JP4103459B2 - パワーオンリセット回路および該パワーオンリセット回路を具備する半導体装置 - Google Patents
パワーオンリセット回路および該パワーオンリセット回路を具備する半導体装置 Download PDFInfo
- Publication number
- JP4103459B2 JP4103459B2 JP2002171205A JP2002171205A JP4103459B2 JP 4103459 B2 JP4103459 B2 JP 4103459B2 JP 2002171205 A JP2002171205 A JP 2002171205A JP 2002171205 A JP2002171205 A JP 2002171205A JP 4103459 B2 JP4103459 B2 JP 4103459B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- circuit
- power
- reset
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electronic Switches (AREA)
Description
【発明の属する技術分野】
本発明は、電源投入時に、リセット付ラッチ回路等の揮発性データを記憶する回路を備える半導体装置の回路を初期値に設定する信号を出力するパワーオンリセット回路技術に関する。
【0002】
【従来の技術】
リセット付ラッチ回路等の揮発性データを記憶する回路では、最初の電源投入時の回路を初期値に設定する必要がある場合がある。この機能を有するパワーオンリセット回路は従来からさまざま発表されている(例えば、特開平9−270686号公報参照)。
【0003】
図17は、先に提案されたパワーオンリセット回路を示す図である。図17に示したパワーオンリセット回路は、P型MOSトランジスタP11とN型MOSトランジスタND11からなる動作電圧設定回路11と、P型MOSトランジスタP12およびP13とコンデンサC11からなる充電回路12と、P型MOSトランジスタP14とN型MOSトランジスタN11からなるインバータ回路13とで構成されている。
【0004】
次に、図17に示すパワーオンリセット回路の動作を説明する。
電源VCC投入後、P型MOSトランジスタの閾値電圧を上回ると、動作電圧設定回路11のP型MOSトランジスタP11のA1点には電源VCCの電圧値に一定の差を持った電圧が出力される。充電回路12のP型MOSトランジスタP12は前記A1点の電圧により一定のインピーダンスに制御され、コンデンサC11の充電を開始する。
【0005】
また、電源VCC投入後、インバータ回路13の出力POCはHレベルとなり、パワーオンリセットが開始される。コンデンサC11の充電により充電回路12のB1点がインバータ回路13の閾値電圧を上回ると、出力POCはLレベルとなり、パワーオンリセットが解除される。
【0006】
次に、電源VCCの電圧変動時の動作について説明する。
インバータ回路13の出力POCはLレベルに変化することで、P型MOSトランジスタP13がオンし、充電回路12のインピーダンスが低くなり、時定数CRが短くなる。その結果、電源VCCの電圧変動と充電回路12のB1点の電圧変動が同程度となり、インバータ回路13の入力電圧は閾値を下回ることなくLレベル出力を維持することができ、それによって誤動作を防ぐことができる。
【0007】
上記パワーオンリセット回路によれば、複数の動作電源電圧で動作する半導体装置において、電源投入時の回路のリセット動作、および、電源投入後の電源の切り替え等で発生する電圧の変動による誤動作を防ぐことが可能となる。
【0008】
【発明が解決しようとする課題】
しかしながら、上記パワーオンリセット回路においては、電源VCC投入時の電圧レベルによりインバータ回路13の閾値電圧が大幅に変化するため、パワーオンリセット期間を最適化することが困難であった。図18は、電源VCC立ち上げ電圧レベルとパワーオンリセット期間の関係を示した図である。
【0009】
同図から明らかように、電源VCC立ち上げ電圧レベルが低い時にはパワーオンリセット期間は短く(同図(a)参照)、電源VCC立ち上げ電圧レベルが高くなるにつれてパワーオンリセット期間も長くなり(同図(b)(c)参照)、最適なパターンw-オンリセット期間にすることが困難であった。本例では、電源VCC立ち上げ電圧レベルとして、1V、3V、6Vの例を示した。
【0010】
なお、図18(a)〜(c)は、電源電圧VCC、A1点の電圧、B1点の電圧、出力POCが重なって見難いので、それぞれの図の各電圧レベルをわかりやすく分解して図19〜図21に示した。
【0011】
さらに、電源VCCが瞬断したような場合(瞬断状態)にはP型MOSトランジスタP13の誤動作によりパワーオンリセットが開始されない可能性も考えられる。
【0012】
本発明は、上述した問題点を解消し、複数の動作電源電圧にて動作する半導体装置にて、電源投入時の回路のリセット動作、および、電源投入後の電源の切り替え等で発生する電圧の変動による誤動作を防ぎ、さらに、電源投入時の電圧レベルによるパワーオンリセット期間の変動を減らし、パワーオンリセット電圧を最適化することが可能なパワーオンリセット回路(請求項1〜4)およびそれを具備した半導体装置(請求項5)を提供することを目的としている。
【0013】
【課題を解決するための手段】
本発明は、上記目的を達成するために、次のような構成を有している。
(1)請求項1記載の発明は、電源投入時にリセット信号を発生して回路の初期設定を行うパワーオンリセット回路であって、電源VCCと、第1のP型MOSトランジスタ(P1)とディプレッション型の第1のN型MOSトランジスタ(ND1)からなる動作電圧設定回路(1)と、動作電圧設定回路(1)の出力で制御される第2のP型MOSトランジスタ(P2)と第1のコンデンサ(C1)からなる充電回路(2)と、該充電回路(2)の出力で制御される第3のP型MOSトランジスタ(P3)および第2のN型MOSトランジスタ(N1)からなるインバータ回路(3)と、電源VCCから電圧を供給され、インバータ回路(3)にのみ任意に設定された定電圧を供給する定電圧発生回路(4)と、インバータ回路の出力を前記定電圧から所定のレベル電圧にレベル変換するレベルシフト回路(5)とを備えることを特徴としている。
【0014】
(2)請求項2記載の発明は、電源投入時にリセット信号を発生して回路の初期設定を行うパワーオンリセット回路であって、電源VCCと、第1のP型MOSトランジスタ(P1)とデプレッション型の第1のN型MOSトランジスタ(ND1)からなる動作電圧設定回路(1)と、動作電圧設定回路(1)の出力で制御される第2のP型MOSトランジスタ(P2)と第1のコンデンサ(C1)からなる充電回路(2)と、該充電回路(2)の出力で制御される第3のP型MOSトランジスタ(P3)および第2のN型MOSトランジスタ(N1)からなるインバータ回路(3)と、動作電圧設定回路(1)および充電回路(2)に電源VCC電圧を供給する手段と、電源VCCから電圧を供給され、インバータ回路(3)に任意に設定された定電圧を供給する定電圧発生回路(4)と、前記インバータ回路の出力を前記定電圧から所定のレベル電圧にレベル変換するレベルシフト回路(5)とを備えることを特徴としている。
【0015】
(3)請求項3記載の発明は、電源VCCから前記定電圧以上の電圧が投入された場合において、充電回路(3)の時定数CRの調整によりパワーオンリセット期間を決定するようにしたことを特徴としている。
(4)請求項4記載の発明は、電源VCCから前記定電圧以上の電圧が投入された場合において、定電圧発生回路(4)からインバータ回路(3)に供給する定電圧の値によりパワーオンリセット電圧を決めるようにしたことを特徴としている。
(5)請求項5記載の発明は、上記請求項1〜4のいずれか1項に記載のパワーオンリセット回路を具備した半導体装置である。
【0016】
【発明の実施の形態】
以下、本発明の実施例を、図面を用いて説明する。
(参考例)
まず、本発明の参考例を詳細に説明する。
図1は、本参考例に係るパワーオンリセット回路の構成図である。
同図に示すように、本参考例におけるパワーオンリセット回路は、第1のP型MOSトランジスタP1と第1のN型MOSトランジスタND1(NDはN型でデプレッション型であることを示している)からなる動作電圧設定回路1と、第2のP型MOSトランジスタP2と第1のコンデンサC1からなる充電回路2と、第3のP型MOSトランジスタP3と第2のN型MOSトランジスタN1からなるインバータ回路3とを有している。これら動作電圧設定回路1と充電回路2とインバータ回路3でパワーオンリセット信号発生回路を構成している。
【0017】
本参考例のパワーオンリセット回路は、このような構成を有するパワーオンリセット信号発生回路と、このパワーオンリセット信号発生回路を任意に設定された定電圧にて動作させるための手段である定電圧発生回路4と、インバータ回路3の出力を前記定電圧からレベル変換するための手段であるレベルシフト回路5とから構成されている。
【0018】
図2は、図1に示した参考例のパワーオンリセット回路の電源VCC立ち上げ電圧レベルとパワーオンリセット期間を示す図であり、同図(a)はVCC=1V、同図(b)はVCC=3V、同図(c)はVCC=6Vの場合のパワーオンリセット期間を示している。同図には、電源VCC立ち上げ電圧レベルVCCと出力POCの他に、図1のD点、A点、B点、C点の電圧も示してある。
【0019】
なお、図2(a)〜(c)は、電源電圧VCC、D点の電圧、A点の電圧、B点の電圧、C点の電圧、出力POCが重なって見難いので、それぞれの図を各電圧レベル毎に図3〜図5に分解してわかりやすく示した。
【0020】
以下、図1の構成を有するパワーオンリセット回路の動作を、図2を参照しながら説明する。各電圧毎に分解して示した図3〜図5も必要に応じて参照されたい。
【0021】
▲1▼電源VCC電圧投入時の動作
電源VCC投入後、電源VCCにより動作する定電圧発生回路4が動作を開始すると、定電圧発生回路4の出力D点には電源VCC以下で予め任意に設定された電圧が出力される。ここでは、VCCとして1V(図2(a),図3),3V(図2(b),図4),6V(図2(c),図5)の例を示している。
【0022】
これらの図からわかるように、定電圧発生回路4の出力D点の電圧により動作する動作電圧設定回路1のP型MOSトランジスタP1のA点には前記D点の電圧に一定の差を持った電圧が出力される。
【0023】
また、前記D点の電圧により動作するインバータ回路3の出力C点、および、レベルシフト回路5(先に述べたように、出力C点を前記D点の電圧から電源VCCのレベルにレベル変換する)の出力POCはHレベルとなり、パワーオンリセットが開始される。さらに、充電回路2のP型MOSトランジスタP2は前記A点の電圧により一定のインピーダンスに制御され、コンデンサC1の充電を開始する。
【0024】
充電の結果、充電回路2のB点がインバータ回路3の閾値電圧を上回ると、インバータ回路3の出力C点、および、レベルシフト回路5の出力POCはLレベルとなり、パワーオンリセットが解除される。
【0025】
動作電圧設定回路1、充電回路2、インバータ回路3は、前記D点の電圧により動作するため、電源VCCから前記D点の電圧間で電源VCCの電圧が投入された場合は、時定数CRおよびインバータ回路の閾値電圧が変化することがなく、一定のパワーオンリセット期間を設定することが可能となる(図2(a)〜図2(c)および図3(f),図4(f),図5(f)参照)。
【0026】
▲2▼電源VCC電圧変動時の動作
次に、電源VCC電圧に変動があったときの動作について説明する。
図6は、電源VCC電圧に変動があったときのD点,A点,B点,C点および出力POCの電圧の変化を示す図である。図7は、図6の電源電圧VCC、D点の電圧、A点の電圧、B点の電圧、C点の電圧、出力POCが重なって見難いので、それぞれを(a)〜(f)に分解して示した図である。
【0027】
図8は図6の区間▲1▼の拡大図であり、図9は、図8の電源電圧VCC、D点の電圧、A点の電圧、B点の電圧、C点の電圧、出力POCが重なって見難いので、それぞれを(a)〜(f)に分解して示した図である。
【0028】
定電圧発生回路4は、前記設定電圧以上の電源VCC電圧で動作させる場合は定電圧を出力し、前記設定電圧以下の電源VCC電圧で動作させる場合は電源VCC電圧程度が出力されるよう構成されている。そのため、前記設定電圧以上で電源VCC電圧が変動した場合には、前記D点の電圧に変動がないため、パワーオンリセット解除状態を維持できる(図8の区間1参照)。
【0029】
また、前記設定電圧以下まで電源VCCが降下した場合についても、インバータ回路3の閾値電圧以上であれば、充電回路2のB点がインバータ回路3の閾値電圧を下回ることがなくパワーオンリセット解除状態を維持できる(図8の区間2参照)。
【0030】
しかし、インバータ回路3の閾値電圧以下、或いは、定電圧発生回路4の動作下限電圧以下に電源VCCが降下すると、再度電源VCCが投入された際、充電回路2のB点は充分に放電されており、インバータ回路3の閾値電圧を下回るためパワーオンリセットが開始される(図8の区間3参照)。
【0031】
その結果、定電圧発生回路4の前記設定電圧、インバータ回路3の閾値電圧、および、充電回路2の時定数CRを調整することにより、パワーオンリセット電圧を設定することが可能となる。
【0032】
▲3▼電源VCC瞬断時の動作
次に、電源VCC電圧の瞬断時の動作について説明する。
図10は図6の区間▲2▼の拡大図であり、図11は、図10の電源電圧VCC、D点の電圧、A点の電圧、B点の電圧、C点の電圧、出力POCが重なって見難いので、それぞれを(a)〜(f)に分解して示した図である。
【0033】
電源VCCの電圧降下時には充電回路2のB点が充分放電されているため、再度、電源VCCが投入された際は、上記▲1▼で説明した電源VCC電圧投入時の動作と実質的に同じ動作となるので説明は省略する(図10参照)。
【0034】
(実施例)
次に、本発明の実施例を説明する。
図12は、本実施例に係るパワーオンリセット回路の構成図である。
同図に示すように、本実施例におけるパワーオンリセット回路は、第1のP型MOSトランジスタP1と第1のN型MOSトランジスタND1(NDはN型でデプレッション型であることを示している)からなる動作電圧設定回路1と、第2のP型MOSトランジスタP2と第1のコンデンサC1からなる充電回路2と、第3のP型MOSトランジスタP3と第2のN型MOSトランジスタN1からなるインバータ回路3とを有している。これら動作電圧設定回路1と充電回路2とインバータ回路3でパワーオンリセット信号発生回路を構成している。
【0035】
本実施例のパワーオンリセット回路は、参考例と同様に、このような構成を有するパワーオンリセット信号発生回路と、このパワーオンリセット信号発生回路を任意に設定された定電圧にて動作させるための手段である定電圧発生回路4と、インバータ回路3の出力を前記定電圧からレベル変換するための手段であるレベルシフト回路5とから構成されている。
【0036】
本実施例では、参考例と異なり、動作電圧設定回路1と充電回路2に電源VCC立ち上げ電圧を直接供給するとともに、任意に設定された定電圧にて動作させるための手段である定電圧発生回路4の出力を前記インバータ回路3に供給するようにしている。
【0037】
図13は、図12に示した実施例のパワーオンリセット回路の電源VCC立ち上げ電圧レベルとパワーオンリセット期間を示す図であり、同図(a)はVCC=1V、同図(b)はVCC=3V、同図(c)はVCC=6Vの場合のパワーオンリセット期間を示している。同図には、電源VCC立ち上げ電圧レベルVCCと出力POCの他に、図12のD点、A点、B点、C点の電圧も示してある。
【0038】
なお、図13(a)〜(c)は、電源電圧VCC、D点の電圧、A点の電圧、B点の電圧、C点の電圧、出力POCが重なって見難いので、それぞれの図を各電圧レベル毎に図14〜図16に分解してわかりやすく示した。
【0039】
以下、図12の構成を有するパワーオンリセット回路の動作を、図13を参照しながら説明する。各電圧毎に分解して示した図14〜図16も必要に応じて参照されたい。
【0040】
▲1▼電源VCC電圧投入時の動作
電源VCC投入後、電源VCCにより動作する定電圧発生回路4が動作を開始すると、定電圧発生回路4の出力D点には電源VCC以下で予め任意に設定された電圧が出力される。ここでは、VCCとして1V(図13(a),図14),3V(図13(b),図15),6V(図13(c),図16)の例を示している。これらの図からわかるように、電源VCCにより動作する動作電圧設定回路1のP型MOSトランジスタP1のA点には前記VCCの電圧に一定の差を持った電圧が出力される。
【0041】
また、前記D点の電圧により動作するインバータ回路3の出力C点、および、レベルシフト回路5(先に述べたように、出力C点を前記D点の電圧から電源VCCのレベルにレベル変換する)の出力POCはHレベルとなり、パワーオンリセットが開始される。さらに、充電回路2のP型MOSトランジスタP2は前記A点の電圧により一定のインピーダンスに制御され、コンデンサC1の充電を開始する。
【0042】
充電の結果、充電回路2のB点がインバータ回路3の閾値電圧を上回ると、インバータ回路3の出力C点、および、レベルシフト回路5の出力POCはLレベルとなり、パワーオンリセットが解除される。
【0043】
本実施例では、動作電圧設定回路1、充電回路2は電源VCCにより、インバータ回路3は、前記D点の電圧により動作するため、参考例と同様に、電源VCCから前記D点の電圧間で電源VCCの電圧が投入された場合は、充電回路2の時定数CRおよびインバータ回路の閾値電圧が変化することがなく、一定のパワーオンリセット期間を設定することが可能となる(図13(a)〜図13(c)および図14(f),図15(f),図16(f)参照)。
【0044】
【発明の効果】
以上説明したように、本発明によれば、複数の動作電源電圧にて動作する半導体装置にて、電源投入時の回路のリセット動作、および、電源投入後の電源の切り替え等で発生する電圧の変動による誤動作を防ぎ、さらに、電源投入時の電圧レベルによるパワーオンリセット期間の変動を減らし、パワーオンリセット電圧を最適化したパワーオンリセット回路(請求項1〜4)およびそれを用いた半導体装置(請求項5)を実現できる。
【図面の簡単な説明】
【図1】 本発明の参考例に係るパワーオンリセット回路の構成図である。
【図2】 図1に示した参考例のパワーオンリセット回路の電源VCC立ち上げ電圧レベルとパワーオンリセット期間を示す図である。
【図3】図2(a)の電源電圧VCC、D点の電圧、A点の電圧、B点の電圧、C点の電圧、出力POCを分解して示した図である。分解図である。
【図4】図2(b)の電源電圧VCC、D点の電圧、A点の電圧、B点の電圧、C点の電圧、出力POCを分解して示した図である。。
【図5】図2(c)の電源電圧VCC、D点の電圧、A点の電圧、B点の電圧、C点の電圧、出力POCを分解して示した図である。。
【図6】電源VCC電圧に変動があったときのD点,A点,B点,C点および出力POCの電圧の変化を示す図である。
【図7】図6の電源電圧VCC、D点の電圧、A点の電圧、B点の電圧、C点の電圧、出力POCを分解して示した図である。
【図8】図6の区間▲1▼の拡大図である。
【図9】図8の電源電圧VCC、D点の電圧、A点の電圧、B点の電圧、C点の電圧、出力POCを分解して示した図である。
【図10】図6の区間▲2▼の拡大図である。
【図11】図10の電源電圧VCC、D点の電圧、A点の電圧、B点の電圧、C点の電圧、出力POCを分解して示した図である。
【図12】 本実施例に係るパワーオンリセット回路の構成図である。
【図13】 図12に示した実施例のパワーオンリセット回路の電源VCC立ち上げ電圧レベルとパワーオンリセット期間を示す図である。
【図14】図13(a)の電源電圧VCC、D点の電圧、A点の電圧、B点の電圧、C点の電圧、出力POCを分解して示した図である。
【図15】図13(b)の電源電圧VCC、D点の電圧、A点の電圧、B点の電圧、C点の電圧、出力POCを分解して示した図である。
【図16】図13(c)の電源電圧VCC、D点の電圧、A点の電圧、B点の電圧、C点の電圧、出力POCを分解して示した図である。
【図17】先に提案されたパワーオンリセット回路を示す図である。
【図18】図17に示したパワーオンリセット回路の電源VCC立ち上げ電圧レベルとパワーオンリセット期間の関係を示した図である。
【図19】図18(a)の電源電圧VCC、A1点の電圧、B1点の電圧、出力POCを分解して示した図である。
【図20】図18(b)の電源電圧VCC、A1点の電圧、B1点の電圧、出力POCを分解して示した図である。
【図21】図18(c)の電源電圧VCC、A1点の電圧、B1点の電圧、出力POCを分解して示した図である。
【符号の説明】
1:動作電圧設定回路、
2:充電回路、
3:インバータ回路、
4:定電圧発生回路、
5:レベルシフト回路、
P1:第1のP型MOSトランジスタ、
ND1:第1のN型MOSトランジスタ、
P2:第2のP型MOSトランジスタ、
C1:第1のコンデンサ、
P3:第3のP型MOSトランジスタ、
N1:第2のN型MOSトランジスタ、
Claims (5)
- 電源投入時にリセット信号を発生して回路の初期設定を行うパワーオンリセット回路であって、
電源と、
第1のP型MOSトランジスタとデプレッション型の第1のN型MOSトランジスタからなる動作電圧設定回路と、
前記動作電圧設定回路の出力で制御される第2のP型MOSトランジスタと第1のコンデンサからなる充電回路と、
該充電回路の出力で制御される第3のP型MOSトランジスタおよび第2のN型MOSトランジスタからなるインバータ回路と、
前記電源から電圧を供給され、前記インバータ回路にのみ任意に設定された定電圧を供給する定電圧発生回路と、
前記インバータ回路の出力を前記定電圧から所定のレベル電圧にレベル変換するレベルシフト回路と
を備えることを特徴とするパワーオンリセット回路。 - 電源投入時にリセット信号を発生して回路の初期設定を行うパワーオンリセット回路であって、
電源と、
第1のP型MOSトランジスタとデプレッション型の第1のN型MOSトランジスタからなる動作電圧設定回路と、
前記動作電圧設定回路の出力で制御される第2のP型MOSトランジスタと第1のコンデンサからなる充電回路と、
該充電回路の出力で制御される第3のP型MOSトランジスタおよび第2のN型MOSトランジスタからなるインバータ回路と、
前記動作電圧設定回路および充電回路に電源電圧を供給する手段と、
前記電源から電圧を供給され、前記インバータ回路に任意に設定された定電圧を供給する定電圧発生回路と、
前記インバータ回路の出力を前記定電圧から所定のレベル電圧にレベル変換するレベルシフト回路と
を備えることを特徴とするパワーオンリセット回路。 - 前記電源から前記定電圧以上の電圧が投入された場合において、前記充電回路の時定数の調整によりパワーオンリセット期間が決定されることを特徴とする請求項1または2に記載のパワーオンリセット回路。
- 前記電源から前記定電圧以上の電圧が投入された場合において、前記定電圧発生回路から前記インバータ回路に供給する定電圧の値によりパワーオンリセット電圧が決定されることを特徴とする請求項1から3のいずれかに記載のパワーオンリセット回路。
- 請求項1〜4のいずれか1項に記載のパワーオンリセット回路を具備したことを特徴とする半導体装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002171205A JP4103459B2 (ja) | 2002-06-12 | 2002-06-12 | パワーオンリセット回路および該パワーオンリセット回路を具備する半導体装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002171205A JP4103459B2 (ja) | 2002-06-12 | 2002-06-12 | パワーオンリセット回路および該パワーオンリセット回路を具備する半導体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004023127A JP2004023127A (ja) | 2004-01-22 |
JP4103459B2 true JP4103459B2 (ja) | 2008-06-18 |
Family
ID=31171123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002171205A Expired - Fee Related JP4103459B2 (ja) | 2002-06-12 | 2002-06-12 | パワーオンリセット回路および該パワーオンリセット回路を具備する半導体装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4103459B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3888464B2 (ja) * | 2004-05-10 | 2007-03-07 | 日本テキサス・インスツルメンツ株式会社 | 半導体集積回路 |
KR100743519B1 (ko) | 2006-04-25 | 2007-07-27 | 단국대학교 산학협력단 | 전력변환시스템의 스위칭 손실을 줄이기 위한 레벨 쉬프팅구동회로 |
CN101882926B (zh) * | 2010-06-24 | 2016-03-23 | 深圳市中庆微科技开发有限公司 | 一种恒流驱动芯片上电复位电路 |
JP5978084B2 (ja) * | 2012-01-30 | 2016-08-24 | エスアイアイ・セミコンダクタ株式会社 | パワーオンリセット回路 |
-
2002
- 2002-06-12 JP JP2002171205A patent/JP4103459B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004023127A (ja) | 2004-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1900875B (zh) | 电压调节器 | |
US6469551B2 (en) | Starting circuit for integrated circuit device | |
US5847586A (en) | Enhanced power-on-reset/low voltage detection circuit | |
CN101114827B (zh) | 用于含芯片上降压转换器的数字装置的上电复位电路 | |
JP3031293B2 (ja) | パワーオンリセット回路 | |
KR20120122983A (ko) | 파워 온 리셋 회로 및 리셋 방법 | |
KR19990007168A (ko) | 노이즈 방지회로를 포함하는 오실레이터 회로 | |
US7123062B2 (en) | Power-up circuit in semiconductor memory device | |
JP3005169B2 (ja) | リセット回路 | |
JP4225630B2 (ja) | 電圧発生回路 | |
JP4103459B2 (ja) | パワーオンリセット回路および該パワーオンリセット回路を具備する半導体装置 | |
US5744990A (en) | Enhanced power-on-reset/low voltage detection circuit | |
CN113541606B (zh) | 振荡电路以及半导体集成电路 | |
JP4375898B2 (ja) | フラッシュメモリ素子のバイアスレベル生成回路 | |
US6812751B2 (en) | Low standby current power-on reset circuit | |
JP4115727B2 (ja) | 電源電圧検出回路 | |
JP5332998B2 (ja) | パワーオンリセット回路および該パワーオンリセット回路を有するモジュールならびに電子回路 | |
CN110290446B (zh) | 一种快速开关机防止爆音的静音电路 | |
JP2002271185A (ja) | パワーオンリセット回路 | |
JPH10313240A (ja) | パワーオンリセット回路 | |
JP4022967B2 (ja) | リセット回路 | |
KR100258362B1 (ko) | 반도체 소자의 기준전압 발생장치 | |
JP2001237684A (ja) | パワーオンリセット回路 | |
KR100412994B1 (ko) | 반도체장치의 파워-온 리셋회로 | |
CN219676899U (zh) | 参考电压控制的等化输入数据缓冲电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050525 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070223 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070416 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080304 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080317 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110404 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120404 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140404 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |