画像内を主走査方向及び副走査方向に走査し、この走査手段により得られた走査結果から欠陥度検出手段により検査画像の欠陥度を検出し、不良品判定手段により上記走査手段で検出された欠陥度を予め定めた基準値と比較し、欠陥度が基準値以上の場合にアルミニウム押出形材を不良品と判定するに際し、
上記走査手段が、小領域の主走査方向幅寸法の1/2の割合で主走査方向に互いに重なり合うように、検査画像を小領域に分割しながら走査する手段であり、
上記欠陥度検出手段では、その平均濃度算出部で検査画像内の小領域毎の平均濃度を算出し、この算出された小領域毎の平均濃度を平均濃度記録部に記録すると共に、濃度差代表値検出部において、検査画像内のいずれか1つの小領域に注目して、この注目小領域の平均濃度と注目小領域から主走査方向に同一直線上に位置し、かつ、注目小領域との間に所定の小領域分の間隔を有する第1の対照小領域の平均濃度とを比べて第1の平均濃度の差を求めると共に、注目小領域の平均濃度と注目小領域から副走査方向に同一直線上に位置し、かつ、注目小領域との間に所定の小領域分の間隔を有する第2の対照小領域の平均濃度とを比べて第2の平均濃度の差を求め、得られた第1及び第2の平均濃度の差の絶対値が最大の値を上記注目小領域の濃度差代表値として検出し、走査終了後に上記検査画像内の小領域毎に検出された濃度差代表値からその最大値を検査画像の欠陥度として欠陥度記録部に記録することを特徴とするアルミニウム押出形材の製造方法。An appearance inspection device for inspecting a flat surface of an aluminum extruded shape is provided following an extrusion device for forming an aluminum extruded shape made of aluminum or an aluminum alloy and / or a cutting device for cutting the aluminum extruded shape to a predetermined length. In the manufacturing method of the aluminum extrusion shape which manufactures the aluminum extrusion shape using the arranged aluminum extrusion shape manufacturing device,
In the appearance inspection apparatus, the illumination means irradiates light on the flat surface of the extruded aluminum member, the inspection means picks up an inspection image from the flat surface irradiated with the light, and the scanning means then extracts the inspection image in the extrusion direction. Are divided into small areas each having a predetermined width in the main scanning direction perpendicular to the extrusion direction and the sub scanning direction parallel to the extrusion direction, and the inspection image is scanned in the main scanning direction and the sub scanning direction according to the divided small areas. The defect degree of the inspection image is detected by the defect degree detection means from the scanning result obtained by the scanning means, and the defect degree detected by the scanning means by the defective product determination means is compared with a predetermined reference value. When determining the aluminum extruded profile as a defective product when the degree is above the reference value,
The scanning means is a means for scanning while dividing the inspection image into small areas so that they overlap each other in the main scanning direction at a ratio of 1/2 of the width dimension of the small area in the main scanning direction,
In the defect degree detection means, the average density calculation unit calculates the average density for each small region in the inspection image, records the calculated average density for each small region in the average density recording unit, and displays the density difference representative. In the value detection unit, paying attention to any one small area in the inspection image, the average density of the target small area and the target small area are located on the same straight line in the main scanning direction, and A first average density difference is obtained by comparing with the average density of the first control small area having a predetermined small area interval between them, and the average density of the target small area and the target small area in the sub-scanning direction. A difference in the second average density is obtained by comparing with the average density of the second control small area that is located on the same straight line and has a predetermined small area distance from the small area of interest. the first and the target small area absolute value of the maximum value of the difference between the second average concentration Detecting as a density difference representative value, and recording the maximum value from the density difference representative value detected for each small area in the inspection image as a defect degree of the inspection image in the defect degree recording unit after scanning is completed. A method for producing an aluminum extruded profile.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002220331A JP4108403B2 (en) | 2002-07-29 | 2002-07-29 | Aluminum extruded section manufacturing apparatus and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002220331A JP4108403B2 (en) | 2002-07-29 | 2002-07-29 | Aluminum extruded section manufacturing apparatus and manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004061311A JP2004061311A (en) | 2004-02-26 |
JP4108403B2 true JP4108403B2 (en) | 2008-06-25 |
Family
ID=31940984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002220331A Expired - Fee Related JP4108403B2 (en) | 2002-07-29 | 2002-07-29 | Aluminum extruded section manufacturing apparatus and manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4108403B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102122435B1 (en) * | 2019-09-26 | 2020-06-12 | 송영래 | System and method for processing aluminium |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004042431B4 (en) * | 2004-08-31 | 2008-07-03 | Schott Ag | Method and device for plasma coating of workpieces with spectral evaluation of the process parameters and use of the device |
JP4345930B2 (en) | 2005-01-28 | 2009-10-14 | Ykk株式会社 | Appearance inspection equipment for articles |
JP2013205381A (en) * | 2012-03-29 | 2013-10-07 | Nisshin Steel Co Ltd | Method and system for detecting defect of steel tape threaded into cold rolling mill |
JP6221850B2 (en) * | 2014-03-11 | 2017-11-01 | 宇部興産機械株式会社 | Product cueing device for extrusion press |
JP6926663B2 (en) * | 2017-05-17 | 2021-08-25 | 株式会社リコー | Inspection equipment |
KR102036700B1 (en) * | 2018-09-20 | 2019-10-25 | 주식회사 알투비 | Exit data monitoring system for aluminum extrusion process |
KR102036699B1 (en) * | 2018-09-20 | 2019-10-25 | 주식회사 알투비 | Exit illuminance sensor device for aluminum extrusion process |
US20230173545A1 (en) * | 2021-12-03 | 2023-06-08 | Stratasys, Inc. | Method and system for classifying additive manufactured objects |
-
2002
- 2002-07-29 JP JP2002220331A patent/JP4108403B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102122435B1 (en) * | 2019-09-26 | 2020-06-12 | 송영래 | System and method for processing aluminium |
Also Published As
Publication number | Publication date |
---|---|
JP2004061311A (en) | 2004-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4345930B2 (en) | Appearance inspection equipment for articles | |
US8345246B2 (en) | Running yarn line inspection method and carbon fiber manufacturing method using thereof | |
US20060152712A1 (en) | Apparatus and methods for inspecting tape lamination | |
US20070286471A1 (en) | Auto Distinction System And Auto Distinction Method | |
JPWO2002071023A1 (en) | Display panel inspection method, inspection apparatus, and manufacturing method | |
JP4108403B2 (en) | Aluminum extruded section manufacturing apparatus and manufacturing method | |
US6697514B1 (en) | Apparatus for inspecting a fluorescent substance on a plasma display | |
JP2012251983A (en) | Wrap film wrinkle inspection method and device | |
JP3746498B2 (en) | Wire saw inspection method, wire saw inspection device, and cutting device | |
JP4108402B2 (en) | Appearance inspection apparatus and appearance inspection method for aluminum extruded profile | |
JP6779037B2 (en) | A system for quantifying unevenness caused by a laser crystallization facility using an ultraviolet light source and a method for quantifying unevenness caused by a laser crystallization facility using an ultraviolet light source | |
JP2002139446A (en) | Method and apparatus for detection of surface defect | |
JP2007205974A (en) | Method of inspecting plating, and method of inspecting lead frame | |
JP3661466B2 (en) | Coating unevenness inspection apparatus and method | |
JPH11352073A (en) | Foreign matter inspection method and apparatus thereof | |
JP2007139630A (en) | Surface inspection device and method | |
JP7524717B2 (en) | Inspection Equipment | |
JPH0882604A (en) | Method for inspecting surface defect of steel plate | |
JP3308888B2 (en) | Surface defect inspection method and surface defect inspection device | |
JP4909215B2 (en) | Inspection method and apparatus | |
JP2002214152A (en) | Surface inspecting method and device | |
JP2004144556A (en) | Test system | |
JPH10206344A (en) | Optical nonuniformity inspecting device and optical nonuniformity inspecting method | |
JP2000337842A (en) | Method and device for inspecting appearance | |
JP2024035424A (en) | Method for inspecting defect of fiber bundle and method for manufacturing fiber bundle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070626 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071002 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080325 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080402 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110411 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |