JP4103620B2 - Digital PLL circuit - Google Patents

Digital PLL circuit Download PDF

Info

Publication number
JP4103620B2
JP4103620B2 JP2003039308A JP2003039308A JP4103620B2 JP 4103620 B2 JP4103620 B2 JP 4103620B2 JP 2003039308 A JP2003039308 A JP 2003039308A JP 2003039308 A JP2003039308 A JP 2003039308A JP 4103620 B2 JP4103620 B2 JP 4103620B2
Authority
JP
Japan
Prior art keywords
phase
frequency
frequency divider
variable frequency
division ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003039308A
Other languages
Japanese (ja)
Other versions
JP2004253855A (en
Inventor
裕次郎 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2003039308A priority Critical patent/JP4103620B2/en
Publication of JP2004253855A publication Critical patent/JP2004253855A/en
Application granted granted Critical
Publication of JP4103620B2 publication Critical patent/JP4103620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、ディジタルPLL回路に関し、ジッタ特性と周波数引き込み範囲特性の両立を図ったものである。
【0002】
【従来の技術】
ディジタルPLL回路は、例えば、ルーター、ターミナルアダプタ等のディジタル通信用端末において、網クロックと同期した信号処理用内部クロックを生成するのに利用される。従来のISDN端末に内蔵されていたLSI素子内のディジタルPLL回路の具体例を図2に示す。位相比較器10の一方入力端には、4kHzの網クロックが入力される。水晶発振器12からは12.288MHzのクロック信号が発振される。このクロック信号は固定分周器14で2分周されて6.144MHzのクロック信号となり、さらに可変分周器16および固定分周器18で順次分周された後、位相比較器10の他方入力端に入力される。位相比較器10は両入力を位相比較して、その位相の前後関係(どちらが先でどちらが後か)に応じた信号を出力する。
【0003】
分周比制御部20は位相比較器10の出力信号に応じて可変分周器16の分周比を可変制御する。すなわち、可変分周器16の分周比は3分周、4分周、5分周に切換可能であり、通常は4分周に設定され、6.144MHzのクロック信号を4分周して1.536MHzのクロック信号を出力する。固定分周器18の分周比は384分周に設定され、1.536MHzのクロック信号を384分周して4kHzのクロック信号を生成し位相比較器10に入力する。位相比較器10での位相比較の結果、固定分周器18から出力されるクロック信号が網クロックに対し遅れている時は、可変分周器16の分周比はその位相比較周期内で1回(すなわち、可変分周器16の分周出力の1周期分)3分周に切り換えられ(該位相比較周期内の残りの期間は4分周に保持される。)、その結果可変分周器16の出力クロック信号さらには固定分周器18の出力クロック信号は、該位相比較周期内で6.144MHzクロックの1クロック分位相が進まされる。逆に、固定分周器18から出力されるクロック信号が網クロックに対し進んでいる時は、可変分周器16の分周比はその位相比較周期内で1回(すなわち、可変分周器16の分周出力の1周期分)5分周に切り換えられ(該位相比較周期内の残りの期間は4分周に保持される。)、その結果可変分周器16の出力クロック信号さらには固定分周器18の出力クロック信号は、該位相比較周期内で6.144MHzクロックの1クロック分位相が遅らされる。
【0004】
このようにして位相比較周期ごとに、位相比較器10の両入力の位相の前後関係に応じて、可変分周器16の出力クロック信号の位相が、6.144MHzクロックの1クロック分位相が遅らされ、あるいは進まされて調整され、網クロックに位相ロックされる。網クロックに位相ロックされた可変分周器16の出力クロック信号は、該LSI素子内で網同期クロックとして各種信号処理に利用される。また、該可変分周器16の出力クロック信号は、該LSI素子の外部に出力されて、該ISDN端末内の他の回路素子に供給され、網同期クロックとして各種信号処理に利用される。
【0005】
【発明が解決しようとする課題】
図2のディジタルPLL回路によれば、位相比較器10からは、位相比較周期ごとに必ず、一方の入力の位相が他方の入力の位相に対して遅れている、または進んでいるという比較結果が出力される(両入力の位相が一致しているという比較結果は出力されない。)。したがって、可変分周器16は位相比較周期ごとに1回、4分周から3分周に、または4分周から5分周に切り換えられ、可変分周器16の出力クロック信号には、この分周比の切換の都度6.144MHzクロックの1クロック分(約160nsec)のジッタ(位相変動)が生じる。また、この分周比の切換により、位相比較周期ごとに6.144MHzクロックの1クロック分の位相調整ができるので、このディジタルPLL回路の周波数引き込み範囲は、網クロックの周波数である4kHzを中心として、4kHzの1周期につき6.144MHzクロックの±1クロック分位相がずれる周波数の範囲となる。
【0006】
したがって、図2のディジタルPLL回路おいて分周比切換えに伴うジッタを減少させるには可変分周器16の入力クロック周波数を高くすればよいが、そうすると周波数引き込み範囲が狭くなってしまう。逆に、周波数引き込み範囲を広げるには可変分周器16の入力クロック周波数を低くすればよいが、そうすると分周比切換えに伴うジッタが大きくなってしまう。このため、ジッタ特性と周波数引き込み範囲特性を両立させることができなかった。また、図2のディジタルPLL回路によれば、位相比較周期ごとに必ず可変分周器16の分周比の切換が行われ、その都度ジッタが発生する。
【0007】
この発明は、前記従来の技術における問題を解決して、ジッタ特性と周波数引き込み範囲特性の両立を図ったディジタルPLL回路を提供しようとするものである。また、この発明は、併せて、分周比の切換回数を減少させたディジタルPLL回路を提供しようとするものである。
【0008】
【課題を解決するための手段】
この発明のディジタルPLL回路は、所定周波数の発振信号を出力する発振器と、該発振器の発振信号に基づく第1のクロック信号を入力して分周する第1の可変分周器と、該第1の可変分周器の分周出力に基づくクロック信号と所定の入力信号とを位相比較し、該位相比較ごとに該両信号の位相の前後関係を示す位相比較結果を出力する位相比較器と、該位相比較器の位相比較結果に基づき前記第1の可変分周器の分周比を、次に位相比較が行われるまでの間に、一時的に、その通常の分周比に対して、前記第1の可変分周器の分周出力に基づくクロック信号の位相が前記入力信号の位相よりも進んでいる時は所定量増加させ、遅れている時は所定量減少させることにより、該第1の可変分周器の分周出力の位相を変化させて、該第1の可変分周器の分周出力を前記入力信号に位相同期させる第1の分周比制御部と、前記第1のクロック信号に同期したクロック信号であって該第1のクロック信号よりも周波数が高い第2のクロック信号を入力して分周する第2の可変分周器と、前記第2の可変分周器の分周比を、前記位相比較器の位相比較結果に応じて、一時的に、その通常の分周比に対して所定量増加させまたは所定量減少させることにより、該第2の可変分周器の分周出力の位相を変化させて、該第2の可変分周器の分周出力を前記入力信号に位相同期させる第2の分周比制御部とを具備し、前記第2の可変分周器の分周比の増加または減少によるその分周出力の1周期当たりの位相変化量が、前記第1の可変分周器の分周比の増加または減少によるその分周出力の1周期当たりの位相変化量よりも小さくなるように該第2の可変分周器の分周比の増加量および減少量が設定されているものである。
【0009】
これによれば、第2の可変分周器の分周比の増加または減少によるその分周出力の1周期当たりの位相変化量が、第1の可変分周器の分周比の増加または減少によるその分周出力の1周期当たりの位相変化量よりも小さいので、第2の可変分周器からは分周比の変化によるジッタが、第1の可変分周器の分周比の変化によるジッタよりも少ない分周出力が得られる。また、PLLループを構成する第1の可変分周器の分周比の増加または減少によるその分周出力の1周期当たりの位相変化量が、第2の可変分周器の分周比の増加または減少によるその分周出力の1周期当たりの位相変化量よりも大きいので、周波数引き込み範囲を広く確保することができる。したがって、第2の可変分周器から分周比の変化に伴うジッタが小さい分周出力が得られ、しかも周波数引き込み範囲が広いディジタルPLL回路が実現される。
【0010】
前記第2の分周比制御部は、前記第1の可変分周器の分周出力に対する前記第2の可変分周器の分周出力の位相差を、前記第1の可変分周器の分周比の変化によるその分周出力の1周期当たりの位相変化量よりも小さい値に収まらせる回数、前記第2の可変分周器の分周比の変化を実行するものとすることができ、これにより、第2の可変分周器の分周出力を入力信号に高精度に位相同期させることができる。
【0011】
前記第2の可変分周器の通常の分周比は、例えば前記第1の可変分周器の通常の分周比よりも高く(例えば2以上の整数倍に)設定することができる。また、前記第2のクロック信号を例えば前記発振器の発振信号とし、前記第1のクロック信号を該発振器の発信信号を分周した信号とすることができる。また、前記第2のクロック信号の周波数を前記第1のクロック信号の周波数に対しa倍(aは2以上の整数。後述する実施の形態では,a=2としている。)に設定し、前記第2の可変分周器の通常の分周比を前記第1の可変分周器の通常の分周比に対しa倍よりも低く設定して、前記第1の可変分周器の分周出力の周波数よりも前記第2の可変分周器の分周出力の周波数を高く調整することができる。また、前記第2のクロック信号の周波数を前記第1のクロック信号の周波数に対しa倍(aは2以上の整数)に設定し、前記第2の可変分周器の通常の分周比を前記第1の可変分周器の通常の分周比に対しa倍に設定して、前記第1の可変分周器の分周出力と前記第2の可変分周器の分周出力とを等しい周波数に調整することができる。
【0012】
この発明のディジタルPLL回路は、所定周波数の発振信号を出力する発振器と、該発振器の発振信号に基づく第1のクロック信号を入力して分周する第1の可変分周器と、該第1の可変分周器の分周出力に基づくクロック信号と所定の入力信号とを位相比較し、該位相比較ごとに該両信号の位相の前後関係を示す位相比較結果を出力する位相比較器と、該位相比較器の位相比較結果に基づき前記第1の可変分周器の分周比を、次に位相比較が行われるまでの間に1回(該第1の可変分周器の分周出力の1周期分)、その通常の分周比に対して、前記第1の可変分周器の分周出力に基づくクロック信号の位相が前記入力信号の位相よりも進んでいる時は+1変化させ、遅れている時は−1変化させることにより、該第1の可変分周器の分周出力の位相を変化させて、該第1の可変分周器の分周出力を前記入力信号に位相同期させる第1の分周比制御部と、前記第1のクロック信号に同期した(前記発振器の発振信号に基づく)クロック信号であって該第1のクロック信号よりも周波数が高い第2のクロック信号を入力して分周する第2の可変分周器と、前記第2の可変分周器の分周比を、前記位相比較器の位相比較結果に応じて、一時的に、その通常の分周比に対して+1または−1変化させることにより、該第2の可変分周器の分周出力の位相を変化させて、該第2の可変分周器の分周出力を前記入力信号に位相同期させる第2の分周比制御部とを具備してなるものである。
【0013】
これによれば、第2の可変分周器の動作クロック(第2のクロック信号)の周波数を高くするほど、その分周比切換に伴う分周出力のジッタ量を小さくすることができ、第1の可変分周器の動作クロック(第1のクロック信号)の周波数を低くするほど周波数引き込み範囲を広くすることができ、ジッタ特性と周波数引き込み範囲特性の両立を図ることができる。
【0014】
この発明のディジタルPLL回路は、所定周波数の発振信号を出力する発振器と、該発振器の発振信号に基づく第1のクロック信号を入力して分周する第1の可変分周器と、該第1の可変分周器の分周出力に基づくクロック信号と所定の入力信号とを位相比較し、該位相比較ごとに該両信号の位相の前後関係を示す位相比較結果を出力する位相比較器と、該位相比較器の位相比較結果に基づき前記第1の可変分周器の分周比を、次に位相比較が行われるまでの間に1回(該第1の可変分周器の分周出力の1周期分)、その通常の分周比に対して、前記第1の可変分周器の分周出力に基づくクロック信号の位相が前記入力信号の位相よりも進んでいる時は+1変化させ、遅れている時は−1変化させることにより、該第1の可変分周器の分周出力の位相を変化させて、該第1の可変分周器の分周出力を前記入力信号に位相同期させる第1の分周比制御部と、前記第1のクロック信号に同期した(前記発振器の発振信号に基づく)クロック信号であって該第1のクロック信号よりも周波数がa倍(aは2以上の整数)高い第2のクロック信号を入力して分周する第2の可変分周器と、前記位相比較器の位相比較結果に基づき前記第2の可変分周器の分周比を、前記位相比較の1周期に相当する時間内(例えば、次に位相比較が行われるまでの間)にa回(すなわち第2の可変分周器の分周出力のa周期分)例えば均等に分散して、その通常の分周比に対して、前記第1の可変分周器の分周出力に基づくクロック信号の位相が前記入力信号の位相よりも進んでいる時は+1変化させ、遅れている時は−1変化させることにより、該第2の可変分周器の分周出力の位相を変化させて、該第2の可変分周器の分周出力を前記入力信号に位相同期させる第2の分周比制御部とを具備してなるものである。
【0015】
これによれば、第2の可変分周器の分周比切換に伴うジッタを分散させて、その1回の分周比切換で発生するジッタ量を低減することができる。また、第1の可変分周器の分周比切換で発生するジッタ量に応じた回数分第2の可変分周器の分周比を切り換えるので、第2の可変分周器の分周出力を入力信号に高精度に位相同期させることができる。
【0016】
この発明のディジタルPLL回路は、所定周波数の発振信号を出力する発振器と、該発振器の発振信号に基づく第1のクロック信号を入力して分周する第1の可変分周器と、該第1の可変分周器の分周出力に基づくクロック信号と所定の入力信号とを位相比較し、該位相比較ごとに該両信号の位相の前後関係を示す位相比較結果を出力する位相比較器と、該位相比較器の位相比較結果に基づき前記第1の可変分周器の分周比を、次に位相比較が行われるまでの間に1回(該第1の可変分周器の分周出力の1周期分)、その通常の分周比に対して、前記第1の可変分周器の分周出力に基づくクロック信号の位相が前記入力信号の位相よりも進んでいる時は+1変化させ、遅れている時は−1変化させることにより、該第1の可変分周器の分周出力の位相を変化させて、該第1の可変分周器の分周出力を前記入力信号に位相同期させる第1の分周比制御部と、前記第1のクロック信号に同期した(前記発振器の発振信号に基づく)クロック信号であって該第1のクロック信号よりも周波数が高いまたは該第1のクロック信号と周波数が等しい第2のクロック信号を入力して分周する第2の可変分周器と、前記第2の可変分周器の分周比を、前記位相比較器の位相比較結果に応じて、一時的に、その通常の分周比に対して+1または−1変化させることにより、該第2の可変分周器の分周出力の位相を変化させて、該第2の可変分周器の分周出力を前記入力信号に位相同期させるものであって、前記第1の可変分周器の分周出力に対する前記第2の可変分周器の分周出力の位相差が、前記第1の可変分周器の分周比の変化によるその分周出力の1周期当たりの位相変化量に相当する時間以上に達するごとに1回、前記第2の可変分周器の分周比の変化を実行する第2の分周比制御部とを具備してなるものである。
【0017】
これによれば、第1の可変分周器の分周比切換の累積値がある一定の閾値を超えた場合に第2の可変分周器の分周比を切り換えるようにしたので、第1の可変分周器の分周比が位相比較周期ごとに+1,−1,+1,−1,…と交互に切り換えられる場合(分周比切換が不要な場合)に、閾値の設定によっては、第2の可変分周器の分周比がこれに連動して切り換えられるのを回避することができ、ジッタの発生回数を減少させることができる。
【0018】
この場合、前記第2の可変分周器が、前記第1のクロック信号に同期した(前記発振器の発振信号に基づく)クロック信号であって該第1のクロック信号よりも周波数がa倍(aは2以上の整数)高い第2のクロック信号を入力して分周するものであり、前記第2の分周比制御部が、前記位相比較の結果、前記第1の可変分周器の分周出力に基づくクロック信号の位相が前記入力信号の位相よりも遅れている時にaカウントアップする第1のカウンタと、前記位相比較の結果、前記第1の可変分周器の分周出力に基づくクロック信号の位相が前記入力信号の位相よりも進んでいる時にaカウントアップする第2のカウンタと、前記位相比較の周期の1/a周期ごとに、前記第1のカウンタと前記第2のカウンタのカウント値を監視し、(a)両カウント値とも0以外の時は次の監視タイミングまでの間前記第2の可変分周器の分周比を通常の分周比のまま維持しかつ両カウンタのカウント値をそれぞれ1カウントダウンさせ、(b)前記第1のカウンタのカウント値が0で前記第2のカウンタのカウント値が1以上の所定値よりも大の時は次の監視タイミングまでの間に1回前記第2の可変分周器の分周比を+1変化させかつ前記第2のカウンタのカウント値を1カウントダウンさせ、(c)前記第1のカウンタのカウント値が1以上の所定値よりも大で前記第2のカウンタのカウント値が0の時は次の監視タイミングまでの間に1回前記第2の可変分周器の分周比を−1変化させかつ前記第1のカウンタのカウント値を1カウントダウンさせ、(d)前記両カウンタのカウント値の組み合わせがそれ以外の時は次の監視タイミングまでの間前記第2の可変分周器の分周比を通常の分周比のまま維持しかつ両カウンタのカウント値をそのまま維持するカウンタ監視および制御部とを具備してなるものとすることができる。これによれば、第1の可変分周器の分周比が位相比較周期ごとに+1,−1,+1,−1,…と交互に切り換えられる場合に、第2の可変分周器の分周比を第1の可変分周器の分周比切換で発生するジッタ量に応じた回数分切り換える場合に比べて、該第2の可変分周器の分周比の切換回数を減少させることができる。特に、上記(b)および(c)の「1以上の所定値」を「a/2」にすれば(すなわち、「1以上の所定値よりも大きい時」が「a/2よりも大きい時」を意味する場合には)、第1の可変分周器の分周比が位相比較周期ごとに+1,−1,+1,−1,…と交互に切り換えられる場合に、第2の可変分周器の分周比がこれに連動して切り換えられるのを回避することができ、第2の可変分周器の分周比を位相比較周期ごとに切り換える場合に比べて、該第2の可変分周器の分周比の切換回数を減少させることができ、前記第2図の従来回路に比べてジッタの発生回数を減少させることができる。
【0019】
【発明の実施の形態】
この発明をルーター、ターミナルアダプタ等のディジタル通信用端末に適用した場合の実施の形態を図1に示す。図2の従来回路と共通する部分には、同一の符号を用いる。なお、図1の実施の形態では、図2の従来回路の構成を流用しつつ、2.048MHzのクロック信号を生成出力する場合について示している。従来回路を流用した部分を一点鎖線で示す。位相比較器10の一方入力端には、4kHzの網クロックが入力される。水晶発振器12からは12.288MHzのクロック信号が発振される。このクロック信号は固定分周器14で2分周されて6.144MHzのクロック信号となり、さらに可変分周器16および固定分周器18で順次分周された後、位相比較器10の他方入力端に入力される。位相比較器10は両入力を位相比較して、その位相の前後関係に応じた信号を出力する。
【0020】
分周比制御部20は位相比較器10の出力信号に応じて可変分周器16の分周比を可変制御する。すなわち、可変分周器16の分周比は3分周、4分周、5分周に切換可能であり、通常は4分周に設定され、6.144MHzのクロック信号を4分周して1.536MHzのクロック信号を出力する。固定分周器18の分周比は384分周に設定され、1.536MHzのクロック信号を384分周して4kHzのクロック信号を生成し位相比較器10に入力する。位相比較器10での位相比較の結果、固定分周器18から出力されるクロック信号が網クロックに対し遅れている時は、可変分周器16の分周比はその位相比較周期内で1回(すなわち、可変分周器16の分周出力の1周期分)3分周に切り換えられ(該位相比較周期内の残りの期間は4分周に保持される。)、その結果可変分周器16の出力クロック信号さらには固定分周器18の出力クロック信号は、該位相比較周期内で6.144MHzクロックの1クロック分位相が進まされる。逆に、固定分周器18から出力されるクロック信号が網クロックに対し進んでいる時は、可変分周器16の分周比はその位相比較周期内で1回(すなわち、可変分周器16の分周出力の1周期分)5分周に切り換えられ(該位相比較周期内の残りの期間は4分周に保持される。)、その結果可変分周器16の出力クロック信号さらには固定分周器18の出力クロック信号は、該位相比較周期内で6.144MHzクロックの1クロック分位相が遅らされる。
【0021】
このようにして位相比較周期ごとに、位相比較器10の両入力の位相の前後関係が判定され、可変分周器16の出力クロック信号の位相が、6.144MHzクロックの1クロック分位相が遅らされ、あるいは進まされて調整され、網クロックに位相ロックされる。
【0022】
可変分周器22は水晶発振器12から出力される12.288MHzのクロック信号を分周する。分周比制御部24は、分周比制御部20による可変分周器16の分周比制御に応じて(すなわち、位相比較器10の位相比較結果に応じて)、可変分周器22の分周比を可変制御する。すなわち、可変分周器22の分周比は5分周、6分周、7分周に切換可能であり、通常は6分周に設定され、12.288MHzのクロック信号を6分周して2.048MHzのクロック信号を出力する。可変分周器22の分周比を位相比較器10の位相比較周期内で1回(すなわち、可変分周器22の分周出力の1周期分)5分周に切り換えると、可変分周器22の出力クロック信号は、該位相比較周期内で12.288MHzの1クロック分位相が進まされる。また、可変分周器22の分周比を位相比較器10の位相比較周期内で1回(すなわち、可変分周器22の分周出力の1周期分)7分周に切り換えると、可変分周器22の出力クロック信号は、該位相比較周期内で12.288MHzの1クロック分位相が遅らされる。可変分周器22の動作クロック周波数(12.288MHz)は、可変分周器16の動作クロック周波数(6.144MHz)の2倍(すなわち、a=2)であるので、位相比較器10の位相比較周期内で、可変分周器22の出力クロック信号は、可変分周器16の出力クロック信号に比べて1/2の時間単位で位相調整をすることができる。
【0023】
そこで、分周比制御部24は、可変分周器16の分周比が位相比較周期内で1回、4分周から3分周に切り換えられる時は、その位相比較周期内で、可変分周器22の分周比を、2回均等に分散して、6分周から5分周に切り換える。また、可変分周器16の分周比が位相比較周期内で1回、4分周から5分周に切り換えられる時は、その位相比較周期内で、可変分周器22の分周比を、2回均等に分散して、6分周から7分周に切り換える。これにより、該位相比較周期内全体での位相補正量は、可変分周器16と可変分周器22とで等しくなり、その結果、可変分周器22の出力クロック信号は網クロックに位相ロックされる。この場合、可変分周器22の出力クロック信号の1回当たりの位相補正量は、可変分周器16の出力クロック信号の1回当たりの位相補正量に比べて1/2となるので、分周比切換えに伴い発生する可変分周器22の出力クロック信号のジッタは、可変分周器16の分周比切換えに伴い発生する出力クロック信号のジッタの1/2に抑えられる。また、このディジタルPLL回路の周波数引き込み範囲は、網クロックの周波数である4kHzを中心として、4kHzの1周期につき6.144MHzクロックの±1クロック分位相がずれる周波数の範囲であり(つまり、位相比較周期内で網クロックに対する位相ずれが1/6.144MHz以下であれば、ロック状態に引き込める。)、図2の従来回路と同じ周波数引き込み範囲が確保される。
【0024】
網クロックに位相ロックされた可変分周器22の出力クロック信号は、該LSI素子内で網同期クロックとして各種信号処理に利用される。また、該可変分周器22の出力クロック信号は、該LSI素子の外部に出力されて、該ISDN端末内の他の回路素子に供給され、網同期クロックとして各種信号処理に利用される。
【0025】
以上の説明では、可変分周器16の分周比が切り換えられる都度、可変分周器22の分周比を切り換えるようにしたが、可変分周器16の分周比の4分周から3分周への切換と4分周から5分周への切換が位相比較周期ごとに交互に連続して生じるような場合(位相比較器10の両入力の位相がほとんど一致している場合)には、その都度可変分周器22の分数比を切換える必要はなく、むしろ、その都度切り換えない方が分周比切換えに伴うジッタ発生がないので望ましいものと考えられる。そこで、分周比制御部24は、そのような場合に、可変分周器22の分周比の切換を行わないようにすることもできる。そのような動作を実現する分周比制御部24の構成例を図3に示す。分周比制御部20は位相比較周期ごとに、位相比較結果に応じて、網クロックに対し遅れている場合は−1分周指令(可変分周器16の分周比を1回、4分周から3分周に−1変化させる指令)を出力し、網クロックに対し進んでいる場合は+1分周指令(可変分周器16の分周比を1回、4分周から5分周に+1変化させる指令)を出力する。−1分周指令、+1分周指令は可変分周器16に送られる。可変分周器16は−1分周指令を入力すると、その位相比較周期内で1回(すなわち、可変分周器16の分周出力の1周期分)、4分周から3分周に切り換えられ、これにより可変分周器16の分周出力は可変分周器16の動作クロックである6.144MHzクロックの1クロック分位相が進まされる。また、可変分周器16は+1分周指令を入力すると、その位相比較周期内で1回(すなわち、可変分周器16の分周出力の1周期分)、4分周から5分周に切り換えられ、これにより可変分周器16の分周出力は可変分周器16の動作クロックである6.144MHzクロックの1クロック分位相が遅らされる。
【0026】
分周比制御部20から出力される−1分周指令、+1分周指令は分周比制御部24にも送られる。分周比制御部24は2個のカウンタ(A)26,カウンタ(B)28と、カウンタ監視および制御部30と、カウンタ監視タイミング生成部32を備えている。カウンタ(A)26は−1分周指令が入力されるごとに2カウントダウンする。カウンタ(B)28は+1分周指令が入力されるごとに2カウントアップする。カウンタ監視タイミング生成部32はカウンタ(A)26,(B)28のカウント値を位相比較周期の1/2の期間ごとに監視するためのタイミング信号を生成するもので、例えば可変分周器22の出力クロック信号の2周期ごとの立ち上がりタイミングでカウンタ監視タイミング信号を出力する。カウンタ監視および制御部30は、カウンタ監視タイミングごとに、カウンタ(A)26,(B)28のカウント値を監視し、その都度両カウント値の関係に応じて、−1分周指令(可変分周器22の分周比を1回、6分周から5分周に−1変化させる指令)もしくは+1分周指令(可変分周器22の分周比を1回、6分周から7分周に+1変化させる指令)を出力し、または−1分周指令、+1分周指令のいずれも出力しない。可変分周器22は−1分周指令を入力すると、分周比が1回(すなわち、可変分周器22の分周出力の1周期分)、6分周から5分周に切り換えられ、これにより分周出力は可変分周器22の動作クロックである12.288MHzクロックの1クロック分位相が進まされる。また、可変分周器22は+1分周指令を入力すると、分周比が1回(すなわち、可変分周器22の分周出力の1周期分)、6分周から7分周に切り換えられ、これにより分周出力は可変分周器22の動作クロックである12.288MHzクロックの1クロック分位相が遅らされる。また、カウンタ監視および制御部30は、カウンタ(A)26,(B)28のカウント値を監視するごとに、両カウント値の関係に応じて、該カウンタ(A)26,(B)28のカウント値を1カウントダウンする制御を併せて行う。
【0027】
カウンタ監視および制御部30による制御アルゴリズムを図4に示す。位相比較周期の1/2の期間ごとのカウンタ監視タイミングが到来するごとに、カウンタ(A)26,(B)28のカウント値を監視する(S1)。その結果、カウンタ(A)26,(B)28のいずれも0でない場合は(S2)、−1分周指令、+1分周指令のいずれも出力することなく、カウンタ(A)26,(B)28のカウント値をそれぞれ1カウントダウンする(S3)。カウンタ(A)26のカウント値が0で、カウンタ(B)28のカウント値が2以上の場合は(S4)、+1分周指令を出力するとともに、カウンタ(B)28のカウント値を1カウントダウンする(S5)。カウンタ(A)26のカウント値が2以上で、カウンタ(B)28のカウント値が0の場合は(S6)、−1分周指令を出力するとともに、カウンタ(A)26のカウント値を1カウントダウンする(S7)。以上のいずれにも該当しない場合(カウンタ(A)26,(B)28のカウント値がともに0の場合、あるいはカウンタ(A)26,(B)28のカウント値のうち一方が0で他方が1の場合)は、何もしない(すなわち、−1分周指令、+1分周指令のいずれも出力せず、カウンタ(A)26,(B)28の1カウントダウンも行わない。)。
【0028】
以上のアルゴリズムによれば、可変分周器22の出力クロック信号は、可変分周器16の出力クロック信号に対し、12.288MHzの1クロック分の位相差で同期するように制御される。また、可変分周器16の分周比の4分周から3分周への切換と4分周から5分周への切換が位相比較周期ごとに交互に連続して生じるような場合(位相比較器10の両入力の位相がほとんど一致している場合)には、カウンタ(A)26,(B)28のカウント値は0,1の組み合わせと1,0の組み合わせを交互に繰り返すのみで、−1分周指令、+1分周指令のいずれも出力されないので、可変分周器22の分周比の切換は行われない。以上の動作により、可変分周器22の不要な分周比切り換えは回避され、分周比切換えに伴い発生する可変分周器22の出力クロック信号のジッタは抑制される。
【0029】
図1のディジタルPLL回路の動作例を図5に示す。図5において(a)〜(e)は図1の各部の信号で、(a)は位相比較器10の一方入力である網クロック信号I(Fi)、(b)は位相比較器10の他方入力である固定分周器18の出力クロック信号I’(Fi’)、(c)は可変分周器16の出力クロック信号O(Fx)、(d),(e)はそれぞれ可変分周器22の出力クロック信号(このディジタルPLL回路の出力クロック信号)O’(Fy)で、そのうち(d)は分周比制御部24が、可変分周器16の分周比が切り換えられる都度、可変分周器22の分周比を切り換えるようにした場合のもの、(e)は分周比制御部24を図3のように構成して、図4の制御アルゴリズムにより動作させた場合のものである。(f)、(g)は(e)の場合の図3のカウンタ(A)26,(B)28のカウント値である。なお、図5では、可変分周器16,22および固定分周器18の分周比は、以上の説明とは異なり、それぞれ次のように変更している。すなわち、可変分周器16の分周比は、通常の分周比がmで、m−1,m,m+1の3段階に切り換わる。可変分周比22の分周比は、通常の分周比が2mで、2m−1,2m,2m+1の3段階に切り換わる。可変分周器22の通常の分周比(2m)は可変分周器16の通常の分周比(m)の2倍であり、可変分周器22の動作クロック周波数(12.288MHz)は、可変分周器16の動作クロック周波数(6.144MHz)の2倍であるので、可変分周器16,22の出力クロック信号O(Fx),O’(Fy)の周波数は等しい値に制御される。固定分周器18の分周比は4分周としている。
【0030】
位相比較器10は、図5(a)の網クロック信号I(Fi)と、同(b)のクロック信号I’(Fi’)とを、クロック信号I’(Fi’)の立ち上がりのタイミングごとに位相比較し、その都度両クロック信号の前後関係を示す位相比較結果を出力する。分周比制御部20は、網クロック信号I(Fi)に対しクロック信号I’(Fi’)の位相が遅れているという位相比較結果が出力されたときは、次の位相比較が行われる時までに1回、可変分周器16の分周比をmからm−1に切り換える。逆に、網クロック信号I(Fi)に対しクロック信号I’(Fi’)の位相が進んでいるという位相比較結果が出力されたときは、次の位相比較が行われる時までに1回、可変分周器16の分周比をmからm+1に切り換える。位相比較器10からは、両入力の位相が等しいという位相比較結果は出されないので、可変分周器16の分周比の切り換えは、位相比較周期ごとに必ず1回行われる。図5の例では、位相比較タイミングIでは、網クロック信号I(Fi)に対しクロック信号I’(Fi’)の位相が遅れているので、その直後に(該位相比較タイミングIが属する可変分周器16の出力クロック信号の周期で)可変分周器16の分周比がmからm−1に1回切り換えられ、その結果可変分周器16の出力クロックは6.144MHzの1クロック分位相が進まされる。また、位相比較タイミングIIでは、網クロック信号I(Fi)に対しクロック信号I’(Fi’)の位相が進んでいるので、すぐに(該位相比較タイミングIIが属する、可変分周器16の出力クロック信号の周期で)可変分周器16の分周比がmからm+1に1回切り換えられ、その結果可変分周器16の出力クロックは6.144MHzの1クロック分位相が遅らされる。
【0031】
分周比制御部24は、可変分周器16の分周比が切り換えられる都度可変分周器22の分周比を切り換えるように設定されている場合は、図5(d)に示すように、可変分周器16の分周比を切り換えるタイミングと、その中間のタイミングに可変分周器22の分周比を切り換える。すなわち、位相比較タイミングIでは、網クロック信号I(Fi)に対しクロック信号I’(Fi’)の位相が遅れているので、そのすぐ後のタイミングと中間のタイミング(2クロック後)の2回に分けて可変分周器22の分周比を2mから2m−1に切り換える。その結果、可変分周器22の出力クロックは12.288MHzの1クロック分ずつ2回に分けて位相が進まされる。また、位相比較タイミングIIでは、網クロック信号I(Fi)に対しクロック信号I’(Fi’)の位相が進んでいるので、そのすぐ後のタイミングと中間のタイミング(2クロック後)の2回に分けて可変分周器22の分周比を2mから2m+1に切り換える。その結果、可変分周器22の出力クロックは12.288MHzの1クロック分ずつ2回に分けて位相が遅らされる。したがって、可変分周器22の1回の分周比切換えに伴い発生する該可変分周器22の出力クロック信号のジッタは12.288MHzの1クロック分に抑えられる。
【0032】
なお、以上は可変分周器22の動作クロック周波数が可変分周器16の動作クロック周波数(6.144MHz)の2倍(12.288MHz)である場合について説明したが、3倍(18.432MHz)である場合には位相比較周期の1/3周期ごとに可変分周器22の分周比を−1または+1変化させればよく、4倍(24.576MHz)である場合には位相比較周期の1/4周期ごとに可変分周器22の分周比を−1または+1変化させればよい。すなわち、一般化して言えば、可変分周器22の動作クロック周波数が可変分周器16の動作クロック周波数のa倍(aは2以上の整数)である場合は、位相比較周期の1/a周期ごとに可変分周器22の分周比を−1または+1変化させればよいことになる。
【0033】
一方、分周比制御部24を図3のように構成して、図4のアルゴリズムで制御する場合は、可変分周器22の分周比はカウンタ(A)26,(B)28のカウント値に応じて図5(g)に示すように切り換えられる。すなわち、図5(g)では、カウンタ監視タイミングは、可変分周器22の出力クロック信号の2周期ごとの立ち上がりタイミングとして定められており(ただし、これに限らず。次の位相比較タイミングよりも前であればどのタイミングでもよい)、カウンタ監視タイミングiでは、カウンタ(A)26,(B)28のカウント値は0,0であるので、何も生じない。位相比較タイミングIでは網クロック信号I(Fi)に対しクロック信号I’(Fi’)の位相が遅れているので、カウンタ(A)26が2カウントアップされる。カウンタ監視タイミングiiでは、カウンタ(A)26,(B)28のカウント値は2,0であるので、その直後に(該カウンタ監視タイミングiiが属する可変分周器22の出力クロック信号の周期で)可変分周器22の分周比は2mから2m−1に切り換えられ、可変分周器22の出力クロック信号は12.288MHzの1クロック分位相が進まされる。また、これと同時にカウンタ(A)26が1カウントダウンされる。カウンタ監視タイミングiiiでは、カウンタ(A)26,(B)28のカウント値は1,0であるので、何も生じない。位相比較タイミングIIでは、網クロック信号I(Fi)に対しクロック信号I’(Fi’)の位相が進んでいるので、カウンタ(B)28が2カウントアップされる。カウンタ監視タイミングivでは、カウンタ(A)26,(B)28のカウント値は1,2であるので、可変分周器22の分周比の切換えは行われず、カウンタ(A)26,(B)28がともに1カウントダウンされる。カウンタ監視タイミングvでは、カウンタ(A)26,(B)28のカウント値は0,1であるので、何も生じない。以上のようにして、可変分周器22の分周比切換えは抑制され、しかも分周比切換えが行われても、可変分周器22の1回の分周比切換えに伴い発生する該可変分周器22の出力クロック信号のジッタは12.288MHzの1クロック分に抑えられる。
【0034】
なお、以上は可変分周器22の動作クロック周波数が可変分周器16の動作クロック周波数(6.144MHz)の2倍(12.288MHz)である場合について説明したが、3倍(18.432MHz)である場合にはカウンタ監視タイミングを位相比較周期の1/3周期ごとのタイミングとし、カウンタ(A)26,(B)28の1回のカウントアップ数をそれぞれ3とし(1回のカウントダウン数は1のまま)、カウンタ(A)26,(B)28のカウント値の差が3以上の時に可変分周器22の分周比を−1または+1変化させる(図5のステップS4を“A=0 & B>2”に変更し、ステップS6を“A>2 & B=0”に変更する)ことができる。また、4倍(24.576MHz)である場合にはカウンタ監視タイミングを位相比較周期の1/4周期ごとのタイミングとし、カウンタ(A)26,(B)28の1回のカウントアップ数をそれぞれ4とし(1回のカウントダウン数は1のまま)、カウンタ(A)26,(B)28のカウント値の差が4以上の時に可変分周器22の分周比を−1または+1変化させる(図5のステップS4を“A=0 & B>3”に変更し、ステップS6を“A>3 & B=0”に変更する)ことができる。
【0035】
すなわち、一般化して言えば、可変分周器22の動作クロック周波数が可変分周器16の動作クロック周波数のa倍(aは2以上の整数)である場合は、位相比較周期ごとに位相比較結果に応じてカウンタ(A)26,(B)28の一方をaカウントアップし、かつ位相比較周期の1/a周期ごとにカウンタ(A)26,(B)28のカウント値を監視して、両カウント値とも0以外の時は次の監視タイミングまでの間可変分周器22の分周比を通常の分周比のまま維持するとともに、両カウンタ(A)26,(B)28のカウント値をそれぞれ1カウントダウンさせ、カウンタ(A)26のカウント値が0でカウンタ(B)28のカウント値がa/2よりも大の時は次の監視タイミングまでの間に1回、可変分周器22の分周比を+1変化させるとともに、カウンタ(B)28のカウント値を1カウントダウンさせ、カウンタ(A)26のカウント値がa/2よりも大でカウンタ(B)28のカウント値が0の時は次の監視タイミングまでの間に1回、可変分周器22の分周比を−1変化させるとともにカウンタ(A)26のカウント値を1カウントダウンさせ、両カウンタ(A)26,(B)28のカウント値の組み合わせがそれ以外の時は次の監視タイミングまでの間可変分周器22の分周比を通常の分周比のまま維持するとともに両カウンタ(A)26,(B)28のカウント値をそのまま維持するようにすれば、可変分周器16の分周比が位相比較周期ごとに+1,−1,+1,−1,…と交互に切り換えられる場合に、可変分周器22の分周比がこれに連動して切り換えられるのを回避することができる。また、上記「a/2よりも大」に代えて「1よりも大」とすれば、同様の場合に、可変分周器22の分周比の切換回数を、可変分周器16の分周比切換で発生するジッタ量に応じた回数分切り換える場合{図5(d)}に比べて、減少させることができる。
【0036】
なお、前記実施の形態では、可変分周器22の動作クロック周波数(12.288MHz)を、可変分周器16の動作クロック周波数(6.144MHz)の2倍としたが、2倍よりも大きい整数倍とすることもできる。また、前記実施の形態では、この発明をルーター、ターミナルアダプタ等のディジタル通信用端末に適用した場合について説明したが、この発明は、その他の通信機器さらには通信機器以外の電機機器にも適用することができる。
【図面の簡単な説明】
【図1】 この発明のディジタルPLL回路の実施の形態を示すブロック図である。
【図2】 従来のディジタルPLL回路を示すブロック図である。
【図3】 図1の分周比制御部24の構成例を示すブロック図である。
【図4】 図3の分周比制御部24による制御アルゴリズムを示すフローチャートである。
【図5】 図1のディジタルPLL回路の動作を示すタイムチャートである。
【符号の説明】
10…位相比較器、12…発振器、16…第1の可変分周器、20…第1の分周比制御部、22…第2の可変分周器、24…第2の分周比制御部、26,28…カウンタ、30…カウンタ監視および制御部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a digital PLL circuit, which achieves both jitter characteristics and frequency pull-in range characteristics.
[0002]
[Prior art]
The digital PLL circuit is used to generate a signal processing internal clock synchronized with a network clock in a digital communication terminal such as a router or a terminal adapter. A specific example of a digital PLL circuit in an LSI element incorporated in a conventional ISDN terminal is shown in FIG. A 4 kHz network clock is input to one input terminal of the phase comparator 10. The crystal oscillator 12 oscillates a 12.288 MHz clock signal. This clock signal is frequency-divided into two by the fixed frequency divider 14 to be a 6.144 MHz clock signal, and further divided sequentially by the variable frequency divider 16 and the fixed frequency divider 18, and then the other input of the phase comparator 10. Input at the end. The phase comparator 10 compares both inputs and outputs a signal corresponding to the phase relationship (which is first and which is later).
[0003]
The frequency division ratio control unit 20 variably controls the frequency division ratio of the variable frequency divider 16 according to the output signal of the phase comparator 10. In other words, the frequency dividing ratio of the variable frequency divider 16 can be switched to 3, 4, or 5 and is normally set to 4, and the 6.144 MHz clock signal is divided by 4. A 1.536 MHz clock signal is output. The division ratio of the fixed frequency divider 18 is set to 384 frequency division, and a 1.536 MHz clock signal is divided by 384 to generate a 4 kHz clock signal and input to the phase comparator 10. As a result of the phase comparison by the phase comparator 10, when the clock signal output from the fixed frequency divider 18 is delayed with respect to the network clock, the frequency division ratio of the variable frequency divider 16 is 1 within the phase comparison period. (Ie, one period of the divided output of the variable frequency divider 16) is switched to 3 division (the remaining period in the phase comparison period is held at 4 division), and as a result, variable division The phase of the output clock signal of the counter 16 and the output clock signal of the fixed frequency divider 18 are advanced by one clock of 6.144 MHz clock within the phase comparison period. Conversely, when the clock signal output from the fixed frequency divider 18 is advanced with respect to the network clock, the frequency division ratio of the variable frequency divider 16 is once within the phase comparison period (that is, the variable frequency divider). (1 period of 16 divided outputs) is switched to 5 divisions (the remaining period in the phase comparison period is held at 4 divisions). As a result, the output clock signal of the variable frequency divider 16 and further The phase of the output clock signal of the fixed frequency divider 18 is delayed by one clock of 6.144 MHz clock within the phase comparison period.
[0004]
In this manner, the phase of the output clock signal of the variable frequency divider 16 is delayed by one clock of the 6.144 MHz clock in accordance with the phase relationship between the two inputs of the phase comparator 10 for each phase comparison period. Or advanced and adjusted and phase locked to the network clock. The output clock signal of the variable frequency divider 16 phase-locked to the network clock is used for various signal processing as a network synchronization clock in the LSI element. The output clock signal of the variable frequency divider 16 is output to the outside of the LSI element, supplied to other circuit elements in the ISDN terminal, and used as various types of signal processing as a network synchronization clock.
[0005]
[Problems to be solved by the invention]
According to the digital PLL circuit of FIG. 2, the phase comparator 10 always gives a comparison result that the phase of one input is delayed or advanced with respect to the phase of the other input every phase comparison period. (The comparison result that the phases of both inputs are the same is not output.) Therefore, the variable frequency divider 16 is switched once every phase comparison period, from the 4th frequency division to the 3rd frequency division, or from the 4th frequency division to the 5th frequency division. Each time the division ratio is switched, a jitter (phase fluctuation) of one 6.144 MHz clock (about 160 nsec) occurs. In addition, since the phase adjustment for one clock of 6.144 MHz clock can be performed for each phase comparison period by switching the frequency division ratio, the frequency pull-in range of this digital PLL circuit is centered on 4 kHz which is the frequency of the network clock. This is a frequency range in which the phase is shifted by ± 1 clock of 6.144 MHz clock per cycle of 4 kHz.
[0006]
Therefore, in the digital PLL circuit of FIG. 2, the input clock frequency of the variable frequency divider 16 may be increased in order to reduce the jitter associated with the frequency division ratio switching, but in this case, the frequency pull-in range is narrowed. On the contrary, in order to widen the frequency pull-in range, the input clock frequency of the variable frequency divider 16 may be lowered, but this causes an increase in jitter associated with switching of the division ratio. For this reason, it was impossible to achieve both jitter characteristics and frequency pull-in range characteristics. Further, according to the digital PLL circuit of FIG. 2, the frequency division ratio of the variable frequency divider 16 is always switched every phase comparison period, and jitter is generated each time.
[0007]
The present invention aims to provide a digital PLL circuit that solves the problems in the prior art and achieves both jitter characteristics and frequency pull-in range characteristics. Another object of the present invention is to provide a digital PLL circuit in which the number of frequency division switching is reduced.
[0008]
[Means for Solving the Problems]
The digital PLL circuit of the present invention includes an oscillator that outputs an oscillation signal of a predetermined frequency, a first variable frequency divider that receives and divides a first clock signal based on the oscillation signal of the oscillator, and the first A phase comparator that compares the phase of the clock signal based on the frequency-divided output of the variable frequency divider and a predetermined input signal, and outputs a phase comparison result indicating the phase relationship of the two signals for each phase comparison; Based on the phase comparison result of the phase comparator, the frequency division ratio of the first variable frequency divider is temporarily compared with the normal frequency division ratio until the next phase comparison is performed. The phase of the clock signal based on the frequency-divided output of the first variable frequency divider is increased by a predetermined amount when it is ahead of the phase of the input signal, and is decreased by a predetermined amount when it is delayed. By changing the phase of the frequency-divided output of the first variable frequency divider. A first frequency dividing ratio control unit for the divided output of the frequency divider is phase synchronized with the input signal, synchronized with the first clock signal A clock signal having a higher frequency than the first clock signal A second variable frequency divider that receives and divides a second clock signal and a frequency dividing ratio of the second variable frequency divider are temporarily set according to a phase comparison result of the phase comparator. The phase of the frequency-divided output of the second variable frequency divider is changed by increasing a predetermined amount or decreasing the predetermined amount with respect to the normal frequency dividing ratio. A second frequency division ratio control unit for phase-synchronizing the frequency-divided output with the input signal, and the frequency-divided output per cycle by increasing or decreasing the frequency-divided ratio of the second variable frequency divider. The division of the second variable frequency divider is such that the amount of phase change is smaller than the amount of phase change per cycle of the divided output due to the increase or decrease of the division ratio of the first variable frequency divider. The increase amount and decrease amount of the circumferential ratio are set.
[0009]
According to this, the phase change amount per cycle of the frequency-divided output due to the increase or decrease of the frequency division ratio of the second variable frequency divider is the increase or decrease of the frequency division ratio of the first variable frequency divider. Therefore, the jitter due to the change in the frequency division ratio from the second variable frequency divider is caused by the change in the frequency division ratio of the first variable frequency divider. Divided output smaller than jitter can be obtained. Further, the phase change amount per cycle of the frequency-divided output due to the increase or decrease of the frequency division ratio of the first variable frequency divider constituting the PLL loop is the increase of the frequency division ratio of the second variable frequency divider. Alternatively, the frequency pull-in range is larger than the phase change amount per cycle of the divided output, so that a wide frequency pull-in range can be secured. Therefore, a frequency-divided output with a small jitter accompanying a change in the frequency division ratio is obtained from the second variable frequency divider, and a digital PLL circuit with a wide frequency pull-in range is realized.
[0010]
The second frequency division ratio control unit calculates a phase difference between the frequency division output of the second variable frequency divider and the frequency division output of the first variable frequency divider. No. Execute frequency change of the second variable frequency divider by changing the frequency division ratio of the first variable frequency divider to a value smaller than the phase change amount per cycle of the frequency division output. Thus, the frequency-divided output of the second variable frequency divider can be phase-synchronized with the input signal with high accuracy.
[0011]
The normal frequency division ratio of the second variable frequency divider can be set higher than the normal frequency division ratio of the first variable frequency divider (for example, an integer multiple of 2 or more). Further, the second clock signal can be an oscillation signal of the oscillator, for example, and the first clock signal can be a signal obtained by dividing the oscillation signal of the oscillator. Further, the frequency of the second clock signal is set to a times the frequency of the first clock signal (a is an integer equal to or greater than 2. In the embodiments described later, a = 2 is set), and The normal frequency division ratio of the second variable frequency divider is set lower than a times the normal frequency division ratio of the first variable frequency divider, and the frequency division of the first variable frequency divider is performed. The frequency of the frequency-divided output of the second variable frequency divider can be adjusted higher than the frequency of the output. Further, the frequency of the second clock signal is set to a times (a is an integer of 2 or more) with respect to the frequency of the first clock signal, and the normal frequency division ratio of the second variable frequency divider is set. The frequency division output of the first variable frequency divider and the frequency division output of the second variable frequency divider are set to a times the normal frequency division ratio of the first variable frequency divider. It can be adjusted to an equal frequency.
[0012]
The digital PLL circuit of the present invention includes an oscillator that outputs an oscillation signal of a predetermined frequency, a first variable frequency divider that receives and divides a first clock signal based on the oscillation signal of the oscillator, and the first A phase comparator that compares the phase of the clock signal based on the frequency-divided output of the variable frequency divider and a predetermined input signal, and outputs a phase comparison result indicating the phase relationship of the two signals for each phase comparison; Based on the phase comparison result of the phase comparator, the frequency division ratio of the first variable frequency divider is set to one time (the frequency division output of the first variable frequency divider before the next phase comparison is performed). 1 cycle), when the phase of the clock signal based on the frequency-divided output of the first variable frequency divider is ahead of the phase of the input signal, it is changed by +1 with respect to the normal frequency division ratio. When it is delayed, change the output of the first variable frequency divider by changing -1. And a first frequency division ratio control unit that synchronizes the frequency-divided output of the first variable frequency divider with the input signal, and is synchronized with the first clock signal (of the oscillator). A second variable frequency divider that divides the frequency by inputting a second clock signal that is a clock signal (based on an oscillation signal) and has a frequency higher than that of the first clock signal; and the second variable frequency divider The frequency division ratio of the second variable frequency divider is temporarily changed by +1 or −1 with respect to the normal frequency division ratio according to the phase comparison result of the phase comparator. And a second frequency division ratio control unit that changes the phase of the frequency output and synchronizes the frequency-divided output of the second variable frequency divider with the input signal.
[0013]
According to this, the higher the frequency of the operation clock (second clock signal) of the second variable frequency divider, the smaller the jitter amount of the frequency-divided output associated with the frequency-division ratio switching. As the frequency of the operation clock (first clock signal) of one variable frequency divider is lowered, the frequency pull-in range can be widened, and both jitter characteristics and frequency pull-in range characteristics can be achieved.
[0014]
The digital PLL circuit of the present invention includes an oscillator that outputs an oscillation signal of a predetermined frequency, a first variable frequency divider that receives and divides a first clock signal based on the oscillation signal of the oscillator, and the first A phase comparator that compares the phase of the clock signal based on the frequency-divided output of the variable frequency divider and a predetermined input signal, and outputs a phase comparison result indicating the phase relationship of the two signals for each phase comparison; Based on the phase comparison result of the phase comparator, the frequency division ratio of the first variable frequency divider is set to one time (the frequency division output of the first variable frequency divider before the next phase comparison is performed). 1 cycle), when the phase of the clock signal based on the frequency-divided output of the first variable frequency divider is ahead of the phase of the input signal, it is changed by +1 with respect to the normal frequency division ratio. When it is delayed, change the output of the first variable frequency divider by changing -1. And a first frequency division ratio control unit that synchronizes the frequency-divided output of the first variable frequency divider with the input signal, and is synchronized with the first clock signal (of the oscillator). A second variable frequency divider that receives and divides a second clock signal that is a clock signal (based on an oscillation signal) and has a frequency a times higher than the first clock signal (a is an integer of 2 or more). And the division ratio of the second variable frequency divider based on the phase comparison result of the phase comparator within a time corresponding to one period of the phase comparison (for example, until the next phase comparison is performed) ) A times (that is, a period of the divided output of the second variable frequency divider), for example, evenly distributed and divided by the first variable frequency divider with respect to its normal frequency dividing ratio. If the phase of the clock signal based on the output is ahead of the phase of the input signal, change it by +1 and delay When it is, the phase of the frequency-divided output of the second variable frequency divider is changed by changing −1, and the frequency-divided output of the second variable frequency divider is phase-synchronized with the input signal. 2 and a frequency division ratio control unit.
[0015]
According to this, jitter accompanying switching of the division ratio of the second variable frequency divider can be dispersed, and the amount of jitter generated by the single switching of the division ratio can be reduced. Further, since the frequency division ratio of the second variable frequency divider is switched by the number of times corresponding to the amount of jitter generated by the frequency division ratio switching of the first variable frequency divider, the frequency division output of the second variable frequency divider Can be phase-synchronized with the input signal with high accuracy.
[0016]
The digital PLL circuit of the present invention includes an oscillator that outputs an oscillation signal of a predetermined frequency, a first variable frequency divider that receives and divides a first clock signal based on the oscillation signal of the oscillator, and the first A phase comparator that compares the phase of the clock signal based on the frequency-divided output of the variable frequency divider and a predetermined input signal, and outputs a phase comparison result indicating the phase relationship of the two signals for each phase comparison; Based on the phase comparison result of the phase comparator, the frequency division ratio of the first variable frequency divider is set to one time (the frequency division output of the first variable frequency divider before the next phase comparison is performed). 1 cycle), when the phase of the clock signal based on the frequency-divided output of the first variable frequency divider is ahead of the phase of the input signal, it is changed by +1 with respect to the normal frequency division ratio. When it is delayed, change the output of the first variable frequency divider by changing -1. And a first frequency division ratio control unit that synchronizes the frequency-divided output of the first variable frequency divider with the input signal, and is synchronized with the first clock signal (of the oscillator). A second variable frequency division that is a clock signal (based on an oscillation signal) and that divides by inputting a second clock signal having a frequency higher than or equal to that of the first clock signal. And by temporarily changing the frequency division ratio of the second variable frequency divider by +1 or −1 with respect to the normal frequency division ratio according to the phase comparison result of the phase comparator. Changing the phase of the frequency-divided output of the second variable frequency divider to synchronize the frequency-divided output of the second variable frequency divider with the input signal. The phase difference between the divided output of the second variable divider and the divided output of the divider is No. The frequency division ratio of the second variable frequency divider is changed once every time the time corresponding to the phase change amount per cycle of the frequency division output due to the change of the frequency division ratio of the first variable frequency divider is reached. And a second frequency division ratio control unit for executing the change.
[0017]
According to this, when the cumulative value of the frequency division ratio switching of the first variable frequency divider exceeds a certain threshold, the frequency division ratio of the second variable frequency divider is switched. When the division ratio of the variable frequency divider is alternately switched to +1, -1, +1, -1,... For each phase comparison period (when switching of the division ratio is unnecessary), depending on the threshold setting, It can be avoided that the frequency division ratio of the second variable frequency divider is switched in conjunction with this, and the number of occurrences of jitter can be reduced.
[0018]
In this case, the second variable frequency divider is a clock signal synchronized with the first clock signal (based on the oscillation signal of the oscillator) and has a frequency a times (a Is an integer greater than or equal to 2) and inputs a high second clock signal to divide the frequency, and the second frequency division ratio control unit determines the frequency of the first variable frequency divider as a result of the phase comparison. A first counter that counts up when the phase of the clock signal based on the peripheral output is delayed from the phase of the input signal, and the result of the phase comparison based on the frequency-divided output of the first variable frequency divider A second counter that counts up when the phase of the clock signal is ahead of the phase of the input signal; and the first counter and the second counter for each 1 / a period of the phase comparison period Monitor the count value of (a) When the count value is other than 0, the frequency division ratio of the second variable frequency divider is maintained at the normal frequency division ratio until the next monitoring timing, and the count values of both counters are respectively counted down by 1 ( b) When the count value of the first counter is 0 and the count value of the second counter is greater than a predetermined value of 1 or more, the second variable frequency division is performed once before the next monitoring timing. And the counter value of the second counter is decremented by 1, and (c) the count value of the first counter is greater than a predetermined value of 1 or more and the second counter When the count value is 0, the frequency division ratio of the second variable frequency divider is changed by −1 once before the next monitoring timing, and the count value of the first counter is counted down by 1 (d ) Count value of both counters When the combination is other than that, counter monitoring and control for maintaining the frequency dividing ratio of the second variable frequency divider at the normal frequency dividing ratio and the count values of both counters as they are until the next monitoring timing. Part. According to this, when the frequency division ratio of the first variable frequency divider is alternately switched to +1, -1, +1, -1,... For each phase comparison period, the division of the second variable frequency divider. The number of switching of the frequency division ratio of the second variable frequency divider is reduced as compared with the case where the frequency ratio is switched by the number of times corresponding to the amount of jitter generated by the frequency division ratio switching of the first variable frequency divider. Can do. In particular, when the “predetermined value of 1 or more” in the above (b) and (c) is set to “a / 2” (that is, “when it is greater than the predetermined value of 1 or more” is greater than “a / 2”. When the frequency division ratio of the first variable frequency divider is alternately switched to +1, -1, +1, -1,... For each phase comparison period, the second variable The frequency division ratio of the frequency divider can be prevented from being switched in conjunction with this, and the second variable is compared with the case where the frequency division ratio of the second variable frequency divider is switched every phase comparison period. The frequency | count of switching of the frequency divider ratio of a frequency divider can be reduced, and the frequency | count of a jitter generation can be reduced compared with the conventional circuit of the said FIG.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment when the present invention is applied to a digital communication terminal such as a router or a terminal adapter. The same reference numerals are used for parts common to the conventional circuit of FIG. In the embodiment of FIG. 1, a case where a clock signal of 2.048 MHz is generated and output while using the configuration of the conventional circuit of FIG. 2 is shown. A portion where a conventional circuit is used is indicated by a one-dot chain line. A 4 kHz network clock is input to one input terminal of the phase comparator 10. The crystal oscillator 12 oscillates a 12.288 MHz clock signal. This clock signal is frequency-divided into two by the fixed frequency divider 14 to be a 6.144 MHz clock signal, and further divided sequentially by the variable frequency divider 16 and the fixed frequency divider 18, and then the other input of the phase comparator 10. Input at the end. The phase comparator 10 compares both inputs and outputs a signal corresponding to the phase relationship of the phases.
[0020]
The frequency division ratio control unit 20 variably controls the frequency division ratio of the variable frequency divider 16 according to the output signal of the phase comparator 10. In other words, the frequency dividing ratio of the variable frequency divider 16 can be switched to 3, 4, or 5 and is normally set to 4, and the 6.144 MHz clock signal is divided by 4. A 1.536 MHz clock signal is output. The division ratio of the fixed frequency divider 18 is set to 384 frequency division, and a 1.536 MHz clock signal is divided by 384 to generate a 4 kHz clock signal and input to the phase comparator 10. As a result of the phase comparison by the phase comparator 10, when the clock signal output from the fixed frequency divider 18 is delayed with respect to the network clock, the frequency division ratio of the variable frequency divider 16 is 1 within the phase comparison period. (Ie, one period of the divided output of the variable frequency divider 16) is switched to 3 division (the remaining period in the phase comparison period is held at 4 division), and as a result, variable division The phase of the output clock signal of the counter 16 and the output clock signal of the fixed frequency divider 18 are advanced by one clock of 6.144 MHz clock within the phase comparison period. Conversely, when the clock signal output from the fixed frequency divider 18 is advanced with respect to the network clock, the frequency division ratio of the variable frequency divider 16 is once within the phase comparison period (that is, the variable frequency divider). (1 period of 16 divided outputs) is switched to 5 divisions (the remaining period in the phase comparison period is held at 4 divisions). As a result, the output clock signal of the variable frequency divider 16 and further The phase of the output clock signal of the fixed frequency divider 18 is delayed by one clock of 6.144 MHz clock within the phase comparison period.
[0021]
In this way, the phase relationship between the two inputs of the phase comparator 10 is determined for each phase comparison period, and the phase of the output clock signal of the variable frequency divider 16 is delayed by one clock of the 6.144 MHz clock. Or advanced and adjusted and phase locked to the network clock.
[0022]
The variable frequency divider 22 divides the 12.288 MHz clock signal output from the crystal oscillator 12. The frequency division ratio control unit 24 is controlled by the frequency division ratio control unit 20 according to the frequency division ratio control of the variable frequency divider 16 (that is, according to the phase comparison result of the phase comparator 10). Variable division ratio control. In other words, the frequency dividing ratio of the variable frequency divider 22 can be switched to 5 division, 6 division, and 7 division, and is normally set to 6 division, and the 12.288 MHz clock signal is divided by 6. A 2.048 MHz clock signal is output. When the frequency dividing ratio of the variable frequency divider 22 is switched to 5 times in the phase comparison period of the phase comparator 10 (that is, one period of the frequency divided output of the variable frequency divider 22), the variable frequency divider 22 The phase of the 22 output clock signals is advanced by one clock of 12.288 MHz within the phase comparison period. Further, when the frequency division ratio of the variable frequency divider 22 is switched to 7 times in the phase comparison period of the phase comparator 10 (that is, one period of the frequency division output of the variable frequency divider 22), The phase of the output clock signal of the frequency divider 22 is delayed by one clock of 12.288 MHz within the phase comparison period. Since the operation clock frequency (12.288 MHz) of the variable frequency divider 22 is twice (that is, a = 2) the operation clock frequency (6.144 MHz) of the variable frequency divider 16, the phase of the phase comparator 10. Within the comparison period, the output clock signal of the variable frequency divider 22 can be phase-adjusted in half time units as compared with the output clock signal of the variable frequency divider 16.
[0023]
Therefore, when the frequency division ratio of the variable frequency divider 16 is switched once in the phase comparison cycle from the fourth frequency division to the third frequency division, the frequency division ratio control unit 24 performs the variable frequency division within the phase comparison cycle. The frequency dividing ratio of the frequency divider 22 is evenly distributed twice and switched from 6 frequency division to 5 frequency division. Further, when the frequency division ratio of the variable frequency divider 16 is switched once in the phase comparison period from the 4 frequency division to the 5 frequency division, the frequency division ratio of the variable frequency divider 22 is changed within the phase comparison period. Evenly distributed twice and switched from 6-divided to 7-divided. As a result, the phase correction amount in the entire phase comparison period becomes equal between the variable frequency divider 16 and the variable frequency divider 22, and as a result, the output clock signal of the variable frequency divider 22 is phase-locked to the network clock. Is done. In this case, the phase correction amount per time of the output clock signal of the variable frequency divider 22 is ½ that of the phase correction amount per time of the output clock signal of the variable frequency divider 16. The jitter of the output clock signal of the variable frequency divider 22 that is generated when the frequency ratio is switched is suppressed to ½ of the jitter of the output clock signal that is generated when the frequency ratio of the variable frequency divider 16 is switched. Further, the frequency pull-in range of this digital PLL circuit is a frequency range in which the phase is shifted by ± 1 clock of 6.144 MHz clock per cycle of 4 kHz around the network clock frequency of 4 kHz (that is, phase comparison). If the phase shift with respect to the network clock is 1 / 6.144 MHz or less within the period, it can be pulled into the locked state.), The same frequency pulling range as the conventional circuit of FIG.
[0024]
The output clock signal of the variable frequency divider 22 phase-locked to the network clock is used for various signal processing as a network synchronization clock in the LSI element. The output clock signal of the variable frequency divider 22 is output to the outside of the LSI element, supplied to other circuit elements in the ISDN terminal, and used for various signal processing as a network synchronization clock.
[0025]
In the above description, the frequency division ratio of the variable frequency divider 22 is switched every time the frequency division ratio of the variable frequency divider 16 is switched. When switching to frequency dividing and switching from dividing by 4 to dividing by 5 occur alternately every phase comparison period (when the phases of both inputs of the phase comparator 10 are almost the same). In this case, it is not necessary to switch the fractional ratio of the variable frequency divider 22 each time. Rather, it is considered preferable not to switch every time because there is no occurrence of jitter associated with switching of the frequency dividing ratio. Therefore, in such a case, the frequency division ratio control unit 24 may not switch the frequency division ratio of the variable frequency divider 22. A configuration example of the frequency division ratio control unit 24 that realizes such an operation is shown in FIG. The frequency division ratio control unit 20 divides the network clock by −1 when the phase comparison period is delayed with respect to the network clock according to the phase comparison result (the frequency division ratio of the variable frequency divider 16 is set once for four minutes). Command to change -1 from divide by 3 to divide by 3), and advance to the network clock, +1 divide command (divide variable divider 16 once, divide by 4 to divide by 5 Command to change to +1). The −1 frequency division command and the +1 frequency division command are sent to the variable frequency divider 16. When the variable frequency divider 16 inputs a −1 frequency division command, the variable frequency divider 16 switches once from within the phase comparison period (that is, one period of the frequency division output of the variable frequency divider 16) to 4 frequency division. As a result, the phase of the frequency-divided output of the variable frequency divider 16 is advanced by one clock of the 6.144 MHz clock that is the operation clock of the variable frequency divider 16. Further, when the variable frequency divider 16 receives the +1 frequency division command, it is once within the phase comparison cycle (that is, one cycle of the frequency division output of the variable frequency divider 16), and from the 4th frequency division to the 5th frequency division. As a result, the phase of the frequency-divided output of the variable frequency divider 16 is delayed by one clock of the 6.144 MHz clock that is the operation clock of the variable frequency divider 16.
[0026]
The −1 frequency division command and the +1 frequency division command output from the frequency division ratio control unit 20 are also sent to the frequency division ratio control unit 24. The frequency division ratio control unit 24 includes two counters (A) 26, a counter (B) 28, a counter monitoring and control unit 30, and a counter monitoring timing generation unit 32. The counter (A) 26 counts down by 2 every time a −1 frequency division command is input. The counter (B) 28 is incremented by 2 every time a +1 frequency division command is input. The counter monitoring timing generator 32 generates a timing signal for monitoring the count values of the counters (A) 26 and (B) 28 every half of the phase comparison period. For example, the variable frequency divider 22 The counter monitoring timing signal is output at the rising timing every two cycles of the output clock signal. The counter monitoring and control unit 30 monitors the count values of the counters (A) 26 and (B) 28 at each counter monitoring timing, and in each case, according to the relationship between the two count values, a -1 frequency division command (variable The frequency division ratio of the frequency divider 22 is changed once, and a command to change the frequency division from -6 to -5 is −1) or +1 frequency division command (the frequency division ratio of the variable frequency divider 22 is changed once, from frequency division 6 to frequency 7 minutes) Command to change the frequency to +1), or neither the -1 frequency division command nor the +1 frequency division command is output. When the variable frequency divider 22 receives the -1 frequency division command, the frequency division ratio is switched once (that is, one cycle of the frequency division output of the variable frequency divider 22) from 6 frequency division to 5 frequency division, As a result, the phase of the divided output is advanced by one clock of the 12.288 MHz clock that is the operation clock of the variable frequency divider 22. Further, when the variable frequency divider 22 inputs a +1 frequency division command, the frequency division ratio is switched from 6 frequency division to 7 frequency division once (that is, one period of the frequency division output of the variable frequency divider 22). As a result, the phase of the frequency-divided output is delayed by one clock of the 12.288 MHz clock which is the operation clock of the variable frequency divider 22. Further, every time the counter monitoring and control unit 30 monitors the count values of the counters (A) 26 and (B) 28, the counter monitoring and control unit 30 sets the counters (A) 26 and (B) 28 according to the relationship between the two count values. Control to count down the count value by 1 is also performed.
[0027]
A control algorithm by the counter monitoring and control unit 30 is shown in FIG. Every time the counter monitoring timing arrives every half of the phase comparison period, the count values of the counters (A) 26 and (B) 28 are monitored (S1). As a result, if neither of the counters (A) 26 and (B) 28 is 0 (S2), the counter (A) 26, (B ) Each of the count values of 28 is counted down by 1 (S3). When the count value of the counter (A) 26 is 0 and the count value of the counter (B) 28 is 2 or more (S4), the +1 frequency division command is output and the count value of the counter (B) 28 is counted down by 1 (S5). When the count value of the counter (A) 26 is 2 or more and the count value of the counter (B) 28 is 0 (S6), a −1 frequency division command is output and the count value of the counter (A) 26 is set to 1. Count down (S7). When none of the above applies (when the count values of the counters (A) 26 and (B) 28 are both 0), or one of the count values of the counters (A) 26 and (B) 28 is 0 and the other is In the case of 1), nothing is done (that is, neither the -1 frequency division command nor the +1 frequency division command is output, and the counters (A) 26 and (B) 28 are not counted down by 1).
[0028]
According to the above algorithm, the output clock signal of the variable frequency divider 22 is controlled to be synchronized with the output clock signal of the variable frequency divider 16 with a phase difference of one clock of 12.288 MHz. Further, when the switching of the frequency dividing ratio of the variable frequency divider 16 from 4 division to 3 division and from 4 division to 5 division occurs alternately every phase comparison period (phase In the case where the phases of both inputs of the comparator 10 are almost the same), the count values of the counters (A) 26 and (B) 28 merely repeat the combination of 0, 1 and the combination of 1, 0. Since neither the −1 frequency division command nor the +1 frequency division command is output, the frequency division ratio of the variable frequency divider 22 is not switched. With the above operation, unnecessary frequency division ratio switching of the variable frequency divider 22 is avoided, and jitter of the output clock signal of the variable frequency divider 22 that occurs due to frequency division ratio switching is suppressed.
[0029]
An example of the operation of the digital PLL circuit of FIG. 1 is shown in FIG. 5, (a) to (e) are the signals of the respective parts in FIG. 1, (a) is the network clock signal I (Fi) which is one input of the phase comparator 10, and (b) is the other of the phase comparator 10. The output clock signals I ′ (Fi ′) and (c) of the fixed frequency divider 18 as inputs are the output clock signals O (Fx), (d) and (e) of the variable frequency divider 16, respectively. 22 output clock signals (output clock signals of this digital PLL circuit) O ′ (Fy), of which (d) is variable each time the frequency division ratio control unit 24 switches the frequency division ratio of the variable frequency divider 16. FIG. 3E shows a case where the frequency division ratio of the frequency divider 22 is switched, and FIG. 3E shows a case where the frequency division ratio control unit 24 is configured as shown in FIG. 3 and operated according to the control algorithm shown in FIG. is there. (F) and (g) are the count values of the counters (A) 26 and (B) 28 in FIG. 3 in the case of (e). In FIG. 5, the frequency dividing ratios of the variable frequency dividers 16 and 22 and the fixed frequency divider 18 are changed as follows, unlike the above description. That is, the frequency division ratio of the variable frequency divider 16 is switched to three levels of m-1, m, and m + 1, where the normal frequency division ratio is m. The frequency dividing ratio of the variable frequency dividing ratio 22 is switched to three levels of 2m-1, 2m, and 2m + 1 when the normal frequency dividing ratio is 2 m. The normal frequency division ratio (2m) of the variable frequency divider 22 is twice the normal frequency division ratio (m) of the variable frequency divider 16, and the operation clock frequency (12.288 MHz) of the variable frequency divider 22 is The frequency of the output clock signals O (Fx) and O ′ (Fy) of the variable frequency dividers 16 and 22 is controlled to be equal to each other since they are twice the operation clock frequency (6.144 MHz) of the variable frequency divider 16. Is done. The frequency division ratio of the fixed frequency divider 18 is set to 4 frequency division.
[0030]
The phase comparator 10 generates the network clock signal I (Fi) in FIG. 5A and the clock signal I ′ (Fi ′) in FIG. 5B at each rising timing of the clock signal I ′ (Fi ′). And a phase comparison result indicating the front-rear relationship of both clock signals is output each time. When the phase comparison result indicating that the phase of the clock signal I ′ (Fi ′) is delayed with respect to the network clock signal I (Fi) is output, the frequency division ratio control unit 20 performs the next phase comparison. Once, the frequency division ratio of the variable frequency divider 16 is switched from m to m-1. Conversely, when a phase comparison result indicating that the phase of the clock signal I ′ (Fi ′) is advanced with respect to the network clock signal I (Fi) is output, it is once before the next phase comparison is performed. The frequency division ratio of the variable frequency divider 16 is switched from m to m + 1. Since the phase comparator 10 does not give a phase comparison result indicating that the phases of both inputs are equal, the frequency division ratio of the variable frequency divider 16 is always switched once every phase comparison period. In the example of FIG. 5, at the phase comparison timing I, the phase of the clock signal I ′ (Fi ′) is delayed with respect to the network clock signal I (Fi). The frequency division ratio of the variable frequency divider 16 is switched once from m to m−1 (with the period of the output clock signal of the frequency divider 16), so that the output clock of the variable frequency divider 16 is one clock of 6.144 MHz. The phase is advanced. Further, at the phase comparison timing II, the phase of the clock signal I ′ (Fi ′) is advanced with respect to the network clock signal I (Fi), so immediately (the phase of the variable frequency divider 16 to which the phase comparison timing II belongs). The frequency division ratio of the variable frequency divider 16 is switched once from m to m + 1 (with the period of the output clock signal), and as a result, the phase of the output clock of the variable frequency divider 16 is delayed by one clock of 6.144 MHz. .
[0031]
When the frequency division ratio control unit 24 is set to switch the frequency division ratio of the variable frequency divider 22 every time the frequency division ratio of the variable frequency divider 16 is switched, as shown in FIG. The frequency division ratio of the variable frequency divider 22 is switched between the timing at which the frequency division ratio of the variable frequency divider 16 is switched and the intermediate timing. That is, at the phase comparison timing I, since the phase of the clock signal I ′ (Fi ′) is delayed with respect to the network clock signal I (Fi), the timing immediately thereafter and the intermediate timing (after two clocks) are twice. The frequency division ratio of the variable frequency divider 22 is switched from 2m to 2m-1. As a result, the phase of the output clock of the variable frequency divider 22 is advanced by being divided into two times for each clock of 12.288 MHz. At the phase comparison timing II, since the phase of the clock signal I ′ (Fi ′) is advanced with respect to the network clock signal I (Fi), the timing immediately after that and the intermediate timing (after two clocks) are twice. The frequency division ratio of the variable frequency divider 22 is switched from 2 m to 2 m + 1. As a result, the phase of the output clock of the variable frequency divider 22 is delayed by being divided into two times for each clock of 12.288 MHz. Therefore, the jitter of the output clock signal of the variable frequency divider 22 that occurs when the variable frequency divider 22 is switched once is suppressed to one clock of 12.288 MHz.
[0032]
In the above, the case where the operation clock frequency of the variable frequency divider 22 is twice (12.288 MHz) the operation clock frequency (6.144 MHz) of the variable frequency divider 16 has been described. However, the operation frequency is 3 times (18.432 MHz). ), The dividing ratio of the variable frequency divider 22 may be changed by −1 or +1 every 1/3 period of the phase comparison period, and when it is four times (24.576 MHz), the phase comparison is performed. The frequency division ratio of the variable frequency divider 22 may be changed by −1 or +1 every quarter period. That is, generally speaking, when the operation clock frequency of the variable frequency divider 22 is a times the operation clock frequency of the variable frequency divider 16 (a is an integer of 2 or more), 1 / a of the phase comparison period. It is only necessary to change the frequency division ratio of the variable frequency divider 22 by −1 or +1 for each period.
[0033]
On the other hand, when the frequency division ratio control unit 24 is configured as shown in FIG. 3 and controlled by the algorithm shown in FIG. 4, the frequency division ratio of the variable frequency divider 22 is counted by the counters (A) 26 and (B) 28. Switching is performed according to the value as shown in FIG. That is, in FIG. 5G, the counter monitoring timing is determined as a rising timing every two cycles of the output clock signal of the variable frequency divider 22 (not limited to this, but from the next phase comparison timing). Any timing may be used as long as it is before). At the counter monitoring timing i, the count values of the counters (A) 26 and (B) 28 are 0 and 0, so nothing occurs. At the phase comparison timing I, since the phase of the clock signal I ′ (Fi ′) is delayed with respect to the network clock signal I (Fi), the counter (A) 26 is counted up by two. At the counter monitoring timing ii, the count values of the counters (A) 26 and (B) 28 are 2 and 0, and immediately after that (in the cycle of the output clock signal of the variable frequency divider 22 to which the counter monitoring timing ii belongs). ) The frequency division ratio of the variable frequency divider 22 is switched from 2 m to 2 m−1, and the phase of the output clock signal of the variable frequency divider 22 is advanced by one clock of 12.288 MHz. At the same time, the counter (A) 26 is counted down by one. At the counter monitoring timing iii, since the count values of the counters (A) 26 and (B) 28 are 1, 0, nothing occurs. At the phase comparison timing II, since the phase of the clock signal I ′ (Fi ′) is advanced with respect to the network clock signal I (Fi), the counter (B) 28 is counted up by two. At the counter monitoring timing iv, the count values of the counters (A) 26 and (B) 28 are 1 and 2, so that the frequency division ratio of the variable frequency divider 22 is not switched and the counters (A) 26 and (B ) 28 are both counted down by one. At the counter monitoring timing v, the count values of the counters (A) 26 and (B) 28 are 0 and 1, so nothing occurs. As described above, the frequency division ratio switching of the variable frequency divider 22 is suppressed, and even if the frequency division ratio switching is performed, the variable generated with one frequency division ratio switching of the variable frequency divider 22. The jitter of the output clock signal of the frequency divider 22 is suppressed to one clock of 12.288 MHz.
[0034]
In the above, the case where the operation clock frequency of the variable frequency divider 22 is twice (12.288 MHz) the operation clock frequency (6.144 MHz) of the variable frequency divider 16 has been described. However, the operation frequency is 3 times (18.432 MHz). ), The counter monitoring timing is set to the timing of every 1/3 period of the phase comparison period, and the count-up number for each of the counters (A) 26 and (B) 28 is set to 3 (one count-down number). Is changed to -1 or +1 when the difference between the count values of the counters (A) 26 and (B) 28 is 3 or more (step S4 in FIG. A = 0 and B> 2 ”and step S6 can be changed to“ A> 2 & B = 0 ”). In addition, in the case of 4 times (24.576 MHz), the counter monitoring timing is set to the timing of every quarter period of the phase comparison period, and the count-up number for each time of the counters (A) 26 and (B) 28 is 4 (the countdown number at one time remains 1), and when the difference between the count values of the counters (A) 26 and (B) 28 is 4 or more, the frequency division ratio of the variable frequency divider 22 is changed by −1 or +1. (Step S4 in FIG. 5 is changed to “A = 0 &B> 3” and step S6 is changed to “A> 3 & B = 0”).
[0035]
That is, generally speaking, when the operation clock frequency of the variable frequency divider 22 is a times the operation clock frequency of the variable frequency divider 16 (a is an integer of 2 or more), the phase comparison is performed for each phase comparison period. Depending on the result, one of the counters (A) 26 and (B) 28 is counted up, and the count values of the counters (A) 26 and (B) 28 are monitored every 1 / a period of the phase comparison period. When both count values are other than 0, the frequency division ratio of the variable frequency divider 22 is maintained at the normal frequency division ratio until the next monitoring timing, and both counters (A) 26 and (B) 28 are set. When the count value of the counter (A) 26 is 0 and the count value of the counter (B) 28 is larger than a / 2, it is changed once every time until the next monitoring timing. Change the division ratio of the frequency divider by +1 And the count value of the counter (B) 28 is decremented by 1, and when the count value of the counter (A) 26 is greater than a / 2 and the count value of the counter (B) 28 is 0, the next monitoring timing is reached. Once, the frequency division ratio of the variable frequency divider 22 is changed by −1 and the count value of the counter (A) 26 is decremented by 1 to combine the count values of both counters (A) 26 and (B) 28. In other cases, the frequency division ratio of the variable frequency divider 22 is maintained at the normal frequency division ratio until the next monitoring timing, and the count values of both counters (A) 26 and (B) 28 are maintained as they are. In this case, when the frequency division ratio of the variable frequency divider 16 is alternately switched to +1, -1, +1, -1,... For each phase comparison period, the frequency division ratio of the variable frequency divider 22 is changed. Switching in conjunction with this It is possible to avoid be. In addition, if “greater than 1” is used instead of “greater than a / 2”, the number of switching of the frequency division ratio of the variable frequency divider 22 is divided by the variable frequency divider 16 in the same case. This can be reduced as compared with {FIG. 5 (d)} in which switching is performed by the number of times corresponding to the amount of jitter generated by switching the circumferential ratio.
[0036]
In the above embodiment, the operation clock frequency (12.288 MHz) of the variable frequency divider 22 is twice the operation clock frequency (6.144 MHz) of the variable frequency divider 16, but is larger than twice. It can also be an integer multiple. In the above-described embodiment, the present invention is applied to a digital communication terminal such as a router or a terminal adapter. However, the present invention is also applied to other communication devices and electric devices other than communication devices. be able to.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a digital PLL circuit of the present invention.
FIG. 2 is a block diagram showing a conventional digital PLL circuit.
3 is a block diagram illustrating a configuration example of a frequency division ratio control unit 24 in FIG.
4 is a flowchart showing a control algorithm by a frequency division ratio control unit 24 in FIG. 3;
FIG. 5 is a time chart showing an operation of the digital PLL circuit of FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Phase comparator, 12 ... Oscillator, 16 ... 1st variable frequency divider, 20 ... 1st frequency division ratio control part, 22 ... 2nd variable frequency divider, 24 ... 2nd frequency division ratio control , 26, 28 ... counter, 30 ... counter monitoring and control unit.

Claims (6)

所定周波数の発振信号を出力する発振器と、
該発振器の発振信号に基づく第1のクロック信号を入力して分周する第1の可変分周器と、
該第1の可変分周器の分周出力に基づくクロック信号と所定の入力信号とを位相比較し、該位相比較ごとに該両信号の位相の前後関係を示す位相比較結果を出力する位相比較器と、
該位相比較器の位相比較結果に基づき前記第1の可変分周器の分周比を、次に位相比較が行われるまでの間に、一時的に、その通常の分周比に対して、前記第1の可変分周器の分周出力に基づくクロック信号の位相が前記入力信号の位相よりも進んでいる時は所定量増加させ、遅れている時は所定量減少させることにより、該第1の可変分周器の分周出力の位相を変化させて、該第1の可変分周器の分周出力を前記入力信号に位相同期させる第1の分周比制御部と、
前記第1のクロック信号に同期したクロック信号であって該第1のクロック信号よりも周波数が高い第2のクロック信号を入力して分周する第2の可変分周器と、
前記第2の可変分周器の分周比を、前記位相比較器の位相比較結果に応じて、一時的に、その通常の分周比に対して所定量増加させまたは所定量減少させることにより、該第2の可変分周器の分周出力の位相を変化させて、該第2の可変分周器の分周出力を前記入力信号に位相同期させる第2の分周比制御部とを具備し、
前記第2の可変分周器の分周比の増加または減少によるその分周出力の1周期当たりの位相変化量が、前記第1の可変分周器の分周比の増加または減少によるその分周出力の1周期当たりの位相変化量よりも小さくなるように該第2の可変分周器の分周比の増加量および減少量が設定されているディジタルPLL回路。
An oscillator that outputs an oscillation signal of a predetermined frequency;
A first variable frequency divider that receives and divides a first clock signal based on an oscillation signal of the oscillator;
A phase comparison that compares the phase of a clock signal based on the frequency-divided output of the first variable frequency divider and a predetermined input signal and outputs a phase comparison result indicating the phase relationship between the two signals for each phase comparison. And
Based on the phase comparison result of the phase comparator, the frequency division ratio of the first variable frequency divider is temporarily compared with the normal frequency division ratio until the next phase comparison is performed. The phase of the clock signal based on the frequency-divided output of the first variable frequency divider is increased by a predetermined amount when it is ahead of the phase of the input signal, and is decreased by a predetermined amount when it is delayed. A first frequency division ratio controller that changes the phase of the frequency-divided output of the first variable frequency divider and synchronizes the frequency-divided output of the first variable frequency divider with the input signal;
A second variable frequency divider that divides the frequency by inputting a second clock signal that is synchronized with the first clock signal and has a frequency higher than that of the first clock signal ;
The frequency division ratio of the second variable frequency divider is temporarily increased or decreased by a predetermined amount with respect to the normal frequency division ratio according to the phase comparison result of the phase comparator. A second frequency division ratio control unit that changes the phase of the frequency-divided output of the second variable frequency divider and synchronizes the frequency-divided output of the second variable frequency divider with the input signal. Equipped,
The amount of phase change per cycle of the frequency-divided output due to the increase or decrease of the frequency division ratio of the second variable frequency divider is the amount corresponding to the increase or decrease of the frequency division ratio of the first variable frequency divider. A digital PLL circuit in which an increase amount and a decrease amount of a frequency division ratio of the second variable frequency divider are set so as to be smaller than a phase change amount per cycle of the peripheral output.
所定周波数の発振信号を出力する発振器と、
該発振器の発振信号に基づく第1のクロック信号を入力して分周する第1の可変分周器と、
該第1の可変分周器の分周出力に基づくクロック信号と所定の入力信号とを位相比較し、該位相比較ごとに該両信号の位相の前後関係を示す位相比較結果を出力する位相比較器と、
該位相比較器の位相比較結果に基づき前記第1の可変分周器の分周比を、次に位相比較が行われるまでの間に1回、その通常の分周比に対して、前記第1の可変分周器の分周出力に基づくクロック信号の位相が前記入力信号の位相よりも進んでいる時は+1変化させ、遅れている時は−1変化させることにより、該第1の可変分周器の分周出力の位相を変化させて、該第1の可変分周器の分周出力を前記入力信号に位相同期させる第1の分周比制御部と、
前記第1のクロック信号に同期したクロック信号であって該第1のクロック信号よりも周波数が高い第2のクロック信号を入力して分周する第2の可変分周器と、
前記第2の可変分周器の分周比を、前記位相比較器の位相比較結果に応じて、一時的に、その通常の分周比に対して+1または−1変化させることにより、該第2の可変分周器の分周出力の位相を変化させて、該第2の可変分周器の分周出力を前記入力信号に位相同期させる第2の分周比制御部と
を具備してなるディジタルPLL回路。
An oscillator that outputs an oscillation signal of a predetermined frequency;
A first variable frequency divider that receives and divides a first clock signal based on an oscillation signal of the oscillator;
A phase comparison that compares the phase of a clock signal based on the frequency-divided output of the first variable frequency divider and a predetermined input signal and outputs a phase comparison result indicating the phase relationship between the two signals for each phase comparison. And
Based on the phase comparison result of the phase comparator, the frequency division ratio of the first variable frequency divider is set to the normal frequency division ratio once before the next phase comparison is performed. When the phase of the clock signal based on the frequency-divided output of one variable frequency divider is ahead of the phase of the input signal, it is changed by +1, and when it is behind, the first variable is changed by -1. A first frequency division ratio controller that changes the phase of the frequency-divided output of the frequency divider and synchronizes the frequency-divided output of the first variable frequency divider with the input signal;
A second variable frequency divider that divides the frequency by inputting a second clock signal that is synchronized with the first clock signal and has a frequency higher than that of the first clock signal;
The frequency division ratio of the second variable frequency divider is temporarily changed by +1 or −1 with respect to the normal frequency division ratio in accordance with the phase comparison result of the phase comparator. And a second frequency division ratio control unit that changes the phase of the frequency division output of the second variable frequency divider and synchronizes the frequency division output of the second variable frequency divider with the input signal. A digital PLL circuit.
前記第2の分周比制御部が、前記第1の可変分周器の分周出力に対する前記第2の可変分周器の分周出力の位相差を、前記第1の可変分周器の分周比の変化によるその分周出力の1周期当たりの位相変化量よりも小さい値に収まらせる回数、前記第2の可変分周器の分周比の変化を実行する請求項2記載のディジタルPLL回路。Said second frequency dividing ratio control unit, the first variable frequency divider for dividing the phase difference between the divided output of said second variable frequency divider for division output, before Symbol first variable frequency divider 3. The frequency division ratio of the second variable frequency divider is changed by the number of times the frequency division output is reduced to a value smaller than the phase change amount per cycle of the frequency division output due to the change of the frequency division ratio. Digital PLL circuit. 所定周波数の発振信号を出力する発振器と、
該発振器の発振信号に基づく第1のクロック信号を入力して分周する第1の可変分周器と、
該第1の可変分周器の分周出力に基づくクロック信号と所定の入力信号とを位相比較し、該位相比較ごとに該両信号の位相の前後関係を示す位相比較結果を出力する位相比較器と、
該位相比較器の位相比較結果に基づき前記第1の可変分周器の分周比を、次に位相比較が行われるまでの間に1回、その通常の分周比に対して、前記第1の可変分周器の分周出力に基づくクロック信号の位相が前記入力信号の位相よりも進んでいる時は+1変化させ、遅れている時は−1変化させることにより、該第1の可変分周器の分周出力の位相を変化させて、該第1の可変分周器の分周出力を前記入力信号に位相同期させる第1の分周比制御部と、
前記第1のクロック信号に同期したクロック信号であって該第1のクロック信号よりも周波数がa倍(aは2以上の整数)高い第2のクロック信号を入力して分周する第2の可変分周器と、
前記位相比較器の位相比較結果に基づき前記第2の可変分周器の分周比を、前記位相比較の1周期に相当する時間内にa回、その通常の分周比に対して、前記第1の可変分周器の分周出力に基づくクロック信号の位相が前記入力信号の位相よりも進んでいる時は+1変化させ、遅れている時は−1変化させることにより、該第2の可変分周器の分周出力の位相を変化させて、該第2の可変分周器の分周出力を前記入力信号に位相同期させる第2の分周比制御部と
を具備してなるディジタルPLL回路。
An oscillator that outputs an oscillation signal of a predetermined frequency;
A first variable frequency divider that receives and divides a first clock signal based on an oscillation signal of the oscillator;
A phase comparison that compares the phase of a clock signal based on the frequency-divided output of the first variable frequency divider and a predetermined input signal and outputs a phase comparison result indicating the phase relationship between the two signals for each phase comparison. And
Based on the phase comparison result of the phase comparator, the frequency division ratio of the first variable frequency divider is set to the normal frequency division ratio once before the next phase comparison is performed. When the phase of the clock signal based on the frequency-divided output of one variable frequency divider is ahead of the phase of the input signal, it is changed by +1, and when it is behind, the first variable is changed by -1. A first frequency division ratio controller that changes the phase of the frequency-divided output of the frequency divider and synchronizes the frequency-divided output of the first variable frequency divider with the input signal;
A second clock signal that is synchronized with the first clock signal and has a frequency a times higher than the first clock signal (a is an integer equal to or greater than 2) is input and frequency-divided. A variable divider,
Based on the phase comparison result of the phase comparator, the frequency division ratio of the second variable frequency divider is a times within the time corresponding to one period of the phase comparison, with respect to its normal frequency division ratio, When the phase of the clock signal based on the frequency-divided output of the first variable frequency divider is advanced from the phase of the input signal, it is changed by +1, and when it is delayed, it is changed by -1. A digital frequency divider comprising: a second frequency division ratio control unit that changes the phase of the frequency division output of the variable frequency divider and synchronizes the frequency division output of the second variable frequency divider with the input signal. PLL circuit.
所定周波数の発振信号を出力する発振器と、
該発振器の発振信号に基づく第1のクロック信号を入力して分周する第1の可変分周器と、
該第1の可変分周器の分周出力に基づくクロック信号と所定の入力信号とを位相比較し、該位相比較ごとに該両信号の位相の前後関係を示す位相比較結果を出力する位相比較器と、
該位相比較器の位相比較結果に基づき前記第1の可変分周器の分周比を、次に位相比較が行われるまでの間に1回、その通常の分周比に対して、前記第1の可変分周器の分周出力に基づくクロック信号の位相が前記入力信号の位相よりも進んでいる時は+1変化させ、遅れている時は−1変化させることにより、該第1の可変分周器の分周出力の位相を変化させて、該第1の可変分周器の分周出力を前記入力信号に位相同期させる第1の分周比制御部と、
前記第1のクロック信号に同期したクロック信号であって該第1のクロック信号よりも周波数が高いまたは該第1のクロック信号と周波数が等しい第2のクロック信号を入力して分周する第2の可変分周器と、
前記第2の可変分周器の分周比を、前記位相比較器の位相比較結果に応じて、一時的に、その通常の分周比に対して+1または−1変化させることにより、該第2の可変分周器の分周出力の位相を変化させて、該第2の可変分周器の分周出力を前記入力信号に位相同期させるものであって、前記第1の可変分周器の分周出力に対する前記第2の可変分周器の分周出力の位相差が、前記第1の可変分周器の分周比の変化によるその分周出力の1周期当たりの位相変化量に相当する時間以上に達するごとに1回、前記第2の可変分周器の分周比の変化を実行する第2の分周比制御部と
を具備してなるディジタルPLL回路。
An oscillator that outputs an oscillation signal of a predetermined frequency;
A first variable frequency divider that receives and divides a first clock signal based on an oscillation signal of the oscillator;
A phase comparison that compares the phase of a clock signal based on the frequency-divided output of the first variable frequency divider and a predetermined input signal and outputs a phase comparison result indicating the phase relationship between the two signals for each phase comparison. And
Based on the phase comparison result of the phase comparator, the frequency division ratio of the first variable frequency divider is set to the normal frequency division ratio once before the next phase comparison is performed. When the phase of the clock signal based on the frequency-divided output of one variable frequency divider is ahead of the phase of the input signal, it is changed by +1, and when it is behind, the first variable is changed by -1. A first frequency division ratio controller that changes the phase of the frequency-divided output of the frequency divider and synchronizes the frequency-divided output of the first variable frequency divider with the input signal;
A second clock signal that is synchronized with the first clock signal and that has a frequency higher than or equal to that of the first clock signal and that divides the frequency by inputting a second clock signal. Variable dividers of
The frequency division ratio of the second variable frequency divider is temporarily changed by +1 or −1 with respect to the normal frequency division ratio in accordance with the phase comparison result of the phase comparator. And changing the phase of the frequency-divided output of the second variable frequency divider to synchronize the frequency-divided output of the second variable frequency divider with the input signal, the first variable frequency divider min phase difference between the divided output of said second variable frequency divider for division output is phase change amount per one cycle of the divided output by prior Symbol dividing ratio change in the first variable frequency divider of A digital PLL circuit comprising: a second frequency division ratio control unit that executes a change in the frequency division ratio of the second variable frequency divider once every time equal to or longer than a time corresponding to
前記第2の可変分周器が、前記第1のクロック信号に同期したクロック信号であって該第1のクロック信号よりも周波数がa倍(aは2以上の整数)高い第2のクロック信号を入力して分周するものであり、
前記第2の分周比制御部が、
前記位相比較の結果、前記第1の可変分周器の分周出力に基づくクロック信号の位相が前記入力信号の位相よりも遅れている時にaカウントアップする第1のカウンタと、
前記位相比較の結果、前記第1の可変分周器の分周出力に基づくクロック信号の位相が前記入力信号の位相よりも進んでいる時にaカウントアップする第2のカウンタと、
前記位相比較の周期の1/a周期ごとに、前記第1のカウンタと前記第2のカウンタのカウント値を監視し、両カウント値とも0以外の時は次の監視タイミングまでの間前記第2の可変分周器の分周比を通常の分周比のまま維持しかつ両カウンタのカウント値をそれぞれ1カウントダウンさせ、前記第1のカウンタのカウント値が0で前記第2のカウンタのカウント値が1以上の所定値よりも大の時は次の監視タイミングまでの間に1回前記第2の可変分周器の分周比を+1変化させかつ前記第2のカウンタのカウント値を1カウントダウンさせ、前記第1のカウンタのカウント値が1以上の所定値よりも大で前記第2のカウンタのカウント値が0の時は次の監視タイミングまでの間に1回前記第2の可変分周器の分周比を−1変化させかつ前記第1のカウンタのカウント値を1カウントダウンさせ、前記両カウンタのカウント値の組み合わせがそれ以外の時は次の監視タイミングまでの間前記第2の可変分周器の分周比を通常の分周比のまま維持しかつ両カウンタのカウント値をそのまま維持するカウンタ監視および制御部と
を具備してなる請求項5記載のディジタルPLL回路。
The second variable frequency divider is a clock signal synchronized with the first clock signal, and a second clock signal whose frequency is a times higher than the first clock signal (a is an integer of 2 or more). To divide
The second frequency division ratio control unit is
A first counter that counts up when the phase of the clock signal based on the divided output of the first variable frequency divider is delayed from the phase of the input signal as a result of the phase comparison;
As a result of the phase comparison, a second counter that counts up when the phase of the clock signal based on the frequency-divided output of the first variable frequency divider is ahead of the phase of the input signal;
The count values of the first counter and the second counter are monitored every 1 / a period of the phase comparison period, and when both count values are other than 0, the second monitoring period is until the next monitoring timing. The frequency division ratio of the variable frequency divider is maintained at the normal frequency division ratio, and the count values of both counters are decremented by 1, respectively. When the count value of the first counter is 0 and the count value of the second counter When the value is larger than a predetermined value of 1 or more, the division ratio of the second variable frequency divider is changed by +1 once before the next monitoring timing, and the count value of the second counter is counted down by 1 When the count value of the first counter is larger than a predetermined value of 1 or more and the count value of the second counter is 0, the second variable frequency division is performed once before the next monitoring timing. Change the divider ratio by -1 and The count value of the first counter is decremented by 1, and when the combination of the count values of the two counters is other than that, the division ratio of the second variable frequency divider is set to the normal division until the next monitoring timing. 6. The digital PLL circuit according to claim 5, further comprising a counter monitoring and control unit that maintains the frequency ratio and maintains the count values of both counters as they are.
JP2003039308A 2003-02-18 2003-02-18 Digital PLL circuit Expired - Fee Related JP4103620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003039308A JP4103620B2 (en) 2003-02-18 2003-02-18 Digital PLL circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039308A JP4103620B2 (en) 2003-02-18 2003-02-18 Digital PLL circuit

Publications (2)

Publication Number Publication Date
JP2004253855A JP2004253855A (en) 2004-09-09
JP4103620B2 true JP4103620B2 (en) 2008-06-18

Family

ID=33023519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039308A Expired - Fee Related JP4103620B2 (en) 2003-02-18 2003-02-18 Digital PLL circuit

Country Status (1)

Country Link
JP (1) JP4103620B2 (en)

Also Published As

Publication number Publication date
JP2004253855A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP3066690B2 (en) Phase-locked oscillation circuit
US5373254A (en) Method and apparatus for controlling phase of a system clock signal for switching the system clock signal
US11342926B2 (en) Synchronization of clock signals generated using output dividers
JPH07202657A (en) Digital delay line
JPH07154253A (en) Frequency synthesizer
KR20080016179A (en) Clock multiplier and clock multiplying method
JP3679503B2 (en) Frequency synthesizer
JP3566686B2 (en) Multiplier clock generation circuit
CN1794618B (en) Digital clock filter
US5546434A (en) Dual edge adjusting digital phase-locked loop having one-half reference clock jitter
JP4103620B2 (en) Digital PLL circuit
JP4459923B2 (en) PLL synthesizer
JP2996205B2 (en) PDH low-speed signal switching DPLL
JP3725452B2 (en) Multistage frequency synthesizer
JP2002043929A (en) Variable frequency divider circuit, and clock frequency division method using the circuit
KR100245579B1 (en) Digital pll circuit
JPH08125884A (en) Pll circuit
JP3772668B2 (en) Oscillation circuit using phase-locked loop
KR102205037B1 (en) A multi-modulus frequency divider for removing glitch and an electronic device including the multi-modulus frequency divider
JP3239945B2 (en) Clock switching adjustment method and circuit
JPH0661848A (en) Phase lock oscillator
JPH11298460A (en) Clock changeover circuit
JP2001326627A (en) Synchronizing source signal changeover circuit
JPH0983350A (en) Clock generation device
CN114337659A (en) Digital phase-locked loop circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees