JP4103835B2 - Manufacturing method of electronic parts - Google Patents

Manufacturing method of electronic parts Download PDF

Info

Publication number
JP4103835B2
JP4103835B2 JP2004114118A JP2004114118A JP4103835B2 JP 4103835 B2 JP4103835 B2 JP 4103835B2 JP 2004114118 A JP2004114118 A JP 2004114118A JP 2004114118 A JP2004114118 A JP 2004114118A JP 4103835 B2 JP4103835 B2 JP 4103835B2
Authority
JP
Japan
Prior art keywords
conductive particles
bump
opening
bumps
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004114118A
Other languages
Japanese (ja)
Other versions
JP2005302870A (en
Inventor
淳 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004114118A priority Critical patent/JP4103835B2/en
Publication of JP2005302870A publication Critical patent/JP2005302870A/en
Application granted granted Critical
Publication of JP4103835B2 publication Critical patent/JP4103835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05567Disposition the external layer being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/11013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the bump connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11332Manufacturing methods by local deposition of the material of the bump connector in solid form using a powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/119Methods of manufacturing bump connectors involving a specific sequence of method steps
    • H01L2224/11901Methods of manufacturing bump connectors involving a specific sequence of method steps with repetition of the same manufacturing step
    • H01L2224/11902Multiple masking steps
    • H01L2224/11903Multiple masking steps using different masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/13078Plural core members being disposed next to each other, e.g. side-to-side arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13199Material of the matrix
    • H01L2224/1329Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13299Base material
    • H01L2224/1339Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/13198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/13298Fillers
    • H01L2224/13399Coating material
    • H01L2224/134Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Description

本発明は、電子部品の製造方法、電子部品、電気光学装置および電子機器に関するものである。   The present invention relates to an electronic component manufacturing method, an electronic component, an electro-optical device, and an electronic apparatus.

半導体素子等の電子部品は、回路基板等に実装されて使用されている。この電子部品を回路基板に実装する方法について、さまざまな方法が提案されている。
図10に、従来技術に係る電子部品の実装方法の説明図を示す。図10(a)では、異方導電性フィルム(ACF)190を挟んで、IC等の電子部品170が相手側基板120に実装されている。異方導電性フィルム190は、熱硬化性樹脂192に導電性粒子195を分散させたものである。この導電性粒子195が、電子部品170の能動面に形成された電極パッド172と、相手側基板120の表面に形成された電極パッド122との間に入り込んで、両者が電気的に接続されている。また、加熱により硬化した熱硬化性樹脂192により、電子部品170と相手側基板120とが機械的に接続されている。
Electronic parts such as semiconductor elements are used by being mounted on a circuit board or the like. Various methods have been proposed for mounting electronic components on circuit boards.
FIG. 10 is an explanatory diagram of a method for mounting an electronic component according to the prior art. In FIG. 10A, an electronic component 170 such as an IC is mounted on the counterpart substrate 120 with an anisotropic conductive film (ACF) 190 interposed therebetween. The anisotropic conductive film 190 is obtained by dispersing conductive particles 195 in a thermosetting resin 192. The conductive particles 195 enter between the electrode pad 172 formed on the active surface of the electronic component 170 and the electrode pad 122 formed on the surface of the counterpart substrate 120, and both are electrically connected. Yes. Further, the electronic component 170 and the counterpart substrate 120 are mechanically connected by a thermosetting resin 192 cured by heating.

近年では、電子部品の小型化にともなって、電極パッド相互の狭ピッチ化が進んでいる。ところが、異方導電性フィルムを使用した上記の実装方法では、水平方向に隣接する電極パッドの間にも導電性粒子が配置されるため、電極パッド相互の短絡が発生するおそれがある。また、電極パッドの狭ピッチ化にともなって電極パッド自体も小さくなるため、各電極パッドが捕捉する導電性粒子の個数が減少し、電気的接続の信頼性が低下するおそれがある。さらに、高価な導電性粒子のすべてを電気的接続に利用することができないといった問題がある。   In recent years, with the miniaturization of electronic components, the pitch between electrode pads has been reduced. However, in the above mounting method using an anisotropic conductive film, the conductive particles are also disposed between the electrode pads adjacent in the horizontal direction, which may cause a short circuit between the electrode pads. In addition, since the electrode pads themselves become smaller as the pitch of the electrode pads becomes smaller, the number of conductive particles captured by each electrode pad may decrease, and the reliability of electrical connection may be reduced. Furthermore, there is a problem that not all of the expensive conductive particles can be used for electrical connection.

そこで、特許文献1ないし3には、あらかじめ電極パッドの表面に導電性粒子を固着させて相手側基板に実装することにより、隣接する電極パッドの間に導電性粒子を配置しない構造が開示されている。
図10(b)に、特許文献3に開示された実装方法の説明図を示す。この実装方法では、導電粒子295を接着剤296で被覆して接着性導電粒子298を形成し、この接着性導電粒子298を電子部品270における電極パッド272の表面に接着する。その接着方法は、まず電子部品270の能動面における電極パッド272の形成部分以外の部分に、レジスト膜280を形成する。次に、接着性導電粒子298を平面上に分散し、分散された接着性導電粒子298に対して電子部品270を加熱加圧する。これにより、電子部品270の能動面全体に接着性導電粒子298が接着される。次に、電極パッド272以外のレジスト膜280の表面に接着された接着性導電粒子298を、レジスト膜280とともに除去する。以上により、電極パッド272の表面のみに接着性導電粒子298が接着された状態となる。そして、残された接着性導電粒子298を相手側基板220の電極パッド222に位置決めして、電子部品270を相手側基板220に加熱圧着する。これにより、接着性導電粒子298の接着剤296が溶解して電子部品270と相手側基板220とが機械的に接続され、また露出した導電粒子295により両者が電気的に接続される。
特開平7−6799号公報 特開平10−84178号公報 特開2002−170837号公報
Thus, Patent Documents 1 to 3 disclose a structure in which conductive particles are not fixed between adjacent electrode pads by fixing conductive particles on the surface of the electrode pads in advance and mounting them on the counterpart substrate. Yes.
FIG. 10B is an explanatory diagram of the mounting method disclosed in Patent Document 3. In this mounting method, the conductive particles 295 are covered with an adhesive 296 to form adhesive conductive particles 298, and the adhesive conductive particles 298 are bonded to the surface of the electrode pad 272 in the electronic component 270. In the bonding method, first, a resist film 280 is formed on a portion of the active surface of the electronic component 270 other than the portion where the electrode pad 272 is formed. Next, the adhesive conductive particles 298 are dispersed on a plane, and the electronic component 270 is heated and pressed against the dispersed adhesive conductive particles 298. As a result, the adhesive conductive particles 298 are bonded to the entire active surface of the electronic component 270. Next, the adhesive conductive particles 298 adhered to the surface of the resist film 280 other than the electrode pads 272 are removed together with the resist film 280. As described above, the adhesive conductive particles 298 are adhered to only the surface of the electrode pad 272. Then, the remaining adhesive conductive particles 298 are positioned on the electrode pads 222 of the counterpart substrate 220, and the electronic component 270 is thermocompression bonded to the counterpart substrate 220. As a result, the adhesive 296 of the adhesive conductive particles 298 is dissolved and the electronic component 270 and the counterpart substrate 220 are mechanically connected, and both are electrically connected by the exposed conductive particles 295.
JP 7-6799 A JP-A-10-84178 JP 2002-170837 A

しかしながら、特許文献3に記載された実装方法において、レジスト膜280の高さが接着性導電粒子298の直径より大きい場合には、電子部品270における電極パッド272の表面に、接着性導電粒子298が積層配置される場合がある。この場合に、電子部品270を相手側基板220に加熱圧着すると、電極パッド272の表面に積層配置された接着性導電粒子298が、相手側基板220の電極パッド222との間に挟まれて、1層に再配置される。ここで余った接着性導電粒子298は、各電極パッド222,272の周辺に溢れ出る。そして、この溢れ出た接着性導電粒子298により、隣接する電極パッド222が短絡するおそれがある。この問題は、電極パッドの狭ピッチ化にともなって顕著になる。   However, in the mounting method described in Patent Document 3, when the height of the resist film 280 is larger than the diameter of the adhesive conductive particles 298, the adhesive conductive particles 298 are formed on the surface of the electrode pad 272 in the electronic component 270. There are cases where they are stacked. In this case, when the electronic component 270 is thermocompression bonded to the mating substrate 220, the adhesive conductive particles 298 laminated on the surface of the electrode pad 272 are sandwiched between the electrode pads 222 of the mating substrate 220, Rearranged to one layer. Here, the remaining adhesive conductive particles 298 overflow around the electrode pads 222 and 272. The overflowing conductive conductive particles 298 may cause a short circuit between adjacent electrode pads 222. This problem becomes conspicuous as the electrode pad pitch becomes narrower.

本発明は、上記課題を解決するためになされたものであり、隣接する電極間の短絡を防止することが可能な、電子部品の製造方法および電子部品の提供を目的とする。
また、電気的接続の信頼性に優れた電子機器の提供を目的とする。
The present invention has been made to solve the above problems, and an object thereof is to provide an electronic component manufacturing method and an electronic component capable of preventing a short circuit between adjacent electrodes.
It is another object of the present invention to provide an electronic device with excellent electrical connection reliability.

上記目的を達成するため、本発明の電子部品の製造方法は、能動面に形成された電極パッドを介して相手側基板に実装される電子部品の製造方法であって、前記電極パッドの表面にバンプを形成する工程と、前記バンプの表面に開口部を有するマスクを前記能動面に形成する工程と、前記能動面に導電性粒子を散布して前記開口部に捕捉させる工程と、前記開口部に積層配置された前記導電性粒子を前記バンプの表面に固着させる工程と、を有し、前記開口部の高さhおよび開口面積Aが次式を満たすように、前記マスクおよび前記開口部を形成することを特徴とする。
(n−1)・d<h<n・d
A<S/n
ただし、dは前記導電性粒子の直径、Sは前記バンプの表面の面積、nは2以上の自然数である。
この構成によれば、バンプ表面に積層配置された導電性粒子が、電子部品を相手側基板に実装する際に、バンプの周囲に溢れ出すのを防止することができる。したがって、複数のバンプが狭ピッチに配列されている場合でも、隣接する電極間の短絡を防止することができる。
In order to achieve the above object, an electronic component manufacturing method of the present invention is a method of manufacturing an electronic component mounted on a counterpart substrate via an electrode pad formed on an active surface, and is provided on the surface of the electrode pad. A step of forming a bump, a step of forming a mask having an opening on a surface of the bump on the active surface, a step of spraying conductive particles on the active surface and capturing the opening in the opening, and the opening Fixing the conductive particles stacked on the surface of the bump, and the mask and the opening are arranged so that the height h and the opening area A of the opening satisfy the following formula: It is characterized by forming.
(N-1) · d <h <n · d
A <S / n
Here, d is the diameter of the conductive particles, S is the surface area of the bump, and n is a natural number of 2 or more.
According to this configuration, the conductive particles stacked and arranged on the bump surface can be prevented from overflowing around the bump when the electronic component is mounted on the counterpart substrate. Therefore, even when a plurality of bumps are arranged at a narrow pitch, a short circuit between adjacent electrodes can be prevented.

また、本発明の他の電子部品の製造方法は、能動面に形成された電極パッドを介して相手側基板に実装される電子部品の製造方法であって、前記電極パッドの表面にバンプを形成する工程と、前記バンプの表面に開口部を有するマスクを前記能動面に形成する工程と、前記能動面に導電性粒子を散布して前記開口部に捕捉させる工程と、前記開口部に積層配置された前記導電性粒子を前記バンプの表面に固着させる工程と、を有し、前記開口部の高さhおよび複数の前記バンプの狭ピッチの配列方向における前記開口部の幅Bが次式を満たすように、前記マスクおよび前記開口部を形成することを特徴とする。
(n−1)・d<h<n・d
B<W/n
ただし、dは前記導電性粒子の直径、Wは複数の前記バンプの狭ピッチの配列方向における前記バンプの幅、nは2以上の自然数である。
この構成によれば、バンプ表面に積層配置された導電性粒子が、電子部品を相手側基板に実装する際に、バンプの配列方向に溢れ出すのを防止することができる。したがって、複数のバンプが狭ピッチで配列されている場合でも、電極間の短絡を防止することができる。なお、導電性粒子がバンプの非配列方向に溢れ出ても、その方向にはバンプが狭ピッチで配列されていないので、電極間の短絡は問題にならない。
Further, another electronic component manufacturing method of the present invention is a method for manufacturing an electronic component mounted on a counterpart substrate via an electrode pad formed on an active surface, wherein bumps are formed on the surface of the electrode pad. A step of forming a mask having an opening on the surface of the bump on the active surface, a step of spraying conductive particles on the active surface to capture the opening, and a stacked arrangement in the opening Fixing the conductive particles formed on the surface of the bump, and the height h of the opening and the width B of the opening in the arrangement direction of the narrow pitch of the plurality of bumps are expressed by the following equation: The mask and the opening are formed so as to satisfy.
(N-1) · d <h <n · d
B <W / n
Here, d is the diameter of the conductive particles, W is the width of the bump in the arrangement direction of the narrow pitch of the plurality of bumps, and n is a natural number of 2 or more.
According to this configuration, it is possible to prevent the conductive particles stacked on the bump surface from overflowing in the bump arrangement direction when the electronic component is mounted on the counterpart substrate. Therefore, even when a plurality of bumps are arranged at a narrow pitch, a short circuit between the electrodes can be prevented. Even when the conductive particles overflow in the non-arrangement direction of the bumps, the short circuit between the electrodes does not cause a problem because the bumps are not arranged at a narrow pitch in that direction.

また前記nは、2または3であることが望ましい。
この構成によれば、バンプの表面に積層配置された複数の導電性粒子の幅を、その高さより大きくすることが可能になり、導電性粒子を安定して配置することができる。
The n is preferably 2 or 3.
According to this structure, it becomes possible to make the width | variety of the some electroconductive particle laminated | stacked and arrange | positioned on the surface of a bump larger than the height, and can arrange | position electroconductive particle stably.

一方、本発明の電子部品は、上述した電子部品の製造方法を使用して製造したことを特徴とする。
この構成によれば、電子部品を相手側基板に実装する際に、電極間の短絡を防止することができる。
On the other hand, the electronic component of the present invention is manufactured using the above-described electronic component manufacturing method.
According to this configuration, when the electronic component is mounted on the counterpart substrate, a short circuit between the electrodes can be prevented.

また、本発明の他の電子部品は、能動面に形成された電極パッドを介して相手側基板に実装される電子部品であって、前記電極パッドの表面にバンプが形成され、前記バンプの表面の一部に、複数の導電性粒子が積層配置されていることを特徴とする。
この構成によれば、バンプの表面に積層配置された導電性粒子が、電子部品を相手側基板に実装する際に、バンプの周囲に溢れ出すのを防止することができる。したがって、複数のバンプが狭ピッチに配列されている場合でも、電極間の短絡を防止することができる。
Further, another electronic component of the present invention is an electronic component mounted on a mating substrate via an electrode pad formed on an active surface, wherein a bump is formed on the surface of the electrode pad, and the surface of the bump A plurality of conductive particles are laminated in a part of the structure.
According to this configuration, it is possible to prevent the conductive particles stacked and arranged on the surface of the bump from overflowing around the bump when the electronic component is mounted on the counterpart substrate. Therefore, even when a plurality of bumps are arranged at a narrow pitch, a short circuit between the electrodes can be prevented.

また、前記バンプの表面の一部とは、複数の前記バンプの配列方向における前記バンプの中央部であることが望ましい。
この構成によれば、バンプの表面に積層配置された導電性粒子が、電子部品を相手側基板に実装する際に、バンプの周囲に溢れ出すのを確実に防止することができる。したがって、電極間の短絡を確実に防止することができる。
The part of the surface of the bump is preferably a central portion of the bump in the arrangement direction of the plurality of bumps.
According to this configuration, it is possible to reliably prevent the conductive particles stacked on the surface of the bump from overflowing around the bump when the electronic component is mounted on the counterpart substrate. Therefore, a short circuit between the electrodes can be reliably prevented.

一方、本発明の電気光学装置は、上述した電子部品が、電気光学パネルを構成する基板上および/または回路基板上に実装されてなることを特徴とする。
この構成によれば、上述した電子部品により電極間の短絡を防止することができるので、電気的接続の信頼性に優れた電気光学装置を提供することができる。
On the other hand, the electro-optical device of the present invention is characterized in that the above-described electronic component is mounted on a substrate and / or a circuit board constituting the electro-optical panel.
According to this configuration, the electronic component described above can prevent a short circuit between the electrodes, so that an electro-optical device having excellent electrical connection reliability can be provided.

一方、本発明の電子機器は、上述した電気光学装置を備えたことを特徴とする。
この構成によれば、電気的接続の信頼性に優れた電子機器を提供することができる。
On the other hand, an electronic apparatus according to the present invention includes the above-described electro-optical device.
According to this configuration, it is possible to provide an electronic device having excellent electrical connection reliability.

以下、本発明の実施形態につき、図面を参照して説明する。なお、以下の説明に用いる各図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。   Embodiments of the present invention will be described below with reference to the drawings. In each drawing used for the following description, the scale of each member is appropriately changed to make each member a recognizable size.

[電子部品およびその実装構造]
図1(a)は半導体素子およびその実装工程の説明図であり、図1(b)は半導体素子の実装構造の説明図であって、いずれも図6のB−B線における正面断面図である。なお、図6と図1とは上下方向が逆に図示されている。図1(a)に示すように、IC等の半導体素子(電子部品)40の能動面には、Al等の導電材料からなる複数の電極パッド42が、所定ピッチで形成されている。なお、電極パッド42の周縁部は絶縁膜48で覆われている。また、各電極パッド42の表面には、AuメッキやAu/Niメッキ等によるバンプ44が形成されている。一例をあげれば、各バンプ44は30μm程度の幅に形成され、隣接するバンプ44は10μm程度の間隔で配置されて、各バンプのピッチは40μm程度となっている。
[Electronic components and their mounting structure]
FIG. 1A is an explanatory diagram of a semiconductor element and its mounting process, and FIG. 1B is an explanatory diagram of a semiconductor element mounting structure, both of which are front sectional views taken along line BB in FIG. is there. 6 and 1 are shown upside down. As shown in FIG. 1A, a plurality of electrode pads 42 made of a conductive material such as Al are formed at a predetermined pitch on the active surface of a semiconductor element (electronic component) 40 such as an IC. The peripheral portion of the electrode pad 42 is covered with an insulating film 48. Further, bumps 44 made of Au plating, Au / Ni plating, or the like are formed on the surface of each electrode pad 42. As an example, each bump 44 is formed with a width of about 30 μm, adjacent bumps 44 are arranged at intervals of about 10 μm, and the pitch of each bump is about 40 μm.

さらに、各バンプ44の表面には、複数の導電性粒子50が配置されている。導電性粒子50は、樹脂ボール等の表面に、ハンダコートや金属メッキ等を施したものである。この金属メッキには、電解Auメッキや無電解Niメッキ等を採用することができる。また、下地に無電解Niメッキを施し、上地に無電解Auメッキを施してもよい。この導電性粒子50は、たとえば直径4.5μm程度に形成されている。そして、各バンプ44の表面の一部に、複数の導電性粒子50が積層配置されている。具体的には、半導体素子40に形成された複数のバンプ44の配列方向におけるバンプ44の中央部に、導電性粒子50が積層配置されている。なお、複数のバンプ44が2方向に(マトリクス状に)配列形成されている場合には、両方向におけるバンプ44の中央部に導電性粒子50を積層配置することが望ましい。また、複数のバンプ44が2方向に異なるピッチで配列形成されている場合には、狭ピッチの配列方向におけるバンプ44の中央部のみに、導電性粒子50を積層配置してもよい。   Furthermore, a plurality of conductive particles 50 are arranged on the surface of each bump 44. The conductive particles 50 are obtained by performing solder coating, metal plating, or the like on the surface of a resin ball or the like. For this metal plating, electrolytic Au plating, electroless Ni plating, or the like can be employed. Further, electroless Ni plating may be applied to the base, and electroless Au plating may be applied to the top. The conductive particles 50 are formed with a diameter of about 4.5 μm, for example. A plurality of conductive particles 50 are stacked on a part of the surface of each bump 44. Specifically, the conductive particles 50 are stacked and arranged at the center of the bump 44 in the arrangement direction of the plurality of bumps 44 formed on the semiconductor element 40. When a plurality of bumps 44 are arranged in two directions (in a matrix), it is desirable to stack conductive particles 50 at the central part of the bumps 44 in both directions. In addition, when the plurality of bumps 44 are arranged at different pitches in two directions, the conductive particles 50 may be laminated and disposed only in the central portion of the bumps 44 in the narrow pitch arrangement direction.

上述した導電性粒子50は、ポリアミド等の熱可塑性樹脂52を固着手段として、バンプ44の表面に固着されている。このポリアミドは、150〜200℃程度の低温で可塑化するので、加工性に優れるとともに、半導体素子40に対する熱影響を抑制することができる。なお、導電性粒子50の固着手段として、エポキシ等の熱硬化性樹脂を採用することも可能である。特にエポキシは、150〜200℃程度の低温で硬化させることができる。また、導電性粒子50の固着手段として、アクリル等の光硬化性樹脂を採用することも可能である。この場合、紫外線等の光を照射することによって簡単に硬化性樹脂を硬化させることができる。また、導電性粒子50の固着手段として、インジウム(In)や錫(Sn)、亜鉛(Zn)等の低融点金属、またはハンダを含むこれらの合金を採用することも可能である。この場合、低温で金属を溶融させることができるので、半導体素子40に対する熱影響を抑制することができる。特に、錫(Sn)は、濡れ性がよく、また230℃程度の低温で溶融することから、前記金属として好適である。   The conductive particles 50 described above are fixed to the surface of the bump 44 using a thermoplastic resin 52 such as polyamide as a fixing means. Since this polyamide is plasticized at a low temperature of about 150 to 200 ° C., it is excellent in workability and can suppress the thermal influence on the semiconductor element 40. It is possible to employ a thermosetting resin such as epoxy as a fixing means for the conductive particles 50. In particular, epoxy can be cured at a low temperature of about 150 to 200 ° C. Moreover, it is also possible to employ a photocurable resin such as acrylic as a fixing means for the conductive particles 50. In this case, the curable resin can be easily cured by irradiating light such as ultraviolet rays. Further, as a means for fixing the conductive particles 50, it is also possible to employ a low melting point metal such as indium (In), tin (Sn), or zinc (Zn), or an alloy containing solder. In this case, since the metal can be melted at a low temperature, the thermal influence on the semiconductor element 40 can be suppressed. In particular, tin (Sn) is suitable as the metal because it has good wettability and melts at a low temperature of about 230 ° C.

一方、上述した半導体素子40が実装される相手側基板10の表面には、半導体素子40の電極パッド42と対向するように、複数の電極パッド12が形成されている。この電極パッド12は、例えば図6に示すガラス基板80(相手側基板10)のデータ線81等の端部に形成されたものである。   On the other hand, a plurality of electrode pads 12 are formed on the surface of the counterpart substrate 10 on which the semiconductor element 40 described above is mounted so as to face the electrode pads 42 of the semiconductor element 40. For example, the electrode pad 12 is formed at the end of the data line 81 or the like of the glass substrate 80 (mating substrate 10) shown in FIG.

そして、図1(b)に示すように、半導体素子40に固着された導電性粒子50の先端が、相手側基板10の電極パッド12の表面に接触して、相手側基板10の信号電極と半導体素子40とが電気的に接続されている。なお、上記のようにバンプ44の表面の一部に積層配置されていた導電性粒子50は、半導体素子40の電極パッド42と相手側基板10の電極パッド12との間に挟まれて、1層のみに再配置されている。また、半導体素子40と相手側基板10との間には、エポキシ樹脂等からなる熱硬化性樹脂層60が配置され、半導体素子40と相手側基板10とが機械的に接続されている。なお、熱硬化性樹脂層60により、半導体素子40の能動面ならびに半導体素子40および相手側基板10の電気的接続部が保護されている。   Then, as shown in FIG. 1B, the tips of the conductive particles 50 fixed to the semiconductor element 40 come into contact with the surface of the electrode pad 12 of the counterpart substrate 10 and the signal electrodes of the counterpart substrate 10 The semiconductor element 40 is electrically connected. The conductive particles 50 stacked on a part of the surface of the bump 44 as described above are sandwiched between the electrode pad 42 of the semiconductor element 40 and the electrode pad 12 of the counterpart substrate 10, and 1 It has been relocated to the layer only. Further, a thermosetting resin layer 60 made of an epoxy resin or the like is disposed between the semiconductor element 40 and the counterpart substrate 10, and the semiconductor element 40 and the counterpart substrate 10 are mechanically connected. Note that the thermosetting resin layer 60 protects the active surface of the semiconductor element 40 and the electrical connection portions of the semiconductor element 40 and the counterpart substrate 10.

[電子部品の製造方法]
次に、上述した半導体素子の製造方法について、図2ないし図5を用いて説明する。図2ないし図4は、半導体素子の製造方法の説明図であり、半導体素子の能動面を上にして記載している。本実施形態では、ウエハに形成された複数の半導体素子に対して同時に以下の処理を行い、最後にウエハから半導体素子を分離する。これにより、製造コストを低減することができる。
[Method of manufacturing electronic parts]
Next, a method for manufacturing the above-described semiconductor element will be described with reference to FIGS. 2 to 4 are explanatory views of a method for manufacturing a semiconductor device, and the active surface of the semiconductor device is shown upward. In the present embodiment, the following processing is simultaneously performed on a plurality of semiconductor elements formed on the wafer, and finally the semiconductor elements are separated from the wafer. Thereby, manufacturing cost can be reduced.

まず、図2(a)に示すように、バンプ44を形成するためのマスク20を形成する。このマスク20は、レジスト等によって構成する。レジスト20は、フォトレジストや電子線レジスト、X線レジスト等のいずれであってもよく、ポジ型またはネガ型のいずれであってもよいが、後述するメッキ液に対する耐性を有するものを使用する。このようなレジスト20として、たとえばノボラック樹脂を使用することができる。なお、バンプ44はウエハ41の能動面における電極パッド42上に形成するので、マスク20は電極パッド42の形成領域以外の領域に形成する。そこで、まずレジスト20を半導体素子の能動面全体に塗布する。レジスト20の塗布は、スピンコート法やディッピング法、スプレーコート法などによって行う。ここで、レジスト20の厚さは、形成すべきバンプ44の高さ以上に設定する。なお、レジスト20を塗布した後にプリベークを行う。   First, as shown in FIG. 2A, a mask 20 for forming the bumps 44 is formed. The mask 20 is composed of a resist or the like. The resist 20 may be any of a photoresist, an electron beam resist, an X-ray resist, etc., and may be either a positive type or a negative type, but a resist having resistance to a plating solution described later is used. As such a resist 20, for example, a novolac resin can be used. Since the bumps 44 are formed on the electrode pads 42 on the active surface of the wafer 41, the mask 20 is formed in a region other than the region where the electrode pads 42 are formed. Therefore, first, the resist 20 is applied to the entire active surface of the semiconductor element. The resist 20 is applied by spin coating, dipping, spray coating, or the like. Here, the thickness of the resist 20 is set to be equal to or higher than the height of the bump 44 to be formed. Note that pre-baking is performed after the resist 20 is applied.

次に、形成すべきバンプ44の平面形状をレジスト20にパターニングする。具体的には、レジスト20における電極パッド42の上方に、バンプ44の平面形状に対応した開口部22を形成する。なお、バンプ44の平面形状は矩形に限られず、円形等であってもよい。レジスト20のパターニングは、まず所定のパターンが形成されたフォトマスクを用いてレジスト20を露光し、さらに露光したレジスト20を現像することによって行う。なお、レジスト20のパターニング後にポストベークを行う。   Next, the planar shape of the bump 44 to be formed is patterned on the resist 20. Specifically, the opening 22 corresponding to the planar shape of the bump 44 is formed above the electrode pad 42 in the resist 20. The planar shape of the bump 44 is not limited to a rectangle, and may be a circle or the like. Patterning of the resist 20 is performed by first exposing the resist 20 using a photomask on which a predetermined pattern is formed, and developing the exposed resist 20. Note that post-baking is performed after the patterning of the resist 20.

以上には、フォトリソグラフィを用いてレジスト20を形成する方法について説明したが、これ以外にも、例えばドライフィルムを用いることにより、またスクリーン印刷等の印刷法を用いることにより、パターニングされた状態でレジスト20を形成することができる。また、インクジェット装置等の液滴吐出装置を用いて、レジストの液滴をレジスト20の形成位置のみに吐出することにより、パターニングされた状態でレジスト20を形成してもよい。これらにより、フォトリソグラフィに使用するフォトマスクが不要となり、製造コストを削減することができる。   The method for forming the resist 20 using photolithography has been described above, but in addition to this, in a patterned state, for example, by using a dry film, or by using a printing method such as screen printing. A resist 20 can be formed. Alternatively, the resist 20 may be formed in a patterned state by discharging a droplet of a resist only to a position where the resist 20 is formed using a droplet discharge device such as an inkjet device. As a result, a photomask used for photolithography becomes unnecessary, and manufacturing costs can be reduced.

次に、レジスト20をマスクとして、その開口部22に導電材料を充填することにより、バンプ44を形成する。バンプ44は、AuメッキやNiメッキ等によって形成する。また、バンプ44の下地をNiメッキで形成し、上地をAuメッキで形成してもよい。なお、メッキ法として、例えば電気化学プレーティング(ECP)法等を用いることができる。また、メッキ法における電極として、電極パッド42を用いることができる。なお、メッキ法以外のCVD法やスパッタ法等を採用して導電材料を充填し、バンプ44を形成してもよい。   Next, the bumps 44 are formed by filling the openings 22 with a conductive material using the resist 20 as a mask. The bumps 44 are formed by Au plating, Ni plating, or the like. Further, the base of the bump 44 may be formed by Ni plating, and the top may be formed by Au plating. As a plating method, for example, an electrochemical plating (ECP) method or the like can be used. Moreover, the electrode pad 42 can be used as an electrode in a plating method. Note that the bump 44 may be formed by filling the conductive material using a CVD method or a sputtering method other than the plating method.

次に、図2(b)に示すように、レジスト20を除去する。レジスト20の除去は、レジスト剥離液にウエハ41を浸漬することによって行う。レジスト剥離液として、モノエタノールアミンとジメチルスルホキシドとを7:3の割合で混合した液体等を使用することが可能である。   Next, as shown in FIG. 2B, the resist 20 is removed. The resist 20 is removed by immersing the wafer 41 in a resist stripping solution. As the resist stripping solution, it is possible to use a liquid in which monoethanolamine and dimethyl sulfoxide are mixed at a ratio of 7: 3.

次に、図2(c)に示すように、導電性粒子をバンプ44の表面に配置するため、マスク25を形成する。このマスク25は、レジスト等によって形成する。そこで、まずウエハ41の能動面全体にレジストを塗布する。なお、レジストの種類および塗布方法は上記と同様である。
次に、図2(d)に示すように、バンプ44の表面にマスク25の開口部26を形成する。この開口部26は、導電性粒子の積層数を想定して開口するが、詳細は後述する。なお、開口部26を形成する方法は上記と同様である。
Next, as shown in FIG. 2C, a mask 25 is formed in order to dispose the conductive particles on the surface of the bump 44. This mask 25 is formed of a resist or the like. Therefore, first, a resist is applied to the entire active surface of the wafer 41. The resist type and coating method are the same as described above.
Next, as shown in FIG. 2D, the opening 26 of the mask 25 is formed on the surface of the bump 44. The opening 26 is opened assuming the number of stacked conductive particles, which will be described in detail later. The method for forming the opening 26 is the same as described above.

次に、図3(a)に示すように、ウエハ41の能動面上に導電性粒子50を散布する。散布された導電性粒子50は、マスク25の上方に分散して配置されるとともに、マスク25に形成された開口部26に落下して、バンプ44の上方に配置される。   Next, as shown in FIG. 3A, conductive particles 50 are dispersed on the active surface of the wafer 41. The dispersed conductive particles 50 are dispersed and arranged above the mask 25, fall into the openings 26 formed in the mask 25, and are arranged above the bumps 44.

さらに、ウエハ41を振動させることにより、マスク25の上方に配置された導電性粒子50を開口部26に落下させて、より多くの導電性粒子をバンプ44の上方に配置することが望ましい。具体的には、ウエハ41を50〜1000Hzの高周波数で振動させる。特に、250〜500Hzの高周波数で振動させた場合には導電性粒子50が活発に動くので、より多くの導電性粒子をバンプ44の上方に配置することができる。また、ウエハ41の振動方向は、ウエハ41の能動面と平行な方向(水平方向)であっても、能動面と垂直な方向(垂直方向)であってもよい。その振幅は、水平方向振動の場合には、隣接するバンプ44のピッチ以下とするのが好ましく、たとえば40μm程度とする。また、垂直方向振動の場合には、開口部26の深さ以下とするのが好ましく、たとえば10μm程度とする。これにより、開口部26内に捕捉されていた導電性粒子50が、開口部26から飛び出すのを防止することができる。   Furthermore, it is desirable that the conductive particles 50 disposed above the mask 25 are dropped into the opening 26 by vibrating the wafer 41 so that more conductive particles are disposed above the bumps 44. Specifically, the wafer 41 is vibrated at a high frequency of 50 to 1000 Hz. In particular, when vibrated at a high frequency of 250 to 500 Hz, the conductive particles 50 move actively, so that more conductive particles can be disposed above the bumps 44. Further, the vibration direction of the wafer 41 may be a direction parallel to the active surface of the wafer 41 (horizontal direction) or a direction perpendicular to the active surface (vertical direction). In the case of horizontal vibration, the amplitude is preferably equal to or less than the pitch of the adjacent bumps 44, for example, about 40 μm. In the case of vertical vibration, the depth is preferably equal to or less than the depth of the opening 26, for example, about 10 μm. Thereby, it is possible to prevent the conductive particles 50 captured in the opening 26 from jumping out of the opening 26.

さらに、マスク25の上方に残存している導電性粒子50を除去する。導電性粒子50の除去は、1.ウエハ41の能動面に気体を吹き付けて、導電性粒子50を飛ばす方法、2.ウエハ41を振動させて、ウエハ41の周縁部から導電性粒子50を落下させる方法、3.ウエハ41を傾斜させつつ振動させることによりことにより、ウエハ41の周縁部から導電性粒子50を落下させる方法、4.可撓性を有する平板状のスキージを用いて導電性粒子50を掻き取ることにより、導電性粒子50を強制的に排除する方法などがあり、いずれの方法を採用してもよい。これにより、マスク25の表面に残存する導電性粒子50の多くを除去することができる。また、マスク25の表面に残存する導電性粒子50を除去しつつ、一部の導電性粒子を開口部に捕捉させることができる。したがって、より多くの導電性粒子50をバンプ44の表面に配置することができる。
なお、前工程では導電性粒子50を開口部26に落下させるためにウエハ41を振動させたが、その振幅を徐々に大きくして2.または3.の方法を実施してもよい。これにより、製造工程を簡略化することができる。
Further, the conductive particles 50 remaining above the mask 25 are removed. The removal of the conductive particles 50 is as follows. 1. a method for blowing conductive particles 50 by blowing gas on the active surface of the wafer 41; 2. a method of dropping the conductive particles 50 from the peripheral edge of the wafer 41 by vibrating the wafer 41; 3. a method of dropping the conductive particles 50 from the peripheral portion of the wafer 41 by vibrating the wafer 41 while tilting; There is a method of forcibly removing the conductive particles 50 by scraping the conductive particles 50 using a flat plate squeegee having flexibility, and any method may be adopted. Thereby, most of the conductive particles 50 remaining on the surface of the mask 25 can be removed. Further, it is possible to capture some of the conductive particles in the opening while removing the conductive particles 50 remaining on the surface of the mask 25. Therefore, more conductive particles 50 can be disposed on the surface of the bump 44.
In the previous step, the wafer 41 was vibrated to drop the conductive particles 50 into the opening 26, but the amplitude was gradually increased. Or 3. You may implement the method of. Thereby, a manufacturing process can be simplified.

後述するように、開口部26の高さは、導電性粒子50の直径以上に形成されている。そのため、バンプ44の上方の導電性粒子50は、開口部26内に安定して捕捉されている。したがって、上述した除去方法のいずれを採用した場合でも、マスク25の上方に配置された導電性粒子50のみを除去することが可能であり、バンプ44の上方に配置された導電性粒子50が同時に除去されるおそれは少ない。以上により、マスク25の上方に残存する導電性粒子50の多くを除去すれば、図3(a)に示す状態となる。   As will be described later, the height of the opening 26 is formed to be equal to or larger than the diameter of the conductive particles 50. Therefore, the conductive particles 50 above the bumps 44 are stably captured in the openings 26. Therefore, when any of the above-described removal methods is adopted, it is possible to remove only the conductive particles 50 disposed above the mask 25, and the conductive particles 50 disposed above the bumps 44 are simultaneously removed. There is little risk of being removed. As described above, when most of the conductive particles 50 remaining above the mask 25 are removed, the state shown in FIG.

次に、図3(b)に示すように、バンプ44の表面に熱可塑性樹脂溶液を塗布して、熱可塑性樹脂膜52を形成する。具体的には、ポリアミド等の熱可塑性樹脂をトルエン/エタノール等の溶剤に溶解した熱可塑性樹脂溶液を作製し、これをウエハ41の能動面上に塗布する。熱可塑性樹脂溶液の塗布は、ディスペンス法やスプレーコート法、スピンコート法、ディッピング法などによって行うことが可能である。次に、塗布した熱可塑性樹脂溶液を乾燥させ、溶剤を蒸発させる。すると、溶剤に溶解されていた熱可塑性樹脂が凝結し、熱可塑性樹脂膜52が形成される。これにより、バンプ44の表面に導電性粒子50が固着される。   Next, as shown in FIG. 3B, a thermoplastic resin solution is applied to the surface of the bump 44 to form a thermoplastic resin film 52. Specifically, a thermoplastic resin solution in which a thermoplastic resin such as polyamide is dissolved in a solvent such as toluene / ethanol is prepared, and this is applied onto the active surface of the wafer 41. The thermoplastic resin solution can be applied by a dispensing method, a spray coating method, a spin coating method, a dipping method, or the like. Next, the applied thermoplastic resin solution is dried to evaporate the solvent. Then, the thermoplastic resin dissolved in the solvent is condensed, and the thermoplastic resin film 52 is formed. Thereby, the conductive particles 50 are fixed to the surface of the bump 44.

ここで、形成される熱可塑性樹脂膜の厚さtが次式を満たすように、熱可塑性樹脂溶液を塗布することが望ましい。
h−d<t<h
ただし、hは開口部26の高さ、dは導電性粒子50の直径である。これにより、開口部26の内部に配置された導電性粒子50のすべてを、熱可塑性樹脂膜52によってバンプ44の表面に固着することができる。
Here, it is desirable to apply the thermoplastic resin solution so that the thickness t of the formed thermoplastic resin film satisfies the following formula.
h−d <t <h
Here, h is the height of the opening 26, and d is the diameter of the conductive particles 50. As a result, all of the conductive particles 50 arranged inside the opening 26 can be fixed to the surface of the bump 44 by the thermoplastic resin film 52.

なお、上述した熱可塑性樹脂溶液の塗布方法では、バンプ44の表面に加えてマスク25の表面にも熱可塑性樹脂溶液が塗布されるので、マスク25の表面にも熱可塑性樹脂膜52が形成されることになる。この点、インクジェット装置等の液滴吐出装置によれば、バンプ44の表面のみに一定量の熱可塑性樹脂溶液を吐出することができる。これにより、バンプ44の表面に対する導電性粒子50の固着状態を均一化することが可能になり、半導体素子と相手側基板とを確実に電気的接続することができる。また、熱可塑性樹脂溶液の消費量を低減することが可能になり、製造コストを低減することができる。   In the above-described method for applying the thermoplastic resin solution, since the thermoplastic resin solution is applied to the surface of the mask 25 in addition to the surface of the bump 44, the thermoplastic resin film 52 is also formed on the surface of the mask 25. Will be. In this regard, according to a droplet discharge device such as an inkjet device, a certain amount of thermoplastic resin solution can be discharged only to the surface of the bump 44. As a result, it is possible to make the conductive particles 50 fixed to the surface of the bump 44 uniform, and the semiconductor element and the counterpart substrate can be reliably electrically connected. In addition, the consumption of the thermoplastic resin solution can be reduced, and the manufacturing cost can be reduced.

また、熱可塑性樹脂溶液の塗布工程の前に、あらかじめマスク25の表面に撥液性を付与しておけば、バンプ44の表面のみに熱可塑性樹脂溶液を塗布することが可能になる。マスク25の表面に撥液性を付与する方法として、例えばテトラフルオロメタンを処理ガスとして大気雰囲気中でプラズマ処理するCF4 プラズマ処理法を採用することが可能である。また、マスク25に開口部26を形成する前に、あらかじめマスク25の表面にフッ素樹脂膜を形成しておいてもよい。 In addition, if a liquid repellency is given to the surface of the mask 25 in advance before the step of applying the thermoplastic resin solution, the thermoplastic resin solution can be applied only to the surface of the bump 44. As a method for imparting liquid repellency to the surface of the mask 25, for example, a CF 4 plasma treatment method in which plasma treatment is performed in an air atmosphere using tetrafluoromethane as a treatment gas can be employed. In addition, a fluororesin film may be formed on the surface of the mask 25 in advance before forming the opening 26 in the mask 25.

次に、図3(c)に示すように、マスク25を除去する。マスク25の除去は、レジスト剥離液にウエハ41を浸漬することによって行う。レジスト剥離液として、モノエタノールアミンとジメチルスルホキシドとを7:3の割合で混合した液体等を使用することが可能である。なお、マスク25を除去する際に、マスク25の上方に形成された熱可塑性樹脂膜も同時に除去される。なお、マスク25の上方に散布された導電性粒子を除去した後にマスク25を剥離するので、除去した導電性粒子を再利用することができる。これにより、高価な導電性粒子を無駄に廃棄することなく、そのすべてを電気的接続に利用することができる。
次に、ダイシング等により、ウエハ41から半導体素子を分離する。以上により、図1(a)に示すように、本実施形態の半導体素子40が形成される。
Next, as shown in FIG. 3C, the mask 25 is removed. The mask 25 is removed by immersing the wafer 41 in a resist stripping solution. As the resist stripping solution, it is possible to use a liquid in which monoethanolamine and dimethyl sulfoxide are mixed at a ratio of 7: 3. When removing the mask 25, the thermoplastic resin film formed above the mask 25 is also removed. In addition, since the mask 25 is peeled after removing the conductive particles dispersed above the mask 25, the removed conductive particles can be reused. Thereby, all of the expensive conductive particles can be used for electrical connection without wastefully discarding them.
Next, the semiconductor element is separated from the wafer 41 by dicing or the like. As described above, as shown in FIG. 1A, the semiconductor element 40 of the present embodiment is formed.

[電子部品の実装方法]
次に、図1に戻り、本実施形態に係る半導体素子の実装方法について説明する。
まず図1(a)に示すように、相手側基板10の表面に熱硬化性樹脂層60を形成する。熱硬化性樹脂層60の形成は、未硬化のエポキシ樹脂フィルムを貼り付けることによって行う。なお、未硬化のエポキシ樹脂ペーストを相手側基板10の表面に塗布することによって熱硬化性樹脂層60を形成してもよい。また、熱硬化性樹脂層60は半導体素子40の能動面上に形成してもよい。この場合には、ウエハの能動面に熱硬化性樹脂層60を形成した後に、ウエハから半導体素子40を分離する。さらに、半導体素子40を相手側基板10に実装した後に、半導体素子40と相手側基板10との隙間にアンダーフィルを充填して熱硬化性樹脂層60を形成してもよい。なお、いずれの場合でも、異方導電性フィルム(ACF)とは異なり、熱硬化性樹脂層60には導電性粒子が含まれていないことに注意されたい。
[Electronic component mounting method]
Next, returning to FIG. 1, a method for mounting a semiconductor device according to the present embodiment will be described.
First, as shown in FIG. 1A, a thermosetting resin layer 60 is formed on the surface of the counterpart substrate 10. The thermosetting resin layer 60 is formed by attaching an uncured epoxy resin film. The thermosetting resin layer 60 may be formed by applying an uncured epoxy resin paste to the surface of the counterpart substrate 10. Further, the thermosetting resin layer 60 may be formed on the active surface of the semiconductor element 40. In this case, after forming the thermosetting resin layer 60 on the active surface of the wafer, the semiconductor element 40 is separated from the wafer. Furthermore, after the semiconductor element 40 is mounted on the counterpart substrate 10, the thermosetting resin layer 60 may be formed by filling the gap between the semiconductor element 40 and the counterpart substrate 10 with an underfill. Note that in any case, unlike the anisotropic conductive film (ACF), the thermosetting resin layer 60 does not contain conductive particles.

そして、上記のように形成した半導体素子40を、上下反転して相手側基板10の上方に配置する。その際、半導体素子40に形成されたバンプ44と、相手側基板10に形成された電極パッド12とが対向するように、半導体素子40と相手側基板10とを配置する。   Then, the semiconductor element 40 formed as described above is turned upside down and disposed above the counterpart substrate 10. At this time, the semiconductor element 40 and the counterpart substrate 10 are arranged so that the bumps 44 formed on the semiconductor element 40 and the electrode pads 12 formed on the counterpart substrate 10 face each other.

次に、図1(b)に示すように、相手側基板10の表面に半導体素子40を押し付けて加圧する。これにより、半導体素子40のバンプ44上に固着された導電性粒子50が、相手側基板10の電極パッド12に接触して、両者が電気的に接続される。そして、この状態で熱硬化性樹脂層60を加熱する。加熱温度は、たとえば200℃とする。なお、相手側基板10への半導体素子40の加圧と同時に熱硬化性樹脂層60への加熱を行ってもよい。これにより、熱硬化性樹脂層60が硬化して、半導体素子40と相手側基板10とが機械的に接続される。また、半導体素子40および相手側基板10の電気的接続部が保護される。   Next, as shown in FIG. 1B, the semiconductor element 40 is pressed against the surface of the counterpart substrate 10 and is pressurized. As a result, the conductive particles 50 fixed on the bumps 44 of the semiconductor element 40 come into contact with the electrode pads 12 of the counterpart substrate 10 and are electrically connected. In this state, the thermosetting resin layer 60 is heated. The heating temperature is 200 ° C., for example. In addition, you may heat the thermosetting resin layer 60 simultaneously with the pressurization of the semiconductor element 40 to the other party board | substrate 10. FIG. Thereby, the thermosetting resin layer 60 is cured and the semiconductor element 40 and the counterpart substrate 10 are mechanically connected. In addition, the electrical connection between the semiconductor element 40 and the counterpart substrate 10 is protected.

なお、導電性粒子50をバンプに固着している熱可塑性樹脂膜52は、150℃程度で軟化する。そして、半導体素子40を相手側基板10に加圧しているので、バンプ44の表面に積層配置されていた導電性粒子50は、相手側基板10の電極パッド12との間に挟まれて、1層に再配置される。また、バンプ44の表面と導電性粒子50との間に熱可塑性樹脂膜52が介在していた場合でも、その熱可塑性樹脂膜52が軟化するので、バンプ44の表面と導電性粒子50とを接触させることができる。さらに、導電性粒子50と相手側基板10の電極パッド12との間に熱可塑性樹脂膜52が介在していた場合でも、その熱可塑性樹脂膜52が軟化するので、導電性粒子50と電極パッド12とを接触させることができる。したがって、半導体素子40と相手側基板10とを確実に電気的接続することができる。以上により、半導体素子40が相手側基板10に実装される。   Note that the thermoplastic resin film 52 in which the conductive particles 50 are fixed to the bumps is softened at about 150 ° C. Since the semiconductor element 40 is pressed against the mating substrate 10, the conductive particles 50 stacked on the surface of the bump 44 are sandwiched between the electrode pads 12 of the mating substrate 10 and 1. Rearranged in layers. Further, even when the thermoplastic resin film 52 is interposed between the surface of the bump 44 and the conductive particles 50, the thermoplastic resin film 52 is softened, so that the surface of the bump 44 and the conductive particles 50 are bonded to each other. Can be contacted. Further, even when the thermoplastic resin film 52 is interposed between the conductive particles 50 and the electrode pad 12 of the counterpart substrate 10, the thermoplastic resin film 52 is softened. 12 can be brought into contact with each other. Therefore, the semiconductor element 40 and the counterpart substrate 10 can be reliably electrically connected. As described above, the semiconductor element 40 is mounted on the counterpart substrate 10.

近年では、電子部品の小型化にともなって、電極パッド相互の狭ピッチ化が進んでいる。その場合でも、上述した熱硬化性樹脂層60には導電性粒子が含まれていないので、隣接する電極パッドが相互に短絡するおそれはない。また、バンプ44の表面にあらかじめ導電性粒子を固着してから実装するので、電極パッド自体が小さくなっても、確実に電気的接続を行うことができる。   In recent years, with the miniaturization of electronic components, the pitch between electrode pads has been reduced. Even in that case, since the thermosetting resin layer 60 does not contain conductive particles, there is no possibility that adjacent electrode pads are short-circuited to each other. In addition, since the conductive particles are fixed on the surface of the bump 44 before mounting, the electrical connection can be reliably performed even if the electrode pad itself is reduced.

(マスクの開口部の形状)
ここで、図2(d)においてマスク25に形成する開口部26の形状につき、図4を用いて説明する。
図4はマスクの開口部形状の説明図であり、図4(a)は導電性粒子を2層に積層配置する場合であり、図4(b)は導電性粒子を3層に積層配置する場合である。なお以下には、バンプ44の表面に配置された導電性粒子50の層を第1層と呼び、第1層の上方に配置された導電性粒子50の層を順に第2層、第3層、‥、第n層と呼ぶ。なお、nは自然数である。
(Shape of mask opening)
Here, the shape of the opening 26 formed in the mask 25 in FIG. 2D will be described with reference to FIG.
FIG. 4 is an explanatory diagram of the shape of the opening of the mask. FIG. 4A shows a case where conductive particles are arranged in two layers, and FIG. 4B shows a case where conductive particles are arranged in three layers. Is the case. Hereinafter, the layer of the conductive particles 50 disposed on the surface of the bump 44 is referred to as a first layer, and the layers of the conductive particles 50 disposed above the first layer are sequentially arranged as a second layer and a third layer. , ... called the nth layer. Note that n is a natural number.

開口部26の形状は、バンプ44の表面における導電性粒子50の積層数を想定して決定する。図4に示すように、導電性粒子50をn層に積層配置する場合には、バンプ44の表面からマスク25の表面までの高さhが次式を満足するように、マスク25を形成すればよい。
(n−1)・d<h<n・d ‥ (1)
ただし、dは導電性粒子50の直径である。
この場合、開口部26の開口面積Aが次式を満足するように、マスク25に対して開口部26を形成する。
A<S/n ‥ (2)
ただし、Sはバンプ44の表面の面積である。
The shape of the opening 26 is determined assuming the number of stacked conductive particles 50 on the surface of the bump 44. As shown in FIG. 4, when the conductive particles 50 are stacked in the n layer, the mask 25 is formed so that the height h from the surface of the bump 44 to the surface of the mask 25 satisfies the following formula. That's fine.
(N-1) · d <h <n · d (1)
Where d is the diameter of the conductive particles 50.
In this case, the opening 26 is formed in the mask 25 so that the opening area A of the opening 26 satisfies the following expression.
A <S / n (2)
Here, S is the area of the surface of the bump 44.

数式(1)および数式(2)の意味につき、導電性粒子50を2層に積層配置する場合(すなわち、n=2の場合)を例に、図4(a)を用いて説明する。
上述したように、本実施形態では、ウエハの能動面に導電性粒子50を散布した後に、マスク25の表面に配置された導電性粒子50を除去する工程を有する。導電性粒子50の除去は、スキージを用いてマスク25の表面を掻き取る方法などによって行う。ここで、バンプ44の表面からマスク25の表面までの高さhが、
d<h<2d ‥ (3)
を満たすようにマスク25が形成されていれば、第1層および第2層に配置された導電性粒子50は、開口部26に捕捉されたまま除去されない。この数式(3)は、数式(1)にn=2を代入した場合に一致する。したがって、バンプ44の上方に導電性粒子50を2層に積層配置することができる。
The meanings of the mathematical formulas (1) and (2) will be described with reference to FIG. 4A, taking as an example the case where the conductive particles 50 are stacked in two layers (that is, n = 2).
As described above, the present embodiment includes a step of removing the conductive particles 50 arranged on the surface of the mask 25 after the conductive particles 50 are dispersed on the active surface of the wafer. The conductive particles 50 are removed by a method of scraping the surface of the mask 25 using a squeegee. Here, the height h from the surface of the bump 44 to the surface of the mask 25 is
d <h <2d (3)
If the mask 25 is formed so as to satisfy the condition, the conductive particles 50 arranged in the first layer and the second layer are not removed while being captured by the opening 26. This mathematical formula (3) matches when n = 2 is substituted into the mathematical formula (1). Therefore, the conductive particles 50 can be stacked in two layers above the bumps 44.

ただし、半導体素子を相手側基板に実装すると、バンプ44の表面に積層配置された導電性粒子50は、相手側基板の電極パッドとの間に挟まれて、1層に再配置される。ここで余った導電性粒子50がバンプ44の周囲に溢れ出て、隣接するバンプ44の間を短絡させるおそれがある。そこで、導電性粒子50がバンプ44の周囲に溢れ出るのを防止するため、バンプ44の表面の一部のみに導電性粒子50を積層配置する。
図5(a)は、半導体素子の平面図である。本実施形態では、バンプ44の表面の中央部50aのみに、導電性粒子を積層配置する。これにより、導電性粒子がバンプ44の周囲に溢れ出るのを確実に防止することができる。
However, when the semiconductor element is mounted on the counterpart substrate, the conductive particles 50 stacked on the surface of the bump 44 are sandwiched between the electrode pads of the counterpart substrate and rearranged in one layer. The surplus conductive particles 50 may overflow around the bumps 44 and short-circuit between adjacent bumps 44. Therefore, in order to prevent the conductive particles 50 from overflowing around the bumps 44, the conductive particles 50 are laminated and disposed only on a part of the surface of the bumps 44.
FIG. 5A is a plan view of the semiconductor element. In the present embodiment, conductive particles are laminated and disposed only on the central portion 50 a of the surface of the bump 44. Thereby, it is possible to reliably prevent the conductive particles from overflowing around the bumps 44.

そして、上記のような導電性粒子の配置を実現するように、図4(a)に示すマスク25の開口部26を形成する。なお、2層に積層配置されていた導電性粒子50が1層に再配置される場合には、バンプ44の表面において導電性粒子50の占める面積が2倍に拡大することになる。そして、バンプ44の表面において導電性粒子50の占める面積は、マスク25の開口部26の開口面積に依存する。そこで、開口部26の開口面積Aが、バンプ44の上面の面積Sとの関係で、
A<S/2 ‥ (4)
を満たすように、開口部26を形成する。この数式(4)は、数式(2)にn=2を代入した場合に一致する。これにより、2層に積層配置されていた導電性粒子50が1層に再配置されても、導電性粒子50の占める面積がバンプ44の表面の面積を超えることはない。したがって、半導体素子を相手側基板に実装する際に、導電性粒子がバンプ44の周囲に溢れ出るのを防止することが可能になる。
And the opening part 26 of the mask 25 shown to Fig.4 (a) is formed so that arrangement | positioning of the above electroconductive particle may be implement | achieved. When the conductive particles 50 stacked in two layers are rearranged in one layer, the area occupied by the conductive particles 50 on the surface of the bump 44 is doubled. The area occupied by the conductive particles 50 on the surface of the bump 44 depends on the opening area of the opening 26 of the mask 25. Therefore, the opening area A of the opening 26 is related to the area S of the upper surface of the bump 44.
A <S / 2 (4)
The opening 26 is formed so as to satisfy the above. This equation (4) matches when n = 2 is substituted into equation (2). As a result, even if the conductive particles 50 stacked in two layers are rearranged in one layer, the area occupied by the conductive particles 50 does not exceed the area of the surface of the bump 44. Therefore, it is possible to prevent the conductive particles from overflowing around the bumps 44 when the semiconductor element is mounted on the counterpart substrate.

一方、図4(b)に示すように、導電性粒子50を3層に積層配置する場合には、バンプ44の表面からマスク25の表面までの高さh、および開口部26の開口面積Aが次式を満たすように、マスク25および開口部26を形成する。
2d<h<3d ‥ (5)
A<S/3 ‥ (6)
この数式(5)および数式(6)は、数式(1)および数式(2)にn=3を代入した場合に一致する。
On the other hand, as shown in FIG. 4B, when the conductive particles 50 are stacked in three layers, the height h from the surface of the bump 44 to the surface of the mask 25 and the opening area A of the opening 26 are shown. The mask 25 and the opening 26 are formed so that the following equation is satisfied.
2d <h <3d (5)
A <S / 3 (6)
Equations (5) and (6) match when n = 3 is substituted into Equations (1) and (2).

なお、導電性粒子50を4層以上に積層配置する場合も考えられる。ところが、上述したようにバンプ44の幅は例えば30μmと狭くなっているので、数式(1)および数式(2)を満足しつつ導電性粒子50を4層以上に積層配置すると、積層配置された複数の導電性粒子50の幅がその高さより小さくなって不安定になる。したがって、導電性粒子50は2層または3層(すなわち、n=2またはn=3)に積層配置することが望ましい。   A case where the conductive particles 50 are stacked in four or more layers is also conceivable. However, as described above, since the width of the bumps 44 is as narrow as 30 μm, for example, when the conductive particles 50 are stacked in four or more layers while satisfying the formulas (1) and (2), the layers are stacked. The width of the plurality of conductive particles 50 becomes smaller than the height and becomes unstable. Therefore, it is desirable that the conductive particles 50 are laminated in two or three layers (that is, n = 2 or n = 3).

以上に詳述したように、本実施形態の電子部品の製造方法では、数式(1)および数式(2)を満たすようにマスクおよび開口部を形成し、導電性粒子をバンプ表面に積層配置する構成とした。この構成によれば、バンプ表面に積層配置された導電性粒子が、半導体素子を相手側基板に実装する際に1層に再配置されても、バンプの周囲に溢れ出るのを防止することができる。したがって、複数のバンプが狭ピッチに配列されている場合でも、バンプ間の短絡を防止することができる。   As described in detail above, in the method of manufacturing an electronic component according to the present embodiment, the mask and the opening are formed so as to satisfy Equation (1) and Equation (2), and the conductive particles are stacked on the bump surface. The configuration. According to this configuration, the conductive particles stacked on the bump surface can be prevented from overflowing around the bump even if the conductive particles are rearranged in one layer when the semiconductor element is mounted on the counterpart substrate. it can. Therefore, even when a plurality of bumps are arranged at a narrow pitch, a short circuit between the bumps can be prevented.

また、導電性粒子がバンプの周囲に溢れ出るのを防止することができるので、すべての導電性粒子を、半導体素子と相手側基板との電気的接続に利用することが可能になる。これにより、高価な導電性粒子を無駄に消費することがなくなり、製造コストを低減することができる。さらに、すべての導電性粒子を電気的接続に利用することができるので、半導体素子のバンプと相手側基板の電極パッドとの間の電気抵抗が小さくなり、液晶モジュールの電力消費量を低減することができる。   In addition, since the conductive particles can be prevented from overflowing around the bumps, all the conductive particles can be used for electrical connection between the semiconductor element and the counterpart substrate. Thereby, expensive conductive particles are not wasted, and the manufacturing cost can be reduced. Furthermore, since all the conductive particles can be used for electrical connection, the electrical resistance between the bumps of the semiconductor element and the electrode pads of the counterpart substrate is reduced, reducing the power consumption of the liquid crystal module. Can do.

なお、半導体素子と相手側基板との間に異方導電性フィルム(ACF)を配置した場合には、半導体素子のバンプと相手側基板の電極パッドとの間に配置される導電性粒子の個数は10〜20個程度である。そして、これ以上の導電性粒子を配置するには、ACFに含まれる導電性粒子の密度を増加させる必要があるが、隣接する電極パッドが相互に短絡する可能性が大きくなる。これに対して、本実施形態に係る電子部品の製造方法を使用して半導体素子を製造すれば、バンプの表面に多数の導電性粒子を配置することができる。一例をあげれば、バンプの表面積の80%以上に導電性粒子を配置することが可能である。これにより、半導体素子のバンプと相手側基板の電極パッドとの間の電気抵抗が小さくなり、液晶モジュールの電力消費量を低減することができる。この場合でも、隣接する電極パッドが相互に短絡するおそれがないのは、上述した通りである。   When an anisotropic conductive film (ACF) is arranged between the semiconductor element and the counterpart substrate, the number of conductive particles arranged between the bump of the semiconductor element and the electrode pad of the counterpart substrate Is about 10-20. In order to dispose more conductive particles than this, it is necessary to increase the density of the conductive particles contained in the ACF, but there is a high possibility that adjacent electrode pads are short-circuited to each other. On the other hand, if a semiconductor element is manufactured using the method for manufacturing an electronic component according to this embodiment, a large number of conductive particles can be arranged on the surface of the bump. For example, it is possible to dispose conductive particles on 80% or more of the surface area of the bump. Thereby, the electrical resistance between the bump of the semiconductor element and the electrode pad of the counterpart substrate is reduced, and the power consumption of the liquid crystal module can be reduced. Even in this case, as described above, there is no possibility that adjacent electrode pads short-circuit each other.

[変形例]
図5(b)は、本実施形態の変形例の説明図である。上述した本実施形態では、図5(a)に示すように、バンプ44の表面の中央部50aに導電性粒子を積層配置した。しかしながら、図5(b)に示すように、複数のバンプ44がX方向に狭ピッチで配列され、Y方向には広い間隔を置いて配置されている場合には、X方向におけるバンプ間の短絡のみが問題となる。そこで、バンプ44の狭ピッチの配列方向(X方向)におけるバンプ44の中央部50bに、導電性粒子を積層配置してもよい。この場合、バンプ44の非配列方向(Y方向)については、バンプ44と同じ幅に導電性粒子を積層配置する。
[Modification]
FIG. 5B is an explanatory diagram of a modification of the present embodiment. In the present embodiment described above, as shown in FIG. 5A, conductive particles are stacked and arranged at the central portion 50 a on the surface of the bump 44. However, as shown in FIG. 5B, when a plurality of bumps 44 are arranged at a narrow pitch in the X direction and are arranged at a wide interval in the Y direction, a short circuit between the bumps in the X direction. Only matters. Therefore, conductive particles may be laminated and disposed in the central portion 50 b of the bump 44 in the narrow pitch arrangement direction (X direction) of the bump 44. In this case, with respect to the non-arrangement direction (Y direction) of the bumps 44, conductive particles are laminated and arranged in the same width as the bumps 44.

そのため、図4に示すマスク25の開口部26におけるX方向の幅Bが、バンプ44のX方向の幅Wとの関係で、
B<W/n ‥ (7)
を満たすように、開口部26を形成する。すなわち、数式(1)および数式(7)を同時に満たすようにマスク25および開口部26を形成することにより、本変形例のような導電性粒子の配置を実現することができる。
Therefore, the width B in the X direction at the opening 26 of the mask 25 shown in FIG. 4 is related to the width W in the X direction of the bump 44.
B <W / n (7)
The opening 26 is formed so as to satisfy the above. That is, by forming the mask 25 and the opening 26 so as to satisfy the expressions (1) and (7) at the same time, the arrangement of the conductive particles as in the present modification can be realized.

そして、本変形例によれば、バンプ表面に積層配置された導電性粒子が、半導体素子を相手側基板に実装する際に1層に再配置されても、複数のバンプの狭ピッチの配列方向(X方向)に溢れ出るのを防止することができる。したがって、バンプが狭ピッチで配列されている場合でも、バンプ間の短絡を防止することができる。なお、導電性粒子がバンプの非配列方向(Y方向)に溢れ出ても、その方向にはバンプが狭ピッチで配列されていないので、バンプ間の短絡は問題にならない。   And according to this modification, even if the conductive particles laminated on the bump surface are rearranged in one layer when the semiconductor element is mounted on the counterpart substrate, the arrangement direction of the narrow pitch of the plurality of bumps It is possible to prevent overflowing in the (X direction). Therefore, even when the bumps are arranged at a narrow pitch, a short circuit between the bumps can be prevented. Even if the conductive particles overflow in the non-arrangement direction (Y direction) of the bumps, the bumps are not arranged in a narrow pitch in that direction, so that a short circuit between the bumps is not a problem.

なお、複数のバンプ44が2方向に(マトリクス状に)狭ピッチで配列形成されている場合には、両方向におけるバンプ44の中央部に導電性粒子50を積層配置する。この場合、図5(a)に示すように、バンプ44の中央部50aに導電性粒子を積層配置することになる。また、複数のバンプ44が2方向に異なるピッチで配列形成されている場合には、狭ピッチの配列方向におけるバンプ44の中央部のみに導電性粒子を積層配置してもよい。例えば、複数のバンプ44が図5(b)のX方向に狭ピッチで配列形成されている場合には、X方向におけるバンプ44の中央部50bに導電性粒子を積層配置すればよい。   When a plurality of bumps 44 are arranged in two directions (in a matrix) at a narrow pitch, conductive particles 50 are stacked and arranged at the center of the bumps 44 in both directions. In this case, as shown in FIG. 5A, conductive particles are stacked and disposed in the central portion 50a of the bump 44. When a plurality of bumps 44 are arranged at different pitches in two directions, conductive particles may be laminated and arranged only at the center of the bumps 44 in the narrow pitch arrangement direction. For example, in the case where a plurality of bumps 44 are arranged at a narrow pitch in the X direction in FIG. 5B, conductive particles may be stacked and disposed at the central portion 50b of the bump 44 in the X direction.

[電気光学装置]
次に、前記半導体素子が実装された電気光学装置の一例である液晶モジュールにつき、図6ないし図8を用いて説明する。
図6は、液晶モジュールの分解斜視図である。図6に示す液晶モジュール1は、カラー画像を表示する液晶パネル90と、液晶パネル90の上基板80(相手側基板10)に実装される液晶パネル90の駆動用半導体素子40とを主として構成されている。
[Electro-optical device]
Next, a liquid crystal module which is an example of an electro-optical device on which the semiconductor element is mounted will be described with reference to FIGS.
FIG. 6 is an exploded perspective view of the liquid crystal module. The liquid crystal module 1 shown in FIG. 6 mainly includes a liquid crystal panel 90 that displays a color image, and a driving semiconductor element 40 of the liquid crystal panel 90 that is mounted on the upper substrate 80 (the counterpart substrate 10) of the liquid crystal panel 90. ing.

図7は液晶パネルの分解斜視図であり、図8は図7のA−A線における側面断面図である。図8に示すように、液晶パネル90は、下基板70および上基板80により液晶層92を挟持して構成されている。この液晶層92にはネマチック液晶等が採用され、液晶パネル90の動作モードとしてツイステッドネマチック(TN)モードが採用されている。なお上記以外の液晶材料を採用することも可能であり、また上記以外の動作モードを採用することも可能である。なお以下には、スイッチング素子としてTFD素子を用いたアクティブマトリクス型の液晶パネルを例にして説明するが、これ以外のアクティブマトリクス型の液晶パネルやパッシブマトリクス型の液晶パネルに本発明を適用することも可能である。   FIG. 7 is an exploded perspective view of the liquid crystal panel, and FIG. 8 is a side sectional view taken along line AA of FIG. As shown in FIG. 8, the liquid crystal panel 90 is configured by sandwiching a liquid crystal layer 92 between a lower substrate 70 and an upper substrate 80. A nematic liquid crystal or the like is employed for the liquid crystal layer 92, and a twisted nematic (TN) mode is employed as an operation mode of the liquid crystal panel 90. Note that liquid crystal materials other than those described above can be employed, and operation modes other than those described above can be employed. Hereinafter, an active matrix type liquid crystal panel using a TFD element as a switching element will be described as an example. However, the present invention is applied to other active matrix type liquid crystal panels and passive matrix type liquid crystal panels. Is also possible.

図7に示すように、液晶パネル90では、ガラス等の透明材料からなる下基板70および上基板80が対向配置されている。
上基板80の内側には、複数のデータ線81が形成されている。そのデータ線81の側方には、ITO等の透明導電性材料からなる複数の画素電極82が、マトリクス状に配置されている。なお、各画素電極82の形成領域により画素領域が構成されている。この画素電極82は、TFD素子83を介して各データ線81に接続されている。このTFD素子83は、基板表面に形成されたTaを主成分とする第1導電膜と、その第1導電膜の表面に形成されたTaを主成分とする絶縁膜と、その絶縁膜の表面に形成されたCrを主成分とする第2導電膜とによって構成されている(いわゆるMIM構造)。そして、第1導電膜がデータ線81に接続され、第2導電膜が画素電極82に接続されている。これによりTFD素子83は、画素電極82への通電を制御するスイッチング素子として機能する。
As shown in FIG. 7, in the liquid crystal panel 90, a lower substrate 70 and an upper substrate 80 made of a transparent material such as glass are disposed to face each other.
A plurality of data lines 81 are formed inside the upper substrate 80. A plurality of pixel electrodes 82 made of a transparent conductive material such as ITO are arranged in a matrix on the side of the data line 81. Note that a pixel region is constituted by the formation region of each pixel electrode 82. The pixel electrode 82 is connected to each data line 81 via the TFD element 83. The TFD element 83 includes a first conductive film mainly composed of Ta formed on the surface of the substrate, an insulating film mainly composed of Ta 2 O 3 formed on the surface of the first conductive film, and an insulation thereof. A second conductive film mainly composed of Cr formed on the surface of the film (so-called MIM structure). The first conductive film is connected to the data line 81 and the second conductive film is connected to the pixel electrode 82. Accordingly, the TFD element 83 functions as a switching element that controls energization to the pixel electrode 82.

一方、下基板70の内側には、カラーフィルタ膜76が形成されている。カラーフィルタ膜76は、平面視略矩形状のカラーフィルタ76R,76G,76Bによって構成されている。各カラーフィルタ76R,76G,76Bは、それぞれ異なる色光のみを透過する顔料等によって構成され、各画素領域に対応してマトリクス状に配置されている。また、隣接する画素領域からの光洩れを防止するため、各カラーフィルタの周縁部には遮光膜77が形成されている。この遮光膜77は、光吸収性を有する黒色の金属クロム等により、額縁状に形成されている。さらに、カラーフィルタ膜76および遮光膜77を覆うように、透明な絶縁膜79が形成されている。   On the other hand, a color filter film 76 is formed inside the lower substrate 70. The color filter film 76 is composed of color filters 76R, 76G, and 76B having a substantially rectangular shape in plan view. Each of the color filters 76R, 76G, and 76B is made of a pigment that transmits only different color light, and is arranged in a matrix corresponding to each pixel region. Further, in order to prevent light leakage from adjacent pixel regions, a light shielding film 77 is formed on the peripheral edge of each color filter. The light shielding film 77 is formed in a frame shape from black metal chrome having light absorptivity. Further, a transparent insulating film 79 is formed so as to cover the color filter film 76 and the light shielding film 77.

その絶縁膜79の内側には、複数の走査線72が形成されている。この走査線72は、ITO等の透明導電材料によって略帯状に形成され、上基板80のデータ線81と交差する方向に延在している。そして走査線72は、その延在方向に配列された前記カラーフィルタ76R,76G,76Bを覆うように形成され、対向電極として機能するようになっている。そして、走査線72に走査信号が供給され、データ線81にデータ信号が供給されると、対向する画素電極82および対向電極72により、液晶層に電界が印加されるようになっている。   A plurality of scanning lines 72 are formed inside the insulating film 79. The scanning line 72 is formed in a substantially strip shape by a transparent conductive material such as ITO and extends in a direction intersecting the data line 81 of the upper substrate 80. The scanning line 72 is formed so as to cover the color filters 76R, 76G, and 76B arranged in the extending direction, and functions as a counter electrode. When a scanning signal is supplied to the scanning line 72 and a data signal is supplied to the data line 81, an electric field is applied to the liquid crystal layer by the opposing pixel electrode 82 and the opposing electrode 72.

また図8に示すように、画素電極82および対向電極72を覆うように、配向膜74,84が形成されている。この配向膜74,84は、電界無印加時における液晶分子の配向状態を制御するものであり、ポリイミド等の有機高分子材料によって構成され、その表面にラビング処理が施されている。これにより電界無印加時には、配向膜74,84の表面付近における液晶分子が、その長軸方向をラビング処理方向に一致させて、配向膜74,84と略平行に配向されるようになっている。なお、配向膜74の表面付近における液晶分子の配向方向と、配向膜84の表面付近における液晶分子の配向方向とが所定角度だけずれるように、各配向膜74,84に対してラビング処理が施されている。これにより、液晶層92を構成する液晶分子は、液晶層92の厚さ方向に沿ってらせん状に積層されるようになっている。   Further, as shown in FIG. 8, alignment films 74 and 84 are formed so as to cover the pixel electrode 82 and the counter electrode 72. The alignment films 74 and 84 control the alignment state of the liquid crystal molecules when no electric field is applied, and are made of an organic polymer material such as polyimide, and the surface thereof is rubbed. As a result, when no electric field is applied, the liquid crystal molecules in the vicinity of the surfaces of the alignment films 74 and 84 are aligned substantially parallel to the alignment films 74 and 84 with the major axis direction coinciding with the rubbing treatment direction. . The alignment films 74 and 84 are rubbed so that the alignment direction of the liquid crystal molecules near the surface of the alignment film 74 and the alignment direction of the liquid crystal molecules near the surface of the alignment film 84 are shifted by a predetermined angle. Has been. Thereby, the liquid crystal molecules constituting the liquid crystal layer 92 are spirally stacked along the thickness direction of the liquid crystal layer 92.

また、両基板70,80は、熱硬化型や紫外線硬化型などの接着剤からなるシール材93によって周縁部が接合されている。そして、両基板70,80とシール材93とによって囲まれた空間に、液晶層92が封止されている。なお、液晶層92の厚さ(セルギャップ)は、両基板の間に配置されたスペーサ粒子95によって規制されている。
一方、下基板70および上基板80の外側には、偏光板(不図示)が配置されている。各偏光板は、相互の偏光軸(透過軸)が所定角度だけずれた状態で配置されている。また入射側偏光板の外側には、バックライト(不図示)が配置されている。
Further, the peripheral portions of the substrates 70 and 80 are joined by a sealing material 93 made of an adhesive such as a thermosetting type or an ultraviolet curable type. A liquid crystal layer 92 is sealed in a space surrounded by the substrates 70 and 80 and the sealing material 93. Note that the thickness (cell gap) of the liquid crystal layer 92 is regulated by the spacer particles 95 arranged between the two substrates.
On the other hand, a polarizing plate (not shown) is disposed outside the lower substrate 70 and the upper substrate 80. Each polarizing plate is arranged in a state in which the mutual polarization axes (transmission axes) are shifted by a predetermined angle. Further, a backlight (not shown) is disposed outside the incident side polarizing plate.

そして、バックライトから照射された光は、入射側偏光板の偏光軸に沿った直線偏光に変換されて、下基板70から液晶層92に入射する。この直線偏光は、電界無印加状態の液晶層92を透過する過程で、液晶分子のねじれ方向に沿って所定角度だけ旋回し、出射側偏光板を透過する。これにより、電界無印加時には白表示が行われる(ノーマリーホワイトモード)。一方、液晶層92に電界を印加すると、電界方向に沿って配向膜74,84と垂直に液晶分子が再配向する。この場合、液晶層92に入射した直線偏光は旋回しないので、出射側偏光板を透過しない。これにより、電界無印加時には黒表示が行われる。なお、印加する電界の強さによって階調表示を行うことも可能である。
液晶パネル90は、以上のように構成されている。
The light emitted from the backlight is converted into linearly polarized light along the polarization axis of the incident-side polarizing plate and enters the liquid crystal layer 92 from the lower substrate 70. This linearly polarized light is rotated by a predetermined angle along the twist direction of the liquid crystal molecules in the process of passing through the liquid crystal layer 92 in a state where no electric field is applied, and is transmitted through the output side polarizing plate. Thereby, white display is performed when no electric field is applied (normally white mode). On the other hand, when an electric field is applied to the liquid crystal layer 92, the liquid crystal molecules are reoriented perpendicularly to the alignment films 74 and 84 along the electric field direction. In this case, the linearly polarized light incident on the liquid crystal layer 92 does not rotate, and therefore does not pass through the output side polarizing plate. Thereby, black display is performed when no electric field is applied. Note that gradation display can also be performed depending on the strength of an applied electric field.
The liquid crystal panel 90 is configured as described above.

図6に戻り、液晶パネル90を構成する上基板80の一辺に、下基板70からの張り出し部80aが形成されている。その張り出し部80aには、上基板80からデータ線81が、下基板70から走査線72がそれぞれ引き回され、これらの端部には上述した電極パッド(不図示)が形成されている。そして、その電極パッドに対し、上述した熱硬化性樹脂層60を介して、本実施形態の半導体素子40が実装されている。この半導体素子40により、液晶パネル90のデータ線81および走査線72に対する通電が制御され、液晶パネル90の各画素が駆動されて、画像表示が行われるようになっている。   Returning to FIG. 6, a protruding portion 80 a from the lower substrate 70 is formed on one side of the upper substrate 80 constituting the liquid crystal panel 90. A data line 81 is routed from the upper substrate 80 and a scanning line 72 is routed from the lower substrate 70 to the projecting portion 80a, and the above-described electrode pads (not shown) are formed at these end portions. And the semiconductor element 40 of this embodiment is mounted through the thermosetting resin layer 60 mentioned above with respect to the electrode pad. The semiconductor element 40 controls the energization of the data lines 81 and the scanning lines 72 of the liquid crystal panel 90 and drives each pixel of the liquid crystal panel 90 to display an image.

以上には、半導体素子40をガラス基板10に実装するCOG(Chip On Grass)に対して本発明を適用する場合について述べたが、ポリイミド等からなるフレキシブルプリント基板に半導体素子40を実装するCOF(Chip On Film)に対して本発明を適用することも可能である。この場合、FPCは、異方導電性フィルム(ACF)等を介して、液晶パネル90の上基板80における張り出し部80aに実装される。   Although the case where the present invention is applied to COG (Chip On Grass) in which the semiconductor element 40 is mounted on the glass substrate 10 has been described above, the COF (mounting semiconductor element 40 on a flexible printed circuit board made of polyimide or the like) It is also possible to apply the present invention to (Chip On Film). In this case, the FPC is mounted on the protruding portion 80a of the upper substrate 80 of the liquid crystal panel 90 via an anisotropic conductive film (ACF) or the like.

[電子機器]
図9は、本発明に係る電子機器の一例を示す斜視図である。この図に示す携帯電話1300は、上述した電気光学装置を小サイズの表示部1301として備え、複数の操作ボタン1302、受話口1303、及び送話口1304を備えて構成されている。
上述した電気光学装置は、上記携帯電話に限らず、電子ブック、パーソナルコンピュータ、ディジタルスチルカメラ、液晶テレビ、ビューファインダ型あるいはモニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、タッチパネルを備えた機器等々の画像表示手段として好適に用いることができ、いずれの場合にも電気的接続の信頼性に優れた電子機器を提供することができる。
[Electronics]
FIG. 9 is a perspective view showing an example of an electronic apparatus according to the present invention. A cellular phone 1300 shown in the figure includes the above-described electro-optical device as a small-sized display unit 1301 and includes a plurality of operation buttons 1302, a mouthpiece 1303, and a mouthpiece 1304.
The above-described electro-optical device is not limited to the above mobile phone, but an electronic book, a personal computer, a digital still camera, a liquid crystal television, a viewfinder type or a monitor direct-view type video tape recorder, a car navigation device, a pager, an electronic notebook, a calculator, It can be suitably used as an image display means for a word processor, a workstation, a videophone, a POS terminal, a device equipped with a touch panel, etc., and in any case, an electronic device having excellent electrical connection reliability can be provided. it can.

なお、本発明の技術範囲は、上述した各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、各実施形態で挙げた具体的な材料や構成などはほんの一例に過ぎず、適宜変更が可能である。   The technical scope of the present invention is not limited to the above-described embodiments, and includes those in which various modifications are made to the above-described embodiments without departing from the spirit of the present invention. That is, the specific materials and configurations described in the embodiments are merely examples, and can be changed as appropriate.

実施形態に係る半導体素子およびその実装構造の説明図である。It is explanatory drawing of the semiconductor element which concerns on embodiment, and its mounting structure. 実施形態に係る半導体素子の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the semiconductor element which concerns on embodiment. 実施形態に係る半導体素子の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the semiconductor element which concerns on embodiment. 実施形態に係る半導体素子の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the semiconductor element which concerns on embodiment. マスクの開口部形状の説明図である。It is explanatory drawing of the opening part shape of a mask. 液晶モジュールの分解斜視図である。It is a disassembled perspective view of a liquid crystal module. 液晶パネルの分解斜視図である。It is a disassembled perspective view of a liquid crystal panel. 液晶パネルの側面断面図である。It is side surface sectional drawing of a liquid crystal panel. 携帯電話の斜視図である。It is a perspective view of a mobile phone. 従来技術に係る半導体素子の実装方法の説明図である。It is explanatory drawing of the mounting method of the semiconductor element which concerns on a prior art.

符号の説明Explanation of symbols

25マスク 26開口部 44バンプ 50導電性粒子   25 masks 26 openings 44 bumps 50 conductive particles

Claims (2)

能動面に形成された電極パッドを介して相手側基板に実装される電子部品の製造方法であって、
前記電極パッドの表面にバンプを形成する工程と、前記バンプの表面に開口部を有するマスクを前記能動面に形成する工程と、前記能動面に導電性粒子を散布して前記開口部に捕捉させる工程と、前記開口部に積層配置された前記導電性粒子を前記バンプの表面に固着させる工程と、を有し、
前記開口部の高さhおよび開口面積Aが次式を満たすように、前記マスクおよび前記開口部を形成することを特徴とする電子部品の製造方法。
(n−1)・d<h<n・d
A<S/n
ただし、dは前記導電性粒子の直径、Sは前記バンプの表面の面積、nは2または3である。
A method of manufacturing an electronic component mounted on a counterpart substrate via an electrode pad formed on an active surface,
Forming a bump on the surface of the electrode pad; forming a mask having an opening on the surface of the bump on the active surface; and spraying conductive particles on the active surface to capture the opening. And a step of fixing the conductive particles stacked and arranged in the opening to the surface of the bump,
The method of manufacturing an electronic component, wherein the mask and the opening are formed so that a height h and an opening area A of the opening satisfy the following expression.
(N-1) · d <h <n · d
A <S / n
Here, d is the diameter of the conductive particles, S is the surface area of the bump, and n is 2 or 3 .
能動面に形成された電極パッドを介して相手側基板に実装される電子部品の製造方法であって、
前記電極パッドの表面にバンプを形成する工程と、前記バンプの表面に開口部を有するマスクを前記能動面に形成する工程と、前記能動面に導電性粒子を散布して前記開口部に捕捉させる工程と、前記開口部に積層配置された前記導電性粒子を前記バンプの表面に固着させる工程と、を有し、
前記開口部の高さhおよび複数の前記バンプの狭ピッチの配列方向における前記開口部の幅Bが次式を満たすように、前記マスクおよび前記開口部を形成することを特徴とする電子部品の製造方法。
(n−1)・d<h<n・d
B<W/n
ただし、dは前記導電性粒子の直径、Wは複数の前記バンプの狭ピッチの配列方向における前記バンプの幅、nは2または3である。
A method of manufacturing an electronic component mounted on a counterpart substrate via an electrode pad formed on an active surface,
Forming a bump on the surface of the electrode pad; forming a mask having an opening on the surface of the bump on the active surface; and spraying conductive particles on the active surface to capture the opening. And a step of fixing the conductive particles stacked and arranged in the opening to the surface of the bump,
The mask and the opening are formed so that the height h of the opening and the width B of the opening in a narrow pitch arrangement direction of the plurality of bumps satisfy the following expression: Production method.
(N-1) · d <h <n · d
B <W / n
Here, d is the diameter of the conductive particles, W is the width of the bump in the narrow pitch arrangement direction of the bumps, and n is 2 or 3 .
JP2004114118A 2004-04-08 2004-04-08 Manufacturing method of electronic parts Expired - Fee Related JP4103835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004114118A JP4103835B2 (en) 2004-04-08 2004-04-08 Manufacturing method of electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004114118A JP4103835B2 (en) 2004-04-08 2004-04-08 Manufacturing method of electronic parts

Publications (2)

Publication Number Publication Date
JP2005302870A JP2005302870A (en) 2005-10-27
JP4103835B2 true JP4103835B2 (en) 2008-06-18

Family

ID=35334032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004114118A Expired - Fee Related JP4103835B2 (en) 2004-04-08 2004-04-08 Manufacturing method of electronic parts

Country Status (1)

Country Link
JP (1) JP4103835B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020850A (en) * 2006-07-14 2008-01-31 Seiko Epson Corp Liquid crystal device, method of manufacturing the same, and electronic apparatus
KR101309319B1 (en) 2006-11-22 2013-09-13 삼성디스플레이 주식회사 Driving circuit, method of manufacturing thereof and liquid crystal display apparatus having the same
JP2008244191A (en) * 2007-03-28 2008-10-09 Fujitsu Ltd Method for manufacturing circuit board including built-in components
JP2009186707A (en) * 2008-02-06 2009-08-20 Seiko Epson Corp Method of manufacturing electro-optical device and electro-optical device
GB2523983A (en) * 2013-12-17 2015-09-16 Conpart As Bonded assemblies with pre-deposited polymer balls on demarcated areas and methods of forming such bonded assemblies
JP6259695B2 (en) * 2014-03-24 2018-01-10 芝浦メカトロニクス株式会社 Substrate processing apparatus, substrate processing method, and substrate manufacturing method
CN109061958B (en) * 2018-08-30 2021-12-31 京东方科技集团股份有限公司 Mask and control method thereof

Also Published As

Publication number Publication date
JP2005302870A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP3891133B2 (en) Electronic component manufacturing method and electronic component mounting method
KR100516597B1 (en) Semiconductor device, semiconductor device mounting structure, liquid crystal device, and electronic apparatus
KR100699666B1 (en) Electronic component, mounted structure, electro-optical device, and electronic device
WO2007039959A1 (en) Wiring board and display device provided with same
JP2007180166A (en) Electronic component, manufacturing method thereof, circuit board, and electronic equipment
JP3933094B2 (en) Electronic component mounting method
JP2003273476A (en) Mounting structure and method of manufacturing the same, electro-optical device and electronic device
JP4103835B2 (en) Manufacturing method of electronic parts
TWI292073B (en)
JPH07120772A (en) Liquid crystal display device and packaging structure of semiconductor element and packaging mehtod of semiconductor element and electro-optic device and electronic printer
JP2007165745A (en) Mounting structure, electrooptical device and electronic equipment
US6741315B1 (en) Liquid crystal device and electronic apparatus
JP2005235829A (en) Method of manufacturing electronic component, electronic component, method of mounting electronic component, and electronic apparatus
JP2005229044A (en) Electronic component, manufacturing method thereof, and electronic equipment
JP2004111808A (en) Wiring board, electro-optical device, and electronic apparatus
JP2003273486A (en) Packaging structure body and manufacturing method thereof, electro-optic device, and electronic equipment
JP2005229045A (en) Electronic component, manufacturing method thereof, and electronic equipment
JP2000284261A (en) Liquid crystal device and electronic apparatus
JP2005167274A (en) Semiconductor device, method for manufacturing same, and liquid crystal display device
JP2001154601A (en) Display device and electronic apparatus
JP2003140564A (en) Semiconductor device, manufacturing method for electrooptical device, electrooptical device and electronic equipment
JP3567781B2 (en) Liquid crystal device, method of manufacturing liquid crystal device, and electronic equipment
JP2000275672A (en) Liquid crystal device, production of liquid crystal device and electronic apparatus
JP2001318619A (en) Optoelectronic device, method of manufacturing the same and electronic instrument
JP2004087939A (en) Electro-optical device, electronic apparatus, and method of manufacturing electro-optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees