JP4100919B2 - 継目無し内面溝付伝熱管の製造方法 - Google Patents

継目無し内面溝付伝熱管の製造方法 Download PDF

Info

Publication number
JP4100919B2
JP4100919B2 JP2002015454A JP2002015454A JP4100919B2 JP 4100919 B2 JP4100919 B2 JP 4100919B2 JP 2002015454 A JP2002015454 A JP 2002015454A JP 2002015454 A JP2002015454 A JP 2002015454A JP 4100919 B2 JP4100919 B2 JP 4100919B2
Authority
JP
Japan
Prior art keywords
plug
grooved
tube
die
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002015454A
Other languages
English (en)
Other versions
JP2002301514A (ja
Inventor
伸明 日名子
清憲 小関
主税 佐伯
秀樹 岩本
Original Assignee
株式会社コベルコ マテリアル銅管
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コベルコ マテリアル銅管 filed Critical 株式会社コベルコ マテリアル銅管
Priority to JP2002015454A priority Critical patent/JP4100919B2/ja
Publication of JP2002301514A publication Critical patent/JP2002301514A/ja
Application granted granted Critical
Publication of JP4100919B2 publication Critical patent/JP4100919B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は空調機器等に使用される熱交換器に組み込まれる伝熱管として好適な継目無し内面溝付伝熱管の製造方法に関し、特に、内面に形成された溝のリード角が大きい継目無し内面溝付伝熱管の製造方法に関する。
【0002】
【従来の技術】
近年、地球温暖化を抑制するために、火力発電所が排出する二酸化炭素を削減することが求められており、空調機器においても、消費電力の低減への取組みがなされている。空調機器に使用される熱交換器に組み込まれている内面溝付伝熱管の管内熱伝達率を改善することも、その取組みのひとつである。
【0003】
内面溝付管の管内熱伝達率を向上させる手段として、例えば、特開平9−42881号公報に記載されているように、管の内面に形成されている溝のリード角、即ち、溝が延びる方向と管軸方向との間の角度を大きくする方法がある。これにより、特に凝縮性能が向上する。
【0004】
内面溝付管には、継目無し内面溝付管及び内面溝付溶接管がある。このうち、生産性において、継目無し内面溝付管は内面溝付溶接管よりも優れている。
【0005】
図1は、継目無し内面溝付伝熱管の製造装置の構成及び製造方法を示す断面図である。継目無し内面溝付伝熱管(以下、内面溝付管という)の製造装置について説明する。図1に示すように、銅からなる素管1の内部に、フローティングプラグ2が挿入されている。フローティングプラグ2の形状は、管供給側(上流側)の外径が素管1の内径よりやや小さく、管引抜き側(下流側)の外径は管供給側の外径よりも小さくなっている。フローティングプラグ2と整合する位置における素管1の外面には、フローティングプラグ2と共に素管1を縮径加工する保持ダイス3が配置されている。また、フローティングプラグ2には連結軸4を介してほぼ円柱形の溝付プラグ5が連結されている。溝付プラグ5の外周面には、素管1の内周面に形成すべき形状の溝が加工されている。溝付プラグ5は連結軸4を軸として自在に回転することができる。そして、この溝付プラグ5に整合する位置の素管1の外面には、複数個の転造ボール6が素管1の管軸を中心として管円周方向に公転回転可能に配設されている。また、各転造ボール6は自転することができ、各転造ボール6は素管1の外面に転接しながら遊星回転することができる。溝付プラグ5及び転造ボール6は転造部7を構成する。なお、転造ボール6は転造ロール(図示せず)に置き換えることもできる。更に、転造部7の管引抜き方向下流側には、内面に溝が形成された素管1の外径を所定の寸法に縮径加工する仕上げダイス8が設けられている。
【0006】
次に、内面溝付管の製造方法について説明する。先ず、素管1をフローティングプラグ2及び保持ダイス3により縮径加工する。次に、この縮径加工された素管1を、素管1の外側を遊星回転する転造ボール6又は転造ロール(以下、まとめて転造ボール6という)によって押圧することによって縮径すると共に、溝付プラグ5に押圧する。これにより、素管1の内面に溝付プラグ5の溝が転写される。このとき、溝付プラグ5は、素管1の内面に自らが形成した溝に沿って自転する。通常、溝付プラグ5の自転の向きと転造ボール6の公転の向きとは相互に逆の向きである。但し、特開平10−258307号公報に記載されているように、溝付プラグ5の溝が欠損しやすい場合は、溝付プラグ5の自転の向きと転造ボール6の公転の向きとを相互に同じとして溝付プラグ5の欠損を防止する場合もある。
【0007】
また、このとき、溝付プラグ5は連結軸4を介してフローティングプラグ2に連結されており、フローティングプラグ2は素管1の引抜きによる摩擦力及び保持ダイス3からの抗力により、保持ダイス3と整合する位置に静止しているため、溝付プラグ5も転造ボール6と整合する位置に停止している。
【0008】
次に、転造部7を通過した内面に溝が形成された素管1は、仕上げダイズ8により更に縮径され、所定の外径を有する内面溝付管9となる。
【0009】
前述のような方法で製造される内面溝付管9において、内面に形成されている溝のリード角を大きくするためには、以下の方法がある。
【0010】
第1の方法は、溝付プラグ5の外周面に形成されている溝のリード角ηを大きくする方法である。溝付プラグ5のリード角ηを大きくすることにより、内面溝付管9のリード角ηを大きくすることができる。但し、内面溝付管9は、仕上げダイス8により縮径されると同時に、長手方向へ伸ばされるため、仕上げダイス8を通過した後の内面溝付管9のリード角ηは、溝付プラグ5のリード角ηよりも小さくなってしまう。外径7mmの内面溝付管の場合、ηを35°としても、ηは、例えば18°になってしまう。このため、溝付プラグ5のリード角ηは、製品である内面溝付管9のリード角ηの設計値よりもかなり大きめにしておく必要がある。
【0011】
内面溝付管9のリード角ηを大きくする第2の方法は、仕上げダイス8による管の縮径率を小さくする方法である。管の縮径率を小さくすることにより、管が長手方向に伸びる割合も小さくなり、溝付プラグ5のリード角ηと内面溝付管9のリード角ηとの差を小さくすることができ、製品(内面溝付管9)においてより大きなリード角を得ることができる。
【0012】
【発明が解決しようとする課題】
しかしながら、前述の従来の技術には以下に示すような問題点がある。溝付プラグ5のリード角ηを大きくする方法においては、このリード角ηを過度に大きくすると、溝形成時に素管1に印加される負荷が大きくなり、材料破断が発生し内面溝付管が製造できなくなるという問題点がある。具体的には、内面溝付管9のリード角ηを25°以上にしようとすると抽伸破断が発生し易くなる。特に、外径が7.5mm以下の内面溝付管において25°以上のリード角ηを得ようとする場合及び外径が7.5mmより大きく11mm以下の内面溝付管において30°以上のリード角ηを得ようとする場合においては、従来の方法では、溝付プラグ5のリード角ηを約45°又はそれ以上にする必要があり、抽伸破断が多発する。このため、このような内面溝付管は製造不可能又は生産性及び歩留まりが著しく低下するため極めて製造困難となる。
【0013】
また、仕上げダイス8による管の縮径率を小さくする方法においては、仕上げダイス8に挿入される前の素管1の管径を小さくしておく必要があるが、これにより、溝加工部(転造部7)において管が細くなり、管の断面積が小さくなる。その結果、管の抽伸方向の強度が低下するため、引抜き力が同じであっても管が破断し易くなる。このため、溝加工部における管径には下限界がある。また、保持ダイス3に挿入される前の素管1も細くする必要があるため、素管1を製造する工程において伸数が増え、製造コストの上昇につながる。
【0014】
本発明はかかる問題点に鑑みてなされたものであって、溝付プラグのリード角を大きくすることなく、また管の抽伸破断を起こすことなく、リード角が大きい継目無し内面溝付伝熱管を生産性よく製造することができる継目無し内面溝付伝熱管の製造方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明に係る継目無し内面溝付伝熱管の製造方法は、素管をダイス及び複数個の転造ボール又は転造ロールにより順次縮径加工すると共に、前記素管内にフローティングプラグとこのフローティングプラグに連結軸を介して相対的に回転可能に連結された溝付プラグとを配置し、前記フローティングプラグを前記ダイスに係合させて前記溝付プラグを前記転造ボール又は転造ロールの配設位置に位置させ、前記転造ボール又は転造ロールにより素管を前記溝付プラグに押圧することにより前記素管の内面に前記溝付プラグの溝形状を転写する工程と、内面に前記溝形状が転写された素管を仕上げダイスにより順次縮径加工する工程と、を有し、前記仕上げダイスによる縮径後の溝のリード角が25°以上である継目無し内面溝付伝熱管の製造方法において、前記転造ボール又は転造ロールの公転の向き及び前記溝付プラグの自転の向きが同じであり、管内面における前記転造ボール又は転造ロールの圧痕の軌跡が、管内面の展開図において管軸方向に直交する方向に対し、管内面の溝と同じ向きに0°を超え10°以下の角度で傾斜することを特徴とする。
【0016】
本発明においては、転造ボール又は転造ロールの公転の向きを溝付プラグの自転の向きと同じにするため、素管が転造ボール又は転造ロールの公転によってねじられることにより生じる素管の回転の向きと溝付プラグの自転の向きとが同じになり、素管と溝付プラグとの間の相対回転数が小さくなる。これにより、素管に印加される抽伸力が小さくなるため、仕上げダイスによる縮径加工に伴うリード角の減少を抑制することができ、結果として、リード角が大きい継目無し内面溝付伝熱管を得ることができる。
【0017】
本発明に係る他の継目無し内面溝付伝熱管の製造方法は、素管をダイス及び複数個の転造ボール又は転造ロールにより順次縮径加工すると共に、前記素管内にフローティングプラグとこのフローティングプラグに連結軸を介して相対的に回転可能に連結された溝付プラグとを配置し、前記フローティングプラグを前記ダイスに係合させて前記溝付プラグを前記転造ボール又は転造ロールの配設位置に位置させ、前記転造ボール又は転造ロールにより素管を前記溝付プラグに押圧することにより前記素管の内面に前記溝付プラグの溝形状を転写する工程と、内面に前記溝形状が転写された素管を仕上げダイスにより順次縮径加工する工程と、を有し、前記仕上げダイスによる縮径後の溝のリード角が30°以上であり、前記仕上げダイスによる縮径後の外径が7.5mmより大きく11mm以下である継目無し内面溝付伝熱管の製造方法において、前記転造ボール又は転造ロールの公転の向き及び前記溝付プラグの自転の向きが同じであることを特徴とする。
【0018】
また、前記ダイスはアプローチ角が23乃至30°のストレートダイスであり、前記フローティングプラグのアプローチ角は前記ダイスのアプローチ角よりも1乃至3°小さい。
【0019】
溝付プラグは素管が加工方向に引き抜かれることにより自転するが、リード角が大きくなるにつれて回転し難くなる。一方、素管は転造ボール又は転造ロールの公転によりねじられる。溝付プラグの自転の向きと転造ボール又は転造ロールの公転の向きとが同じ向きである場合、素管が転造ボール又は転造ロールによってねじられることにより、溝付プラグをダイスに向かう方向に押戻す力が発生する。このため、溝付プラグは転造ボール又は転造ロールの配設位置に入り難くなり、溝付プラグが転造加工中に前記配設位置からダイス側に移動する溝付プラグの抜け、及び溝付プラグが素管内を前進して前記配設位置に位置したり素管内を後退して前記配設位置から外れたりすることによる溝付プラグの振動を生じることがある。溝付プラグの抜け又は振動が発生すると、素管のねじれが発生する。
【0020】
本発明においては、ダイス及びフローティングプラグのアプローチ角を前述の範囲に規定することにより、素管内面とフローティングプラグとの間の摩擦力を増加させ、溝付プラグの抜け及び振動を防止することができる。
【0021】
更に、前記フローティングプラグは前記ダイスに係合する円錐部と前記連結軸を回転自在に軸支するベアリングとを有し、このベアリングの直径が前記溝付プラグの外径の100.1乃至109.0%であり、前記ベアリングの長さが2乃至4mmである。これにより、素管内面とベアリングとの間に摩擦力を発生させ、溝付プラグの抜け及び振動を防止することができる。
【0022】
更にまた、前記仕上げダイスによる縮径後の内面溝付管の外径の前記溝付プラグの外径に対する比を0.85以上とする。溝付加工後の縮径率を小さくすることにより、縮径後における溝付管のリード角の減少量が小さくなる。その分、溝付プラグのリード角を小さくし、溝付プラグを回転し易くすることができ、溝付プラグの抜け及び振動を抑制することができる。
【0023】
更にまた、前記転造ボール又は転造ロールの数が奇数であることが好ましい。従来より、内面溝付管を抽伸する際に、溝付プラグのランド部が欠損して、製品が不良になったり、欠損した際の衝撃で抽伸途中に破断したりすることがある。特に、フィンが高い場合にはランド部の欠損が頻発するが、さらにリード角を大きくすると、ランド部が欠損する頻度がより増加する。転造ボール又は転造ロールの数を奇数とすることにより、各転造ボール又は各転造ロールが素管に与える力の作用線が相互に一致しなくなり、溝付プラグに印加される力を分散することができる。この結果、溝付プラグのランド部の欠損が発生し難くなる。
【0024】
【発明の実施の形態】
本発明者等は前記課題を解決するために鋭意実験研究を重ねた結果、転造ボールの公転の向きを溝付プラグの自転の向きと同じ向きにすることにより、仕上げダイスによる縮径加工に伴うリード角の減少を抑制できることを見出した。即ち、溝付プラグのリード角ηが一定であるとき、仕上げダイスにより縮径された後の内面溝付管のリード角ηは、転造ボールの公転の向きを溝付プラグの自転の向きと同じ向きとする場合の方が、逆の向きとする場合よりも大きくなることを見出した。
【0025】
従来の技術の項で説明したように、従来にも、溝付プラグの欠損を防止するために、転造ボールの公転の向きを溝付プラグの自転の向きと同じ向きにすることは行われていた。しかしながら、これらの回転の向きの関係が縮径後の溝のリード角に影響を及ぼすことは知見されていなかった。本発明者等は、転造ボールの公転の向きと溝付プラグの自転の向きとの関係が溝付プラグのリード角ηと縮径後の内面溝付管のリード角ηとの関係に影響を及ぼすことを知見し、この知見に基づいて本発明を完成した。
【0026】
以下、本発明の実施例について添付の図面を参照して具体的に説明する。先ず、本発明の第1の実施例について説明する。本実施例に係る内面溝付管の製造方法においては、図1に示す製造装置を使用する。
【0027】
図1に示すように、先ず、素管1をフローティングプラグ2及び保持ダイス3により縮径加工する。次に、この縮径加工された素管1が、外周面に溝が形成されている溝付プラグ5及び転造ボール6からなる転造部7に搬送される。素管1の外側を遊星回転する転造ボール6が素管1の外面を押圧することによって、素管1を縮径すると共に、素管1の内面に挿入されている溝付プラグ5に押圧する。これにより、素管1の内面に溝付プラグ5の溝が転写される。このとき、溝付プラグ5は、素管1の内面に自らが形成した溝に沿って自転する。転造ボール6の公転の向きは、溝付プラグ5の自転の向きと同じ向きとする。
【0028】
また、このとき、溝付プラグ5は連結軸4を介してフローティングプラグ2に連結されており、フローティングプラグ2は素管1の引抜きによる摩擦力及び保持ダイス3からの抗力により、保持ダイス3と整合する位置に静止しているため、溝付プラグ5も転造ボール6と整合する位置に停止している。
【0029】
次に、転造部7を通過し内面に溝が形成された素管1は、仕上げダイス8により更に縮径され、所定の外径を有する内面溝付管9となる。
【0030】
このようにして製造された内面溝付管9は、内面にリード角25°以上の螺旋状の溝を有し、外径は、例えば5.0乃至7.5mmである。
【0031】
次に、本実施例の動作について図1を参照して説明する。転造部7において、素管1は、転造ボール6の公転によって周方向にねじられて回転する。素管1が回転することによって、溝付プラグ5は素管1の内面から、転造ボール6の公転の向きに力を受ける。素管1が抽伸されることによって、転造部7には常に新しい素管1が供給されるため、転造部7において素管1は連続的に回転し、素管1が溝付プラグ5に対して転造ボール6の公転の向きに加える力は連続的に作用する。即ち、溝付プラグ5は、常に転造ボール6の公転の向きに力を受けている。
【0032】
また、溝付プラグ5には長手方向に働く力も存在し、その力の大きさは、転造ボール6の公転の向きと溝付プラグ5の自転の向きとの関係(以下、回転の向きの関係という)が同じ向きである場合と逆の向きである場合とで異なる。
【0033】
転造ボール6の公転の向きが溝付プラグ5の自転の向きに対して逆である場合、即ち、回転の向きの関係が逆の場合は、溝付プラグ5を「おねじ」、転造ボール6の公転によって連続的にねじられる素管1を「めねじ」と想定すると、「おねじ」と「めねじ」とが互いに逆の向きに回転しているため、「めねじ」の位置を固定して考えた場合、「おねじ」は抽伸方向に進もうとする。実際には、「おねじ」(溝付プラグ5)の位置は、保持ダイス3とフローティングプラグ2との係合によって固定されているために、溝付プラグ5は抽伸方向に進むことはできず、溝付プラグ5には抽伸方向の力が作用する。「おねじ」の回転数をR1、「めねじ」の回転数をR2とすると、「おねじ」に対する「めねじ」の相対回転数は(R1+R2)となる。
【0034】
これに対して、回転の向きの関係が同じである場合は、「おねじ」に対する「めねじ」の相対回転数は(R1−R2)となり、相対回転数は、上述の回転の向きの関係が逆の場合よりも小さくなる。溝付プラグ5を抽伸方向へ引き込む力は相対回転数に対して単調増加の関係にあるため、溝付プラグを抽伸方向へ引き込む力は、回転の向きの関係が同じである場合の方が、回転の向きの関係が逆の場合よりも小さくなる。
【0035】
溝付プラグ5に働く長手方向の力、即ち、溝付プラグ5を抽伸方向へ引き込む力は連結軸4によってフローティングプラグ2に伝わり、フローティングプラグ2を引き込む力になり、全体の抽伸力の一部となっている。従って、回転の向きの関係が逆の場合より同じ場合の方が、抽伸力が小さくなる。
【0036】
また、図1に示すように、素管1は転造部7を通過した後、仕上げダイス8によって、縮径される。このとき、素管1は長手方向に伸びるため、縮径前よりもリード角が小さくなる。
【0037】
縮径率が一定である場合、抽伸力が大きいほど、長手方向へ伸びる割合が大きくなる。その結果、内面溝付管9のリード角は小さくなる。換言すると、抽伸力を小さくすることができれば、縮径前後のリード角の変化を抑制でき、内面溝付管9においてより大きなリード角を得ることができる。
【0038】
このように、回転の向きの関係を同じにすることにより、抽伸力が小さくなり、より大きなリード角を得ることができる。また、素管1を小径化しても、抽伸力が小さいため破断し難くなる。従って、転造ボール6の公転の向きを溝付プラグ5の自転の向きと同じにすると共に、素管1を小径化して仕上げダイス8による縮径率を小さくすることにより、仕上げダイス8による縮径後のリード角をより大きくすることができる。
【0039】
なお、従来の内面溝付管と同じリード角の溝を形成する場合、本実施例の方法によれば従来よりも溝付プラグ5のリード角を小さくでき、抽伸破断が生じ難くなる。
【0040】
また、転造ボール6により素管1の管外面を押圧することにより管内面に転造ボール6の圧痕の軌跡が形成されるが、転造ボール6の公転の向きを溝付プラグ5の回転の向きと一致させることにより、この転造ボール6の圧痕の軌跡が、管内面の展開図において管軸方向に直交する方向(管軸直交方向)に対し、管内面の溝と同じ向きに0°を超え10°以下の角度で傾斜する。これにより、以下の理由により、蒸発性能を向上させることができる。
【0041】
冷媒の蒸発時において、管壁表面には僅かではあるが、転造ボールの圧痕の軌跡に沿う流れが生じる場合がある。これは、圧痕表面の凹凸における表面張力によって冷媒液が濡れ広がるものである。図2(a)乃至(c)は転造ボール6の圧痕の軌跡に沿う冷媒の流れを示す展開図であり、(a)は管の内面における圧痕の軌跡の位置を示し、(b)は圧痕の軌跡が管軸直交方向に対して溝と逆の向きに傾いている場合を示し、(c)は圧痕の軌跡が管軸直交方向に対して溝と同じ向きに傾いている場合を示す。図2(a)に示すように、内面溝付伝熱管9の管内面には、螺旋状の溝13及び転造ボール6(図1参照)の圧痕の軌跡14が形成されている。溝13と管内面における管軸方向に平行な線15とのなす角度のうち小さい角度、即ちリード角ηは25°以上である。また、転造ボール6の圧痕の軌跡14は管軸直交方向に対して溝13と同じ向きに0°を超え10°以下の角度で傾斜している。圧痕の軌跡14と管の内面における管軸方向と直交する線10とのなす角を角度αとする。
【0042】
転造ボール6の公転の向きを溝付プラグ5の自転の向きに対して逆にすると、図2(b)に示すように、圧痕の軌跡14は線10に対して溝13と逆の向きに傾く。圧痕の軌跡14が線10に対して溝13と逆の向きに傾いている場合又は圧痕の軌跡14が線10と平行である場合、即ち、角度αが0°以下の場合は、圧痕の軌跡14に沿って管頂部へ上昇しようとする冷媒液の流れは冷媒ガスの流れに対して順方向ではないため存在できない。また、冷媒の流れの方向が図2(b)に示す冷媒の流れの方向に対して逆の方向である場合においても、溝13に沿う冷媒の流れの方向と圧痕の軌跡14に沿う冷媒の流れの方向とのなす角度が鈍角になるため、圧痕の軌跡14に沿う冷媒の流れは生じない。
【0043】
これに対し、転造ボール6の公転の向きを溝付プラグ5の自転の向きに対して同じにすると、図2(c)に示すように、圧痕の軌跡14が線10に対して溝13と同じ向きに傾く。圧痕の軌跡14が線10に対して溝13と同じ向きに傾いている場合、即ち、角度αが0°を超える場合は、圧痕の軌跡14に沿う冷媒液の流れは冷媒ガスの流れに対して順方向の流れとなり、且つ、溝13に沿う冷媒の流れの方向と圧痕の軌跡14に沿う冷媒の流れの方向とのなす角度が鋭角になるため、圧痕の軌跡14に沿う冷媒の管頂部へ向かう流れが存在でき、冷媒液が管側部まで濡れ広がることができ、蒸発熱伝達率を向上させることができる。また、冷媒の流れの方向が図2(c)に示す冷媒の流れの方向に対して逆の方向である場合においては、圧痕の軌跡14に沿う冷媒の流れは一旦管底部に向かい、管底部を通過した後に管頂部へ向かう流れとなる。
【0044】
一方、製造上の限界から、αは10°以下である。なお、凝縮時においては冷媒液の温度が高いため、冷媒液の表面張力は蒸発時の約30%、粘度は約60%に低下し、圧痕の軌跡に沿う流れは発生しない。従って、この流れが凝縮熱伝達率を低下させることはない。なお、管側部とは管の内面における管頂部と管底部の中央部の近傍をいう。
【0045】
このように、本実施例の内面溝付管9は、リード角が25°以上であるため凝縮性能が優れていると共に、転造ボール6の圧痕の軌跡14が管軸直交方向に対して溝13と同じ向きに傾いているため蒸発性能も良好である。
【0046】
なお、本実施例においては、図1に示すように、素管1を溝付プラグ5に押圧する手段として転造ボール6を使用する例を示したが、転造ボール6の替わりに、回転軸が素管1の中心軸と実質的に平行になるように配置された複数個の転造ロールを使用し、転造ボール6と同様に、転造ロールを素管1の周りに公転させることにより素管1を溝付プラグ5に押圧することとしてもよい。
【0047】
また、本発明は、リード角が25°を超える内面溝付管の製造方法であるが、リード角が25°より小さい内面溝付管を製造する場合においても、本発明の製造方法を適用することにより、抽伸力を軽減し、抽伸破断を防止でき、歩留まりを向上させることができる。また抽伸力が軽減するため、従来よりも高速で抽伸することができ、生産性が向上する。
【0048】
次に、本発明の第2の実施例について説明する。図3は本実施例にて使用する内面溝付伝熱管の製造装置を示す断面図であり、図4は図3に示す製造装置のフローティングプラグを示す断面図であり、図5(a)はダイスのアプローチ角の定義を示す断面図であり、(b)はフローティングプラグのアプローチ角及びベアリングの長さ及び直径の定義を示す側面図である。
【0049】
図3に示すように、本実施例にて使用する内面溝付伝熱管の製造装置は、図1に示す製造装置と異なり、フローティングプラグ2aは、円筒部2b、円錐部2c及びベアリング2dから形成されており、抽伸方向上流側からこの順に配置されている。
【0050】
図4に示すように、フローティングプラグ2a内にはフローティングプラグ2aをその軸方向に貫通する空洞部16が設けられており、空洞部16内には連結軸4の端部が挿入されている。なお、ベアリング2dとはフローティングプラグ2aにおけるストレート部分をいう。一般に、フローティングプラグ2aのようにベアリングを設けたプラグを浮きプラグという。
【0051】
図5(a)に示す角度aはダイス3のアプローチ角であり、図5(b)に示す角度bはフローティングプラグ2aのアプローチ角であり、Lはベアリングのお長さであり、Wはベアリング2dの直径である。本実施例においては、ダイス3のアプローチ角aは23乃至30°であり、好ましくは25乃至29°である。また、フローティングプラグ2aのアプローチ角bは、ダイス3のアプローチ角aよりも1乃至3°小さくなっている。従って、フローティングプラグ2aのアプローチ角bは20乃至29°であり、好ましくは23乃至27°である。更に、ベアリング2dの長さLは2乃至4mmであり、ベアリング2dの直径Wは溝付プラグ5(図3参照)の外径の100・1乃至109・0%である。
【0052】
更にまた、仕上げダイス8により縮径された後の内面溝付管9の外径が、溝付プラグ5の外径の0.85倍以上になるように、溝付プラグ5の外径が設定されている。更にまた、本実施例においては、転造ボール6の個数は奇数であり、例えば3個である。本実施例の内面溝付伝熱管の製造装置における上記以外の構成は、前述の第1の実施例における内面溝付伝熱管の製造装置の構成と同じである。
【0053】
本実施例においては、図3に示す製造装置を使用して内面溝付管を製造する。このとき、ダイス3のアプローチ角a及びフローティングプラグ2aのアプローチ角bが上記範囲に設定されているため、素管1の内面とフローティングプラグ2aの円錐部2cとの間の摩擦力が大きい。このため、フローティングプラグ2aがダイス3に係合する位置に配置され、これにより、フローティングプラグ2aに連結軸4を介して連結されている溝付プラグ5が転造ボール6の配設位置に位置する。この結果、溝付プラグ5の抜け及び振動の発生を抑制することができる。また、フローティングプラグ2aに所定の大きさのベアリング2dが設けられているため、素管1の内面とベアリング2dとの間に摩擦力を発生させることができ、フローティングプラグ2aをダイス3に係合する位置に配置し、溝付プラグ5が転造ボール6に相当する位置からずれないようにする効果が更に増大する。これにより、より一層、溝付プラグ5の抜け及び振動の発生を抑制することができる。更にまた、本実施例においては溝付プラグ5を小径化し、仕上げダイス8による縮径後の内面溝付管9の外径を溝付プラグ5の外径0.85倍以上としている。これにより、仕上げダイス8による縮径率が小さくなるので、縮径後における内面溝付管9のリード角の減少量が小さくなる。従って、その分溝付プラグ5のリード角を小さくすることができる。この結果、溝付プラグ5が回転し易くなり、溝付プラグ5の抜け及び振動の発生を抑えることができる。
【0054】
また、本実施例においては、転造ボール6の数を3個としている。図6(a)及び(b)は転造ボールが素管を介して溝付プラグに及ぼす力を示す管軸直交断面図であり、図7(a)乃至(d)は素管の内面に形成された溝の移動によって溝付プラグに及ぼす力を示す図であり、(a)は斜視図であり、(b)は部分断面図であり、(c)は溝付プラグのリード角が小さい場合を示す模式図であり、(d)は溝付プラグのリード角が大きい場合を示す模式図である。図8はランド部が欠損した溝付プラグを示す断面図である。
【0055】
図6(a)に示すように、溝付加工時には、転造ボール6が素管1の外面を押圧して、素管1の内面を溝付プラグ5の外面に押し付ける。溝付プラグ5の外面は、ランド部5aとこのランド部5a間の溝部5bからなる。溝加工時に溝付プラグ5のランド部5aに作用する力には、▲1▼図6(a)に示すような素管1の管壁を介して転造ボール6が溝付プラグ5のランド部5aの側面を押す力、▲2▼図6(b)に示すような転造ボール6が素管1の管壁を溝付プラグの溝部5bに押し付けることにより、溝部5bを広げるような力、▲3▼図7(a)に示すように、素管1の内面に形成された溝が抽伸方向に移動することによって、ランド部5aの側面を押す力Aがある。なお、この力Aの方向は、ランド部5aが延びる方向に対して、ランド部5aのリード角ηだけ傾いている。従って、この力Aにおけるランド部5aに垂直な成分Bの大きさは、B=A×sinηとなる。このため、図7(c)及び(d)に示すように、力Aの大きさが等しくても、リード角ηが大きいほど力Bは大きくなる。
【0056】
上記▲1▼〜▲3▼に示す3種類の力の合力がランド部5aに作用する。このランド部5aの根元に働く合力が溝付プラグ5の引張強さを超えたとき、図8に示すように、ランド部5aの根元に欠損18が発生し、溝付プラグ5が欠損する。前述の如く、ランド部5aのリード角ηが大きくなると、ランド部5aの側面に作用する力の成分▲3▼が増えるため、ランド部5aが欠損し易くなる。
【0057】
本実施例においては、ランド部5aの根元に働く力を減らすために、前述の▲2▼の力に着目した。図9(a)及び(b)は転造ボールが素管及び溝付プラグに及ぼす力の方向を示す管軸直交断面図であり、(a)は転造ボールが4個の場合であり、(b)は転造ボールが3個の場合である。図9(a)に示すように、従来、転造ボール6の数は4個であり、4個の転造ボール6は溝付プラグ5の中心から見て約90°間隔で素管1の外面に転接するように配置されている。即ち、2対の転造ボール6は溝付プラグ5及び素管1を挟んで夫々対向して配置されている。このため、前記2対の転造ボール6においては、転造ボール6が溝付プラグ5を押す力の作用線19が相互に一致し、1個の転造ボールが溝付プラグ5を押圧する力の2倍の力が、溝付プラグ5におけるランド部5aに局所的に作用している。図9(b)に示すように、本実施例においては、転造ボール6の数を3個とし、溝付プラグ5の中心から見て約120°間隔で素管1の外面に転接するように配置することによって、転造ボール6が溝付プラグ5に印加する力の作用線19が相互に一致しなくなり、転造ボール6が溝付プラグ5に印加する力が分散する。これにより、ランド部5aに局所的に作用する力が軽減する。この結果、従来よりもランド部5aの欠損を抑制することができる。本実施例は、溝付プラグのリード角が40°以上であり、溝付プラグの溝深さが0.22mm以上である場合に、特に効果が大きい。
【0058】
なお、本実施例においては転造ボールの数を3個としたが、転造ボールの数が奇数であれば上記効果が得られる。従って、転造ボールの数は5個又は7個以上の奇数でもよい。本実施例における上記以外の効果は、前述の第1の実施例における効果と同様である。
【0059】
以下、本発明の各構成要素の数値限定理由について説明する。
【0060】
仕上げダイスによる縮径後の溝のリード角:25°以上
伝熱管として使用される内面溝付管においては、管内部において、凝縮時には冷媒液で濡れていない乾いた面で冷媒ガスを凝縮させ、凝縮した冷媒液は速やかに凝縮位置から排出されることが好ましい。溝のリード角が大きい場合には、冷媒液が溝に沿って管内面を上昇し難いため、管頂部付近を乾いた状態に保つことができる。また、管頂部付近で凝縮した冷媒液は速やかに管頂部から排出される。内面溝付管における溝のリード角が25°以上であれば、前記効果が大きく、凝縮熱伝達率が向上する。従って、本発明においては、溝のリード角を25°以上とする。より好ましくは30°以上である。
【0061】
ダイスのアプローチ角:23乃至30°
本実施例においては、ダイス及びフローティングプラグのアプローチ角を小さくし、ダイスとフローティングプラグとの間の摩擦力を増やすことにより、溝付プラグを転造ボールの配設位置に位置させ、溝付プラグの抜け及び振動を防止する。ダイスのアプローチ角が23°未満であると、ダイスと素管との間の摩擦力が増加し、素管の引き細りが発生するため、素管の肉厚が薄くなり、素管が破断する可能性がある。一方、ダイスのアプローチ角が30°よりも大きいと、ダイスと素管との間の摩擦力が小さくなり、このため、素管がフローティングプラグを拘束する力が低減し、溝付プラグの抜け及び振動が生じることがある。従って、ダイスのアプローチ角は23乃至30°とすることが好ましい。より好適には、25乃至29°である。
【0062】
ダイスのアプローチ角からフローティングプラグのアプローチ角を減じた値:1乃至3°
前記値が1°未満であると、ダイスの内面(ダイスのアプローチ面)と素管の外面及び素管の内面とフローティングプラグの外面(フローティングプラグのアプローチ面)が面接触するようになるため、素管の引き細りが発生して素管の肉厚が薄くなり、素管が破断する可能性がある。一方、前記値が3°より大きいと、ダイスとフローティングプラグとの間において素管の壁の断面形状がクサビ状となる。このため、素管の肉厚が薄くなり、素管が破断する可能性がある。従って、ダイスのアプローチ角からフローティングプラグのアプローチ角を減じた値は1乃至3°であることが好ましく、2°程度であることがより好ましい。従って、フローティングプラグのアプローチ角は20乃至29°であることが好ましく、23乃至27°であることがより好ましい。
【0063】
ベアリングの直径:溝付プラグの外径の100.1乃至109.0%
ベアリングの直径が溝付プラグの外径の100.1%未満であると、このベアリングを通過した後の素管の内面と溝付プラグとの接触面積が増え、溝付プラグを押し戻す向きの力が大きくなる。この結果、溝付プラグの抜け及び振動が生じ易くなる。一方、ベアリングの直径が溝付プラグの外径の109.0%より大きいと、ベアリングを通過した後の素管の内径と溝付プラグの外径との差異が大きくなり過ぎ、転造加工時に素管に転造ボールによって拘束されない部分が生じ、この部分にたわみが発生することがある。素管にたわみが発生すると、溝付プラグの溝部によって素管の内面に成形されたフィンが、一旦溝付プラグの溝部から離れた後、溝付プラグのランド部に接触して潰されてしまう。このため、素管の内面に所定の形状のフィンを形成することができなくなる可能性がある。従って、ベアリングの直径は溝付プラグの外径の100.1乃至109.0%であることが好ましい。
【0064】
ベアリングの長さ:2乃至4mm
ベアリングの長さが2mm未満であると、ベアリングと素管内面との接触面積が小さくなり、十分な摩擦力が得られないため、溝付プラグの抜け及び振動が発生し易くなる。一方、ベアリングの長さが4mmを超えると、ベアリングと素管内面との接触面積が大きくなりすぎ、摩擦力が大きくなって引き細りにより素管の肉厚が減少し、素管の破断を生じやすくなる。従って、ベアリングの長さは2乃至4mmであることが好ましい。
【0065】
仕上げダイスによる縮径後における内面溝付管の外径の前記溝付プラグの外径に対する比:0.85以上
図10(a)は横軸に溝付プラグのリード角をとり、縦軸に溝付プラグを押し戻す力の大きさをとって、溝付プラグのリード角が前記押し戻す力に与える影響を示す模式的グラフ図であり、(b)は横軸に仕上げダイスによる縮径後における内面溝付管の外径の前記溝付プラグの外径に対する比(以下、(製品外径/溝付プラグ外径)比ともいう)をとり、縦軸に溝付プラグのリード角をとって、仕上げダイスによる縮径後の内面溝付管において、一定のリード角を得る場合における溝付プラグのリード角と前記(製品外径/溝付プラグ外径)比との関係を示す模式的グラフ図である。図10(a)に示すように、溝付プラグのリード角が大きくなるに従い、溝付プラグを押し戻す力が増加し、溝付プラグのリード角がβより大きくなると、前記押戻す力は溝付プラグの抜け及び振動が発生する領域31に入り、溝付プラグの抜け及び振動が発生することがある。また、図10(b)に示すように、溝付プラグのリード角をβ以下とするためには、(製品外径/溝付プラグ外径)比の値を0.85以上とすることが必要である。前記比の値が0.85未満では、前記効果が得られない。このように、溝付プラグを小径化し、(製品外径/溝付プラグ外径)比の値を0.85以上とすることにより、溝付加工後の管の縮径率が小さくなるので、縮径後における内面溝付管のリード角の減少量が小さくなる。このため、溝付プラグのリード角を小さくすることができ、溝付プラグを回転し易くすることができる。この結果、溝付プラグの抜け及び振動を抑制できる、従って、前記比の値は0.85以上とすることが好ましい。
【0066】
【実施例】
以下、本発明の実施例の効果について、その特許請求の範囲から外れる比較例と比較して具体的に説明する。
【0067】
第1試験例
前述の第1の実施例に示した方法により表1に示す内面溝付管を製造した。これらの内面溝付管の凝縮熱伝達率を測定することにより、単管伝熱性能を評価した。表1に示すNo.1乃至5は、外径が7mmの内面溝付管を製造した場合、No.6乃至10は、外径が8mmの内面溝付管を製造した場合である。なお、表1において、転造ボールの公転の向きが溝付プラグの自転の向きと比較して同じ向きの場合を「回転の向き:順」、逆の場合を「回転の向き:逆」と表記した。
【0068】
図11は、内面溝付伝熱管の凝縮熱伝達率を測定する試験装置の構成を示す模式図である。この試験装置により得られた伝熱量から、管内熱伝達率を計算した。測定条件を表2に示す。
【0069】
図11に示すように、この試験装置には試験部20及びバイパス部21が設けられている。試験部20は内面溝付伝熱管の凝縮熱伝達率を測定するものであり、バイパス部21は試験部20に供給する冷媒を所定の条件に調節するものであり、試験部20とバイパス部21とは並列に連結されている。試験部20は2重管構造となっており内管22と外管23とが設けられている。内管22には供試管となる内面溝付管を使用し、外管23には平滑銅管を使用する。試験部20の両側にはヒーター24が設けられ、片方のヒーター24と試験部20との間には膨張弁25が連結されている。更に、試験部20には試験部20に水を供給するための水槽26が連結されている。一方、バイパス部21には、バイパス凝縮器27、膨張弁28、バイパス蒸発器29及びコンプレッサー30がこの順に環状に連結され、独立した冷凍サイクルを構成している。
【0070】
図11に示す試験装置においては、コンプレッサー30が駆動することにより、バイパス凝縮器27、膨張弁28、バイパス蒸発器29及びコンプレッサー30からなる冷凍サイクルに冷媒を流し、冷媒を所定の条件に調節する。そして、この条件が調節された冷媒を試験部20の内管22内に流す。一方、水槽26より内管22と外管23との間の環状部に水を供給し、この水と前記冷媒との間で熱交換させて、水の出入口温度差から伝熱量を測定する。また、内管22の冷媒出入口の差圧も計測する。このとき、冷媒の圧力及び冷媒流量等が所定の条件になるように、バイパス凝縮器27及びバイパス蒸発器29に流す水流量、膨張弁25及び28の開度並びにヒーター24の出力を調節する。
【0071】
管内熱伝達率は、管内熱伝達率をαi、総括熱伝達率をKo、管外熱伝達率をαo、管壁熱抵抗をR、供試管の内径をDi、供試管の外径をDoとするとき、下記数式1により表される。
【0072】
【数1】
αi=1/(1/Ko−1/αo−R)/(Di/Do)
【0073】
なお、管外熱伝達率αoはMonrad−Pelton式により求めることができる。また、総括熱伝達率Koは、伝熱量をQ、管外表面積をAo、冷媒と水との間の対数平均温度差をΔTmとするとき、下記数式2により表される。
【0074】
【数2】
Ko=Q/(Ao×ΔTm)
【0075】
【表1】
Figure 0004100919
【0076】
【表2】
Figure 0004100919
【0077】
表1において、No.1乃至3は比較例である。比較例No.1においては、従来の方法と同様に、転造ボールの公転の向きと溝付プラグの自転の向きとの関係、即ち、回転の向きの関係を逆とし、リード角ηが42°の溝付プラグを使用して内面にリード角ηが23°の溝が形成された内面溝付管を製造した。比較例No.1における仕上げダイスの縮径比及び製造した内面溝付管の凝縮熱伝達率を1とし、外径が7mmである他の内面溝付管、即ち、No.2乃至5における仕上げダイスの縮径比及び凝縮熱伝達率の基準とした。
【0078】
比較例No.2においては、回転の向きの関係を逆とし、リード角ηが26°の内面溝付管を製造しようとした。外径が7mmでリード角ηが26°の内面溝付管を作製するためには、溝付プラグのリード角ηを45°にする必要があるが、この条件では管が抽伸破断を起こし、内面溝付管を製造できなかった。
【0079】
比較例No.3においては、回転の向きの関係を逆とし、溝付プラグの外径を小さくして、仕上げダイスにおける縮径率を小さくしたが、これも抽伸破断が発生し内面溝付管を製造できなかった。
【0080】
これに対して、表1に示すNo.4及び5は本発明の実施例である。実施例No.4は、回転の向きの関係を順として製造したもので、比較例No.1と同じリード角ηが42°の溝付プラグを使用して、リード角ηが28°の製品(内面溝付管)が得られた。また、リード角を大きくしたことにより、従来よりも凝縮熱伝達率が向上した。
【0081】
実施例No.5は実施例No.4の条件に加えて、縮径率を小さくしたものであり、抽伸破断を生じることなくリード角ηが31°の内面溝付管が得られた。また、リード角を更に大きくすることができたため、凝縮熱伝達率が更に向上した。
【0082】
表1に示すNo.6乃至8は、外径が8mmの内面溝付管の比較例である。比較例No.6においては、従来の方法と同様に回転の向きの関係を逆とし、リード角ηが42°の溝付プラグを使用して内面にリード角ηが30°の溝を有する内面溝付管を製造した。比較例No.6における仕上げダイスの縮径比及び製造した内面溝付管の凝縮熱伝達率を1とし、外径が8mmの他の内面溝付管、即ち、No.7乃至10における仕上げダイスの縮径比及び凝縮熱伝達率の基準とした。
【0083】
比較例No.7においては、回転の向きの関係を逆とし、リード角ηが32°の内面溝付管を製造しようとした。外径が8mmでリード角ηが32°の内面溝付管を製造するためには、溝付プラグのリード角ηを45°にする必要があるが、この条件では管が抽伸破断を起こし、内面溝付管を製造できなかった。
【0084】
比較例No.8においては、回転の向きの関係を逆とし、溝付プラグの外径を小さくして、仕上げダイスでの縮径率を小さくしたが、これも抽伸破断が発生し内面溝付管を製造できなかった。
【0085】
No.9及び10は本発明の実施例である。実施例No.9は、回転の向きの関係を順として製造したもので、比較例No.6と同じリード角ηが42°の溝付プラグにより、リード角ηが35°の内面溝付管が得られた。また、リード角を大きくしたため、従来よりも凝縮熱伝達率が向上した。
【0086】
実施例No.10は実施例No.9の条件に加えて、縮径率を小さくしたものであり、抽伸破断を生じることなくリード角ηが39°の内面溝付管が得られた。また、リード角を更に大きくすることができたため、実施例No.9よりも凝縮熱伝達率が更に向上した。
【0087】
第2試験例
前記第1試験例と同様な方法により、表3に示す内面溝付管を作製し、評価した。なお、転造ボールの公転の向きは溝付プラグの自転の向きと同じとした。
【0088】
【表3】
Figure 0004100919
【0089】
表3に示すNo.11乃至15は、本発明の実施例である。実施例No.11乃至15は、転造ボールの公転の向きを溝付プラグの自転の向きと同じとしたため、いずれも抽伸破断を起こすことなく、高リード角を有する内面溝付管を製造することができた。
【0090】
第3試験例
以下、第3乃至第7試験例においては、前述の第2の実施例に示す方法により、図3に示す製造装置を使用して内面溝付管を製造し、各製造条件が内面溝付管の製造に及ぼす影響を調査した。本第3試験例においては、ベアリングの直径が内面溝付管の製造に及ぼす影響を調査した。表4に本試験例における転造ボールの条件を示し、表5に溝付プラグの溝形状を示す。また、表6に上記以外の製造条件を示す。表4乃至6に示す条件により、内面溝付管を製造した。その結果を表7に示す。内面溝付管の製造時に溝付プラグの抜け又は振動が発生した場合には、表7において、「抜け又は振動:有り」と記載し、溝付プラグの抜け又は振動が発生しなかった場合には、「抜け又は振動:無し」と記載した。
【0091】
【表4】
Figure 0004100919
【0092】
【表5】
Figure 0004100919
【0093】
【表6】
Figure 0004100919
【0094】
【表7】
Figure 0004100919
【0095】
表7に示すNo.16乃至21は本発明の実施例である。表7に示すように、実施例No.18乃至20においては、ベアリングの直径を溝付プラグの外径の100.1〜109.0%としたため、溝付プラグの抜け又は振動が発生しなかった。これに対して、実施例No.16及びNo.17は、ベアリングの直径を溝付プラグの外径の100.1%未満としたため、溝付プラグの抜け又は振動が発生した。また、実施例No.21は、ベアリングの直径を溝付プラグの外径の110%としたため、溝付プラグの抜け又は振動が発生した。
【0096】
第4試験例
本試験例においては、ベアリングの長さが内面溝付管の製造に及ぼす影響を調査した。本試験例における転造ボールの条件及び溝付プラグの溝形状は、夫々表4及び表5に示すとおりである。また、表8に上記以外の製造条件を示す。表4、表5及び表8に示す条件により、内面溝付管を製造した。その結果を表9に示す。
【0097】
【表8】
Figure 0004100919
【0098】
【表9】
Figure 0004100919
【0099】
表9に示すNo.22乃至27は本発明の実施例である。表9に示すように、実施例No.23乃至25においては、ベアリングの長さを2乃至4mmとしたため、溝付プラグの抜け又は振動及び素管の破断が発生しなかった。これに対して、実施例No.22は、ベアリングの長さが2mm未満であったため、溝付プラグの抜け又は振動が発生した。また、実施例No.26及びNo.27は、ベアリングの長さを4mmより大きくしたため、素管の破断が発生した。
【0100】
第5試験例
本試験例においては、ダイス及びフローティングプラグのアプローチ角が内面溝付管の製造に及ぼす影響を調査した。本試験例における転造ボールの条件及び溝付プラグの溝形状は、夫々表4及び表5に示すとおりである。また、表10に上記以外の製造条件を示す。表4、表5及び表10に示す条件により、内面溝付管を製造した。その結果を表11に示す。
【0101】
【表10】
Figure 0004100919
【0102】
【表11】
Figure 0004100919
【0103】
表11に示すNo.28乃至35は本発明の実施例である。表11に示すように、実施例No.28乃至31は、ダイスのアプローチ角が23乃至30°であり、ダイスのアプローチ角とフローティングプラグのアプローチ角との差が1乃至3°であるため、溝付プラグの抜け又は振動が発生せず、素管の破断も発生しなかった。これに対して、実施例No.32は、ダイスのアプローチ角が21°と小さかったため、素管の破断が発生した。実施例No.33は、ダイスのアプローチ角とフローティングプラグのアプローチ角との差が0.5°と小さかったため、素管の破断が発生した。実施例No.34は、ダイスのアプローチ角とフローティングプラグのアプローチ角との差が3.5°と大きかったため、素管の破断が発生した。実施例No.35は、ダイスのアプローチ角が31°と大きかったため、溝付プラグの抜け又は振動及び素管の破断が発生した。
【0104】
第6試験例
本試験例においては、溝付プラグの外径が内面溝付管の製造に及ぼす影響を調査した。本試験例における転造ボールの条件及び溝付プラグの溝形状は、夫々表4及び表5に示すとおりである。また、表12に上記以外の製造条件を示す。表4、表5及び表12に示す条件により、内面溝付管を製造した。その結果を表13に示す。
【0105】
【表12】
Figure 0004100919
【0106】
【表13】
Figure 0004100919
【0107】
表13に示すNo.36乃至42は本発明の実施例である。表13に示すように、実施例No.39乃至42においては、(製品外径/溝付プラグ外径)比を0.85以上としたため、溝付プラグの抜け又は振動が発生しなかった。これに対して、実施例No.36乃至38は、(製品外径/溝付プラグ外径)比が0.85未満であったため、溝付プラグの抜け又は振動が発生した。
【0108】
第7試験例
本試験例においては、転造ボールの数が内面溝付管の製造に及ぼす影響を調査した。表14に本試験例において製造した内面溝付管の溝形状を示す。本試験例においては、図3に示す製造装置を使用して、前述の第2の実施例に示す方法により内面溝付管を製造したが、このとき、転造ボール6(図3参照)の数を3乃至6個の範囲で異ならせた。転造ボールの外径は11.11mmとした。また、溝付プラグのリード角は42°とし、溝深さは0.26mmとした。
【0109】
【表14】
Figure 0004100919
【0110】
図12は本試験例において製造される内面溝付管の外観を示す側面図である。図12に示すように、内面溝付管9の外面には、転造ボールによる圧痕の軌跡32が形成される。本試験例においては、この圧痕の軌跡32の管軸方向におけるピッチPが0.4mm程度になるように、転造ボールの公転数を調整した。
【0111】
表15に本試験例の試験結果を示す。表15に示す「製品長さ」とは、1個の溝付プラグにより製造できた内面溝付管の通算の長さを示し、「損傷状態」とは、内面溝付管の製造後における溝付プラグの損傷状態を示し、「ランド部欠損」とは、溝付プラグのランド部が欠損したことを示し、「磨耗」とは、溝付プラグ全体の磨耗により、素管の内面に規定の高さのフィンを形成できなくなったことを示す。試験は各条件において3回ずつ行った。なお、通常、内面溝付管を製造する場合には、製造中にフィンの高さが目標値に達しなくなったときは、溝付プラグと転造ボールとの抽伸方向における相対的な位置関係を変えて、溝付プラグの当り面を変える。これにより、溝付プラグの新しい当り面を使って内面溝付管の加工を行うことができる。しかしながら、本試験例においては、溝付プラグと転造ボールとの相対的な位置関係を変えることなく、同一の当り面を使って内面溝付管を製造した。
【0112】
【表15】
Figure 0004100919
【0113】
表15に示すNo.43乃至54は本発明の実施例である。表15に示すように、例えば実施例No.43においては、転造ボールの数を4個として内面溝付管の製造を行ったが、通算で8210mの長さの内面溝付管を製造した後、溝付プラグのランド部が損傷して素管が破断し、それ以上製造を続けることができなくなった。表15に示すように、実施例No.43乃至48は転造ボールの数が偶数、即ち、4個又は6個の場合である。実施例No.43乃至48においても、内面溝付管を製造することができたが、通算長さ8000乃至10000m程度製造した時点で、溝付プラグのランド部に欠損が発生して素管が破断した。これに対して、実施例No.49乃至54は転造ボールの数が奇数、即ち、3個又は5個の場合である。実施例No.49乃至54においては、ランド部の欠損は発生せず、通算20000m以上の長さの内面溝付管を製造することができた。
【0114】
【発明の効果】
以上詳述したように、本発明によれば、溝付プラグのリード角を大きくすることなく、また管の抽伸破断を起こすことなく、リード角が大きい継目無し内面溝付伝熱管を安定して得ることができる。
【図面の簡単な説明】
【図1】継目無し内面溝付伝熱管の製造装置の構成及び製造方法を示す断面図である。
【図2】(a)乃至(c)は転造ボールの圧痕の軌跡に沿う冷媒の流れを示す展開図であり、(a)は管の内面における圧痕の軌跡の位置を示し、(b)は圧痕の軌跡が管軸直交方向に対して溝と逆の向きに傾いている場合を示し、(c)は圧痕の軌跡が管軸直交方に対して溝と同じ向きに傾いている場合を示す。
【図3】本発明の第2の実施例における内面溝付伝熱管の製造装置を示す断面図である。
【図4】図3に示す製造装置のフローティングプラグを示す断面図である。
【図5】(a)はダイスのアプローチ角の定義を示す断面図であり、(b)はフローティングプラグのアプローチ角及びベアリングの長さの定義を示す側面図である。
【図6】(a)及び(b)は転造ボールが素管を介して溝付プラグに及ぼす力を示す管軸直交断面図である。
【図7】(a)乃至(d)は素管の内面に形成された溝の移動によって溝付プラグに及ぼす力を示す図であり、(a)は斜視図であり、(b)は部分断面図であり、(c)は溝付プラグのリード角が小さい場合を示し模式図であり、(d)は溝付プラグのリード角が大きい場合を示す模式図である。
【図8】ランド部が欠損した溝付プラグを示す断面図である。
【図9】(a)及び(b)は転造ボールが素管及び溝付プラグに及ぼす力の方向を示す管軸直交断面図であり、(a)は転造ボールが4個の場合であり、(b)は転造ボールが3個の場合である。
【図10】(a)は横軸に溝付プラグのリード角をとり、縦軸に溝付プラグを押し戻す力の大きさをとって、溝付プラグのリード角が前記押し戻す力に与える影響を示す模式的グラフ図であり、(b)は横軸に(製品外径/溝付プラグ外径)比をとり、縦軸に溝付プラグのリード角をとって、仕上げダイスによる縮径後の内面溝付管において、同一のリード角を得る場合の溝付プラグのリード角と前記比との関係を示すグラフ図である。
【図11】内面溝付伝熱管の凝縮熱伝達率を測定する試験装置の構成を示す模式図である。
【図12】内面溝付管の外観を示す側面図である。
【符号の説明】
1;素管
2、2a;フローティングプラグ
2b;円筒部
2c;円錐部
2d;ベアリング
3;保持ダイス
4;連結軸
5;溝付プラグ
6;転造ボール
7;転造部
8;仕上げダイス
9;内面溝付管
10;管内面における管軸方向と直交する線
13;溝
14;転造ボールの圧痕の軌跡
15;管内面における管軸方向に平行な線
16;空洞部
18;欠損
19;力の作用線
20;試験部
21;バイパス部
22;内管
23;外管
24;ヒーター
25;膨張弁
26;水槽
27;バイパス凝縮器
28;膨張弁
29;バイパス蒸発器
30;コンプレッサー
31;溝付プラグの抜け及び振動が発生する領域
32;圧痕の軌跡
a;ダイス3のアプローチ角
b;フローティングプラグ2aのアプローチ角
A;ランド部側面を押す力
B;力Aにおけるランド部5bに垂直な成分
L;ベアリング長さ
P;圧痕の軌跡32の管軸方向におけるピッチ
W;ベアリング径

Claims (8)

  1. 素管をダイス及び複数個の転造ボール又は転造ロールにより順次縮径加工すると共に、前記素管内にフローティングプラグとこのフローティングプラグに連結軸を介して相対的に回転可能に連結された溝付プラグとを配置し、前記フローティングプラグを前記ダイスに係合させて前記溝付プラグを前記転造ボール又は転造ロールの配設位置に位置させ、前記転造ボール又は転造ロールにより素管を前記溝付プラグに押圧することにより前記素管の内面に前記溝付プラグの溝形状を転写する工程と、内面に前記溝形状が転写された素管を仕上げダイスにより順次縮径加工する工程と、を有し、前記仕上げダイスによる縮径後の溝のリード角が25°以上である継目無し内面溝付伝熱管の製造方法において、前記転造ボール又は転造ロールの公転の向き及び前記溝付プラグの自転の向きが同じであり、管内面における前記転造ボール又は転造ロールの圧痕の軌跡が、管内面の展開図において管軸方向に直交する方向に対し、管内面の溝と同じ向きに0°を超え10°以下の角度で傾斜し、前記ダイスはアプローチ角が23乃至30°のストレートダイスであり、前記フローティングプラグのアプローチ角は前記ダイスのアプローチ角よりも1乃至3°小さいことを特徴とする継目無し内面溝付伝熱管の製造方法。
  2. 素管をダイス及び複数個の転造ボール又は転造ロールにより順次縮径加工すると共に、前記素管内にフローティングプラグとこのフローティングプラグに連結軸を介して相対的に回転可能に連結された溝付プラグとを配置し、前記フローティングプラグを前記ダイスに係合させて前記溝付プラグを前記転造ボール又は転造ロールの配設位置に位置させ、前記転造ボール又は転造ロールにより素管を前記溝付プラグに押圧することにより前記素管の内面に前記溝付プラグの溝形状を転写する工程と、内面に前記溝形状が転写された素管を仕上げダイスにより順次縮径加工する工程と、を有し、前記仕上げダイスによる縮径後の溝のリード角が25°以上である継目無し内面溝付伝熱管の製造方法において、前記転造ボール又は転造ロールの公転の向き及び前記溝付プラグの自転の向きが同じであり、管内面における前記転造ボール又は転造ロールの圧痕の軌跡が、管内面の展開図において管軸方向に直交する方向に対し、管内面の溝と同じ向きに0°を超え10°以下の角度で傾斜し、前記フローティングプラグは前記ダイスに係合する円錐部と前記連結軸を回転自在に軸支するベアリングとを有し、このベアリングの直径が前記溝付プラグの外径の100.1乃至109.0%であり、前記ベアリングの長さが2乃至4mmであることを特徴とする継目無し内面溝付伝熱管の製造方法。
  3. 素管をダイス及び複数個の転造ボール又は転造ロールにより順次縮径加工すると共に、前記素管内にフローティングプラグとこのフローティングプラグに連結軸を介して相対的に回転可能に連結された溝付プラグとを配置し、前記フローティングプラグを前記ダイスに係合させて前記溝付プラグを前記転造ボール又は転造ロールの配設位置に位置させ、前記転造ボール又は転造ロールにより素管を前記溝付プラグに押圧することにより前記素管の内面に前記溝付プラグの溝形状を転写する工程と、内面に前記溝形状が転写された素管を仕上げダイスにより順次縮径加工する工程と、を有し、前記仕上げダイスによる縮径後の溝のリード角が25°以上である継目無し内面溝付伝熱管の製造方法において、前記転造ボール又は転造ロールの公転の向き及び前記溝付プラグの自転の向きが同じであり、管内面における前記転造ボール又は転造ロールの圧痕の軌跡が、管内面の展開図において管軸方向に直交する方向に対し、管内面の溝と同じ向きに0°を超え10°以下の角度で傾斜し、前記仕上げダイスによる縮径後の内面溝付管の外径の前記溝付プラグの外径に対する比を0.85以上とすることを特徴とする継目無し内面溝付伝熱管の製造方法。
  4. 前記仕上げダイスによる縮径後の外径が5.0乃至7.5mmであることを特徴とする請求項1乃至3のいずれか1項に記載の継目無し内面溝付伝熱管の製造方法。
  5. 素管をダイス及び複数個の転造ボール又は転造ロールにより順次縮径加工すると共に、前記素管内にフローティングプラグとこのフローティングプラグに連結軸を介して相対的に回転可能に連結された溝付プラグとを配置し、前記フローティングプラグを前記ダイスに係合させて前記溝付プラグを前記転造ボール又は転造ロールの配設位置に位置させ、前記転造ボール又は転造ロールにより素管を前記溝付プラグに押圧することにより前記素管の内面に前記溝付プラグの溝形状を転写する工程と、内面に前記溝形状が転写された素管を仕上げダイスにより順次縮径加工する工程と、を有し、前記仕上げダイスによる縮径後の溝のリード角が30°以上であり、前記仕上げダイスによる縮径後の外径が7.5mmより大きく11mm以下である継目無し内面溝付伝熱管の製造方法において、前記転造ボール又は転造ロールの公転の向き及び前記溝付プラグの自転の向きが同じであり、前記ダイスはアプローチ角が23乃至30°のストレートダイスであり、前記フローティングプラグのアプローチ角は前記ダイスのアプローチ角よりも1乃至3°小さいことを特徴とする継目無し内面溝付伝熱管の製造方法。
  6. 素管をダイス及び複数個の転造ボール又は転造ロールにより順次縮径加工すると共に、前記素管内にフローティングプラグとこのフローティングプラグに連結軸を介して相対的に回転可能に連結された溝付プラグとを配置し、前記フローティングプラグを前記ダイスに係合させて前記溝付プラグを前記転造ボール又は転造ロールの配設位置に位置させ、前記転造ボール又は転造ロールにより素管を前記溝付プラグに押圧することにより前記素管の内面に前記溝付プラグの溝形状を転写する工程と、内面に前記溝形状が転写された素管を仕上げダイスにより順次縮径加工する工程と、を有し、前記仕上げダイスによる縮径後の溝のリード角が30°以上であり、前記仕上げダイスによる縮径後の外径が7.5mmより大きく11mm以下である継目無し内面溝付伝熱管の製造方法において、前記転造ボール又は転造ロールの公転の向き及び前記溝付プラグの自転の向きが同じであり、前記フローティングプラグは前記ダイスに係合する円錐部と前記連結軸を回転自在に軸支するベアリングとを有し、このベアリングの直径が前記溝付プラグの外径の100.1乃至109.0%であり、前記ベアリングの長さが2乃至4mmであることを特徴とする継目無し内面溝付伝熱管の製造方法。
  7. 素管をダイス及び複数個の転造ボール又は転造ロールにより順次縮径加工すると共に、前記素管内にフローティングプラグとこのフローティングプラグに連結軸を介して相対的に回転可能に連結された溝付プラグとを配置し、前記フローティングプラグを前記ダイスに係合させて前記溝付プラグを前記転造ボール又は転造ロールの配設位置に位置させ、前記転造ボール又は転造ロールにより素管を前記溝付プラグに押圧することにより前記素管の内面に前記溝付プラグの溝形状を転写する工程と、内面に前記溝形状が転写された素管を仕上げダイスにより順次縮径加工する工程と、を有し、前記仕上げダイスによる縮径後の溝のリード角が30°以上であり、前記仕上げダイスによる縮径後の外径が7.5mmより大きく11mm以下である継目無し内面溝付伝熱管の製造方法において、前記転造ボール又は転造ロールの公転の向き及び前記溝付プラグの自転の向きが同じであり、前記仕上げダイスによる縮径後の内面溝付管の外径の前記溝付プラグの外径に対する比を0.85以上とすることを特徴とする継目無し内面溝付伝熱管の製造方法。
  8. 前記転造ボール又は転造ロールの数が奇数であることを特徴とする請求項1乃至7のいずれか1項に記載の継目無し内面溝付伝熱管の製造方法。
JP2002015454A 2001-01-24 2002-01-24 継目無し内面溝付伝熱管の製造方法 Expired - Fee Related JP4100919B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002015454A JP4100919B2 (ja) 2001-01-24 2002-01-24 継目無し内面溝付伝熱管の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-16371 2001-01-24
JP2001016371 2001-01-24
JP2002015454A JP4100919B2 (ja) 2001-01-24 2002-01-24 継目無し内面溝付伝熱管の製造方法

Publications (2)

Publication Number Publication Date
JP2002301514A JP2002301514A (ja) 2002-10-15
JP4100919B2 true JP4100919B2 (ja) 2008-06-11

Family

ID=26608249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002015454A Expired - Fee Related JP4100919B2 (ja) 2001-01-24 2002-01-24 継目無し内面溝付伝熱管の製造方法

Country Status (1)

Country Link
JP (1) JP4100919B2 (ja)

Also Published As

Publication number Publication date
JP2002301514A (ja) 2002-10-15

Similar Documents

Publication Publication Date Title
US20030182979A1 (en) Method for producing seamless tube with groved inner surface
US6298909B1 (en) Heat exchange tube having a grooved inner surface
JP4550226B2 (ja) 内面溝付管の製造装置
JP2002022385A (ja) 異なった細孔径を有する蒸発用伝熱管
WO2001063196A1 (fr) Tube comportant des rainures sur sa surface interieure et procede de fabrication associe
JP5224423B2 (ja) 内面溝付管及びその製造方法並びにその製造装置
JP4100919B2 (ja) 継目無し内面溝付伝熱管の製造方法
JP2005207670A (ja) 内面溝付管、内面溝付管の製造装置及び内面溝付管の製造方法
JP4511797B2 (ja) 内面溝付管及びその製造装置並びにその製造方法
JP2005315556A (ja) 内面溝付管
JP6316698B2 (ja) 内面螺旋溝付管およびその製造方法と熱交換器
JP2773872B2 (ja) 沸騰・凝縮用伝熱管
JP2001074384A (ja) 内面溝付管
JP2010133668A (ja) 内面溝付伝熱管及び熱交換器
JP3786789B2 (ja) 内面溝付伝熱管及びその製造方法
JPS6188918A (ja) 伝熱管の製造装置
JPS61209723A (ja) 伝熱管の製造方法
JP4712160B2 (ja) 内面溝付管の製造方法
JP2010247181A (ja) 内面溝付管の製造方法
JP2005138149A (ja) 内面溝付管の製造方法及び装置
JPH02137609A (ja) 管内凝縮用伝熱管およびその製造方法
JP2004298899A (ja) 内面溝付管の製造装置及び製造方法
JPH09314264A (ja) 内面二重溝付管の製造方法
JP2003294387A (ja) 内面溝付管及びその製造方法
JP6316696B2 (ja) 内面螺旋溝付管およびその製造方法と熱交換器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees