JP4102384B2 - Conductive material with laminated structure - Google Patents

Conductive material with laminated structure Download PDF

Info

Publication number
JP4102384B2
JP4102384B2 JP2005137781A JP2005137781A JP4102384B2 JP 4102384 B2 JP4102384 B2 JP 4102384B2 JP 2005137781 A JP2005137781 A JP 2005137781A JP 2005137781 A JP2005137781 A JP 2005137781A JP 4102384 B2 JP4102384 B2 JP 4102384B2
Authority
JP
Japan
Prior art keywords
conductive particles
conductive material
conductive
polymer plastic
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005137781A
Other languages
Japanese (ja)
Other versions
JP2006319001A (en
Inventor
信道 黄
Original Assignee
廣輝電子股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 廣輝電子股▲ふん▼有限公司 filed Critical 廣輝電子股▲ふん▼有限公司
Priority to JP2005137781A priority Critical patent/JP4102384B2/en
Publication of JP2006319001A publication Critical patent/JP2006319001A/en
Application granted granted Critical
Publication of JP4102384B2 publication Critical patent/JP4102384B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Landscapes

  • Wire Bonding (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、積層構造を備えた導電材料に関し、より詳細には、表面に導電粒子が分散されてなる積層構造を備えた導電材料に関するものである。   The present invention relates to a conductive material having a laminated structure, and more particularly to a conductive material having a laminated structure in which conductive particles are dispersed on the surface.

図1A〜図1Cに示されるように、一般的に、従来の液晶ディスプレイのガラス基板の端子と駆動コンポーネントの端子との間において電気的導通を付与するために、球状の導電粒子が用いられている。導電材料3は、端子2が形成されたガラス基板1表面に塗布又は貼着される。そして、駆動コンポーネント4の表面に形成された端子5、及びガラス基板1の表面に形成された端子2は、端子同士の位置を合わせるようにして、導電材料3を介して接合される。端子2,5間において、電気的導通はZ軸方向に生じ、電気的絶縁はX−Y平面の方向に生じる。   As shown in FIGS. 1A to 1C, spherical conductive particles are generally used to provide electrical continuity between a glass substrate terminal and a driving component terminal of a conventional liquid crystal display. Yes. The conductive material 3 is applied or adhered to the surface of the glass substrate 1 on which the terminals 2 are formed. And the terminal 5 formed in the surface of the drive component 4 and the terminal 2 formed in the surface of the glass substrate 1 are joined via the electrically-conductive material 3 so that the position of terminals may match. Between the terminals 2 and 5, electrical conduction occurs in the Z-axis direction, and electrical insulation occurs in the direction of the XY plane.

図2Aに示されるように、導電材料3は、球状の導電粒子31が均一に分散された熱可塑性層又は熱硬化性層から形成される。しかしながら、導電材料3中において、導電粒子31のクラスター化を防止し、導電粒子31を均一に分布させるためには、導電材料3に外部電界及び外部磁界をかける必要がある。また、精度良く制御するための設備を使用する必要もある。よって、製造コストが増加してしまう。   As shown in FIG. 2A, the conductive material 3 is formed of a thermoplastic layer or a thermosetting layer in which spherical conductive particles 31 are uniformly dispersed. However, in order to prevent the conductive particles 31 from being clustered and to distribute the conductive particles 31 uniformly in the conductive material 3, it is necessary to apply an external electric field and an external magnetic field to the conductive material 3. In addition, it is necessary to use equipment for precise control. Therefore, the manufacturing cost increases.

また、駆動コンポーネント4の端子5が、液晶ディスプレイのガラス基板1の端子2に、導電材料3によって圧着されると、図2Bに示されるように、導電粒子31を介して端子2,5間でZ軸方向の電気的導通が構築されることとなる。導電粒子31はガラス基板1と駆動コンポーネント4との間で圧迫されるため、端子2,5の接合部位以外の部分にある導電粒子31同士でショートする可能性がある。すなわち、図2BのA部分に示されているように、X−Y平面の方向において、望まない電気的導通が構築されてしまう。   Further, when the terminal 5 of the drive component 4 is crimped to the terminal 2 of the glass substrate 1 of the liquid crystal display by the conductive material 3, as shown in FIG. 2B, between the terminals 2 and 5 via the conductive particles 31. Electrical conduction in the Z-axis direction is established. Since the conductive particles 31 are pressed between the glass substrate 1 and the driving component 4, there is a possibility that the conductive particles 31 in a portion other than the joint portion of the terminals 2 and 5 may be short-circuited. That is, as shown in part A of FIG. 2B, undesired electrical conduction is established in the direction of the XY plane.

液晶ディスプレイに関し、高解像度及びより小さいサイズへの要求が高まる中で、ガラス基板1の端子2と駆動コンポーネント4の端子5との間のピッチ間隔をより短縮することが求められている。その結果、端子2,5間の接合インピーダンスは、接合面積の縮小により上昇してしまう。ファインピッチに対する要求を満足させるためには、導電粒子31のサイズを縮小することが必要とされる。その結果として、導電粒子31製造の困難度、及び製造コストが増加してしまう。さらに、端子2,5の表面粗さにより、導電粒子31のサイズのさらなる縮小化が制約される。導電粒子31のサイズを、端子2,5の表面粗さにより許容し得る大きさより小さくすると、電気的導電不良が生じてしまう。導電粒子31の密度が高まると、接合インピーダンスは低減され得るものの、ファインピッチ接合に対する要求は満たされない。以上の諸事情により、従来の導電材料は、ピッチ間隔が50ミクロンよりも大きい場合において、接合用に用いられている。   With respect to the liquid crystal display, it is required to further shorten the pitch interval between the terminal 2 of the glass substrate 1 and the terminal 5 of the driving component 4 in a demand for high resolution and a smaller size. As a result, the junction impedance between the terminals 2 and 5 increases due to the reduction of the junction area. In order to satisfy the demand for fine pitch, it is necessary to reduce the size of the conductive particles 31. As a result, the difficulty of manufacturing the conductive particles 31 and the manufacturing cost increase. Further, the surface roughness of the terminals 2 and 5 restricts further reduction in the size of the conductive particles 31. If the size of the conductive particles 31 is made smaller than the size allowed by the surface roughness of the terminals 2 and 5, an electrical conduction failure will occur. When the density of the conductive particles 31 increases, the junction impedance can be reduced, but the demand for fine pitch bonding is not satisfied. Due to the above circumstances, conventional conductive materials are used for bonding when the pitch interval is larger than 50 microns.

したがって、上述した欠点を解決することができ、かつ、液晶ディスプレイの端子と駆動コンポーネントの端子とのファインピッチ接合に適している導電材料の提供が望まれている。   Therefore, it is desired to provide a conductive material that can solve the above-described drawbacks and that is suitable for fine pitch bonding between the terminals of the liquid crystal display and the terminals of the driving component.

本発明の目的の1つは、表面に導電粒子が分散された少なくとも1層のポリマープラスチック層を含む導電材料であって、単位表面積における導電粒子の密度が低減されるために、マイクロピッチ接合(micro-pitch joining)の要求を満たすことができる導電材料を提供することである。   One of the objects of the present invention is a conductive material including at least one polymer plastic layer in which conductive particles are dispersed on the surface, and the density of the conductive particles per unit surface area is reduced. It is to provide a conductive material that can satisfy the requirements of micro-pitch joining.

本発明の他の目的は、表面に導電粒子が分散された少なくとも1層のポリマープラスチック層を含む導電材料であって、ポリマープラスチック層表面に分散される導電粒子の密度を、外部電界及び外部磁界の印加によることなく容易に制御することのできる導電材料を提供することである。これにより、製造コストを低減することができる。   Another object of the present invention is a conductive material comprising at least one polymer plastic layer having conductive particles dispersed on the surface, wherein the density of the conductive particles dispersed on the surface of the polymer plastic layer is determined by an external electric field and an external magnetic field. It is an object of the present invention to provide a conductive material that can be easily controlled without application of. Thereby, manufacturing cost can be reduced.

上述した目的を達成するため、本発明は、駆動コンポーネントの端子とガラス基板の端子との接合に使用することができる導電材料を提供する。この本発明による導電材料は、導電粒子が表面に分散された少なくとも1層のポリマープラスチック層を含む。各ポリマープラスチック層の単位表面積における導電粒子の密度は、導電粒子がポリマープラスチック層の表面に分散されることによって、低減され得る。さらに、導電粒子は、導電材料中の端子接合部以外の部分におけるポリマープラスチック層によって、それぞれ分離される。よって、導電材料中の端子接合部以外の部分にある導電粒子間に生じ得るショート現象が回避される。加えて、本発明の積層状導電材料は、ファインピッチ接合の目的を達成するために、以下の3つのメカニズムを提供する。(1)単位体積あたりの導電粒子数を一定に保持しながら、導電材料の積層を増やす。これによって、単位表面積あたりの導電粒子数を減らすことができるとともに、接合部以外の部分にある導電粒子間でショートする確率が低減される。そして、端子間のピッチ間隔が短縮され得るため、ファインピッチ接合が実現されることとなる。(2)本発明の導電材料は、繊維状の導電粒子を使用する。端子間の接合インピーダンスは、より低くなり得る。その結果、端子間のピッチ間隔が短縮され、ファインピッチ接合の目的が達成されることとなる。(3)本発明の導電材料は、繊維状の導電粒子を使用する。繊維状の導電粒子は、従来の球状導電粒子と比較して、端子接合時にたやすく流失するようなことはない。したがって、繊維状の導電粒子は、クラスター化(clustering)の効果を提供することができ、端子間のピッチ間隔の短縮化に有利である。これによって、ファインピッチ接合の目的が達成される。本発明の導電材料は、超ファインピッチの液晶ディスプレイに利用されるものとして適している。 In order to achieve the above-described object, the present invention provides a conductive material that can be used for joining a terminal of a driving component and a terminal of a glass substrate. The conductive material according to the present invention includes at least one polymer plastic layer having conductive particles dispersed on the surface. The density of the conductive particles at the unit surface area of each polymer plastic layer can be reduced by dispersing the conductive particles on the surface of the polymer plastic layer. Further, the conductive particles are separated from each other by the polymer plastic layer in a portion other than the terminal joint portion in the conductive material. Therefore, the short phenomenon which may occur between the conductive particles in portions other than the terminal joint portion in the conductive material is avoided. In addition, the laminated conductive material of the present invention provides the following three mechanisms in order to achieve the object of fine pitch bonding. (1) Increase the number of conductive material layers while keeping the number of conductive particles per unit volume constant. As a result, the number of conductive particles per unit surface area can be reduced, and the probability of short-circuiting between conductive particles in portions other than the joint portion is reduced. And since the pitch space | interval between terminals can be shortened, fine pitch joining will be implement | achieved. (2) The conductive material of the present invention uses fibrous conductive particles. The junction impedance between the terminals can be lower. As a result, the pitch interval between terminals is shortened, and the object of fine pitch bonding is achieved. (3) The conductive material of the present invention uses fibrous conductive particles. Fibrous conductive particles are not easily washed away at the time of terminal bonding as compared with conventional spherical conductive particles. Therefore, the fibrous conductive particles can provide a clustering effect, which is advantageous for shortening the pitch interval between terminals. This achieves the purpose of fine pitch bonding. The conductive material of the present invention is suitable for use in an ultrafine pitch liquid crystal display.

図1A〜図1Cは、従来の導電材料によってガラス基板の端子と駆動コンポーネントの端子との接合工程フローを示す断面図である。1A to 1C are cross-sectional views illustrating a flow of a bonding process between a terminal of a glass substrate and a terminal of a driving component using a conventional conductive material. 図2A〜図2Bは、導電粒子が分散された公知の導電材料によってガラス基板の端子と駆動コンポーネントの端子との接合工程フローを示す断面図である。FIG. 2A to FIG. 2B are cross-sectional views illustrating a flow of a bonding process between a terminal of a glass substrate and a terminal of a driving component using a known conductive material in which conductive particles are dispersed. 図3A〜図3Cは、本発明の第1の実施形態に基づく導電材料によりガラス基板の端子と駆動コンポーネントの端子との接合工程フローの各段階のそれぞれに対応した断面図である。FIG. 3A to FIG. 3C are cross-sectional views corresponding to the respective stages of the joining process flow between the terminals of the glass substrate and the terminals of the driving component using the conductive material according to the first embodiment of the present invention. 図4A〜図4Cは、本発明の第2の実施形態に基づく導電材料によりガラス基板の端子と駆動コンポーネントの端子との接合工程フローの各段階のそれぞれに対応した断面図である。FIG. 4A to FIG. 4C are cross-sectional views corresponding to the respective stages of the joining process flow between the terminals of the glass substrate and the terminals of the driving component using the conductive material according to the second embodiment of the present invention.

添付の図面に対応させた以下の詳細な説明により、本発明の目的、特徴及び長所がより明確となるであろう。   The objects, features and advantages of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings.

本発明は、導電粒子が表面に分散された少なくとも1層のポリマープラスチック層を含む導電材料を提供するものである。ポリマープラスチック層は、熱可塑性樹脂又は熱硬化性樹脂からなるものである。本発明の導電材料が、駆動コンポーネントの端子とガラス基板の端子とを圧着させるのに用いられると、これらの端子間の接合インピーダンス(junction impedance)は低減される。そして、超ファインピッチを得るという目的が達成される。   The present invention provides a conductive material comprising at least one polymer plastic layer having conductive particles dispersed on the surface thereof. The polymer plastic layer is made of a thermoplastic resin or a thermosetting resin. When the conductive material of the present invention is used to crimp the drive component terminals and the glass substrate terminals, the junction impedance between these terminals is reduced. And the objective of obtaining a super fine pitch is achieved.

より詳細には、本発明の導電材料は、表面に導電粒子が分散された熱可塑性樹脂層又は熱硬化性樹脂層からなるものである。かかるポリマープラスチック層表面における導電粒子分布の密度及び均一性は、容易に制御され得る。導電粒子は、ポリマープラスチック層表面に分布されるため、ポリマープラスチック層の単一表面の単位表面積当たりの導電粒子数(導電粒子の密度)は、導電粒子が分散された従来の導電材料と比較して、より小さいものとなる。しかし、本発明の導電材料により駆動コンポーネントの端子とガラス基板の端子とを圧着した後、これらの端子間の接合部の導電粒子数は、当該接合部位におけるポリマープラスチック層表面部全体における導電粒子数の合計と同じになる。このため、本発明の導電材料は、従来の導電材料と同様に、端子間に電気的導通を付与することができる。   More specifically, the conductive material of the present invention comprises a thermoplastic resin layer or a thermosetting resin layer having conductive particles dispersed on the surface. The density and uniformity of the conductive particle distribution on the surface of such a polymer plastic layer can be easily controlled. Since the conductive particles are distributed on the surface of the polymer plastic layer, the number of conductive particles per unit surface area of the single surface of the polymer plastic layer (the density of the conductive particles) is compared with the conventional conductive material in which the conductive particles are dispersed. And become smaller. However, after crimping the terminal of the driving component and the terminal of the glass substrate with the conductive material of the present invention, the number of conductive particles at the joint between these terminals is the number of conductive particles in the entire surface of the polymer plastic layer at the joint. Is the same as the sum of For this reason, the electrically conductive material of this invention can provide electrical continuity between terminals similarly to the conventional electrically conductive material.

また、ポリマープラスチック層の単一表面の単位表面積における導電粒子の密度は低下し、かつ、導電粒子は、導電材料のうち端子接合部以外の部分のポリマープラスチック層によって、それぞれ分離される。このため、図2BのA部分に示されるような導電材料のうち端子接合部以外の部分にある導電粒子間に生じ得るショート現象を回避することができる。   In addition, the density of the conductive particles on the unit surface area of the single surface of the polymer plastic layer is reduced, and the conductive particles are separated by the polymer plastic layer of the conductive material other than the terminal joint portion. For this reason, the short phenomenon which may arise between the electrically-conductive particles in parts other than a terminal junction part among electrically conductive materials as shown by A part of FIG. 2B can be avoided.

本発明の導電材料は、単層構造又は多層構造とすることができる。本発明の導電材料を多層構造として形成する場合、導電粒子を各ポリマープラスチック層の表面のそれぞれに分散させることで、単一層の単位表面積当たりの導電粒子数(すなわち、導電粒子の密度)を減らすことができる。その結果、駆動コンポーネントの端子とガラス基板の端子との間のピッチ間隔をより短縮することができる。積層数を増加する一方で、単位体積あたりの導電粒子数を一定にした場合、単一のポリマープラスチック層の単位表面積当たりの導電粒子数は、それぞれ減少することになる。これにより、端子間のピッチ間隔をさらに短縮することできる。ピッチ幅と積層数との関係は、下記式によって表わすことができる。   The conductive material of the present invention can have a single layer structure or a multilayer structure. When the conductive material of the present invention is formed as a multilayer structure, the number of conductive particles per unit surface area of the single layer (that is, the density of the conductive particles) is reduced by dispersing the conductive particles on the surface of each polymer plastic layer. be able to. As a result, the pitch interval between the terminal of the driving component and the terminal of the glass substrate can be further shortened. If the number of conductive particles per unit volume is made constant while increasing the number of laminated layers, the number of conductive particles per unit surface area of a single polymer plastic layer will be decreased. Thereby, the pitch interval between terminals can be further shortened. The relationship between the pitch width and the number of layers can be expressed by the following formula.

P=T+S
A=T+S/(n+1)
n=Th/(2×B)
A<P
式中、Pはピッチ幅を表し、Tは端子幅(リード幅)を表し、Sは端子間の間隔を表し、Aは積層構造を備えた導電材料における予定のピッチ幅(expected pitch)を表し、nは積層数を表し、Thは導電材料の厚さを表し、かつ、Bは導電粒子の直径を表す。
P = T + S
A = T + S / (n + 1)
n = Th / (2 × B)
A <P
In the formula, P represents the pitch width, T represents the terminal width (lead width), S represents the spacing between the terminals, and A represents the expected pitch width in the conductive material having a laminated structure. , N represents the number of stacked layers, Th represents the thickness of the conductive material, and B represents the diameter of the conductive particles.

本発明の導電材料の積層数が増えても、端子間のピッチ間隔は短縮され得る。しかし、ガラス基板と駆動コンポーネントとの間の距離は一定であるので、積層数はより多数に、各層の厚さはより小さくなることになる。その結果として、積層間の絶縁インピーダンスが不十分となってしまう。そして、ショートする確率が高まる。よって、本発明の導電材料の積層数は、1〜20層、好ましくは1〜10層、より好ましくは1〜5層にするのがよい。   Even if the number of laminated conductive materials of the present invention increases, the pitch interval between the terminals can be shortened. However, since the distance between the glass substrate and the driving component is constant, the number of layers is larger, and the thickness of each layer is smaller. As a result, the insulation impedance between the layers becomes insufficient. And the probability of short-circuiting increases. Therefore, the number of stacked conductive materials of the present invention is 1 to 20 layers, preferably 1 to 10 layers, and more preferably 1 to 5 layers.

本発明の導電材料が少なくとも2層の積層ポリマープラスチック層を含む場合には、界面間において、2層の積層ポリマープラスチック層のうち少なくとも1層の表面に導電粒子を分散させればよい。   When the conductive material of the present invention includes at least two laminated polymer plastic layers, conductive particles may be dispersed on the surface of at least one of the two laminated polymer plastic layers between the interfaces.

さらに、本発明の導電材料のポリマープラスチック層表面において、導電粒子は不規則に分散されていてもよい。導電粒子の配向分布を規定する必要はない。ポリマープラスチック層表面における導電粒子の不規則な分布は、さらなるファインピッチ接合を可能とする。   Furthermore, the conductive particles may be irregularly dispersed on the surface of the polymer plastic layer of the conductive material of the present invention. It is not necessary to define the orientation distribution of the conductive particles. The irregular distribution of conductive particles on the surface of the polymer plastic layer allows further fine pitch bonding.

本発明の導電材料は、単位表面積当たりの導電粒子の密度を低減することができる。よって、本発明の導電材料は、25ミクロン未満という小ささの超ファインピッチの液晶ディスプレイに使用することができる。   The conductive material of the present invention can reduce the density of conductive particles per unit surface area. Therefore, the conductive material of the present invention can be used for an ultrafine pitch liquid crystal display having a size of less than 25 microns.

本発明の導電材料の導電粒子としては、例えば、金、銀、銅、アルミニウム、ニッケル、ステンレス鋼及びカーボン、並びにこれらの組み合せからなる群より選択される低抵抗性を有する金属材料が挙げられる。導電粒子の形状は、繊維状である。 Examples of the conductive particles of the conductive material of the present invention include a metal material having low resistance selected from the group consisting of gold, silver, copper, aluminum, nickel, stainless steel and carbon, and combinations thereof. The shape of the conductive particles is fibrous.

導電粒子の形状が繊維状である場合、本発明の導電材料を介して端子が圧着されることで、導電粒子と端子との間には線状の接触(linear contact)が構築される。よって、接合インピーダンスが、その他の形状の導電粒子よりも低くなる。   In the case where the shape of the conductive particles is fibrous, a terminal is crimped via the conductive material of the present invention, so that a linear contact is established between the conductive particles and the terminal. Accordingly, the junction impedance is lower than that of conductive particles of other shapes.

繊維状の導電粒子を金属で成形する場合には、まず、金属を箔状に成形してから、所定の切削技術により繊維状に仕上げる。また、繊維状の導電粒子は、高圧蒸気ジェット噴流を利用した繊維工程、溶融繊維紡績工程(molten fiber spinning process)、若しくは米国特許第6074752号の発明の名称を「金属繊維塊及びその製造方法(METAL FIBRE AGGLOMERATE AND PROCESS FOR MANUFACTURING THE SAME)」とする明細書において提案された金属繊維成形法、台湾特許公報第511406号により開示された金属繊維製造技術、又はナノメートルファイバーテクノロジーにより作製することもできる。   In the case of forming the fibrous conductive particles with metal, first, the metal is formed into a foil shape, and then finished into a fiber shape by a predetermined cutting technique. In addition, the fibrous conductive particles are a fiber process using a high-pressure steam jet, a molten fiber spinning process, or the name of the invention of US Pat. METAL FIBER AGGLOMERATE AND PROCESS FOR MANUFACTURING THE SAME) ”can also be produced by the metal fiber forming method proposed by the specification of Taiwanese Patent Publication No. 511406 or nanometer fiber technology. .

導電粒子の大きさは、マイクロメートル単位、ひいてはナノメートル単位とすることができる。導電粒子の高さと幅との比は、約0.2〜1の範囲にすることができる。高さと幅との比が0.2未満であると、端子の表面粗さにより許容される大きさよりも、導電粒子の直径が小さくなってしまい、これにより接合不良が引き起こされる可能性がある。そして、信号が有効に伝送されなくなる。また、高さと幅との比が1に等しい場合、ポリマープラスチック層表面に分散された球状の導電粒子は、軟化したポリマープラスチック層が流動することに伴い、移動してしまうおそれがある。その結果として、端子上における導電粒子の分布が不均一となってしまう。しかし、以上の問題は、いくらかの粘度を有するポリマープラスチック層を用いることによって回避することができる。ファインピッチ及び低インピーダンスの要求を満たすため、本発明の導電材料においては、高さと幅との比が1に等しくない非球状の導電粒子を用いることが好ましい。本発明の導電材料に、繊維状の導電粒子を用いることがより好ましい。これは、軟化したポリマープラスチック層が流動しても、当該ポリマープラスチック層表面に分散された繊維状の導電粒子は、単に変形するだけであって、流失するには至らないからであり、これによって、端子上の導電粒子が不足する事態になることはない。   The size of the conductive particles can be in units of micrometers, and thus in nanometers. The ratio between the height and width of the conductive particles can be in the range of about 0.2-1. When the ratio between the height and the width is less than 0.2, the diameter of the conductive particles becomes smaller than the size allowed by the surface roughness of the terminal, which may cause poor bonding. Then, the signal is not transmitted effectively. When the ratio between the height and the width is equal to 1, the spherical conductive particles dispersed on the surface of the polymer plastic layer may move as the softened polymer plastic layer flows. As a result, the distribution of the conductive particles on the terminal becomes non-uniform. However, the above problems can be avoided by using a polymer plastic layer having some viscosity. In order to satisfy the requirements of fine pitch and low impedance, it is preferable to use non-spherical conductive particles in which the ratio of height to width is not equal to 1 in the conductive material of the present invention. It is more preferable to use fibrous conductive particles for the conductive material of the present invention. This is because even when the softened polymer plastic layer flows, the fibrous conductive particles dispersed on the surface of the polymer plastic layer are merely deformed and do not flow out. There will be no shortage of conductive particles on the terminal.

本発明の導電材料がガラス基板の端子と液晶ディスプレイの端子とを接合するのに用いられると、圧着後、一種の線状の接着によって電気的接合が構築されるため、接合インピーダンスが低減されることとなる。さらに、導電粒子のピッチ間隔と密度との関係は、線形の関係にある。本発明の導電材料の単位表面積当たりの導電粒子数は、従来の導電材料の導電粒子数の1/5〜1/2とすることができる。よって、ファインピッチ接合の要求を満たすことができる。   When the conductive material of the present invention is used to join a terminal of a glass substrate and a terminal of a liquid crystal display, the electrical impedance is constructed by a kind of linear adhesion after crimping, so that the junction impedance is reduced. It will be. Furthermore, the relationship between the pitch interval and the density of the conductive particles is a linear relationship. The number of conductive particles per unit surface area of the conductive material of the present invention can be set to 1/5 to 1/2 of the number of conductive particles of the conventional conductive material. Therefore, the requirements for fine pitch bonding can be satisfied.

以下に、添付の図面と照らし合わせながら、実施形態により本発明を詳細に説明する。
図3A〜図3Cは、本発明の第1の実施形態に基づく導電材料によりガラス基板の端子と液晶ディスプレイの端子との接合工程フローの各段階のそれぞれに対応した断面図である。図3Aを参照すると、第1の実施形態における積層構造を備えた導電材料3は、表面に繊維状の導電粒子33が分散されたポリマープラスチック層32を含んでいる。繊維状の導電粒子33は、ポリマープラスチック層32の2つの表面上に均一に分布している。この導電材料3を、端子2が形成されたガラス基板1上に塗布する。続いて、端子同士の位置を合わせるようにして、駆動コンポーネント4をガラス基板1に圧着する。圧着後、導電粒子33が端子2,5に接触するため、端子2,5の間に電気的接続(Z軸方向の電気的接続)が形成される。一方、図3Bに示されるように、端子2,5の接合部以外にある導電粒子33は、ポリマープラスチック層32によってそれぞれ分離されており、そこにはいかなる電気的接続も構築されない(すなわち、X方向及びY方向にはいかなる電気的接続も存在しない)。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
3A to 3C are cross-sectional views corresponding to the respective stages of the bonding process flow between the terminals of the glass substrate and the terminals of the liquid crystal display using the conductive material according to the first embodiment of the present invention. Referring to FIG. 3A, the conductive material 3 having a laminated structure in the first embodiment includes a polymer plastic layer 32 having fibrous conductive particles 33 dispersed on the surface. The fibrous conductive particles 33 are uniformly distributed on the two surfaces of the polymer plastic layer 32. This conductive material 3 is applied on the glass substrate 1 on which the terminals 2 are formed. Subsequently, the drive component 4 is pressure-bonded to the glass substrate 1 so that the positions of the terminals are aligned. Since the conductive particles 33 come into contact with the terminals 2 and 5 after the crimping, an electrical connection (electric connection in the Z-axis direction) is formed between the terminals 2 and 5. On the other hand, as shown in FIG. 3B, the conductive particles 33 other than the joints of the terminals 2 and 5 are separated by the polymer plastic layer 32, respectively, and no electrical connection is established there (ie, X There is no electrical connection in the direction and Y direction).

図3Cは、図3Bの概略平面図である。図3Cから、導電材料3の導電粒子33の分布を見て取ることができる。導電材料3における導電粒子33の総数は、ポリマープラスチック層32の2つの表面に分散された導電粒子33の数の合計に等しい。したがって、導電粒子33の密度を従来の導電材料と同等にしようとする場合に、この導電材料3は、ポリマープラスチック層32の2つの表面における単位表面積当たりの導電粒子33の密度がより低いものとなる。よって、導電材料3のうち端子2,5の接合部以外に位置する表面部分は、単位表面積当たりの導電粒子33の密度がより低いものとなる。単位表面積当たりの粒子密度が低ければ、当該接合部以外の部分で電気的にショートする確率も低くなる。このことは、ファインピッチ接合が達成されることを意味する。さらに、繊維状の導電粒子33は、圧着後、端子2,5と線状に連結する。よって、低接合インピーダンスが達成される。   FIG. 3C is a schematic plan view of FIG. 3B. From FIG. 3C, the distribution of the conductive particles 33 of the conductive material 3 can be seen. The total number of conductive particles 33 in the conductive material 3 is equal to the sum of the number of conductive particles 33 dispersed on the two surfaces of the polymer plastic layer 32. Therefore, when it is intended to make the density of the conductive particles 33 equal to that of the conventional conductive material, the conductive material 3 has a lower density of the conductive particles 33 per unit surface area on the two surfaces of the polymer plastic layer 32. Become. Therefore, the surface portion of the conductive material 3 other than the joint portion of the terminals 2 and 5 has a lower density of the conductive particles 33 per unit surface area. If the particle density per unit surface area is low, the probability of an electrical short circuit at a portion other than the joint portion is low. This means that fine pitch bonding is achieved. Further, the fibrous conductive particles 33 are linearly connected to the terminals 2 and 5 after being crimped. Thus, a low junction impedance is achieved.

図4A〜図4Cは、本発明の第2の実施形態に基づく導電材料によってガラス基板の端子と液晶ディスプレイの端子との接合工程フローの各段階のそれぞれに対応した断面図である。図4Aを参照すると、第2の実施形態における積層構造を備えた導電材料3は、表面に繊維状の導電粒子33が分散された3層の積層ポリマープラスチック層32を含む。導電粒子33は、3層のポリマープラスチック層32の各表面に均一に分布されるが、導電粒子33は、積層ポリマープラスチック層の界面間においては、2層のポリマープラスチック層32のうち1層の表面に分散しているだけである。この導電材料3を、端子2が形成されたガラス基板1の表面に塗布し、続いて、端子同士の位置を合わせるようにして、駆動コンポーネント4をガラス基板1に圧着する。圧着後、導電粒子33が端子2,5に接触するため、端子2,5の間に電気的接続(Z軸方向の電気的接続)が形成される。一方、図4Bに示されるように、端子2,5の接合部以外にある導電粒子33同士は、積層ポリマープラスチック層32によってそれぞれ分離されており、そこにはいかなる電気的接続も構築されない(すなわち、X方向及びY方向にはいかなる電気的接続も存在しない)。   FIGS. 4A to 4C are cross-sectional views corresponding to respective stages of a bonding process flow of a glass substrate terminal and a liquid crystal display terminal using a conductive material according to the second embodiment of the present invention. Referring to FIG. 4A, the conductive material 3 having a laminated structure in the second embodiment includes three laminated polymer plastic layers 32 having fibrous conductive particles 33 dispersed on the surface. The conductive particles 33 are uniformly distributed on the respective surfaces of the three polymer plastic layers 32. However, the conductive particles 33 are one of the two polymer plastic layers 32 between the interfaces of the laminated polymer plastic layers. It is only dispersed on the surface. The conductive material 3 is applied to the surface of the glass substrate 1 on which the terminals 2 are formed, and then the driving component 4 is pressure-bonded to the glass substrate 1 so that the terminals are aligned with each other. Since the conductive particles 33 come into contact with the terminals 2 and 5 after the crimping, an electrical connection (electric connection in the Z-axis direction) is formed between the terminals 2 and 5. On the other hand, as shown in FIG. 4B, the conductive particles 33 other than the joint portions of the terminals 2 and 5 are separated from each other by the laminated polymer plastic layer 32, and no electrical connection is established there (ie, , There are no electrical connections in the X and Y directions).

図4Cは、図4Bの概略平面図である。図4Cから、導電材料3の導電粒子33の分布を見て取ることができる。導電材料3の導電粒子33の総数は、各ポリマープラスチック層32の表面のそれぞれに分散されている導電粒子33の数の合計に等しい。第2の実施形態における導電材料3の3層積層構造によれば、導電粒子33の密度を従来の導電材料と同等にしようとした場合に、この導電材料3は、単位表面積当たりの導電粒子33の密度が第1の実施形態のそれよりもさらに低いものとなる。さらに、端子2,5の接合部以外の部分には、いかなる電気的接続も構築されない。単位表面積当たりの粒子密度が低くなると、ファインピッチ接合が達成されることとなる。   FIG. 4C is a schematic plan view of FIG. 4B. From FIG. 4C, the distribution of the conductive particles 33 of the conductive material 3 can be seen. The total number of conductive particles 33 of the conductive material 3 is equal to the total number of conductive particles 33 dispersed on each of the surfaces of each polymer plastic layer 32. According to the three-layer laminated structure of the conductive material 3 in the second embodiment, when the density of the conductive particles 33 is set to be equal to that of the conventional conductive material, the conductive material 3 is provided with the conductive particles 33 per unit surface area. Is lower than that of the first embodiment. In addition, no electrical connection is established in any part other than the joints of the terminals 2 and 5. When the particle density per unit surface area decreases, fine pitch bonding is achieved.

本発明の積層構造を備えた導電材料は、導電粒子が層状分布の形式で分布してなるものである。例えば、導電粒子33は、図3に示すように、ポリマープラスチック層32の2つの表面に分散される。このため、単位表面積当たりの導電粒子の密度を低くすることができる。さらに、導電粒子がポリマープラスチック層の表面に分散されることで、導電粒子の分布を均一に制御するために電界及び磁界を印加する必要がなく、導電粒子の密度を容易に制御することができる。よって、製造コストを低減することができる。   The conductive material having the laminated structure of the present invention is formed by distributing conductive particles in the form of a layered distribution. For example, the conductive particles 33 are dispersed on the two surfaces of the polymer plastic layer 32 as shown in FIG. For this reason, the density of the conductive particles per unit surface area can be reduced. Furthermore, since the conductive particles are dispersed on the surface of the polymer plastic layer, it is not necessary to apply an electric field and a magnetic field in order to uniformly control the distribution of the conductive particles, and the density of the conductive particles can be easily controlled. . Therefore, the manufacturing cost can be reduced.

また、本発明の導電材料における単位表面積当たりの導電粒子の密度は低減されており、かつ、端子接合部以外の部分において、導電粒子同士は、積層ポリマープラスチック層によりそれぞれ分離される。よって、導電材料のうち端子の接合部以外の部分にある導電粒子間に生じ得るショート現象を回避することができる。単位表面積当たりの導電粒子の密度がより低減されたことで、ピッチ間隔の短縮も可能となる。   In addition, the density of the conductive particles per unit surface area in the conductive material of the present invention is reduced, and the conductive particles are separated from each other by the laminated polymer plastic layer in a portion other than the terminal joint portion. Therefore, it is possible to avoid a short-circuit phenomenon that may occur between conductive particles in a portion of the conductive material other than the terminal joint. Since the density of the conductive particles per unit surface area is further reduced, the pitch interval can be shortened.

まとめると、本発明の積層状導電材料は、ファインピッチ接合の目的を達成するために、以下3つのメカニズムを提供する。(1)単位体積当たりの導電粒子数を一定に保持する一方で、導電材料の積層数を増やす。これによって、単位表面積当たりの導電粒子数を減らすことができるとともに、接合部以外にある導電粒子間でショートする確率が低減される。そして、端子間のピッチ間隔を短縮することができるため、ファインピッチ接合を達成することができる。(2)本発明の導電材料は、非球状の導電粒子を使用する。これにより、端子間の接合インピーダンスは、より低いものになり得る。その結果、端子間のピッチ間隔が短縮され、ファインピッチ接合の目的が達成されることとなる。(3)本発明の導電材料は、非球状の導電粒子を使用する。従来の球状の導電粒子に比較して、非球状の導電粒子は、端子の接合時にたやすく流失したりすることがない。したがって、非球状の導電粒子は、クラスター化(clustering)の効果を提供することができ、端子間のピッチ間隔の短縮化に有利である。よって、ファインピッチ接合の目的が達成される。   In summary, the laminated conductive material of the present invention provides the following three mechanisms to achieve the purpose of fine pitch bonding. (1) The number of conductive materials is increased while the number of conductive particles per unit volume is kept constant. Thereby, the number of conductive particles per unit surface area can be reduced, and the probability of short-circuiting between conductive particles other than the joint portion is reduced. And since the pitch interval between terminals can be shortened, fine pitch joining can be achieved. (2) The conductive material of the present invention uses non-spherical conductive particles. Thereby, the junction impedance between terminals can be lower. As a result, the pitch interval between terminals is shortened, and the object of fine pitch bonding is achieved. (3) The conductive material of the present invention uses non-spherical conductive particles. Compared to conventional spherical conductive particles, non-spherical conductive particles are not easily washed away when the terminals are joined. Therefore, the non-spherical conductive particles can provide a clustering effect, which is advantageous for shortening the pitch interval between terminals. Therefore, the purpose of fine pitch bonding is achieved.

上述の実施形態は、本発明を説明するために採用しただけであって、本発明の範囲を限定しようとするものではない。本発明の精神に従って、上述の実施形態に変更を施すことは可能である。
The above-described embodiments are merely used to explain the present invention, and are not intended to limit the scope of the present invention. Modifications can be made to the above-described embodiments in accordance with the spirit of the invention.

Claims (8)

表面に導電粒子が分散された少なくとも1層のポリマープラスチック層からなり、
前記導電粒子の形状が、繊維状である導電材料。
Consisting of at least one polymer plastic layer with conductive particles dispersed on the surface,
A conductive material in which the shape of the conductive particles is fibrous .
前記ポリマープラスチック層が、熱可塑性樹脂からなる請求項1記載の導電材料。   The conductive material according to claim 1, wherein the polymer plastic layer is made of a thermoplastic resin. 前記ポリマープラスチック層が、熱硬化性樹脂からなる請求項1記載の導電材料。   The conductive material according to claim 1, wherein the polymer plastic layer is made of a thermosetting resin. 前記導電材料には、積層された複数のポリマープラスチック層が含まれ、
前記導電粒子が、界面間において、積層された2層のポリマープラスチック層のうちの少なくとも1層の表面に分散されている請求項1記載の導電材料。
The conductive material includes a plurality of laminated polymer plastic layers,
The conductive material according to claim 1, wherein the conductive particles are dispersed on the surface of at least one of two laminated polymer plastic layers between the interfaces.
前記ポリマープラスチック層が、熱可塑性樹脂からなる請求項4記載の導電材料。   The conductive material according to claim 4, wherein the polymer plastic layer is made of a thermoplastic resin. 前記ポリマープラスチック層が、熱硬化性樹脂からなる請求項4記載の導電材料。   The conductive material according to claim 4, wherein the polymer plastic layer is made of a thermosetting resin. 前記導電粒子が、金、銀、銅、アルミニウム、ニッケル、ステンレス鋼及びカーボン、並びにこれらの組み合せからなる群より選ばれた材料から形成されたものである請求項1記載の導電材料。   The conductive material according to claim 1, wherein the conductive particles are formed from a material selected from the group consisting of gold, silver, copper, aluminum, nickel, stainless steel and carbon, and combinations thereof. 前記導電粒子が、金、銀、銅、アルミニウム、ニッケル、ステンレス鋼及びカーボン、並びにこれらの組み合せからなる群より選ばれた材料から形成されたものである請求項4記載の導電材料。   The conductive material according to claim 4, wherein the conductive particles are formed from a material selected from the group consisting of gold, silver, copper, aluminum, nickel, stainless steel, carbon, and combinations thereof.
JP2005137781A 2005-05-10 2005-05-10 Conductive material with laminated structure Expired - Fee Related JP4102384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005137781A JP4102384B2 (en) 2005-05-10 2005-05-10 Conductive material with laminated structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005137781A JP4102384B2 (en) 2005-05-10 2005-05-10 Conductive material with laminated structure

Publications (2)

Publication Number Publication Date
JP2006319001A JP2006319001A (en) 2006-11-24
JP4102384B2 true JP4102384B2 (en) 2008-06-18

Family

ID=37539424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137781A Expired - Fee Related JP4102384B2 (en) 2005-05-10 2005-05-10 Conductive material with laminated structure

Country Status (1)

Country Link
JP (1) JP4102384B2 (en)

Also Published As

Publication number Publication date
JP2006319001A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
TWI511208B (en) Connecting and bonding adjacent layers with nanostructures
JP6169915B2 (en) Anisotropic conductive film manufacturing method, anisotropic conductive film, and connection structure
US7482198B2 (en) Method for producing through-contacts and a semiconductor component with through-contacts
KR101193757B1 (en) Anisotropic conductive film, method for producing the same, and joined structure using the same
KR102018042B1 (en) Anisotropic conductive film and connection structure
TWI486976B (en) Conductive particles and an anisotropic conductive connecting material using the same, and a method for producing a conductive particle body
CN107534231A (en) Anisotropic conductive film and connecting structure body
KR102314818B1 (en) Filler-containing film
US20100321916A1 (en) Method of connection of flexible printed circuit board and electronic device obtained thereby
JP2010199087A (en) Anisotropic conductive film and manufacturing method therefor, and junction body and manufacturing method therefor
JP2009283606A (en) Connection structure of wiring member, and connection method of wiring member
JP2006032335A (en) Anisotropic conductive adhesion film
JP4102384B2 (en) Conductive material with laminated structure
JP2006001284A (en) Method for producing anisotropic conducting adhesive film
US7384688B2 (en) Connecting structure used in a liquid crystal display panel
CN213803596U (en) Anisotropic conductive adhesive film
JP2007115676A (en) Conductive particle and conductive connection structure
JP5210236B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
KR20200002953A (en) Manufacturing method of adhesive composition and connector
EP1777066A1 (en) A laminated electrically conductive polymer structure
KR102649406B1 (en) Filler-containing film
CN110767348A (en) Anisotropic conductive film and manufacturing method thereof
JPH09147928A (en) Connecting member
CN111799241A (en) Bonding structure, manufacturing method thereof and display panel
JP2008177299A (en) Laminated mounting structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4102384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees