JP4107065B2 - 空気調和機からの冷媒回収方法 - Google Patents

空気調和機からの冷媒回収方法 Download PDF

Info

Publication number
JP4107065B2
JP4107065B2 JP2002342003A JP2002342003A JP4107065B2 JP 4107065 B2 JP4107065 B2 JP 4107065B2 JP 2002342003 A JP2002342003 A JP 2002342003A JP 2002342003 A JP2002342003 A JP 2002342003A JP 4107065 B2 JP4107065 B2 JP 4107065B2
Authority
JP
Japan
Prior art keywords
refrigerant recovery
refrigerant
check valve
piston
drive shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002342003A
Other languages
English (en)
Other versions
JP2004176963A (ja
Inventor
浩直 沼本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002342003A priority Critical patent/JP4107065B2/ja
Priority to CNB2003101154812A priority patent/CN1249388C/zh
Priority to KR1020030084598A priority patent/KR20040047668A/ko
Publication of JP2004176963A publication Critical patent/JP2004176963A/ja
Application granted granted Critical
Publication of JP4107065B2 publication Critical patent/JP4107065B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02731Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one three-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/006Details for charging or discharging refrigerants; Service stations therefor characterised by charging or discharging valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、住宅あるいはビル用途に設置された空気調和機についてポンプダウン作業ができない状況下において取り外し作業を実施する時に行われる冷媒回収方法、あるいは室外機本体内部の冷凍サイクル部品の故障を修理するために現場にて冷媒回収する方法に関するものである。
【0002】
【従来の技術】
従来、鉄、アルミニウム、銅、プラスチック等およびこれらの複合材からなる産業廃棄物は破砕機等を使用して破砕した後、分離・選別することによってリサイクルを行っていた。
【0003】
また、空気調和機等の廃棄物は内部に冷媒、オイルが封入されているため、現場ではポンプダウン作業を行って、冷凍サイクルシステム内の冷媒ガスを室外機本体内に一旦回収した後、設備の十分整った工場等に持ちかえって解体することになる。その時もそのままの状態で破砕機に投入すると、冷媒ガスが噴出、オイルが漏洩し、環境破壊と危険性が高いことから、冷媒ガスとオイルの回収が義務づけられている。このような目的には冷媒回収の動力として電動圧縮機を使用し、強制的に吸引する冷媒回収装置を使用するのが一般的である。
【0004】
【発明が解決しようとする課題】
しかしながら、市場では様々な空気調和機が存在し、設置された空気調和機の圧縮機が故障していて全く運転できないもの、あるいはすでに供給電源が停止された後に空気調和機を取り外す場合もある。このような場合にも電源を使用せずに、十分な冷媒回収作業ができる技術開発が要求されていた。また市場現場で室外機の冷凍サイクル故障を修理するために冷媒回収するためにも現状では電動圧縮機を使用した冷媒回収装置しかないため、冷媒回収装置は大きく、重く、さらに高価であるため、一般にはほとんど普及しておらず、やむなく大気放出しているのが実状であった。
【0005】
本発明は、従来技術の有する問題点を鑑みてなされたものであり、取り外しが必要となった空気調和機および室外機本体の冷凍サイクル部品故障を修理する空気調和機から、その場で電源等の設備がない場合にも、スピーディに冷媒回収することのできる冷媒回収方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記課題を解決するために本発明は、室内機と室外機と両者を接続配管で接続して構成する空気調和機において、接続ポートとして室外機に二方弁と三方弁が具備され、前記二方弁と前記三方弁をともに閉状態とする工程と、前記三方弁のサービスポート部に冷媒回収用ポンプを接続する工程と、前記冷媒回収用ポンプと冷媒回収用容器を接続する工程とを含み、前記冷媒回収用容器内部には合成ゼオライトが充填され、前記冷媒回収用ポンプはシリンダー容器内部をピストンが駆動することによって、吸気用逆止弁と排気用逆止弁が作動することで吸排作用効果を生じ、前記冷媒回収用ポンプのピストンを駆動させることによって前記室内機内部および接続配管内部に残留する冷媒ガスを前記冷媒回収用容器内部へと冷媒回収する空気調和機からの冷媒回収方法である。
【0007】
上記構成によって、室内機内部および接続配管内部に残留する冷媒ガスは冷媒回収用ポンプを使用することによって強制的に吸引、吐出されるので、冷媒回収用容器内部へと冷媒回収され、この時使用される冷媒回収用ポンプはピストンシリンダーと逆止弁を組み合わせた簡単な構成であるため、電源等の設備を使用することなく、作業者自身による人力で冷媒回収作業を行うことができる。
【0008】
【発明の実施の形態】
上記課題を解決するための請求項1記載の発明は、室内機と室外機と両者を接続配管で接続して構成する空気調和機において、接続ポートとして室外機に二方弁と三方弁が具備され、前記二方弁と前記三方弁をともに閉状態とする工程と、前記三方弁のサービスポート部に冷媒回収用ポンプを接続する工程と、前記冷媒回収用ポンプと冷媒回収用容器を接続する工程とを含み、前記冷媒回収用容器内部には合成ゼオライトが充填され、前記冷媒回収用ポンプはシリンダー容器内部をピストンが駆動することによって、吸気用逆止弁と排気用逆止弁が作動することで吸排作用効果を生じ、前記冷媒回収用ポンプのピストンを駆動させることによって前記室内機内部および接続配管内部に残留する冷媒ガスを前記冷媒回収用容器内部へと冷媒回収する空気調和機からの冷媒回収方法である。
【0009】
請求項2記載の発明は、室内機と室外機と両者を接続配管で接続して構成する空気調和機において、接続ポートとして室外機に二方弁と三方弁が具備され、前記二方弁と前記三方弁をともに開状態とする工程と、前記三方弁のサービスポート部に冷媒回収用ポンプを接続する工程と、前記冷媒回収用ポンプと冷媒回収用容器を接続する工程とを含み、前記冷媒回収用容器内部には合成ゼオライトが充填され、前記冷媒回収用ポンプはシリンダー容器内部をピストンが駆動することによって、吸気用逆止弁と排気用逆止弁が作動することで吸排作用効果を生じ、前記冷媒回収用ポンプのピストンを駆動させることによって前記空気調和機内部に残留する冷媒ガスを冷媒回収用容器内部へと冷媒回収する空気調和機からの冷媒回収方法である。
【0010】
請求項3記載の発明は、シリンダー容器内部をピストンが駆動することによって、前記吸気用逆止弁と前記排気用逆止弁が作動することで吸排作用効果を生じる冷媒回収用ポンプに対して、前記ピストンには駆動軸が連結され、前記駆動軸はシリンダー容器を貫通して外部へと突き出し、前記駆動軸へてこ作用によって力を加えることで前記ピストンを駆動させる空気調和機からの冷媒回収方法である。
【0011】
請求項記載の発明は、三方弁のサービスポート部と冷媒回収用ポンプとを接続する経路途上にオイルセパレータが配設されている空気調和機からの冷媒回収方法である。
【0012】
請求項記載の発明は、シリンダー容器内部をピストンが駆動することによって、前記 吸気用逆止弁と前記排気用逆止弁が作動することで吸排作用効果を生じる冷媒回収用ポンプに対して、前記ピストンには駆動軸が連結され、前記駆動軸はシリンダー容器を貫通して外部へと突き出してハンドル棒の一端と連結部1で連結され、前記ハンドル棒は支持柱とも連結部2で連結され、前記連結部2を支点とし、前記連結部1を作用点とし、前記ハンドル棒のもう一端部を力点とすることで前記ピストンを駆動させる構成である空気調和機からの冷媒回収方法である。
【0013】
請求項記載の発明は、シリンダー容器内部をピストンが駆動することによって、前記吸気用逆止弁と前記排気用逆止弁が作動することで吸排作用効果を生じる冷媒回収用ポンプに対して、前記ピストンには駆動軸が連結され、前記駆動軸はシリンダー容器を貫通して外部へと突き出してハンドル棒と連結部1で連結され、前記ハンドル棒の一端は支持柱とも連結部2で連結され、前記連結部2を支点とし、前記連結部1を作用点とし、前記ハンドル棒のもう一端部を力点とすることで前記ピストンを駆動させる構成である空気調和機からの冷媒回収方法である。
【0014】
請求項記載の発明は、前記冷媒回収用ポンプは、シリンダー容器内部に少なくともピストンと吸気用逆止弁と排気用逆止弁が配設され、前記ピストンには駆動軸が連結され、前記駆動軸は前記シリンダー容器を貫通して外部へと突き出し、前記吸気用逆止弁と前記排気用逆止弁は前記シリンダー容器内部を前記ピストンで二室に仕切られ、前記駆動軸が配設されていない一室側に配置されている空気調和機からの冷媒回収方法である。
【0015】
請求項記載の発明は、前記冷媒回収用ポンプは、シリンダー容器内部に少なくともピストンと吸気用逆止弁と排気用逆止弁が配設され、前記ピストンには駆動軸が連結され、前記駆動軸は前記シリンダー容器を貫通して外部へと突き出し、前記吸気用逆止弁は前記シリンダー容器内部を前記ピストンで二室に仕切られ、前記駆動軸が配設されている一室側に配置され、前記排気用逆止弁は前記駆動軸が配設されていない一室側に配置され、前記ピストンに逆止弁が配設されて前記駆動軸が配設されていない一室側から前記駆動軸が配設されている一室側への流れを防止する構成である空気調和機からの冷媒回収方法である。
【0016】
請求項記載の発明は、前記冷媒回収用ポンプは、シリンダー容器内部に少なくともピストンと吸気用逆止弁と排気用逆止弁が配設され、前記ピストンには駆動軸が連結され、前記駆動軸は前記シリンダー容器を貫通して外部へと突き出し、前記シリンダー容器内部を前記ピストンで二室に仕切られ、各々の一室に前記吸気用逆止弁と前記排気用逆止弁が配設され、各々の一室に設けられた前記吸気用逆止弁側経路が外部で連結されるとともに各々の一室に設けられた前記排気用逆止弁側経路も外部で連結される空気調和機からの冷媒回収方法である。
【0017】
【実施例】
以下、本発明の一実施例について図面を参考に詳細な説明を行う。
【0018】
(実施例1)
図1は空気調和機の主要構成図を示している。本実施例では室外機1台に室内機1台の冷媒R22を使用した空気調和機、冷媒充填量750gに対して圧縮機の故障でポンプダウン操作ができない場合を想定して説明する。空気調和機は主要な部分として、室内機1と接続配管2、3と室外機4で構成され、接続配管2、3は配管カバー5で覆われている。詳細には、室内機から引き出された補助配管(図示せず)と接続配管2、3とがフレアー接続される。
【0019】
図2は冷媒回収方法の装置に関する主要構成図と接続関係を示している。室外機本体4には二方弁6、三方弁7が配設され、接続配管2、3を介して室内機1と連結されている。室外機4本体の三方弁7のサービスポート部に接続バルブ8側を連結することで冷媒回収用ポンプ9の吸気用逆止弁側が耐圧ホース10を介して連結される。耐圧ホース10の経路途上にはニードルバルブ11、オイルセパレータ12と低圧ゲージ13が配設されている。また冷媒回収用ポンプ9の排気用逆止弁側が耐圧ホース14を介して冷媒回収用容器15と連結されている。冷媒回収用容器15は設計耐圧30kg/cm2、内容積500cm3のステンレス製容器であり、冷媒導入口にはバルブ151が配設されている。本実施例では冷媒充填量が750gであり、それに対して室内機内部および接続配管内部に残留する冷媒を回収することが必要であり、このような場合には大体冷媒回収量は200gを越えることがないので内容積500cm3の冷媒回収用容器を使用した。冷媒回収用容器15は事前に冷媒回収用ポンプ9を利用して50torr以下の負圧状態としてバルブ151を閉状態にしてある。
【0020】
冷媒回収用ポンプ9はシリンダー容器91内部にピストン92が配置されることで二室に仕切られ、ピストン92には駆動軸93が連結され、駆動軸93はシリンダー容器91を貫通して外部ハンドル94部と連結され、駆動軸93が配設されていない一室側のピストン92下死点位置に吸気用逆止弁95と排気用逆止弁96が配設されている。またピストン92にはCR製のOリング97が配設され、ピストン92外周部での冷媒ガス漏れを防止する設計となっている。
【0021】
図3に吸気用逆止弁の断面構成図を示す。吸気用逆止弁95は、銅管951が2ヶ所でロール溝加工されており、溝加工部951aには真鍮製弁受け座体952が固定されている。圧縮コイルバネ体953はPPS製樹脂板954に接合され、圧縮コイルバネ力によってPPS製樹脂板954が真鍮製弁受け座体955にぶつかり、受け座体955と樹脂板954とが面接触で流路を閉塞し、矢印の方向にしか空気は流れない逆止弁構造となっている。圧縮コイルバネ体953はSUS304製のバネ定数が0.4N/mmのものを使用した。真鍮製弁受け座体955は溝加工部951bで固定され、弁受け座体955の上流側流路にはテーパー部が設けられている。排気用逆止弁としても吸気用逆止弁とほぼ同様な構造のものを使用したので説明は省略するが、バネ定数は0.6N/mmのものを使用した。
【0022】
本実施例で使用したオイルセパレータについて説明する。図4にオイルセパレータの断面構成図を示す。オイルセパレータ12は円筒形のステンレス容器121内部に円筒状の内リング122が配設され、内リング122として32メッシュのステンレス網が使用されるとともに、円板形状で同じく32メッシュのステンレス網123、124、125が3段階に間隔を置いて配設されている。冷媒ガスは導入口126から入って、排出口127から出る構造となっている。これによって冷媒ガスに随伴する圧縮機用オイルはステンレス網に衝突することでオイルだけが分離される。
【0023】
次に冷媒回収の操作手順について説明する。
【0024】
まずバルブ151を閉状態とした冷媒回収用容器15と冷媒回収用ポンプ9を連結させるとともに耐圧ホース10も冷媒回収用ポンプ9と連結させておく。次に室外機4本体の二方弁6と三方弁7のバルブを六角レンチの回転で閉じる。その後三方弁7のサービスポート部にニードルバルブ11を閉状態として接続バルブ8と連結する。この時接続バルブ8には三方弁7に設けられたバルブコア突起部分を締め付けと同時に奥方向へと押せるタイプを使用する。それによって耐圧ホース10は接続配管内部と連通状態となり、冷媒ガスがニードルバルブ11まで達して止まる。次に閉状態にしていたニードルバルブ11を少し開放することで室内機内部および接続配管内部に残留する冷媒ガスは冷媒回収用ポンプ9の吸気用逆止弁95からシリンダー容器91へと入り、排気用逆止弁96から耐圧ホース14を経て冷媒回収用容器15の入口バルブ151まで一気に導かれる。その後冷媒回収用容器15のバルブ151を開状態とする。それによってさらに冷媒ガスが冷媒回収用容器15内部へと移動する。ニードルバルブ11を徐々に開放することで室内機内部および接続配管内部に残留する冷媒ガスを冷媒回収用容器15へと導く。この時室内機内部および接続配管内部に残留する圧縮機用オイルはニードルバルブ11を徐々に開放すると、途中に配置したオイルセパレータ12で冷媒ガスとオイルとが分離され、冷媒回収用ポンプ9側へオイルが侵入するのを防止することができる。また一気に冷媒回収用ポンプ9側へ冷媒ガスが移動するとハンドル94は甲方向へ駆動するので、事前にハンドル94をピストン92の上死点位置に配置してニードルバルブ11を開放させるのが望ましい。ニードルバルブ11を全開放後、冷媒ガス音を聞きながら、冷媒ガスの動きが停止するまでしばらく待つ。その後冷媒回収用容器15と室内機内部および接続配管内部が均圧になれば、冷媒ガスの動きが停止するので、その頃合いを見計らって冷媒回収用ポンプ9のハンドル94部を乙方向へと駆動させることでシリンダー容器91内部の冷媒ガスは排気用逆止弁96から吐出され、冷媒回収用容器15へと冷媒ガスを導く。さらにハンドル94部を甲方向へと駆動させることで室内機内部および接続配管内部に残留する冷媒ガスはシリンダー容器91内部へと吸気される。これらのハンドル往復操作を繰り返すことで最終的に室内機内部および接続配管内部に残留する冷媒ガスは冷媒回収用容器15へと強制的に冷媒回収される。また低圧ゲージ13にて圧力状態を読み取ることで残留している冷媒ガス量も把握できる。冷媒R22の20℃における冷媒ガス圧力は9.28kgf/cm2であるので冷媒回収用ポンプに10kgf/cm2の昇圧能力があれば、冷媒を冷媒回収用容器内部へ液化させて十分な冷媒回収が行える。作業者がハンドル94を利用して直接作業するのであれば、ハンドル94への負荷がかなり大きいのでピストン92の受圧面積は4cm2以下にすることが望ましい。低圧ゲージ13が正圧から負圧に達したら、冷媒回収用容器15のバルブ151を閉状態とし、三方弁7のサービスポート部から接続バルブ8を外すことで冷媒回収が完了となる。
【0025】
(実施例2)
本実施例では室外機1台に室内機1台の冷媒R407Cを使用した空気調和機、冷媒充填量800gに対して電力会社からの電源供給を停止された場合を想定して説明する。図5は冷媒回収方法の装置に関する主要構成図と接続関係を示している。室外機本体16には二方弁17、三方弁18が配設され、接続配管19、20を介して室内機(図示せず)と連結されている。室外機16本体の三方弁18のサービスポート部に接続バルブ21側を連結することで冷媒回収用ポンプ22の吸気用逆止弁側が耐圧ホース23を介して連結される。耐圧ホース23の経路途上にはニードルバルブ24、オイルセパレータ25と低圧ゲージ26が配設されている。また冷媒回収用ポンプ22の排気用逆止弁側が耐圧ホース27を介して冷媒回収用容器28と連結されている。冷媒回収用容器28は設計耐圧30kg/cm2、内容積700cm3のステンレス製容器であり、冷媒導入口にはバルブ281が配設されている。また冷媒回収用容器28内部には合成ゼオライト282が充填され、バッフル283にて位置固定されている。使用した合成ゼオライトは13X型、1/12インチ径粒子、600gである。冷媒回収用容器28は事前に冷媒回収用ポンプ22を利用して50torr以下の負圧状態としてバルブ281を閉状態にしてある。オイルセパレータ25は実施例1と同じ構成のものを使用した。
【0026】
冷媒回収用ポンプ22はシリンダー容器221内部にピストン222が配置されることで二室に仕切られ、ピストン222には駆動軸223が連結され、駆動軸223はシリンダー容器221を貫通して外部ハンドル部224と連結され、駆動軸223が配設されている一室側のピストン222上死点位置に吸気用逆止弁225が配設されている。また駆動軸223が配設されていない一室側のピストン222下死点位置に排気用逆止弁226が配設されている。さらにピストン222にも逆止弁227が配設され、駆動軸223が配設されていない一室側から駆動軸223が配設されている一室側への冷媒ガス流れを防止する構成となっている。またピストン222外周部にはHNBR製のOリング228が配設され、ピストン222外周部での冷媒ガス漏れを防止する設計となっている。また駆動軸223がシリンダー容器221と接することになる貫通孔にもHNBR製のOリング(図示せず)が配設され、駆動軸223からの冷媒ガス漏れを防止する設計となっている。また吸気用逆止弁225、排気用逆止弁226、逆止弁227は実施例1で説明したものとほぼ同様な構造のものを使用したので説明は省略する。
【0027】
次に冷媒回収の操作手順について説明する。
【0028】
まずバルブ281を閉状態とした冷媒回収用容器28と冷媒回収用ポンプ22を連結させるとともに耐圧ホース23も冷媒回収用ポンプ22と連結させておく。次に室外機16本体の二方弁17と三方弁18のバルブを六角レンチの回転で閉じる。その後三方弁18のサービスポート部にニードルバルブ24を閉状態として接続バルブ21と連結する。この時接続バルブ21には三方弁18に設けられたバルブコア突起部分を締め付けと同時に奥方向へと押せるタイプを使用する。それによって耐圧ホース23は接続配管内部と連通状態となり、冷媒ガスがニードルバルブ24まで達して止まる。次に閉状態にしていたニードルバルブ24を少し開放することで室内機内部および接続配管内部に残留する冷媒ガスは冷媒回収用ポンプ22の吸気用逆止弁225からシリンダー容器221の甲側へと入り、ピストン222に配設された逆止弁227を経て、シリンダー容器221の乙側へと移動し、さらに排気用逆止弁226から耐圧ホース27を経て冷媒回収用容器28の入口バルブ281まで一気に導かれる。その後冷媒回収用容器28のバルブ281を開状態とする。それによってさらに冷媒ガスが冷媒回収用容器28内部へと移動し、内部に充填された合成ゼオライト282に物理吸着される。ニードルバルブ24を徐々に開放することで室内機内部および接続配管内部に残留する冷媒ガスを冷媒回収用容器28へと導く。この時室内機内部および接続配管内部に残留する圧縮機用オイルはニードルバルブ24を徐々に開放すること途中に配置したオイルセパレータ25で冷媒ガスとオイルとが分離され、冷媒回収用ポンプ22側へオイルが侵入するのを防止することができる。また一気に冷媒ガスが冷媒回収用ポンプ22側へと移動した時、逆止弁227の流通抵抗が大きければハンドル224は下方向へ移動する。逆止弁227の流通抵抗が小さければ甲側一室と乙側一室はすぐに均圧される。したがって本実施例のような冷媒回収用ポンプを使用すれば作業者がケガをする懸念は少ないと考えられる。最終的にニードルバルブ24を全開放後、冷媒回収用容器28と室内機内部および接続配管内部とが均圧となるまでしばらく待つ。その後冷媒ガスの動きが停止した頃合いを見計らって冷媒回収用ポンプ22のハンドル224部を乙方向へと駆動させることでシリンダー容器221内部の冷媒ガスは排気用逆止弁226から吐出されるとともに、室内機内部および接続配管内部に残留する冷媒ガスは吸気用逆止弁225から吸気される。吐出された冷媒ガスは冷媒回収用容器28へと冷媒回収される。冷媒回収用ポンプ22のハンドル部224を甲方向へ移動させることによってシリンダー容器221内部の冷媒ガスはピストン222に設けられた逆止弁227を介して甲側一室から乙側一室へと移動する。さらにハンドル部224を乙方向へ移動させることによって冷媒ガスは圧縮されながら排気用逆止弁226を介して冷媒回収用容器28へと冷媒回収される。このハンドル往復操作を繰り返すことによって室内機内部および接続配管内部に残留する冷媒ガスは冷媒回収用容器28へと強制的に冷媒回収されることになる。また低圧ゲージ26にて圧力状態を読み取ることで残留している冷媒ガス量も把握できる。冷媒R407Cの20℃における冷媒ガス圧力は最大10.56kgf/cm2であるので冷媒回収用ポンプに15kgf/cm2の昇圧能力があれば十分な冷媒回収が行える。しかし10kgf/cm2の昇圧能力でも本実施例のような構成の冷媒回収ポンプであれば、シリンダー容器二室の差圧がない状態から冷媒回収を行うことになるので十分なレベルと考えられる。低圧ゲージ25が正圧から負圧に達したら、冷媒回収用容器28のバルブ281を閉状態とし、三方弁18のサービスポート部から接続バルブ21を外すことで冷媒回収が完了となる。
【0029】
(実施例3)
本実施例では、室外機1台に室内機1台の冷媒R410Aを使用した空気調和機、冷媒充填量800gに対して圧縮機が故障で動作しない場合を想定して説明する。図6は冷媒回収方法の装置に関する主要構成図と接続関係を示している。室外機29本体には二方弁30、三方弁31が配設され、接続配管32、33を介して室内機(図示せず)と連結されている。室外機29本体の三方弁31のサービスポート部に接続バルブ34側を連結することで冷媒回収用ポンプ35の吸気用逆止弁側が耐圧ホース36を介して連結させる。耐圧ホース36の経路途上にはバルブ37、オイルセパレータ38と低圧ゲージ39が配設されている。また冷媒回収用ポンプ35の排気用逆止弁側が耐圧ホース40を介して冷媒回収用容器41と連結されている。冷媒回収用容器41は設計耐圧45kg/cm2、内容積700cm3のステンレス製容器であり、冷媒導入口にはバルブ411が配設されている。また冷媒回収用容器41内部には合成ゼオライト412が充填され、バッフル413にて位置固定されている。使用した合成ゼオライトは13X型、1/12インチ径粒子、600gである。冷媒回収用容器41は事前に冷媒回収用ポンプ35を利用して50torr以下の負圧状態としてバルブ411を閉状態にしてある。オイルセパレータ38は実施例1と同じ構成のものを使用した。
【0030】
冷媒回収用ポンプ35はシリンダー容器351内部にピストン352が配置されることで二室に仕切られ、ピストン352には駆動軸353が連結される。駆動軸353はシリンダー容器351を貫通して外部ハンドル部354と連結される。駆動軸353が配設されている一室側のピストン352上死点位置に吸気用逆止弁355aと排気用逆止弁356aが配設され、また駆動軸353が配設されていない一室側のピストン352下死点位置に吸気用逆止弁355bと排気用逆止弁356bが配設されている。吸気用逆止弁355aと吸気用逆止弁355bからの経路はともに途中で連結される耐圧ホース36で構成され、排気用逆止弁356aと吸気用逆止弁356bからの経路もに途中で連結される耐圧ホース40で構成される。またピストン352外周部にはHNBR製のOリング357が配設され、ピストン352外周部での冷媒ガス漏れを防止する設計となっている。また駆動軸353がシリンダー容器351と接することになる貫通孔にもHNBR製のOリング(図示せず)が配設され、駆動軸353からの冷媒ガス漏れを防止する設計となっている。また吸気用逆止弁355a、355b、排気用逆止弁356a、356bは実施例1で説明したものとほぼ同様な構造のものを使用したので説明は省略する。
【0031】
次に冷媒回収の操作手順について説明する。
【0032】
まずバルブ411を閉状態とした冷媒回収用容器41と冷媒回収用ポンプ35を連結させるとともに耐圧ホース36も冷媒回収用ポンプ35と連結させておく。次に室外機29本体の二方弁30と三方弁31のバルブを六角レンチの回転で閉じる。その後三方弁31のサービスポート部にニードルバルブ37を閉状態として接続バルブ34と連結する。この時接続バルブ34には三方弁31に設けられたバルブコア突起部分を締め付けと同時に奥方向へと押せるタイプを使用する。それによって耐圧ホース36は接続配管内部と連通状態となり、冷媒ガスがニードルバルブ37まで達して止まる。次に閉状態にしていたニードルバルブ37を少し開放することで室内機内部および接続配管内部に残留する冷媒ガスは冷媒回収用ポンプ35の吸気用逆止弁355aと355bからシリンダー容器351の甲乙両側へと入り、さらに排気用逆止弁356aと356bから耐圧ホース40を経て冷媒回収用容器41の入口バルブ411まで一気に導かれる。その後冷媒回収用容器41のバルブ411を開状態とする。それによってさらに冷媒ガスが冷媒回収用容器41内部へと移動し、内部に充填された合成ゼオライト282に物理吸着される。ニードルバルブ37を徐々に開放することで室内機内部および接続配管内部に残留する冷媒ガスを冷媒回収用容器41へと導く。この時室内機内部および接続配管内部に残留する圧縮機用オイルはニードルバルブ37を徐々に開放すること途中に配置したオイルセパレータ38で冷媒ガスとオイルとが分離され、冷媒回収用ポンプ35側へオイルが侵入するのを防止することができる。また一気に冷媒ガスが冷媒回収用ポンプ35側へと移動する場合でもシリンダー容器351の甲乙両側へと導かれるのでハンドル部354の移動はほとんどない。したがって本実施例のような冷媒回収用ポンプを使用すれば作業者がケガをする懸念は少ないと考えられる。最終的にニードルバルブ37を全開放後、冷媒回収用容器41と室内機内部および接続配管内部とが均圧となるまでしばらく待つ。その後冷媒ガスの動きが停止した頃合いを見計らって冷媒回収用ポンプ35のハンドル354部を乙方向へと駆動させることでシリンダー容器351内部乙側の冷媒ガスは排気用逆止弁356bから吐出されるとともに、室内機内部および接続配管内部に残留する冷媒ガスは吸気用逆止弁355aからシリンダー容器351内部甲側の吸気される。吐出された冷媒ガスは冷媒回収用容器41へと冷媒回収される。冷媒回収用ポンプ35のハンドル部354を甲方向へ移動させることによってシリンダー容器351内部甲側の冷媒ガスは排気用逆止弁356aから吐出されるとともに、室内機内部および接続配管内部に残留する冷媒ガスは吸気用逆止弁355bからシリンダー容器351内部乙側の吸気される。このハンドル往復操作を繰り返すことによって室内機内部および接続配管内部に残留する冷媒ガスはハンドル部354をどちらの方向へ駆動させても冷媒回収用容器41へと強制的に冷媒回収させることができる。また低圧ゲージ39にて圧力状態を読み取ることで残留している冷媒ガス量も把握できる。冷媒R410Aの20℃における冷媒ガス圧力は最大14.71kgf/cm2であるので冷媒回収用ポンプに15kgf/cm2の昇圧能力があれば十分な冷媒回収が行える。しかし10kgf/cm2の昇圧能力でも本実施例のような構成の冷媒回収ポンプであればシリンダー容器二室の差圧がない状態から冷媒回収を行うことになるのである程度の回収能力はあると考えられる。低圧ゲージ39が正圧から負圧に達したら、冷媒回収用容器41のバルブ411を閉状態とし、三方弁31のサービスポート部から接続バルブ34を外すことで冷媒回収が完了となる。
【0033】
実施例2、3では13X型合成ゼオライトを冷媒回収用容器に充填して冷媒回収したが、これによって常圧条件でも合成ゼオライト重量に対して約25wt%の吸着能力を有しているので、冷媒回収用容器に冷媒回収するための作業負担はかなり軽減された。
【0034】
(実施例4)
本実施例では、室外機1台に室内機1台の冷媒R22を使用した空気調和機、冷媒充填量750gに対して圧縮機が故障で動作しないため、現場にて部品交換をするために冷媒回収する場合を想定して説明する。図7は冷媒回収方法の装置に関する主要構成図と接続関係を示している。室外機42本体には二方弁43、三方弁44が配設され、接続配管45、46を介して室内機(図示せず)と連結されている。室外機42本体の三方弁44のサービスポート部に接続バルブ47側を連結することで冷媒回収用ポンプ48の吸気用逆止弁側が耐圧ホース49を介して連結させる。耐圧ホース49の経路途上にはニードルバルブ50、オイルセパレータ51と低圧ゲージ52が配設されている。また冷媒回収用ポンプ48の排気用逆止弁側が耐圧ホース53を介して冷媒回収用容器54と連結されている。冷媒回収用容器54は設計耐圧30kg/cm2、内容積1200cm3のステンレス製容器であり、冷媒導入口にはバルブ541が配設されている。冷媒回収用容器54は事前に冷媒回収用ポンプ48を利用して50torr以下の負圧状態としてバルブ541を閉状態にしてある。オイルセパレータ38は実施例1と同じ構成のものを使用した。
【0035】
冷媒回収用ポンプ48は構成的には実施例1で使用したものと似ている。シリンダー容器481内部にピストン482が配置されることで二室に仕切られ、ピストン482には駆動軸483が連結され、連結部にはボールベアリングを備えたビス軸484が配設されている。駆動軸483はシリンダー容器481を貫通して外部へと突き出している。また駆動軸483が配設されていない一室側のピストン482下死点位置に吸気用逆止弁485と前記排気用逆止弁486が配設され、ピストン482にはHNBR製のOリング487が配設され、ピストン482外周部での冷媒ガス漏れを防止する設計となっている。また駆動軸483が上下方向に動作する時接するシリンダー容器481部分にはエラストマー488が配設されている。吸気用逆止弁485、排気用逆止弁486は実施例1で説明したものとほぼ同様な構造のものを使用したので説明は省略する。
【0036】
冷媒回収用ポンプ48は基板55にビス固定され、基板55には支持柱56もビス固定されている。冷媒回収用ポンプ48の駆動軸483と支持柱56はハンドル棒57で連結されている。ハンドル棒57の端部がビス軸571にて駆動軸483と連結され、ハンドル棒57の中間部がビス軸572にて支持柱56と連結されている。ビス軸571にはボールベアリングが配設され、ビス軸572にもボールベアリングが配設されている。またハンドル部573が作業者の実際に力を加える場所となる。たとえばビス軸571とビス軸572との距離が1に対してビス軸572とハンドル部573との距離が3であるとする。ハンドル部573に力を加えるとビス軸572が支点となり、ビス軸571が作用点となってハンドル部573に加える力は直接駆動軸483へ加える力の1/3でよい構成となる。ハンドル部573の上下方向の動きに対して、ビス軸572が支点となって、ビス軸571がハンドル軸方向へ動作することで冷媒回収用ポンプ48の駆動軸483が上下に動作する。この時ビス軸571とビス軸572が固定されているため、駆動軸483の動作方向は基板55に対して垂直方向よりも少し横ズレを生じることなる。その横ズレに対応するため駆動軸483がシリンダー容器481と接する部分にはエラストマー488が配設するとともに、ピストン482と駆動軸483はビス軸484で連結する構成としている。また冷媒圧縮仕事として負荷が大きいのはハンドル部を作業者が上方向に引っ張り操作を行う時になる。
【0037】
次に冷媒回収の操作手順について説明する。
【0038】
まずバルブ541を閉状態とした冷媒回収用容器54と冷媒回収用ポンプ48を連結させるとともに耐圧ホース49も冷媒回収用ポンプ48と連結させておく。次に室外機42本体の二方弁43と三方弁44のバルブを開状態のままにしておき、三方弁44のサービスポート部にニードルバルブ50を閉状態として接続バルブ47と連結する。この時接続バルブ47には三方弁44に設けられたバルブコア突起部分を締め付けと同時に奥方向へと押せるタイプを使用する。それによって耐圧ホース49は接続配管内部と連通状態となり、冷媒ガスがニードルバルブ50まで達して止まる。次に閉状態にしていたニードルバルブ50を少し開放することで室外機本体、室内機内部および接続配管内部に残留する冷媒ガスは冷媒回収用ポンプ48の吸気用逆止弁485からシリンダー容器481の乙側へと入り、排気用逆止弁486から耐圧ホース53を経て冷媒回収用容器54の入口バルブ541まで一気に導かれる。その後冷媒回収用容器54のバルブ541を開状態とする。それによってさらに冷媒ガスが冷媒回収用容器54内部へと移動する。ニードルバルブ50を徐々に開放することで室外機本体、室内機内部および接続配管内部に残留する冷媒ガスを冷媒回収用容器54へと導く。この時室外機本体、室内機内部および接続配管内部から耐圧ホース49に導かれる圧縮機用オイルはニードルバルブ50を徐々に開放すること途中に配置したオイルセパレータ51で冷媒ガスとオイルとが分離され、冷媒回収用ポンプ48側へオイルが侵入するのを防止することができる。また一気に冷媒回収用ポンプ48側へ冷媒ガスが移動するとハンドル部57は下方向へ駆動するので、事前にハンドル部57を下方向へと駆動させ、ピストン482を上死点位置に配置してニードルバルブ50を開放させるのが望ましい。ニードルバルブ50を全開放後、冷媒ガスの動きが停止するまでしばらく待つ。その後頃合いを見計らってハンドル部573を上方向へと駆動させることで、ピストン482が乙方向へと駆動してシリンダー容器481内部の冷媒ガスは排気用逆止弁486から吐出され、冷媒回収用容器54へと冷媒ガスを導く。さらにハンドル部573を下方向へと駆動させることで室外機本体、室内機内部および接続配管内部に残留する冷媒ガスはシリンダー容器481内部へと吸気される。これらハンドル部573の上下操作を何度も繰り返すことで最終的に室外機本体内部、室内機内部および接続配管内部に残留する冷媒ガスは冷媒回収用容器54へと強制的に冷媒回収される。また低圧ゲージ52にて圧力状態を読み取ることで残留している冷媒ガス量も把握できる。本実施例の場合、圧縮機用オイルに溶解している冷媒ガスは徐々にガス化されて冷媒回収ポンプ側へと排出されるため、低圧ゲージ52にてある程度の圧力変動値になったら作業を見切る必要がある。
【0039】
本実施例のような構成の冷媒回収ポンプであればてこの原理をうまく活用することで手動式であっても30kgf/cm2、さらにそれ以上の昇圧能力を有するものが可能であった。
【0040】
(実施例5)
本実施例では、室外機1台に室内機1台の冷媒R410Aを使用した空気調和機、冷媒充填量800gに対して圧縮機が故障で動作しないため、現場にて部品交換をするために冷媒回収する場合を想定して説明する。図8は冷媒回収方法の装置に関する主要構成図と接続関係を示している。室外機58本体には二方弁59、三方弁60が配設され、接続配管61、62を介して室内機(図示せず)と連結されている。室外機58本体の三方弁60のサービスポート部に接続バルブ63側を連結することで冷媒回収用ポンプ64の吸気用逆止弁側が耐圧ホース65を介して連結させる。耐圧ホース65の経路途上にはニードルバルブ66、オイルセパレータ67と低圧ゲージ68が配設されている。また冷媒回収用ポンプ64の排気用逆止弁側が耐圧ホース69を介して冷媒回収用容器70と連結されている。冷媒回収用容器70は設計耐圧45kg/cm2、内容積1200cm3のステンレス製容器であり、冷媒導入口にはバルブ701が配設されている。冷媒回収用容器70は事前に冷媒回収用ポンプ64を利用して50torr以下の負圧状態としてバルブ701を閉状態にしてある。オイルセパレータ67は実施例1と同じ構成のものを使用した。
【0041】
冷媒回収用ポンプ64は実施例2で使用したものとほぼ構成が同じで、シリンダー容器641内部にピストン642が配置されることで二室に仕切られ、ピストン642には駆動軸643が連結され、駆動軸643はシリンダー容器641を貫通して外部と突き出している。また駆動軸643が配設されている一室側のピストン632上死点位置に吸気用逆止弁644が配設されている。また駆動軸643が配設されていない一室側のピストン642下死点位置に排気用逆止弁645が配設されている。さらにピストン642にも逆止弁646が配設され、駆動軸643が配設されていない一室側から駆動軸643が配設されている一室側への冷媒ガス流れを防止する構成となっている。またピストン642外周部にはHNBR製のOリング647が配設され、ピストン642外周部での冷媒ガス漏れを防止する設計となっている。また駆動軸643がシリンダー容器641と接することになる貫通孔にもHNBR製のOリング(図示せず)が配設され、駆動軸643からの冷媒ガス漏れを防止する設計となっている。また吸気用逆止弁644、排気用逆止弁645、逆止弁646は実施例2で説明したものとほぼ同様な構造のものを使用したので説明は省略する。
【0042】
冷媒回収用ポンプ64は基板71にビス固定され、基板70には支持柱72もビス固定されている。冷媒回収用ポンプ64の駆動軸643と支持柱72はハンドル棒73で連結されている。ハンドル棒73の端部がビス軸731にて支持柱72と連結され、ハンドル棒73の中間部がビス軸732にて駆動軸643と連結されている。ビス軸732にはハンドル軸方向への動作を可能とする直線方向用ニードルローラベアリングが配設され、ビス軸731には回転方向用ニードルローラベアリングが配設されている。またハンドル部733が作業者の実際に力を加える場所となる。たとえばビス軸731とビス軸732との距離が1に対してビス軸732とハンドル部733との距離が3であるとする。ハンドル部733に力を加えるとビス軸731が支点となり、ビス軸732が作用点となってハンドル部733に加える力は直接駆動軸733へ加える力の1/4でよい構成となる。ハンドル軸方向へのスライド動作を可能とする直線方向用ニードルローラベアリングを配設することによって、ハンドル部733の上下方向の動きに対して、ビス軸731が支点となって、ビス軸732がハンドル軸方向へ動作することで冷媒回収用ポンプ64の駆動軸643が上下する方向は基板71に対して垂直方向を維持することができた。また冷媒圧縮仕事として負荷が大きいのはハンドル部を作業者が下方向に押し下げる操作を行う時になる。
【0043】
次に冷媒回収の操作手順について説明する。
【0044】
まずバルブ701を閉状態とした冷媒回収用容器70と冷媒回収用ポンプ64を連結させるとともに耐圧ホース65も冷媒回収用ポンプ64と連結させておく。次に室外機58本体の二方弁59と三方弁60のバルブを開状態のままにしておき、三方弁60のサービスポート部にニードルバルブ66を閉状態として接続バルブ63と連結する。この時接続バルブ63には三方弁60に設けられたバルブコア突起部分を締め付けと同時に奥方向へと押せるタイプを使用する。それによって耐圧ホース65は接続配管内部と連通状態となり、冷媒ガスがニードルバルブ66まで達して止まる。次に閉状態にしていたニードルバルブ66を少し開放することで室外機本体、室内機内部および接続配管内部に残留する冷媒ガスは冷媒回収用ポンプ64の吸気用逆止弁644からシリンダー容器641の甲側へと入り、ピストン642に配設された逆止弁647を経て、シリンダー容器641の乙側へと移動し、さらに排気用逆止弁646から耐圧ホース69を経て冷媒回収用容器70の入口バルブ701まで一気に導かれる。その後冷媒回収用容器70のバルブ701を開状態とする。それによってさらに冷媒ガスが冷媒回収用容器70内部へと移動する。ニードルバルブ66を徐々に開放することで室外機本体、室内機内部および接続配管内部に残留する冷媒ガスを冷媒回収用容器70へと導く。この時室外機本体、室内機内部および接続配管内部から耐圧ホース65に導かれる圧縮機用オイルはニードルバルブ66を徐々に開放すること途中に配置したオイルセパレータ67で冷媒ガスとオイルとが分離され、冷媒回収用ポンプ64側へオイルが侵入するのを防止することができる。また一気に冷媒ガスが冷媒回収用ポンプ64側へと移動した時も、逆止弁646の流通抵抗が小さければ甲側一室と乙側一室はすぐに均圧される。したがって本実施例のような冷媒回収用ポンプを使用すればハンドル棒が急激に動作するのを防止できる。最終的にニードルバルブ66を全開放後、冷媒回収用容器70と室外機本体内部、室内機内部および接続配管内部とが均圧となることによって冷媒ガスの動きが停止した頃を見計らって冷媒回収用ポンプ64のハンドル部733を下方向へと駆動させることで、ピストン642も乙方向へと駆動され、シリンダー容器641内部の冷媒ガスは排気用逆止弁645から吐出されるとともに、室外機本体内部、室内機内部および接続配管内部に残留する冷媒ガスは吸気用逆止弁644から吸気される。吐出された冷媒ガスは冷媒回収用容器70へと冷媒回収される。ハンドル部733を上方向へ駆動させることで、ピストン642も甲方向へと駆動され、シリンダー容器641内部の冷媒ガスはピストン642に設けられた逆止弁646を介して甲側一室から乙側一室へと移動する。さらにハンドル部733を下方向へ移動させることによって冷媒ガスは圧縮されながら排気用逆止弁645を介して冷媒回収用容器70へと冷媒回収される。このハンドル部733の上下操作を何度も繰り返すことで最終的に室外機本体内部、室内機内部および接続配管内部に残留する冷媒ガスは冷媒回収用容器70へと強制的に冷媒回収されることになる。また低圧ゲージ68にて圧力状態を読み取ることで残留している冷媒ガス量も把握できる。本実施例の場合、圧縮機用オイルに溶解している冷媒ガスは徐々にガス化されて冷媒回収ポンプ側へと排出されるため、低圧ゲージ68にてある程度の圧力変動値になったら作業を見切る必要がある。
【0045】
本実施例のような構成の冷媒回収ポンプであればてこの原理をうまく活用することで手動式であっても30kgf/cm2、さらにそれ以上の昇圧能力を有するものが可能であった。
【0046】
実施例ではOリングとして冷媒R22の場合にはCR製のゴムを使用し、冷媒R407C,R410Aの場合にはHNBR製のゴムを使用した。Oリングについても耐冷媒性、耐オイル性を考慮しながら、最適な硬度のものを選択する必要がある。
【0047】
実施例5では駆動軸と連結されるビス軸に直線方向用ニードルローラベアリングを使用し、支持柱と連結されるビス軸に回転方向用ニードルローラベアリングを使用した。ビス軸に直線方向用ニードルローラベアリングを配設する場合としてはハンドル部の中間部に設けられる連結部のほうが好ましいと考えられる。また本発明に使用できる構造はこれに限定されるものではない。てこの原理を利用して力のかかる支点あるいは作用点部分がスムーズに動作できるような構造になっていること、また連結部の一方がハンドル棒方向へスライド可能なことが望まれる。したがってころがり軸受け構造あるいはすべり軸受け構造が好ましい。ころがり軸受け構造としてはボールベアリング方式も使用でき、すべり軸受け構造としてはポリテトラフルオロエチレン系、グラファイト系の材料が使用できる。またころがり軸受け構造あるいはすべり軸受け構造に対してさらに潤滑性を向上させるためグリースを供給することも可能である。
【0048】
実施例では吸気用逆止弁、排気用逆止弁等すべて圧縮コイルバネ力を利用した逆止弁を使用したが、本発明に使用できる構造はこれに限定されるものではない。排気用逆止弁側は直接冷媒ガスに接触するため、弁構造としての十分な強度が要求される。また吸気用逆止弁もボールバルブ等での圧力調整弁がない場合には同様に弁構造としての強度が要求される。しかし吸気用逆止弁の場合圧縮コイルバネ力が強すぎると冷媒回収率を低下させる。すなわち吸気用逆止弁での差圧によって弁が切り換わるため、圧縮コイルバネ力が強すぎると、冷媒回収作業中の弁切り換わり限界時点で冷媒回収作業が停止する。したがって、吸気用逆止弁に使用される圧縮コイルバネのバネ定数としては0.3〜0.6N/mm程度が好ましいと考えられる。また排気用逆止弁としてはそれよりも大きな0.4〜0.8N/mm程度が好ましいと考えられる。
【0049】
実施例では冷媒R22、R407C,R410Aを充填されてなる空気調和機について冷媒回収を実施したが、本発明の利用用途はこれらに限定されるものではない。冷媒R410Aは冷媒R22に比べると同一温度条件に対する冷媒圧力が約1.6倍となるため、それに対応できる冷媒回収装置の昇圧設計が必要になる。実施例1のような冷媒回収用ポンプの構成であればシリンダーの一室が大気圧状態に対してもう一室にて冷媒ガス圧縮仕事を行う構成になるのでかなり大きな負荷を伴うが、実施例2あるいは実施例3のような冷媒回収用ポンプの構成であればシリンダー容器内の二室は均一な冷媒圧力関係であるため、液冷媒が残留する最初のうちは小さな負荷で室外機本体への冷媒回収作業を行うことができる。しかし冷媒回収作業の進行とともにガス冷媒だけになるため冷媒ガス圧縮仕事への負荷は大きくなる。したがってポンプダウンのできない空気調和機から冷媒回収あるいは室外機本体内部の冷媒も含めた冷媒回収の回収率を高くするためには冷媒回収用ポンプの昇圧能力として10〜30kg/cm2が必要であった。そのための作業を人力で行うには限度があるため、必然的に冷媒回収用ポンプに使用されるシリンダー容器の断面積を小さく設計する必要がある。また冷媒回収用容器に細孔径の大きな合成ゼオライトを充填すれば物理吸着作用によって合成ゼオライトの30wt%程度まで吸着させることが可能なので、それを活用することによっても作業負担を軽減することができた。そのためには合成ゼオライトとして25℃での二酸化炭素分圧500mmHgにおける二酸化炭素吸着容量が20wt%以上であるような物理特性を有していることが望ましかった。
【0050】
また、てこ作用を利用した冷媒回収用ポンプ装置であれば、てこの原理を活用することで作業にもとなう最大負荷を低減できた。しかし、あまり極端な構成にすると冷媒回収用ポンプ装置の形状が大きくなり、装置を運搬する時にかさばってしまう。したがって、てこの原理を利用するとしても支点、作用点、力点の構成で1/2〜1/5程度に作業最大負荷低減にとどめることが好ましいと考える。
【0051】
本発明は電力を使用することなく空気調和機からの冷媒回収を行うことを目的としているため、本発明の実施例にもあるようなてこの効果、冷媒回収用容器への合成ゼオライト充填等の物理吸着効果を利用することでどのような冷媒ガスに対しても冷媒回収装置の構成を工夫することで作業者への負担を大幅に低減させることができた。
【0052】
【発明の効果】
上記実施例から明らかなように、請求項1記載の発明によれば、室内機内部および接続配管内部に残留する冷媒ガスは冷媒回収用ポンプを使用することによって強制的に吸引、吐出されるので、冷媒回収用容器内部へと冷媒回収され、この時使用される冷媒回収用ポンプはピストンシリンダーと逆止弁を組み合わせた簡単な構成であるため、電源等の設備を使用することなく、作業者自身による人力で冷媒回収作業を行うことができた。さらに、冷媒回収用容器内部に細孔径の大きな合成ゼオライトを充填させることによって、合成ゼオライト自体が20〜30wt%程度冷媒を物理吸着してくれるので、冷媒回収用容器に冷媒ガスを冷媒回収用ポンプで機械圧縮させながら回収する肉体的な作業負荷が大幅に軽減された。
【0053】
また、請求項2記載の発明によれば、室外機本体内部、室内機内部および接続配管内部に残留する冷媒ガスは冷媒回収用ポンプを使用することによって強制的に吸引、吐出されるので、冷媒回収用容器内部へと冷媒回収され、この時使用される冷媒回収用ポンプはピストンシリンダーと逆止弁を組み合わせた簡単な構成であるため、電源等の設備を使用することなく、作業者自身による人力で冷媒回収作業を行うことができた。さらに、冷媒回収用容器内部に細孔径の大きな合成ゼオライトを充填させることによって、合成ゼオライト自体が20〜30wt%程度冷媒を物理吸着してくれるので、冷媒回収用容器に冷媒ガスを冷媒回収用ポンプで機械圧縮させながら回収する肉体的な作業負荷が大幅に軽減された。
【0054】
また、請求項3記載の発明によれば、冷媒回収用ポンプのピストンを駆動軸への力によって動かす時、冷媒ガスの排気操作は圧縮仕事になるのでかなり大きな負荷を要するが、てこ作用を利用することで排気操作に必要な最大負荷を低減でき、人力での作業性が大幅に改善された。
【0055】
また、請求項記載の発明によれば、吸気用逆止弁とサービスポート接続バルブとの経路途上にオイルセパレーターを配設することで室内機内部および接続配管内部に残留する圧縮機用オイルを十分に分離して冷媒ガスだけを冷媒回収用ポンプへと導くことができた。
【0056】
また、請求項記載の発明によれば、支柱柱を支点としてハンドル棒の一端に冷媒回収用ポンプの駆動軸が連結されて作用点となり、もう一端へ作業者が力を加えることでてこがバランスされ、冷媒回収用ポンプのピストンを駆動軸への力によって動かす時、必要な冷媒ガス圧縮仕事の負荷を、てこ作用を利用することで排気操作に必要な最大負荷を低減でき、人力での作業性が大幅に改善された。
【0057】
また、請求項記載の発明によれば、ハンドル棒の一端を支柱柱との支点として、ハンドル棒の中間部へ冷媒回収用ポンプの駆動軸が連結されて作用点となり、もう一端へ作業者が力を加えることでてこがバランスされ、冷媒回収用ポンプのピストンを駆動軸への力によって動かす時、必要な冷媒ガス圧縮仕事の負荷を、作用点を支点と力点との間に設けることでてこ作用を有効にすることで排気操作に必要な最大負荷を低減でき、人力での作業性が大幅に改善された。
【0058】
また、請求項記載の発明によれば、冷媒回収用ポンプのシリンダー容器について一室だけを利用して冷媒ガスへの吸排作用効果生じさせることができた。
【0059】
また、請求項記載の発明によれば、冷媒回収用ポンプのシリンダー容器についてピストンに逆止弁が配設されることによって、仕切られたシリンダー容器内部の二室に対して圧力差が小さいので作業者への仕事負荷を低減させることができた。
【0060】
また、請求項記載の発明によれば、冷媒回収用ポンプのシリンダー容器について仕切られた内部二室に各々吸気用逆止弁と排気用逆止弁が配設されることで、ピストンを上下両方向へ移動させても一方では冷媒ガスの圧縮仕事を行って外部へ排出するとともに、もう一方ではシリンダー容器内部への冷媒ガス導入操作を並行して実施できたので非常に作業性が向上した。また仕切られたシリンダー容器内部の二室に対して圧力差が小さいので作業者への仕事負荷も低減させることができた。
【0061】
また、請求項10記載の発明によれば、合成ゼオライトとして25℃での二酸化炭素分圧500mmHgにおける二酸化炭素吸着容量が20wt%以上であるような物理特性を有していれば細孔径も大きいので冷媒を迅速かつ効率的に吸着できた。
【図面の簡単な説明】
【図1】 本発明の一実施例において示す空気調和機の主要構成図
【図2】 本発明の実施例1において使用される冷媒回収方法の装置に関する主要構成図と接続関係図
【図3】 本発明の実施例1において使用される吸気用逆止弁の断面構成図
【図4】 本発明の実施例1において使用されるオイルセパレーターの断面構成図
【図5】 本発明の実施例2において使用される冷媒回収方法の装置に関する主要構成図と接続関係図
【図6】 本発明の実施例3において使用される冷媒回収方法の装置に関する主要構成図と接続関係図
【図7】 本発明の実施例4において使用される冷媒回収方法の装置に関する主要構成図と接続関係図
【図8】 本発明の実施例5において使用される冷媒回収方法の装置に関する主要構成図と接続関係図
【符号の説明】
1 室内機
2、3 接続配管
4 室外機
6 二方弁
7 三方弁
9 冷媒回収用ポンプ
91 シリンダー容器
92 ピストン
93 駆動軸
95、96吸気用逆止弁
10 耐圧ホース
11 ニードルバルブ
12 オイルセパレータ
13 低圧ゲージ
15 冷媒回収用容器

Claims (10)

  1. 室内機と室外機と両者を接続配管で接続して構成する空気調和機において、接続ポートとして室外機に二方弁と三方弁が具備され、前記二方弁と前記三方弁をともに閉状態とする工程と、前記三方弁のサービスポート部に冷媒回収用ポンプを接続する工程と、前記冷媒回収用ポンプと冷媒回収用容器を接続する工程とを含み、前記冷媒回収用容器内部には合成ゼオライトが充填され、前記冷媒回収用ポンプはシリンダー容器内部をピストンが駆動することによって、吸気用逆止弁と排気用逆止弁が作動することで吸排作用効果を生じ、前記冷媒回収用ポンプのピストンを駆動させることによって前記室内機内部および接続配管内部に残留する冷媒ガスを前記冷媒回収用容器内部へと冷媒回収することを特徴とする空気調和機からの冷媒回収方法。
  2. 室内機と室外機と両者を接続配管で接続して構成する空気調和機において、接続ポートとして室外機に二方弁と三方弁が具備され、前記二方弁と前記三方弁をともに開状態とする工程と、前記三方弁のサービスポート部に冷媒回収用ポンプを接続する工程と、前記冷媒回収用ポンプと冷媒回収用容器を接続する工程とを含み、前記冷媒回収用容器内部には合成ゼオライトが充填され、前記冷媒回収用ポンプはシリンダー容器内部をピストンが駆動することによって、吸気用逆止弁と排気用逆止弁が作動することで吸排作用効果を生じ、前記冷媒回収用ポンプのピストンを駆動させることによって前記空気調和機内部に残留する冷媒ガスを冷媒回収用容器内部へと冷媒回収することを特徴とする空気調和機からの冷媒回収方法。
  3. シリンダー容器内部をピストンが駆動することによって、前記吸気用逆止弁と前記排気用逆止弁が作動することで吸排作用効果を生じる冷媒回収用ポンプに対して、前記ピストンには駆動軸が連結され、前記駆動軸はシリンダー容器を貫通して外部へと突き出し、前記駆動軸へてこ作用によって力を加えることで前記ピストンを駆動させることを特徴とする請求項1に記載の空気調和機からの冷媒回収方法。
  4. 前記三方弁のサービスポート部と冷媒回収用ポンプとを接続する経路途上にオイルセパレータが配設されていることを特徴とする請求項1、2のいずれかに記載の空気調和機からの冷媒回収方法。
  5. シリンダー容器内部をピストンが駆動することによって、前記吸気用逆止弁と前記排気用逆止弁が作動することで吸排作用効果を生じる冷媒回収用ポンプに対して、前記ピストンには駆動軸が連結され、前記駆動軸はシリンダー容器を貫通して外部へと突き出してハンドル棒の一端と連結部1で連結され、前記ハンドル棒は支持柱とも連結部2で連結され、前記連結部2を支点とし、前記連結部1を作用点とし、前記ハンドル棒のもう一端部を力点とすることで前記ピストンを駆動させる構成であることを特徴とする請求項3に記載の空気調和機からの冷媒回収方法。
  6. シリンダー容器内部をピストンが駆動することによって、前記吸気用逆止弁と前記排気用逆止弁が作動することで吸排作用効果を生じる冷媒回収用ポンプに対して、前記ピストンには駆動軸が連結され、前記駆動軸はシリンダー容器を貫通して外部へと突き出してハンドル棒と連結部1で連結され、前記ハンドル棒の一端は支持柱とも連結部2で連結され、前記連結部2を支点とし、前記連結部1を作用点とし、前記ハンドル棒のもう一端部を力点とすることで前記ピストンを駆動させる構成であることを特徴とする請求項3に記載の空気調和機からの冷媒回収方法。
  7. 前記冷媒回収用ポンプは、シリンダー容器内部に少なくともピストンと吸気用逆止弁と排気用逆止弁が配設され、前記ピストンには駆動軸が連結され、前記駆動軸は前記シリンダー容器を貫通して外部へと突き出し、前記吸気用逆止弁と前記排気用逆止弁は前記シリンダー容器内部を前記ピストンで二室に仕切られ、前記駆動軸が配設されていない一室側に配置されていることを特徴とする請求項1〜のいずれか一項に記載の空気調和機からの冷媒回収方法。
  8. 前記冷媒回収用ポンプは、シリンダー容器内部に少なくともピストンと吸気用逆止弁と排気用逆止弁が配設され、前記ピストンには駆動軸が連結され、前記駆動軸は前記シリンダー容器を貫通して外部へと突き出し、前記吸気用逆止弁は前記シリンダー容器内部を前記ピストンで二室に仕切られ、前記駆動軸が配設されている一室側に配置され、前記排気用逆止弁は前記駆動軸が配設されていない一室側に配置され、前記ピストンに逆止弁が配設されて前記駆動軸が配設されていない一室側から前記駆動軸が配設されている一室側への流れを防止する構成であることを特徴とする請求項1〜7のいずれか一項に記載の空気調和機からの冷媒回収方法。
  9. 前記冷媒回収用ポンプは、シリンダー容器内部に少なくともピストンと吸気用逆止弁と排気用逆止弁が配設され、前記ピストンには駆動軸が連結され、前記駆動軸は前記シリンダー容器を貫通して外部へと突き出し、前記シリンダー容器内部を前記ピストンで二室に仕切られ、各々の一室に前記吸気用逆止弁と前記排気用逆止弁が配設され、各々の一室に設けられた前記吸気用逆止弁側経路が外部で連結されるとともに各々の一室に設けられた前記排気用逆止弁側経路も外部で連結されることを特徴とする請求項1〜7のいずれか一項に記載の空気調和機からの冷媒回収方法。
  10. 前記合成ゼオライトが、25℃での二酸化炭素分圧500mmHgにおける二酸化炭素吸着容量が20wt%以上であることを特徴とする請求項1〜9のいずれか一項に記載の空気調和機からの冷媒回収方法。
JP2002342003A 2002-11-26 2002-11-26 空気調和機からの冷媒回収方法 Expired - Fee Related JP4107065B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002342003A JP4107065B2 (ja) 2002-11-26 2002-11-26 空気調和機からの冷媒回収方法
CNB2003101154812A CN1249388C (zh) 2002-11-26 2003-11-26 由空调机中回收冷媒的方法
KR1020030084598A KR20040047668A (ko) 2002-11-26 2003-11-26 공기조화기로부터의 냉매회수방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002342003A JP4107065B2 (ja) 2002-11-26 2002-11-26 空気調和機からの冷媒回収方法

Publications (2)

Publication Number Publication Date
JP2004176963A JP2004176963A (ja) 2004-06-24
JP4107065B2 true JP4107065B2 (ja) 2008-06-25

Family

ID=32704185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002342003A Expired - Fee Related JP4107065B2 (ja) 2002-11-26 2002-11-26 空気調和機からの冷媒回収方法

Country Status (3)

Country Link
JP (1) JP4107065B2 (ja)
KR (1) KR20040047668A (ja)
CN (1) CN1249388C (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749236A (zh) * 2012-06-19 2012-10-24 宁波大学 用于富集挥发性物质的气体内循环分离吸收装置及其使用方法
CN107388640B (zh) * 2017-06-06 2020-02-11 安徽春辉仪表线缆集团有限公司 一种紧凑型自清洁式蒸发器
CN107289679B (zh) * 2017-06-06 2020-02-07 安徽春辉仪表线缆集团有限公司 一种自清洁式蒸发器
CN108909401A (zh) * 2018-05-23 2018-11-30 夏文才 一种新能源汽车空调用的冷媒存储装置
CN108895727A (zh) * 2018-06-27 2018-11-27 浙江飞越机电有限公司 多缸冷媒回收机及其管路控制方法
CN111725109B (zh) * 2020-06-24 2023-12-22 北京北方华创微电子装备有限公司 一种用于半导体的气体调节柜
CN113531964A (zh) * 2021-07-06 2021-10-22 青岛海尔空调器有限总公司 制冷剂的回收系统及其回收方法

Also Published As

Publication number Publication date
CN1502926A (zh) 2004-06-09
CN1249388C (zh) 2006-04-05
JP2004176963A (ja) 2004-06-24
KR20040047668A (ko) 2004-06-05

Similar Documents

Publication Publication Date Title
CN102734123B (zh) 低温泵系统、压缩机及低温泵的再生方法
JP4107065B2 (ja) 空気調和機からの冷媒回収方法
US20070212236A1 (en) Portable air/gas compressor
WO2007102836A1 (en) Portable air/gas compressor
CN102460041A (zh) 用于制冷装置的维护机
CN104613312B (zh) 处理bog成套设备及采用该设备处理bog的方法
CN201527351U (zh) 可回收制冷剂式空调外机检测系统
JP3711968B2 (ja) 空気調和機の冷媒回収方法
JP4082224B2 (ja) 冷媒回収装置
CN108954884A (zh) 一种冷热双制螺杆压缩机组
CN201196141Y (zh) 一种新型活塞式氯气压缩机及其液化器
CN202867216U (zh) 双缸变容压缩机
JP2005249297A (ja) 冷媒回収装置、冷媒回収用接続装置、及び冷媒回収方法
JP4200279B2 (ja) 冷媒回収装置と空気調和機からの冷媒回収方法
JP5677282B2 (ja) 冷凍サイクル装置
JP2005049003A (ja) 冷媒回収装置と空気調和機からの冷媒回収方法
CN1690553A (zh) 用于转换空调的制冷剂管的设备
JP2002147903A (ja) 空気調和機の冷媒回収方法および装置
CN217687769U (zh) 一种汽车用水泵气密性检测装置
JP2005055137A (ja) 冷媒回収装置と空気調和機からの冷媒回収方法
US20240011512A1 (en) Reduced size fluid transfer and depressurization apparatus, control, and associated methods
KR20240111566A (ko) 이동식 냉매 회수장치
JP3755481B2 (ja) 真空ポンプとそれを使用した空気調和機の施工方法
JP2008202909A (ja) 冷凍装置および装置内異物除去方法
JP2002277111A (ja) 冷媒回収装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees