JP4102896B2 - Zinc alkaline battery and method for producing zinc negative electrode thereof - Google Patents

Zinc alkaline battery and method for producing zinc negative electrode thereof Download PDF

Info

Publication number
JP4102896B2
JP4102896B2 JP6965897A JP6965897A JP4102896B2 JP 4102896 B2 JP4102896 B2 JP 4102896B2 JP 6965897 A JP6965897 A JP 6965897A JP 6965897 A JP6965897 A JP 6965897A JP 4102896 B2 JP4102896 B2 JP 4102896B2
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
alloy powder
alkaline battery
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6965897A
Other languages
Japanese (ja)
Other versions
JPH10270026A (en
Inventor
夏樹 豊田
清人 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP6965897A priority Critical patent/JP4102896B2/en
Publication of JPH10270026A publication Critical patent/JPH10270026A/en
Application granted granted Critical
Publication of JP4102896B2 publication Critical patent/JP4102896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は無水銀亜鉛アルカリ電池及びその亜鉛負極の製造方法に関する。
【0002】
【従来の技術】
従来、亜鉛アルカリ電池の負極活物質としては、亜鉛の腐食によるガス発生の抑制及び電気特性の向上を目的として、汞化亜鉛合金粉末が用いられていたが、近年、使用済み電池による環境汚染が問題視されるようになってきたことから低公害化が社会的な要望となり、亜鉛合金粉末を無汞化(無水銀)にするための亜鉛合金組成や防食剤(インヒビター)等の研究が進められ、ついに実用上ガス発生に問題のない無水銀アルカリ電池用ゲル状負極が開発されるに至った。
【0003】
ところで、無汞化亜鉛合金粉末を単に用いた電池は、汞化亜鉛合金粉末を用いた電池より耐衝撃性が弱いことが分かり、その改善のためにゲル化剤の形状、粒度の見直しや増量により、ゲル状亜鉛負極の粘度を上げて耐衝撃性を向上させる方策が採られてきた。
【0004】
【発明が解決しようとする課題】
しかしながら、電池の耐衝撃性を改善するためにゲル状亜鉛負極の粘度を上げると、ゲル状亜鉛負極中のアルカリ電解液がゲル化剤に吸収される割合が多くなり、無汞化亜鉛合金粉末の濡れが不十分となる。そのため、無汞化亜鉛合金粉末間に空気が残りやすくなり、酸素ガス存在下で無汞化亜鉛粉末表面の気液界面に酸化還元反応が起こり、長期貯蔵時のガス発生量を増加させ、最終的に漏液に至ることがあることが分かった。
【0005】
本発明は、上記状況に鑑みてなされたもので、その目的は無汞化亜鉛合金粉末を用いた亜鉛アルカリ電池において、ガス発生量を抑制し、それによって耐漏液特性を改善することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本発明は亜鉛アルカリ電池の無水銀ゲル状亜鉛負極の製造方法に改良を加えたものであって、無汞化亜鉛合金粉末を減圧処理した後不活性ガスを充填することによって該粉末間の酸素ガス濃度を1%以下とし、かかる無汞化亜鉛合金粉末を不活性ガス雰囲気中でゲル状アルカリ電解液と混合し、再度、脱気・攪拌することを特徴とする。
【0007】
本発明では、無汞化亜鉛合金粉末間にある空気中の酸素ガスをあらかじめ不活性ガス(例えば窒素ガス)で置換して酸素ガス濃度を1%以下とした後に、不活性ガス雰囲気中でゲル化するので、無汞化亜鉛粉末表面の気液界面における酸素の存在が少なくなり、亜鉛の酸化還元反応による水素ガスの発生を抑制することができる。したがってかかるゲル状亜鉛負極を用いた亜鉛アルカリ電池は、低公害でかつ長期貯蔵時の耐漏液特性が改善された高性能な電池となる。
【0008】
【発明の実施の形態】
以下に、本発明の実施の形態を説明する。
(実施例1)
まず、無汞化亜鉛合金粉末を1Torrに減圧して空気を除去した後、不活性ガスを充填し、無汞化亜鉛合金粉末間の酸素を不活性ガスで置換した。不活性ガスとしては窒素ガス,ヘリウムガス,アルゴンガス等があるが、今回は窒素ガスを用いた。この不活性ガス雰囲気中の酸素ガス濃度をガスクロマトグラフィー法により測定したところ0.1%であった。次に同雰囲気中でゲル状アルカリ電解液と混合し、再度脱気しながら撹拌することで、不活性ガス置換ゲル状亜鉛負極を調製した。
【0009】
(実施例2)
無汞化亜鉛合金粉末の減圧レベルを30Torrにしたこと以外、実施例1と同様にして調製した。このときの不活性ガス雰囲気中の酸素ガス濃度をガスクロマトロフィー法により測定したところ1%であった。
【0010】
(比較例1)
無汞化亜鉛合金粉末の減圧レベルを190Torrにしたこと以外、実施例1と同様にして調製した。このときの不活性ガス雰囲気中の酸素ガス濃度をガスクロマトロフィー法により測定したところ5%であった。
【0011】
(比較例2)
無汞化亜鉛合金粉末の減圧レベルを380Torrにしたこと以外、実施例1と同様にして調製した。このときの不活性ガス雰囲気中の酸素ガス濃度をガスクロマトロフィー法により測定したところ10%であった。
【0012】
(比較例3)
無汞化亜鉛合金粉末の不活性ガス置換及びゲル状亜鉛負極調製時の雰囲気を不活性ガス雰囲気にしないこと以外実施例1と同様にして調製した。このときの雰囲気中の酸素ガス濃度をガスクロマトロフィー法により測定したところ20%であった。
こうして得られた、5種類のゲル状亜鉛負極を用いて、図1に示すJIS規格LR6形(単3形)アルカリ電池を組み立てた。
【0013】
図1において、1は正極端子を兼ねる有底円筒形の金属缶であり、この金属缶内には円筒状に加圧成形した正極合剤2が充填されている。正極合剤2は二酸化マンガン粉末とカーボン粉末を混合し、これを金属缶1内に収納し所定の圧力で中空円筒状に加圧成形したものである。また、正極合剤2の中空部にはアセタール化ポリビニルアルコール繊維の不織布からなる有底円筒状のセパレータ3を介して前記方法で製造したゲル状亜鉛負極4が充填されている。ゲル状亜鉛負極4内には真鍮製の負極集電棒5が、その上部をゲル状亜鉛負極4より突出するようにして装着されている。負極集電棒5の突出部外周及び金属缶1の上部内周面には二重環状のポリアミド樹脂からなる絶縁ガスケット6が配設されている。また、絶縁ガスケット6の二重環状部の間にはリング状の金属板7が配設され、かつ金属板7には負極端子を兼ねる帽子形の金属封口板8が集電棒5の頭部に当接するように配設されている。そして、金属缶1の開口縁を内方に屈曲させることによりガスケット6及び金属封口板8で金属缶1内を密封口している。
【0014】
以上のようにして組み立てた各LR6形アルカリ電池について、温度60℃,湿度93%の貯蔵条件でそれぞれ100個貯蔵し、漏液の発生個数を調査した。結果を表1に示した。表中の数値は100個中の漏液発生個数である。
【0015】
【表1】

Figure 0004102896
【0016】
表1から明らかなように、実施例の電池は60日貯蔵後までの漏液発生はなく、90日貯蔵後で2個あるに過ぎないのに対し、比較例の電池では60日貯蔵後から漏液が発生し始め、90日貯蔵後では13〜19個と明らかな差が現れた。
【0017】
以上より、酸素ガス濃度1%以下の不活性ガス雰囲気中の無汞化亜鉛合金粉末を同雰囲気中でゲル状負極に調製したものを使用したことによって、低公害かつ安全で高性能な亜鉛アルカリ電池を製造することができる。
【0018】
【発明の効果】
以上説明したように、本発明のゲル状亜鉛負極を用いることにより、無汞化亜鉛合金粉末使用による電池の低公害化を達成しつつ、長期貯蔵中のガス発生量を抑制することが可能となり、耐漏液特性を改善した安全で高性能な亜鉛アルカリ電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例である亜鉛アルカリ電池の断面図。
【符号の説明】
1…金属缶、2…正極合剤、3…セパレータ、4…ゲル状亜鉛負極、5…負極集電棒、6…絶縁ガスケット、7…リング状の金属板、8…負極端子を兼ねる金属封口板。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mercury-free zinc alkaline battery and a method for producing the zinc negative electrode.
[0002]
[Prior art]
Conventionally, zinc-halide alloy powders have been used as negative electrode active materials for zinc-alkaline batteries for the purpose of suppressing gas generation due to corrosion of zinc and improving electrical characteristics. As it has become regarded as a problem, low pollution has become a social demand, and research on zinc alloy compositions and anticorrosives (inhibitors) to make zinc alloy powder non-glazed (anhydrous silver) has progressed. Finally, a gelled negative electrode for mercury-free alkaline batteries has been developed which has no practical problem of gas generation.
[0003]
By the way, it was found that batteries that simply used zinc-free zinc alloy powder had less impact resistance than batteries that used zinc-halide alloy powder. Thus, measures have been taken to increase the viscosity of the gelled zinc negative electrode and improve the impact resistance.
[0004]
[Problems to be solved by the invention]
However, when the viscosity of the gelled zinc negative electrode is increased to improve the impact resistance of the battery, the proportion of the alkaline electrolyte in the gelled zinc negative electrode absorbed by the gelling agent increases, and the non-glazed zinc alloy powder Insufficient wetting. Therefore, air is likely to remain between the non-zincified zinc alloy powder, and an oxidation-reduction reaction occurs at the gas-liquid interface on the surface of the non-zincified zinc powder in the presence of oxygen gas, increasing the amount of gas generated during long-term storage, and finally It was found that liquid leakage could occur.
[0005]
The present invention has been made in view of the above situation, and an object of the present invention is to suppress the amount of gas generated in a zinc-alkaline battery using a non-annealed zinc alloy powder, thereby improving the leakage resistance.
[0006]
[Means for Solving the Problems]
To solve the above problems, the present invention was an improvement over the method of manufacturing a mercury-free gelled zinc anode zinc alkaline batteries, a non-amalgamated zinc alloy powder is filled with an inert gas after the vacuum treatment The oxygen gas concentration between the powders is reduced to 1% or less, and the non-zincified zinc alloy powder is mixed with a gel alkaline electrolyte in an inert gas atmosphere , and again degassed and stirred . The
[0007]
In the present invention, the oxygen gas in the air between the denitrified zinc alloy powders is replaced with an inert gas (for example, nitrogen gas) in advance so that the oxygen gas concentration is 1% or less, and then the gel is formed in an inert gas atmosphere. Therefore, the presence of oxygen at the gas-liquid interface on the surface of the non-zincified zinc powder is reduced, and generation of hydrogen gas due to the oxidation-reduction reaction of zinc can be suppressed. Therefore, a zinc alkaline battery using such a gelled zinc negative electrode is a high-performance battery having low pollution and improved leakage resistance during long-term storage.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
(Example 1)
First, after reducing the pressure of the non-hatched zinc alloy powder to 1 Torr to remove air, the inert gas was filled, and oxygen between the non-hatched zinc alloy powder was replaced with the inert gas. Inert gas includes nitrogen gas, helium gas, argon gas, etc., but this time nitrogen gas was used. The oxygen gas concentration in the inert gas atmosphere was measured by gas chromatography and found to be 0.1%. Next, the mixture was mixed with a gel alkaline electrolyte in the same atmosphere and stirred while degassing again to prepare an inert gas-substituted gelled zinc negative electrode.
[0009]
(Example 2)
It was prepared in the same manner as in Example 1 except that the reduced pressure level of the non-zincified zinc alloy powder was 30 Torr. The oxygen gas concentration in the inert gas atmosphere at this time was 1% when measured by the gas chromatrophy method.
[0010]
(Comparative Example 1)
It was prepared in the same manner as in Example 1 except that the reduced pressure level of the non-zincified zinc alloy powder was 190 Torr. The oxygen gas concentration in the inert gas atmosphere at this time was 5% when measured by the gas chromatrophy method.
[0011]
(Comparative Example 2)
It was prepared in the same manner as in Example 1 except that the reduced pressure level of the unzinced zinc alloy powder was 380 Torr. The oxygen gas concentration in the inert gas atmosphere at this time was 10% when measured by the gas chromatrophy method.
[0012]
(Comparative Example 3)
It was prepared in the same manner as in Example 1 except that the atmosphere during the inert gas substitution of the non-zincified zinc alloy powder and the preparation of the gelled zinc negative electrode was not changed to the inert gas atmosphere. The oxygen gas concentration in the atmosphere at this time was 20% when measured by the gas chromatrophy method.
A JIS standard LR6 type (AA) alkaline battery shown in FIG. 1 was assembled using the five types of gelled zinc negative electrodes thus obtained.
[0013]
In FIG. 1, reference numeral 1 denotes a bottomed cylindrical metal can also serving as a positive electrode terminal, and the metal can is filled with a positive electrode mixture 2 that is pressure-formed in a cylindrical shape. The positive electrode mixture 2 is a mixture of manganese dioxide powder and carbon powder, which is housed in a metal can 1 and pressed into a hollow cylinder at a predetermined pressure. The hollow portion of the positive electrode mixture 2 is filled with the gelled zinc negative electrode 4 produced by the above method through a bottomed cylindrical separator 3 made of a nonwoven fabric of acetalized polyvinyl alcohol fibers. A brass negative electrode current collector rod 5 is mounted in the gelled zinc negative electrode 4 so that the upper portion protrudes from the gelled zinc negative electrode 4. An insulating gasket 6 made of a double annular polyamide resin is disposed on the outer periphery of the protruding portion of the negative electrode current collector rod 5 and the upper inner peripheral surface of the metal can 1. A ring-shaped metal plate 7 is disposed between the double annular portions of the insulating gasket 6, and a hat-shaped metal sealing plate 8 that also serves as a negative electrode terminal is attached to the head of the current collecting rod 5. It arrange | positions so that it may contact | abut. The inside of the metal can 1 is sealed with the gasket 6 and the metal sealing plate 8 by bending the opening edge of the metal can 1 inward.
[0014]
About each LR6 type | mold alkaline battery assembled as mentioned above, 100 each was stored on the storage conditions of temperature 60 degreeC and humidity 93%, and the generation | occurrence | production number of the liquid leakage was investigated. The results are shown in Table 1. The numerical value in the table is the number of leaked liquids out of 100.
[0015]
[Table 1]
Figure 0004102896
[0016]
As is clear from Table 1, the batteries of the examples did not leak until 60 days after storage, and there were only two after 90 days of storage, whereas the batteries of the comparative examples had been stored after 60 days of storage. Leakage began to occur, and after 19 days storage, there was a clear difference of 13-19.
[0017]
As described above, low-pollution, safe, and high-performance zinc alkali is obtained by using a non-zincified zinc alloy powder in an inert gas atmosphere with an oxygen gas concentration of 1% or less prepared as a gelled negative electrode in the same atmosphere. A battery can be manufactured.
[0018]
【The invention's effect】
As described above, by using the gelled zinc negative electrode of the present invention, it is possible to reduce the amount of gas generated during long-term storage while achieving low pollution of the battery by using non-annealed zinc alloy powder. Thus, it is possible to provide a safe and high-performance zinc-alkaline battery with improved leakage resistance.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a zinc alkaline battery according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Metal can, 2 ... Positive electrode mixture, 3 ... Separator, 4 ... Gel-like zinc negative electrode, 5 ... Negative electrode collector rod, 6 ... Insulating gasket, 7 ... Ring-shaped metal plate, 8 ... Metal sealing plate which serves as a negative electrode terminal .

Claims (2)

無汞化亜鉛合金粉末を減圧処理した後不活性ガスを充填することによって該粉末間の酸素ガス濃度を1%以下とし、かかる無汞化亜鉛合金粉末を不活性ガス雰囲気中でゲル状アルカリ電解液と混合し、再度、脱気・攪拌することを特徴とする亜鉛アルカリ電池の無水銀ゲル状亜鉛負極の製造方法。After the vacuum-treated zinc-free alloy powder is filled with an inert gas, the oxygen gas concentration between the powders is reduced to 1% or less, and the zinc-free zinc alloy powder is subjected to gel alkaline electrolysis in an inert gas atmosphere. A method for producing an anhydrous silver-gelled zinc negative electrode for a zinc-alkaline battery, characterized by mixing with a liquid and degassing and stirring again . 請求項1記載の製造方法により製造した無水銀ゲル状亜鉛負極を備えた亜鉛アルカリ電池。  The zinc alkaline battery provided with the anhydrous silver gel-like zinc negative electrode manufactured with the manufacturing method of Claim 1.
JP6965897A 1997-03-24 1997-03-24 Zinc alkaline battery and method for producing zinc negative electrode thereof Expired - Fee Related JP4102896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6965897A JP4102896B2 (en) 1997-03-24 1997-03-24 Zinc alkaline battery and method for producing zinc negative electrode thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6965897A JP4102896B2 (en) 1997-03-24 1997-03-24 Zinc alkaline battery and method for producing zinc negative electrode thereof

Publications (2)

Publication Number Publication Date
JPH10270026A JPH10270026A (en) 1998-10-09
JP4102896B2 true JP4102896B2 (en) 2008-06-18

Family

ID=13409165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6965897A Expired - Fee Related JP4102896B2 (en) 1997-03-24 1997-03-24 Zinc alkaline battery and method for producing zinc negative electrode thereof

Country Status (1)

Country Link
JP (1) JP4102896B2 (en)

Also Published As

Publication number Publication date
JPH10270026A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
EP0817299A2 (en) Sealed rechargeable cell comprising a cathode with a hydrogen recombination catalyst
US7763383B2 (en) Sealed nickel-zinc primary cell
JP2009259706A (en) Aa alkaline battery
JP2003017077A (en) Sealed alkaline zinc primary battery
JP4102896B2 (en) Zinc alkaline battery and method for producing zinc negative electrode thereof
US2620368A (en) Alkaline dry cell
JP4255762B2 (en) Zinc alkaline battery
JP3060141B2 (en) Manufacturing method of alkaline batteries
JP4318000B2 (en) Button type battery
JP2001068121A (en) Cylindrical alkaline battery
JP2004139909A (en) Sealed nickel-zinc primary battery
JP2003017078A (en) Zinc alkaline battery
JP4517314B2 (en) Zinc alkaline battery
JP4292431B2 (en) Cylindrical alkaline battery
JP3235143B2 (en) Alkaline battery
JP3968248B2 (en) Aluminum battery
JP2946894B2 (en) Zinc alkaline battery
JPH06231757A (en) Zinc alkaline battery
JP3681799B2 (en) Button-type alkaline battery
JPH08279355A (en) Button type alkaline battery
JP3474721B2 (en) Non-melonized air battery
JP4268851B2 (en) Alkaline battery
JP3115574B2 (en) Battery
JPH03230476A (en) Negative electrode active material for alkaline battery
JP4433105B2 (en) Air battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees