JP4099135B2 - Manufacturing method of reflection mirror - Google Patents

Manufacturing method of reflection mirror Download PDF

Info

Publication number
JP4099135B2
JP4099135B2 JP2003371362A JP2003371362A JP4099135B2 JP 4099135 B2 JP4099135 B2 JP 4099135B2 JP 2003371362 A JP2003371362 A JP 2003371362A JP 2003371362 A JP2003371362 A JP 2003371362A JP 4099135 B2 JP4099135 B2 JP 4099135B2
Authority
JP
Japan
Prior art keywords
mirror
reflecting
reflection
reflecting mirror
boron carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003371362A
Other languages
Japanese (ja)
Other versions
JP2005134680A (en
Inventor
英紀 伊田
滋樹 前川
敬之 中山
祥瑞 竹野
祥雄 土方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003371362A priority Critical patent/JP4099135B2/en
Publication of JP2005134680A publication Critical patent/JP2005134680A/en
Application granted granted Critical
Publication of JP4099135B2 publication Critical patent/JP4099135B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

この発明は、例えばプリント基板の所定位置に多数の細孔をあける場合などに好ましく用いることができる揺動装置に取り付けて用いられる反射ミラーの製造方法に関するものである。 The present invention relates to a method of manufacturing a reflecting mirror that is used by being attached to a rocking device that can be preferably used, for example, when a large number of pores are formed at predetermined positions on a printed circuit board.

従来のレーザ加工機の光学系に用いるスキャンミラーなどの反射ミラーでは、例えば揺動軸と同軸上に重心を有し、揺動軸回りに揺動してその反射面において入射レーザビームを反射させる反射ミラーが知られている。この反射ミラーでは、反射面を正面視した外形輪郭に、所定の入射角で入射された入射ビームに対する楕円形状の反射スポットの輪郭に沿う楕円輪郭部および楕円輪郭部に連続し揺動軸に平行な直線輪郭部を有することにより、レーザビームの反射に必要のない領域のミラー材料を除去することで、揺動軸回りの慣性モーメントを小さくし、反射ミラーの運動の応答速度を早くするとともに、他の部品との干渉を避けて、光学系システムの小型化に寄与させている(例えば特許文献1参照)。   In a reflection mirror such as a scan mirror used in an optical system of a conventional laser processing machine, for example, it has a center of gravity on the same axis as the swing axis, swings around the swing axis, and reflects the incident laser beam on the reflection surface. Reflective mirrors are known. In this reflecting mirror, the outer contour of the reflecting surface viewed from the front is parallel to the elliptical contour portion and the elliptical contour portion along the contour of the elliptical reflection spot for the incident beam incident at a predetermined incident angle and parallel to the swing axis. By removing the mirror material in the area that is not necessary for the reflection of the laser beam by having a straight line outline, the moment of inertia around the oscillation axis is reduced, and the response speed of the movement of the reflecting mirror is increased. It avoids interference with other parts, and contributes to miniaturization of the optical system (see, for example, Patent Document 1).

一方、同様に揺動軸と同軸上に重心を有し、揺動軸回りに揺動してその反射面において入射レーザビームを反射する反射ミラーにおいて、反射ミラーの素材をベリリウムで構成し、ミラーの裏側をリブ構造として、軽量化と高剛性化を図り、より高速の揺動動作を実現すると共に、リブ構造の一部、背面構造周辺リブの一部を切り欠くことで、特にスキャンモータ(スキャナ)との取り付け部の締め付け力による歪みを伝えないようにして、反射面の平面度を確保し、反射するレーザビームの形状(加工穴形状、真円度)を維持できるようにした発明が開示されている(例えば特許文献2参照)。   On the other hand, similarly, in a reflection mirror having a center of gravity coaxially with the swing axis, swinging around the swing axis and reflecting the incident laser beam on the reflection surface, the material of the reflection mirror is made of beryllium, and the mirror The back side of the tube has a rib structure to reduce weight and rigidity, and to achieve higher-speed rocking motion, and by cutting out part of the rib structure and part of the ribs around the back structure, An invention that prevents the distortion due to the tightening force of the attachment part to the scanner), ensures the flatness of the reflecting surface, and maintains the shape of the reflected laser beam (machined hole shape, roundness). It is disclosed (see, for example, Patent Document 2).

特開2000−347113号公報(第3頁〜第4頁、図1)JP 2000-347113 A (page 3 to page 4, FIG. 1) 特開2001−116911号公報(第4頁、図1)JP 2001-116911 A (page 4, FIG. 1)

上記特許文献1に記載されたような従来の反射ミラーにおいては、その材料がシリコンあるいはベリリウム等の軽量材料で構成されており、スキャナの高速動作に追従できる設計となっているが、楕円形状の短軸で20〜25mm長軸側で30〜35mmの大きさが限界であり、さらに反射ミラーを大型化すると、揺動軸まわりの回転の加速度によりミラーに撓みと振動が発生し、揺動周波数が現在以上に増大できない、あるいは反射ビームの真円度ひずみが発生するなどの問題があった。またベリリウム金属は毒性を有することから地球環境に対する影響が懸念される。また、材料の貴重性あるいは海外からの輸入に頼るしかないという入手困難性からベリリウムに代わる材料を用いたスキャンミラーの開発が望まれている。   In the conventional reflecting mirror described in Patent Document 1, the material is made of a lightweight material such as silicon or beryllium, and is designed to follow the high-speed operation of the scanner. The short axis is 20 to 25 mm and the major axis side is 30 to 35 mm. If the reflecting mirror is enlarged, the mirror will bend and vibrate due to the acceleration of rotation around the oscillation axis. However, there is a problem that the roundness distortion of the reflected beam is not generated. Moreover, since beryllium metal has toxicity, there is a concern about the influence on the global environment. In addition, the development of scan mirrors using materials that replace beryllium is desired because of the preciousness of materials and the difficulty in obtaining them because they only rely on imports from overseas.

一方、上記特許文献2に記載された反射ミラーにおいては、その材料がベリリウムであるため、特許文献1と同様、環境上の問題と入手性の問題がある。また、取り付け部の近傍にあるリブを切り欠くことで取り付け部の剛性不足が生じ、揺動速度の増大に伴う応答性の劣化(反射面のひずみによる反射ビームの真円度の劣化)するなどの問題があった。   On the other hand, since the material of the reflecting mirror described in Patent Document 2 is beryllium, there are environmental problems and availability problems as in Patent Document 1. In addition, cutting out the rib near the mounting part causes insufficient rigidity of the mounting part, resulting in deterioration of responsiveness due to an increase in rocking speed (deterioration of the roundness of the reflected beam due to distortion of the reflecting surface). There was a problem.

この発明は、上記のような従来技術の課題を解消するためになされたものであり、炭化硼素(B C)を主成分とするセラミックスを加工成形して補強構造部を一体形成し、環境にやさしく低コストで高速揺動系に用いることができ、従来よりも大型化可能で、放電加工により製造できる反射ミラーの製造方法を提供することを目的とするものである。 The present invention has been made to solve the above-described problems of the prior art, and is formed by integrally forming a reinforcing structure portion by processing and molding ceramics mainly composed of boron carbide (B 4 C). An object of the present invention is to provide a method of manufacturing a reflection mirror that can be used in a high-speed rocking system easily and at low cost, can be made larger than before, and can be manufactured by electric discharge machining .

この発明に係る反射ミラーの製造方法は、表面に反射面が形成された基体部と、この基体部の裏面に設けられ該基体部の歪みを防ぐ補強構造部とが一体に形成された反射ミラーにおいて、上記基体部および補強構造部の構成材が炭化硼素(B C)と硼化クロム(CrB )の複合体、または炭化硼素(B C)と硼化チタン(TiB )の複合体であることを特徴とする反射ミラーを製造する方法であって、炭化硼素(BC)と硼化クロム(CrB)の複合体、または炭化硼素(BC)と硼化チタン(TiB)の複合体から、上記反射ミラーを構成する補強構造部を放電加工により成形する工程、上記補強構造部の反対側の反射面となる面を必要な面粗さに光学研磨する工程を含むものである。 The method of manufacturing a reflecting mirror according to the present invention includes a reflecting mirror in which a base portion having a reflecting surface formed on the surface and a reinforcing structure portion provided on the back surface of the base portion to prevent distortion of the base portion are integrally formed. In the above, the constituent material of the base portion and the reinforcing structure portion is a composite of boron carbide (B 4 C) and chromium boride (CrB 2 ), or a composite of boron carbide (B 4 C) and titanium boride (TiB 2 ). A method of manufacturing a reflecting mirror, characterized in that a composite of boron carbide (B 4 C) and chromium boride (CrB 2 ), or boron carbide (B 4 C) and titanium boride ( A step of forming a reinforcing structure part constituting the reflecting mirror from a composite of TiB 2 ) by electric discharge machining, and a step of optically polishing a surface to be a reflecting surface on the opposite side of the reinforcing structure part to a required surface roughness. Is included.

この発明によれば炭化硼素(BC)を主成分とするセラミックスを加工成形して補強構造部を一体形成し、環境にやさしく低コストで、高速揺動系に用いることができ、大型化が可能で、放電加工により製造できる反射ミラーを製造するにあたり、補強構造部の形成作業を放電加工により容易に行うことができ、反射面に必要な平面度を研磨により確保できる反射ミラーの製造方法を得ることができる。 According to the present invention, ceramics mainly composed of boron carbide (B 4 C) are processed and molded to integrally form the reinforcing structure, and can be used for a high-speed oscillation system that is environmentally friendly and low-cost. In the production of a reflective mirror that can be manufactured by electric discharge machining, the reinforcement structure can be easily formed by electric discharge machining, and the reflection mirror can be manufactured to ensure the required flatness by polishing. You can get the method.

実施の形態1.
以下、この発明による実施の形態1を図1ないし図8について説明する。なお、各図を通じて同一符合は同一もしくは相当部分を示すものとする。
図1に示すように、被加工物であるプリント基板2の穴あけ加工用のレーザ加工機には、レーザ発振器1から出射された加工用のレーザビーム(光路)6を加工位置に振るためのX軸の反射ミラー100およびY軸の反射ミラー200と、集光レンズ(f−θレンズと記述するか、あるいは「エフシータレンズ」と呼ばれる)5、および図示しないがその他導光のための反射光学系を有している。上記X軸の反射ミラー100はX軸のスキャナ3に、Y軸の反射ミラー200はY軸のスキャナ4にそれぞれ固定されている。この光学系において、穴あけの加工速度(単位時間あたりの加工穴の数)を決めるのが上記反射ミラー100、200の回転軸(X軸、およびY軸)回りの揺動速度である。
Embodiment 1 FIG.
A first embodiment of the present invention will be described below with reference to FIGS. Note that the same reference numerals denote the same or corresponding parts throughout the drawings.
As shown in FIG. 1, in a laser processing machine for drilling a printed circuit board 2 that is a workpiece, a processing laser beam (optical path) 6 emitted from a laser oscillator 1 is moved to a processing position. Axis reflecting mirror 100 and Y axis reflecting mirror 200, a condenser lens (described as an f-θ lens or referred to as an “F-theta lens”) 5, and other reflecting optics for guiding light, although not shown. Has a system. The X-axis reflection mirror 100 is fixed to the X-axis scanner 3, and the Y-axis reflection mirror 200 is fixed to the Y-axis scanner 4. In this optical system, it is the rocking speed around the rotation axes (X axis and Y axis) of the reflection mirrors 100 and 200 that determines the drilling processing speed (the number of processing holes per unit time).

回転軸回りの揺動角度は一般にプラスマイナス7〜8度程度の狭い範囲であるが、積層方式で多層構造を実現するプリント基板(例えば携帯電話などの回路基板に用いられるビルドアップ基板など)では、加工される穴の数が非常に多くなっており、現在では1000Hz程度の周波数でX軸、Y軸の反射ミラー100、200が同期して揺動運動している。すなわち一秒間に1000個程度の穴加工を実施している。この揺動運動による加速度に加振され、例えば従来のベリリウムを用いた反射ミラーについて測定された固有値解析結果では、図2の矢印36あるいは矢印37に示すような方向に反射ミラー30が変形する。   The swing angle around the rotation axis is generally in a narrow range of about plus or minus 7 to 8 degrees, but in a printed circuit board (for example, a build-up board used for a circuit board such as a mobile phone) that realizes a multilayer structure by a lamination method. The number of holes to be processed is extremely large, and the X-axis and Y-axis reflecting mirrors 100 and 200 are oscillating synchronously at a frequency of about 1000 Hz. That is, about 1000 holes are processed per second. The reflection mirror 30 is deformed in the direction shown by the arrow 36 or 37 in FIG. 2 in the eigenvalue analysis result measured for the reflection mirror using beryllium, for example.

最も固有振動の低い一次モード(図2中矢印36)は反射ミラー30が揺動回転軸35に対して直角方向にお辞儀をするような変形モードであり、次の高次モードである二次モード(図2中矢印37)では揺動回転軸35に対して反射ミラー30全体がねじれ変形するモードとなっている。なお、32は図の下面部側に形成された反射面(ミラー面)である。このような反射ミラーの変形を抑制するためには、ミラーの構造体の動剛性を向上させて固有振動数を上昇させる必要がある。最も簡単な方法は密度が小さくヤング率の高い材料を選択して使用することにある。すなわち密度とヤング率の比(比剛性)が高いほど有利となるため、これまで反射ミラーの材料として過去にはシリコン、最近ではベリリウムが主として用いられてきた。   The primary mode with the lowest natural vibration (arrow 36 in FIG. 2) is a deformation mode in which the reflecting mirror 30 bows in a direction perpendicular to the oscillating rotation shaft 35, and is the secondary mode that is the next higher mode. (Arrow 37 in FIG. 2) is a mode in which the entire reflection mirror 30 is twisted and deformed with respect to the swinging rotation shaft 35. Reference numeral 32 denotes a reflection surface (mirror surface) formed on the lower surface side in the figure. In order to suppress such deformation of the reflecting mirror, it is necessary to improve the dynamic rigidity of the mirror structure and increase the natural frequency. The simplest method is to select and use a material having a small density and a high Young's modulus. That is, since the higher the ratio of density and Young's modulus (specific rigidity), the more advantageous it becomes, so far, silicon has been mainly used in the past as a material for the reflection mirror, and recently beryllium.

ベリリウムの密度(ρ)は1.85g/cm、ヤング率(E)は275GPaであり、ここで比剛性をE/ρと定義すれば、その比剛性は148.6となり、この程度の比剛性をもつ素材であればベリリウム製のミラーと同等の共振周波数(固有値)をもつスキャナミラーが構成できるはずである。しかし、ベリリウム以外の材料でスキャナ用の反射ミラーが製造できなかった背景には、同等の比剛性を有する金属材料が無いことにあった。ベリリウム材料でも1000Hzの高速揺動を実現するためには、図2に示すように反射面32とは反対側にミラーの背骨となる背面構造中心軸部31から左右に伸びる複数本のリブ33や周辺リブ34を一体的に設けた構造体としてさらに剛性を高める必要があり、このリブ構造を作るためには加工しやすい金属材料であることが必須であった。 The density (ρ) of beryllium is 1.85 g / cm 3 and the Young's modulus (E) is 275 GPa. If the specific rigidity is defined as E / ρ, the specific rigidity is 148.6. If the material has rigidity, a scanner mirror having a resonance frequency (eigenvalue) equivalent to that of a beryllium mirror should be able to be configured. However, there was no metal material having the same specific rigidity as the background that the reflecting mirror for the scanner could not be manufactured with materials other than beryllium. In order to realize high-speed oscillation at 1000 Hz even with the beryllium material, as shown in FIG. 2, a plurality of ribs 33 extending left and right from the central axis 31 of the back structure, which is the backbone of the mirror, on the side opposite to the reflecting surface 32 It is necessary to further increase the rigidity as a structure in which the peripheral ribs 34 are integrally provided, and in order to make this rib structure, it is essential that the metal material is easy to process.

しかし、上記のようなベリリウムの毒性に伴う環境問題と、入手性の問題から、ベリリウム以外の材料で地球環境に優しい材料で構成され、かつ高速揺動できる高剛性の反射ミラーの開発が望まれていた。本発明者らは、セラミックス材料は非常に硬く、自由な加工が困難ではあるものの、比剛性の点で例えば炭化珪素SiC(比剛性131.3)や炭化硼素BC(比剛性172.0)などの炭化物系セラミックス材料はベリリウム材料に比較的近く、加工の困難性を克服することができれば、高速運動光学系に用いることができるのではないかとの技術課題を得て、鋭意研究を重ねた結果この発明を完成させるに至ったものである。 However, due to the environmental problems associated with the toxicity of beryllium as described above and the problems of availability, it is desired to develop a high-rigidity reflective mirror that is composed of materials other than beryllium and is friendly to the global environment and can swing at high speed. It was. Although the present inventors have found that the ceramic material is very hard and free processing is difficult, for example, silicon carbide SiC (specific rigidity 131.3) or boron carbide B 4 C (specific rigidity 172.0) is preferable in terms of specific rigidity. ) And other carbide-based ceramic materials are relatively close to beryllium materials, and if they can overcome the difficulty of processing, they will be able to use them in high-speed motion optical systems, and earnestly research them. As a result, the present invention has been completed.

図3は本発明の実施の形態1に係る炭化物系セラミックスをベース材料とした反射ミラーを模式的に示す背面部から見た斜視図である。この実施の形態1になる反射ミラー200は炭化物系セラミックス素材からなる一体構造物であり、表面側(図の下面部側)にレーザ光を反射する反射面211を形成した板状の基体部210と、この基体部210の背面部に形成され該基体部210の撓みや歪みを防ぐ補強構造部220が一体的に形成されている。補強構造部220は、基体部210の裏側に揺動回転軸(図示省略)に沿って一体的に設けられた背面構造中心軸部221と、この背面構造中心軸部221から基体部210の裏側面に沿って左右に対称的に延びるリブ222から構成されている。   FIG. 3 is a perspective view schematically showing a reflecting mirror using the carbide-based ceramics according to the first embodiment of the present invention as a base material. The reflection mirror 200 according to the first embodiment is an integral structure made of a carbide-based ceramic material, and has a plate-like base portion 210 in which a reflection surface 211 that reflects laser light is formed on the front surface side (lower surface portion side in the figure). In addition, a reinforcing structure portion 220 that is formed on the back surface portion of the base portion 210 and prevents the base portion 210 from being bent or distorted is integrally formed. The reinforcing structure portion 220 includes a back structure central shaft portion 221 integrally provided on the back side of the base portion 210 along a swinging rotation axis (not shown), and the back structure central shaft portion 221 to the back side of the base portion 210. It is comprised from the rib 222 extended symmetrically along the surface right and left.

上記反射ミラー200は、図3に示すように背面構造中心軸部221とスキャナとミラーの取り付け側付け根部分(矢印C部付近)の小さな凹形状のR曲線部を除いてほぼ全周にわたり滑らかな外膨らみの曲線で構成されている。両端矢印で図示した長手方向の寸法B1は隣り合うリブ相互の間隔寸法を意味し、B2は中心軸の頂点から最初のリブまでの距離、B3は基体部210を構成する概ね滑らかな曲線が始まる部分(矢印C部付近)から最初のリブまでの距離を意味している。   As shown in FIG. 3, the reflection mirror 200 is smooth over almost the entire circumference except for the rear structure central shaft portion 221 and the small concave R-curved portion of the scanner and mirror attachment side root portion (near the arrow C portion). It consists of an outward bulge curve. A longitudinal dimension B1 shown by a double-headed arrow means a distance between adjacent ribs, B2 is a distance from the apex of the central axis to the first rib, and B3 is a generally smooth curve constituting the base portion 210. This means the distance from the portion (near arrow C) to the first rib.

上記反射ミラー200の構成部材のベース材料としては、この実施の形態1では炭化珪素(SiC)が用いられており、例えば回転軸方向(図3の矢印Lの方向)に50mm程度、幅方向(図3の矢印Wの方向)に40mm程度の反射面積を有する反射ミラーを構成する場合、軽量化と固有振動数を高くするために、反射面211を形成している基体部210は、厚み(t)を0.5mm程度以下とし、その背面部に厚みが1.0mm程度で、高さ(h)が3.0mm程度のリブ222を図示のように左右対称的に二組程度設けられる。この形状は従来のベリリウムミラーに比べてリブの本数が大幅に少なく非常にシンプルとなっているが、この背面構造に本発明の重要なポイントがある。   In the first embodiment, silicon carbide (SiC) is used as the base material of the constituent members of the reflection mirror 200. For example, about 50 mm in the rotation axis direction (the direction of arrow L in FIG. 3) and the width direction ( When a reflection mirror having a reflection area of about 40 mm in the direction of arrow W in FIG. 3 is formed, the base portion 210 forming the reflection surface 211 has a thickness (in order to reduce weight and increase the natural frequency). t) is set to about 0.5 mm or less, and about two ribs 222 having a thickness of about 1.0 mm and a height (h) of about 3.0 mm are provided symmetrically on the back surface as shown in the drawing. This shape is very simple compared to a conventional beryllium mirror, with a significantly smaller number of ribs, but this back structure has an important point of the present invention.

炭化物系セラミックスを反射ミラーの素材に用いた場合、比剛性がベリリウムと同程度か若干上回るため、ベリリウムと同様の背面構造をとることで、ほぼベリリウムと同等の固有振動数が得られるはずである。しかし、本発明者らが一連の反射ミラーの試作、レーザ加工実験を鋭意推進した結果、炭化物系セラミックスを用いた反射ミラーはベリリウムを用いた反射ミラーに比べて性能の低下が生じることがわかった。   When carbide-based ceramics is used as the material for the reflective mirror, the specific rigidity is almost the same as or slightly higher than that of beryllium. By adopting the back structure similar to beryllium, a natural frequency almost equivalent to beryllium should be obtained. . However, as a result of intensively promoting the trial production of a series of reflection mirrors and laser processing experiments, the present inventors have found that the performance of a reflection mirror using carbide ceramics is lower than that of a reflection mirror using beryllium. .

例えば図2に示したベリリウムミラーは、揺動回転軸方向の反射面の長さが40mm、反射面の幅が30mmの反射ミラーであるが、この反射ミラーの固有値解析を実施するとミラーがお辞儀をするような一次モードが2.24KHzとなることがわかり、一次モードの固有値が動作周波数1KHzに対して二倍程度のマージンを有していることが分かった。   For example, the beryllium mirror shown in FIG. 2 is a reflecting mirror having a reflecting surface length of 40 mm and a reflecting surface width of 30 mm in the direction of the oscillating rotation axis. When the eigenvalue analysis of this reflecting mirror is performed, the mirror bows. It can be seen that the primary mode is 2.24 KHz, and the eigenvalue of the primary mode has a margin of about twice the operating frequency of 1 KHz.

そこでまず実験として図2に示す形状そのままで材質を炭化物系セラミックスにして反射ミラーを試作したが、レーザで加工した穴位置が図4にその加工結果イメージを示すとおり、破線で示す設計穴あけ位置300に対して、例えば図4のA列に模式的に示すように実線で示す加工穴301がΔpだけずれてしまうことがわかった。この原因として試作に用いたSiCセラミックスの密度ρが3.2g/cm、あるいはBCセラミックスの密度が2.85g/cmとベリリウムの1.85g/cmに比べてかなり大きく、このことが反射ミラーの運動に対して何らかの影響を与えるため固有振動の1次モードの変形であるたおれを発生させ加工穴位置がずれたものと推定された。 Therefore, as a test, a reflection mirror was made by making the material as carbide-based ceramics with the shape shown in FIG. 2 as it is, but the hole position processed by the laser is the design drilling position 300 indicated by the broken line as shown in FIG. On the other hand, for example, it was found that the machining hole 301 indicated by the solid line is shifted by Δp as schematically shown in the A column of FIG. Considerably larger than the SiC density of the ceramic ρ is 3.2 g / cm 3 or B 4 C density of the ceramic is 2.85 g / cm 3 and beryllium 1.85 g / cm 3, which was used in the prototype as the cause, this Since this has some influence on the movement of the reflecting mirror, it was estimated that the deformation of the first mode of natural vibration occurred and the machining hole position was shifted.

そこでミラーの剛性を高めるためにリブの高さを増す、あるいはリブ本数を増加させて反射ミラーを構成してみたが、高速運動させて反射させたレーザ光の真円度や照射位置精度が全く確保できなくなることがわかった。例えばリブ本数を変えた一連の実験からリブ本数と位置ずれ量Δpは図5に示す関係があることがわかった。上記ベリリウム材質の30×40mm寸法と同程度のSiC材質の反射ミラーにおいて、背面リブ構造を反射面を等間隔に分割するように配置した場合、リブ本数が4本を超えると位置ずれΔpが大きくなり、リブ5本の場合はΔpの量が測定レンジをオーバーするほどに増大することが分かった。   In order to increase the rigidity of the mirror, the height of the ribs was increased or the number of ribs was increased to construct a reflecting mirror. However, the roundness and irradiation position accuracy of the laser beam reflected by high-speed movement were completely different. It turned out that it could not be secured. For example, from a series of experiments in which the number of ribs was changed, it was found that the number of ribs and the positional deviation amount Δp had the relationship shown in FIG. In the reflection mirror made of SiC material having the same size as the 30 × 40 mm size of the beryllium material, when the back rib structure is arranged so that the reflection surface is divided at equal intervals, the positional deviation Δp is large when the number of ribs exceeds four. Thus, it was found that in the case of five ribs, the amount of Δp increases as the measurement range is exceeded.

本来、リブ本数の増加は構造強度を向上させるため固有振動を上昇させる方向に働くと考えられ、実験結果において反射光の位置決め精度が劣化したのは別の要因が関係していると考えられる。例えば反射ミラーが安定して揺動運動するためにはそのダイナミックバランスがとれている必要があり、ダイナミックバランスが得られる条件の一つとして揺動回転軸が反射ミラーの重心を通る必要がある。   Originally, the increase in the number of ribs is considered to work in the direction of increasing the natural vibration in order to improve the structural strength, and it is considered that another factor is related to the deterioration of the positioning accuracy of the reflected light in the experimental results. For example, in order for the reflecting mirror to stably oscillate, its dynamic balance needs to be taken. As one of the conditions for obtaining the dynamic balance, the oscillating rotation axis needs to pass through the center of gravity of the reflecting mirror.

すなわち反射ミラーを駆動するスキャナの回転軸の回転中心が反射ミラーの重心を通っていることが安定した揺動運動を得る第一条件となるが、実際には取り付け治具との取り付け誤差や反射ミラーの左右の厳密な意味での非対称性があることで、完全にはバランスをとることができない状態となっていることがあげられる。すなわち切削加工で得られる寸法精度が、炭化物系セラミックスミラーではベリリウム材料に比べて得にくく、かつその比重が大きいため、わずかな外形形状の非対称性や揺動回転軸中心と反射ミラーの重心とのずれがダイナミックバランスを大きく崩したため、回転によって生じる遠心力が反射ミラーを変形させたと考えられた。   In other words, the first condition for obtaining a stable oscillating motion is that the rotation center of the rotation axis of the scanner that drives the reflection mirror passes through the center of gravity of the reflection mirror. Due to the strict asymmetry of the right and left of the mirror, it can be said that the mirror cannot be perfectly balanced. In other words, the dimensional accuracy obtained by cutting is difficult to obtain with carbide ceramic mirrors compared to beryllium materials, and its specific gravity is large, so there is a slight asymmetry of the outer shape and the center of oscillation and rotation axis and the center of gravity of the reflecting mirror. It was thought that the centrifugal force generated by the rotation caused the reflecting mirror to be deformed because the shift greatly lost the dynamic balance.

そこで、反射ミラーとして剛性の低下が生じるが全体の質量を軽減させ、揺動回転軸と反射ミラーの重心位置とのずれに起因する加振力を軽減することを目的としてリブの本数を減らして実験したところ、反射光の照射位置精度の向上が認められた(例えば図4のB列、C列)。そこでさらに、背面リブの本数を2〜3本としてリブの間隔を変化させレーザによる穴あけ加工実験を実施したところ、リブの間隔を広げ過ぎると例えば図4のD列に示すように次第に加工穴301の形状が劣化する現象が認められるようになった。   Therefore, although the rigidity of the reflecting mirror is reduced, the overall mass is reduced, and the number of ribs is reduced for the purpose of reducing the excitation force caused by the deviation between the swing rotation axis and the center of gravity of the reflecting mirror. As a result of the experiment, it was confirmed that the irradiation position accuracy of the reflected light was improved (for example, rows B and C in FIG. 4). Therefore, when the number of back ribs was changed to 2 to 3 and the gap between the ribs was changed to perform a laser drilling experiment, when the gap between the ribs was increased too much, for example, as shown in row D of FIG. The phenomenon that the shape of the material deteriorates has been recognized.

これはリブとリブとの間の平板部の固有振動が下がってきたため、揺動回転の加速度によって上記平板部がわずかに撓み、あるいは撓んだ際の振動が減衰せずに残っていることが原因と推定された。実際、リブ間隔が広がると加工穴の真円度Δdが劣化し、試作した40mm×50mm程度の反射面積を有する反射ミラーにおいては、リブ間隔と真円度の関係が図6に示すような傾向となることがわかった。   This is because the natural vibration of the flat plate portion between the ribs has been lowered, so that the flat plate portion is slightly bent by the acceleration of the swinging rotation, or the vibration at the time of bending is not attenuated and remains. Presumed to be the cause. Actually, when the rib interval is widened, the roundness Δd of the processed hole is deteriorated, and in the reflection mirror having a reflection area of about 40 mm × 50 mm, the relationship between the rib interval and the roundness tends to be as shown in FIG. I found out that

なお、真円度Δdは図4に示すように、加工円の最大外接円の直径ΦMAXと最小内接円ΦMINとの差、即ち、
Δd=ΦMAX−ΦMINをいう。
更に追加した実験結果などを含む上記した一連の実験結果から、炭化物系セラミックスを用いて1000Hz程度以上(概略800〜1000Hz以上)の高速揺動運動させる反射ミラーを構成する場合にはリブが反射面の裏面全体を仕切ってできた平面部の形状の縦横比率に適正範囲があることが分かった。
As shown in FIG. 4, the roundness Δd is the difference between the diameter ΦMAX and the minimum inscribed circle ΦMIN of the maximum circumscribed circle of the processed circle, that is,
Δd = ΦMAX−ΦMIN.
Furthermore, from the above-described series of experimental results including the added experimental results, the rib is the reflective surface when a reflecting mirror is used to make a high-speed rocking motion of about 1000 Hz or more (approximately 800 to 1000 Hz or more) using carbide ceramics. It has been found that there is an appropriate range in the aspect ratio of the shape of the flat portion formed by partitioning the entire back surface of the plate.

即ち、上記検討結果から図3中に示す隣接する2つのリブ222に挟まれる揺動軸方向の間隔Bとリブ222の長手方向の長さAに関して、寸法Aと寸法Bの比率(A/B)が0.5〜2.0の範囲のときに加工穴の位置ずれが小さくかつ加工穴の真円度が維持される。さらに、高精度の加工穴位置と加工穴の真円度を得るためには、上記寸法AとBの比率(A/B)を望ましくは0.7〜1.4程度にすることが好ましい。なお、因みに従来のベリリウムミラーにおいては上記寸法AとBの比率は概ね2.0以上となっている。   That is, the ratio of the dimension A to the dimension B (A / B) with respect to the distance B in the swing axis direction between the two adjacent ribs 222 shown in FIG. ) Is in the range of 0.5 to 2.0, the positional deviation of the machining hole is small and the roundness of the machining hole is maintained. Furthermore, in order to obtain a highly accurate machining hole position and the roundness of the machining hole, the ratio (A / B) of the dimensions A and B is desirably about 0.7 to 1.4. Incidentally, in the conventional beryllium mirror, the ratio of the dimensions A and B is approximately 2.0 or more.

なお、上記比率(A/B)は炭化珪素に比べて若干密度の小さい炭化硼素系セラミックス材料を用いたときには適用範囲がわずかに拡大される傾向にあるが、ほぼ炭化珪素系セラミックス材料の場合と同等である。一方、反射ミラーを駆動する通常のスキャナ(揺動モータ)を用いる場合、駆動トルクの関係から、ベリリウムあるいはシリコンに比べて比重の大きい炭化物系セラミックスを用いた反射ミラーの軽量化(慣性モーメントの減少)は必須で、ミラーの反射面211を形成する基体部210の厚み(t)は概略0.5mm以下にすることが望ましい。さらに望ましくは0.4mm以下であれば現行よく使用されているスキャナの駆動トルクで1000〜1200Hz以上の加工速度が確保できる慣性質量以内で設計することができる。なお、スキャナの駆動トルクの高トルク化が実現され、あるいは高トルクの駆動系を用いた場合は、反射面の厚みは0.5mmを超えても設計可能となることはいうまでもない。   The ratio (A / B) tends to be slightly expanded when a boron carbide-based ceramic material having a slightly lower density than silicon carbide is used. It is equivalent. On the other hand, when using a normal scanner (oscillating motor) that drives the reflecting mirror, the weight of the reflecting mirror using carbide ceramics, which has a higher specific gravity than beryllium or silicon, is reduced due to the drive torque (reduced moment of inertia). ) Is essential, and it is desirable that the thickness (t) of the base portion 210 forming the reflecting surface 211 of the mirror be approximately 0.5 mm or less. More preferably, if it is 0.4 mm or less, it can be designed within an inertial mass that can secure a processing speed of 1000 to 1200 Hz or more with the driving torque of a currently used scanner. Needless to say, when the scanner drive torque is increased or a high-torque drive system is used, the reflective surface can be designed with a thickness exceeding 0.5 mm.

以上から、この実施の形態1に係る炭化物系セラミックスを用いた反射ミラーは、代表的形状を図3に示すように、揺動軸方向の長さ(L)が30〜100mm、揺動軸方向に垂直なミラーの幅方向の長さ(W)が30〜100mmの各長さの各種組み合わせをもつミラーにおいて、高さ2.0〜4.0mm、幅0.3〜1.0mmのリブ222を二本設け、概ね上記リブの間隔Bとリブ長さAとの比率(A/B)が0.5〜2.0の範囲とすることにより、800〜1000Hzの揺動速度において、許容範囲の位置ずれと許容範囲の加工穴の真円度を得ることができる。   From the above, the reflection mirror using the carbide-based ceramics according to the first embodiment has a representative shape as shown in FIG. 3 having a length (L) in the swing axis direction of 30 to 100 mm, and the swing axis direction. In the mirror having various combinations of lengths in the width direction (W) of the mirror perpendicular to the height of 30 to 100 mm, the rib 222 having a height of 2.0 to 4.0 mm and a width of 0.3 to 1.0 mm And the ratio of the rib interval B to the rib length A (A / B) is in the range of 0.5 to 2.0, so that the allowable range is obtained at a rocking speed of 800 to 1000 Hz. And the roundness of the machining hole within an allowable range can be obtained.

また、幅30mm前後、揺動軸方向長さ100mmと長方形に近い反射ミラーを構成する場合には、リブ222を3本設け、リブの間隔と長さの比率(A/B)を0.5〜2.0の範囲にすることで、反射ミラーの性能としては加工位置精度や加工穴の形状精度が最も安定したものを得ることができる。このように、炭化物系セラミックスで反射ミラーを構成する本発明においては、ベリリウム材料に比べてその密度が大きいことに起因するスキャナ回転軸と反射ミラーのセッティングの難しさを克服するために、補強構造部220の背面リブ構造として、できるだけリブ本数は少なくするべきで、かつリブの間隔とリブの長さ比率を上記比率に選ぶことが重要である。   Further, in the case of constructing a reflection mirror close to a rectangle with a width of about 30 mm and a length in the swing axis direction of 100 mm, three ribs 222 are provided, and the rib spacing to length ratio (A / B) is 0.5. By setting the value within the range of -2.0, it is possible to obtain a reflecting mirror having the most stable processing position accuracy and processing hole shape accuracy. As described above, in the present invention in which the reflecting mirror is composed of carbide-based ceramics, in order to overcome the difficulty of setting the scanner rotation axis and the reflecting mirror due to its higher density than the beryllium material, a reinforcing structure As the back rib structure of the portion 220, the number of ribs should be reduced as much as possible, and it is important to select the above-mentioned ratio between the rib interval and the rib length.

さらに、最もよく用いられる反射ミラーのサイズである幅(W)40〜50mmで揺動軸方向長さ(L)が40〜60mmの反射ミラーにおいては、背面構造中心軸部221の厚みが3〜4mmで幅が8〜12mm、基体部210の厚みは0.5mm以下、背面構造のリブの間隔は長手方向を等間隔から若干3等分する長手方向長さ(B1)を両端部の長さ(B2、B3)より1.1〜1.3倍長く設定(概略A/B=1.2〜1.5)し、リブ222の厚みは1mm以下、リブ222の高さ(h)は4mm以下とすることで、1000〜1200Hzの範囲でベリリウムミラーを用いた場合とほぼ同等の加工位置精度、加工穴形状精度を有する反射ミラーを得ることができる。   Further, in a reflection mirror having a width (W) of 40 to 50 mm, which is the most commonly used size of the reflection mirror, and a length (L) in the swing axis direction of 40 to 60 mm, the thickness of the rear structure central shaft portion 221 is 3 to 3. 4 mm, width is 8 to 12 mm, the thickness of the base portion 210 is 0.5 mm or less, and the distance between the ribs of the back structure is the length in the longitudinal direction (B1) that divides the longitudinal direction slightly into three from the equal distance. 1.1 to 1.3 times longer than (B2, B3) (approximately A / B = 1.2 to 1.5), the thickness of the rib 222 is 1 mm or less, and the height (h) of the rib 222 is 4 mm. By setting it as the following, the reflective mirror which has the process position accuracy and the process hole shape precision substantially equivalent to the case where a beryllium mirror is used in the range of 1000-1200 Hz can be obtained.

つぎに、上記実施の形態1になる反射ミラーの製造方法について説明する。上記図3に示すような薄肉の三次元構造からなる反射ミラーの反射面211を従来の一般的な方法で研磨すると、リブ222部分の研磨レートが高くなり、リブの無い薄板部分が研磨圧力に対して逃げてしまうため、仕上がり面のイメージは図7に示すようになり、使用レーザ波長の20分の1程度の平面度には仕上げることはできない。   Next, a manufacturing method of the reflecting mirror according to the first embodiment will be described. When the reflecting surface 211 of the reflecting mirror having a thin three-dimensional structure as shown in FIG. 3 is polished by a conventional general method, the polishing rate of the rib 222 portion is increased, and the thin plate portion without the rib is subjected to the polishing pressure. On the other hand, since it escapes, the image of the finished surface is as shown in FIG. 7, and it cannot be finished to a flatness of about 1/20 of the used laser wavelength.

ここで対象としているレーザの波長は9.3ミクロン程度であるので、その波長の20分の1に相当するおよそ0.47ミクロン以下の平面度が必要となる。この実施の形態1では、図8に示すようにリブ構造の部分をよけて反射面の裏側とはまり込む形状の研磨治具230を製作し、反射ミラー200の背面部のリブ222と互いに嵌合させ、嵌合した隙間におおむね80℃以下の低温で溶融するワックスからなる接着材231を流し込んで、見かけ上一枚の板として研磨するようにしたものである。   Since the wavelength of the target laser here is about 9.3 microns, a flatness of about 0.47 microns or less corresponding to 1/20 of the wavelength is required. In the first embodiment, as shown in FIG. 8, a polishing jig 230 having a shape that fits into the back side of the reflecting surface by avoiding the rib structure is manufactured, and is fitted to the rib 222 on the back surface of the reflecting mirror 200. Then, an adhesive material 231 made of wax that melts at a low temperature of approximately 80 ° C. or less is poured into the fitted gap, and apparently polished as a single plate.

研磨治具を用いないで反射面を研磨した場合には、平面度が1〜4ミクロンと悪い仕上がりであったのに対し、図8に示す互いにはまり込む研磨治具230をセットして研磨した場合には、その平面度は0.1〜0.3μm程度となり、プリント基板の穴あけに使用しているレーザ加工機の波長9.3μmの20分の1である0.465μm以下にすることができた。   When the reflecting surface was polished without using a polishing jig, the flatness was poor, such as 1 to 4 microns. On the other hand, the polishing jig 230 shown in FIG. In this case, the flatness is about 0.1 to 0.3 μm, and should be 0.465 μm or less, which is 1/20 of the wavelength 9.3 μm of the laser processing machine used for drilling the printed circuit board. did it.

また、上記のようにして製造されたSiCからなる反射ミラーの研磨面の面粗さは0.02〜0.05μmRMS程度に仕上がっており、このSiC研磨面に例えば金(Au)を蒸着し、さらに反射率を高める増反射コートを施して9.3μm波長帯のレーザに対して反射率は99%以上の反射面を確保することができた。
なお、SiCの反射面に金を蒸着する際、SiC素地との密着力を確保するために、SiC面にクロムを蒸着してから金を蒸着することも有効である。
Further, the surface roughness of the polished surface of the reflection mirror made of SiC manufactured as described above is finished to about 0.02 to 0.05 μm RMS, and for example, gold (Au) is vapor-deposited on the SiC polished surface, Furthermore, the reflective coating having a reflectivity of 99% or more was able to be secured with respect to the laser of the 9.3 μm wavelength band by applying an increased reflection coating for increasing the reflectivity.
When gold is deposited on the SiC reflecting surface, it is also effective to deposit gold after depositing chromium on the SiC surface in order to secure adhesion to the SiC substrate.

なお、上記炭化物系セラミックスにより構成したこの発明の反射ミラーは、波長10ミクロン前後のレーザ光に有効であるだけではなく、例えば他の広い波長領域の高精度が要求される光学系でも用いることができ、さらにレーザ加工機など、反射ミラーを高速で揺動させて光学系を構成する導光用反射光学系に特に好ましく用いられるほか、反射ミラーを静止させて用いる用途でも広く好ましく利用が可能であることは言うまでもない。さらに、揺動装置としては、図1に示すような回転運動のみではなく、動剛性の高さから、例えば反射ミラー200がリニアモータで駆動される高速の往復運動、ステップ運動を必要とする直線運動系などの揺動装置に取り付ける反射ミラーとして用いても同様の効果が期待できる。   The reflecting mirror of the present invention composed of the above-mentioned carbide-based ceramics is not only effective for laser light having a wavelength of about 10 microns, but also used in, for example, other optical systems that require high accuracy in a wide wavelength region. In addition, it can be used particularly favorably in a reflection optical system for light guides that constitutes an optical system by oscillating a reflection mirror at high speed, such as a laser processing machine, and can also be used widely and preferably in applications in which the reflection mirror is stationary. Needless to say. Further, as the oscillating device, not only the rotational motion as shown in FIG. 1, but also the linear motion that requires high-speed reciprocating motion and step motion where the reflecting mirror 200 is driven by a linear motor, for example, due to the high dynamic rigidity. The same effect can be expected even when used as a reflection mirror attached to a rocking device such as a motion system.

上記のように、この実施の形態1による反射ミラーは、金属にはない高ヤング率を有する炭化珪素(SiC)系セラミックスなどの炭化物系セラミックスを素材に用いたもので、ミラーの取り付け等の外力に対する変形を抑制し、また高速揺動時の加速度が発生する際のミラーの平面度を確保し、レーザ反射光の真円度など反射光の品質を高めることができる。なお、炭化物系セラミックスとしては、上記炭化珪素(SiC)系セラミックスのほか、例えば炭化硼素(BC)系セラミックスなどでも同様の効果が期待できる。 As described above, the reflecting mirror according to the first embodiment uses carbide ceramics such as silicon carbide (SiC) ceramics having a high Young's modulus that is not found in metal as a material. It is possible to suppress the deformation of the mirror, to ensure the flatness of the mirror when acceleration is generated during high-speed oscillation, and to improve the quality of the reflected light such as the roundness of the laser reflected light. As the carbide ceramics, silicon carbide (SiC) based other ceramics, the same effect also in, for example, boron carbide (B 4 C) ceramic can be expected.

また、研磨時の加工反力による反射面の平面度の劣化を防ぐために、背面のリブを覆うような補強用の研磨治具を用いることにより、加工技術上困難であった平面度を確保することができる。またセラミックス材料を使用することで、入手も容易で環境上の問題もクリアされ、大型化も容易であるなどの効果が得られる。   In addition, in order to prevent deterioration of the flatness of the reflecting surface due to processing reaction force during polishing, a flatness that has been difficult in processing technology is secured by using a polishing jig for reinforcement that covers the ribs on the back surface. be able to. In addition, by using a ceramic material, it is easy to obtain, the environmental problems are cleared, and it is easy to increase the size.

実施の形態2.
この発明の実施の形態2による反射ミラーとして、炭化硼素系セラミックス、例えば炭化硼素(BC)と硼化クロム(CrB)の複合物、炭化硼素(BC)と硼化チタン(TiB)の複合物、あるいは炭化硼素(BC)と窒化アルミ(AlN)の複合物などからなる複合材料系の炭化硼素系セラミックス材料を用いた他は、実施の形態1で示した方法と同様の方法により反射ミラー(図示省略)を得た。この反射ミラーは上記実施の形態1に示すSiCセラミックス材料などを使用して得られた反射ミラーと同等以上の性能を有するものであった。
Embodiment 2. FIG.
As a reflecting mirror according to Embodiment 2 of the present invention, boron carbide ceramics, for example, a composite of boron carbide (B 4 C) and chromium boride (CrB 2 ), boron carbide (B 4 C) and titanium boride (TiB) 2 ) or a composite material boron carbide ceramic material composed of a composite of boron carbide (B 4 C) and aluminum nitride (AlN), etc. A reflection mirror (not shown) was obtained by the same method. This reflection mirror had a performance equal to or higher than that of the reflection mirror obtained by using the SiC ceramic material shown in the first embodiment.

炭化硼素(BC)は粒子状材料として研磨砥粒や研削工具などに使用されてきた。また、その焼結体も多くの空孔欠陥(ボイド)があるため、サンドブラスト用ノズルヘッド等、耐磨耗部品にしか利用されてこなかった。炭化硼素は耐磨耗部品としては非常に高性能を発揮するが、その空孔欠陥が材料強度の低下を招いており、耐磨耗部品として炭化硼素の本来の性能(硬さ他の材料物性)を発揮するには空孔欠陥をなくす必要があった。当然のことながら、この空孔欠陥はミラー材料として障害となり、高エネルギ密度のレーザ光を照射した場合に空孔欠陥からの熱エネルギ吸収がおこり、発熱、温度上昇してミラーとして使用できなくなる。 Boron carbide (B 4 C) has been used as a particulate material in abrasive grains and grinding tools. In addition, since the sintered body has many voids (voids), it has been used only for wear-resistant parts such as a sandblast nozzle head. Boron carbide exhibits very high performance as a wear-resistant component, but its void defects have led to a decrease in material strength. As a wear-resistant component, the original performance of boron carbide (hardness and other material properties) ) Had to eliminate void defects. As a matter of course, this vacancy defect becomes an obstacle as a mirror material. When a laser beam having a high energy density is irradiated, thermal energy absorption from the vacancy defect occurs, and heat generation and temperature rise make it impossible to use as a mirror.

本発明者らは最近の炭化硼素系の各種材料について組織をSEM観察した結果、炭化硼素(BC)と硼化クロム(CrB)の複合物、炭化硼素(BC)と硼化チタン(TiB)の複合物、あるいは炭化硼素(BC)と窒化アルミ(AlN)材料系セラミックスなどで、複合化され緻密化された組織をもつものがあることがわかり、鋭意研究を重ねた結果、上記のようにこの発明を完成するに至ったものである。 The inventors have found that the tissue was observed by SEM for various materials recent boron carbide-based, composite of boron carbide (B 4 C) and chromium boride (CrB 2), and boron carbide (B 4 C) boride It has been found that there are composites of titanium (TiB 2 ) or boron carbide (B 4 C) and aluminum nitride (AlN) material-based ceramics that have a complex structure and a dense structure. As a result, the present invention has been completed as described above.

実施の形態3.
図9はこの発明の実施の形態3による反射ミラーの背面部を示す斜視図である。この反射ミラー200は、炭化硼素(BC)と硼化クロム(CrB)の複合材料、あるいは炭化硼素(BC)と硼化チタン(TiB)の複合材料などの炭化硼素系セラミックスからなるものであり、特にこれらの炭化硼素系セラミックス材料が若干の電気伝導性を有することから、図9に示す曲面を有する背面部の補強構造部220の一部または全部を放電加工により加工したものである。
Embodiment 3 FIG.
FIG. 9 is a perspective view showing a back surface portion of a reflecting mirror according to Embodiment 3 of the present invention. The reflecting mirror 200 is made of a boron carbide ceramic such as a composite material of boron carbide (B 4 C) and chromium boride (CrB 2 ), or a composite material of boron carbide (B 4 C) and titanium boride (TiB 2 ). In particular, since these boron carbide based ceramic materials have some electrical conductivity, a part or all of the reinforcing structure portion 220 on the back surface having a curved surface shown in FIG. 9 is processed by electric discharge machining. Is.

SiC系セラミックスなど導電性をもたないセラミックス材料の場合には、補強構造部を含む反射ミラーの概略形状を焼成時に予め成形しておく必要があり、リブ構造を仕上げ加工した後に反射面を研磨もしくは切削で仕上げ加工する必要があったが、上記した炭化硼素の複合材料の場合、放電加工が可能であることから、平板素材の状態で背面の補強構造部を型彫り放電加工した後、表面側の反射面となる基体部210表面全体を研磨仕上げし、その後ミラーとなる外形形状をワイヤカットで切り出すことで、平面度を維持したまま高精度の反射ミラーを得ることができた。この方法で得られた炭化硼素の複合材料からなる反射ミラー200は、反射面の平面度0.1〜0.3μmと、実用上十分に優れたものであった。   In the case of ceramic materials that do not have conductivity, such as SiC-based ceramics, it is necessary to preliminarily shape the reflective mirror including the reinforcing structure when firing, and the reflective surface is polished after finishing the rib structure Or, it was necessary to finish machining by cutting, but in the case of the above-mentioned boron carbide composite material, since electric discharge machining is possible, the surface of the reinforcing structure on the back side is sculpted by electric discharge machining in the state of a flat plate material, By polishing and polishing the entire surface of the base portion 210 serving as the reflective surface on the side, and then cutting out the outer shape to be the mirror by wire cutting, it was possible to obtain a highly accurate reflective mirror while maintaining the flatness. The reflecting mirror 200 made of a boron carbide composite material obtained by this method was sufficiently excellent in practical use with a flatness of the reflecting surface of 0.1 to 0.3 μm.

この実施の形態3における放電加工を用いた反射ミラーの加工プロセスは、SiCの場合に比べて研磨の際の治具が不要となるため、製造コストが安くなるメリットがある。また、凹凸の大きいものでも型彫りの放電加工機で自由に加工できるため、図9に示すような曲面や凹凸のある背面構造形状でも容易に目的物を得ることができるようになり、余分な質量となる厚肉部分を薄肉化し、背面構造の薄肉リブを高くして全体的にシェル構造としたため、さらに高性能の反射ミラーを得ることができる。   The processing process of the reflecting mirror using the electric discharge machining in the third embodiment is advantageous in that the manufacturing cost is reduced because a jig for polishing is not required as compared with the case of SiC. In addition, since even an uneven surface can be processed freely with a die-sinking electric discharge machine, it becomes possible to easily obtain a target object even with a curved surface or an uneven back surface structure as shown in FIG. Since the thick part which becomes the mass is thinned and the thin rib of the back structure is made high so as to form a shell structure as a whole, a higher performance reflecting mirror can be obtained.

上記のように、実施の形態3によれば、導電性を有する複合材料系炭化硼素セラミックスを用い、ミラーの製造プロセスに放電加工を利用するように構成したことにより、背面構造中心軸部221が例えば円筒あるいは角管断面化など一部中空構造のものや、ハニカム構造などであっても問題なく、放電加工による背面の補強構造部の形成プロセスにより板素材状態で反射面研磨が可能で反射面の平面度を確保した反射ミラーを容易に得ることができる効果が得られる。   As described above, according to the third embodiment, by using the composite material boron carbide ceramics having conductivity and using the electric discharge machining for the mirror manufacturing process, the rear structure central shaft portion 221 is formed. For example, it is possible to polish the reflective surface in the state of the plate material by the process of forming the reinforcing structure on the back side by electric discharge machining, even if it is a part of hollow structure such as cylindrical or square tube cross section or honeycomb structure etc. The effect that the reflective mirror which ensured the flatness of this can be obtained easily is acquired.

実施の形態4.
次に、この発明の実施の形態4によるスキャンミラーとして用いる反射ミラーの製造方法について説明する。上記実施の形態1では研磨による反射面の加工方法は加工反力が大きいことから研磨面の平面度が得にくいことについても述べたが、この実施の形態4は、反射ミラーの平面度を確保する手段として、加工反力の小さい切削加工を用いて反射面を加工して反射ミラーを製造する方法を提供するものである。
Embodiment 4 FIG.
Next, a method for manufacturing a reflection mirror used as a scan mirror according to Embodiment 4 of the present invention will be described. In Embodiment 1 described above, it has also been described that the processing method of the reflecting surface by polishing has a large processing reaction force, so that it is difficult to obtain the flatness of the polishing surface, but this Embodiment 4 ensures the flatness of the reflecting mirror. As a means to do this, there is provided a method of manufacturing a reflecting mirror by processing a reflecting surface using a cutting process with a small processing reaction force.

図3に示した炭化物系セラミックスベースの反射ミラー形状を作った後、研削加工により反射面の平面度を10μm以下程度に加工し、次いで反射面に無電解ニッケルメッキを数十〜100μm程度厚膜形成し、上記厚膜部分を正面旋盤でダイヤモンド切削仕上げして鏡面を得、そのニッケル層の上に金メッキを施し、増反射コートを施して得た反射面はその平面度が0.1μm程度と良好な平面度を得ることができ、面粗さも0.02μmRMS程度と良好であった。   After making the shape of the carbide-based ceramics-based reflecting mirror shown in FIG. 3, the flatness of the reflecting surface is processed to about 10 μm or less by grinding, and then the electroless nickel plating is applied to the reflecting surface by several tens to 100 μm thick film The thick film part is diamond-finished by a front lathe to obtain a mirror surface, gold plating is applied on the nickel layer, and the reflective surface obtained by applying an increased reflection coating has a flatness of about 0.1 μm. Good flatness could be obtained, and the surface roughness was as good as about 0.02 μm RMS.

また上記メッキ手法とダイヤモンドターニング(単結晶ダイヤモンド工具を用いた切削加工仕上げ)を用いて得られた本発明の反射ミラーに至っては、反射率が99.2%以上となり、非常に良好な光学特性を有するものであった。このダイヤモンド切削を使った反射面の構成はセラミックスベースのスキャナミラーを得るには非常に都合がよく、ダイヤモンド切削できる金属層としてニッケル以外にアルミの蒸着膜、銅や金、銀あるいは上記金属を主成分とする合金等の軟質金属メッキ膜も有効である。この反射面の金属層の構成方法としてダイヤモンド切削が可能な金属の厚膜がえられれば、とくにメッキでも蒸着でも成膜の手法は特に限定されるものではない。   In addition, the reflection mirror of the present invention obtained by using the above plating method and diamond turning (cutting finish using a single crystal diamond tool) has a reflectivity of 99.2% or more and very good optical characteristics. It was what had. The structure of the reflective surface using diamond cutting is very convenient for obtaining a ceramic-based scanner mirror. In addition to nickel, a metal layer that can be diamond-cut is mainly composed of an aluminum deposited film, copper, gold, silver, or the above metal. A soft metal plating film such as an alloy as a component is also effective. As long as a metal thick film capable of diamond cutting can be obtained as a method of forming the metal layer on the reflecting surface, the method of film formation is not particularly limited by plating or vapor deposition.

以上のように、この発明による実施の形態4によれば、ダイヤモンド工具を用いた切削により反射面を構成できるようになったことにより、難加工材料である炭化物系セラミックスの素材を高精度研磨するプロセスを省略することが可能となった。また切削加工による反射面の高精度加工が実現し、反射率が向上した反射ミラーを提供することができる。   As described above, according to the fourth embodiment of the present invention, since the reflecting surface can be configured by cutting using a diamond tool, the carbide ceramic material that is a difficult-to-work material is polished with high accuracy. It became possible to omit the process. In addition, it is possible to provide a reflection mirror that achieves high-precision machining of the reflecting surface by cutting and has improved reflectivity.

ところで上記各実施の形態の説明では、便宜上、この発明をレーザ加工機、ないしはレーザ加工機の導光光学系システムのスキャンミラーとして用いられるY軸用の反射ミラー200について説明したが、形状が若干違うもののX軸用の反射ミラー100としても同様に構成できることはいうまでもなく、さらにレーザ加工機に限定されるものではない。また、反射ミラーが平面鏡である場合について説明したが、反射面211ないしは基体部210は必ずしも平面でなくてもよく、例えば凹面鏡、凸面鏡などであっても同様の効果が期待できる。   By the way, in the description of each of the above embodiments, for convenience, the present invention has been described with respect to the Y-axis reflection mirror 200 used as a scan mirror of a laser beam machine or a light guide optical system of the laser beam machine. Needless to say, the X-axis reflection mirror 100 can be configured in the same manner, but is not limited to a laser processing machine. Further, although the case where the reflecting mirror is a plane mirror has been described, the reflecting surface 211 or the base portion 210 does not necessarily have to be a plane. For example, a similar effect can be expected even when a reflecting mirror or a convex mirror is used.

この発明の実施の形態1によるレーザ加工機を模式的に示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows typically the laser beam machine by Embodiment 1 of this invention. 一般的な反射ミラーにおける揺動運動時の変形モードを説明する斜視図である。It is a perspective view explaining the deformation | transformation mode at the time of the rocking | fluctuation motion in a general reflective mirror. この発明の実施の形態1によるレーザ加工機用の炭化物系セラミックスをベース材料とした反射ミラーの背面部を示す斜視図である。It is a perspective view which shows the back surface part of the reflective mirror which used the carbide type ceramics for laser processing machines by Embodiment 1 of this invention as a base material. 試作した反射ミラーを用いたレーザ加工機による穴あけ位置と設計穴あけ位置とのずれを模式的に示す説明図である。It is explanatory drawing which shows typically the shift | offset | difference of the drilling position by the laser processing machine using the prototyped reflective mirror, and a design drilling position. 炭化物系セラミックスをベース材料とした反射ミラーについて測定された反射ミラーのリブ本数に対する加工穴の位置ずれ量(Δp)の関係を示す特性図である。It is a characteristic view which shows the relationship of the positional deviation amount ((DELTA) p) of the processing hole with respect to the rib number of the reflective mirror measured about the reflective mirror which used the carbide type ceramics as the base material. 炭化物系セラミックスをベース材料とした反射ミラーについて測定された反射ミラーのリブ本数に対する加工穴の真円度(Δd)の関係を示す特性図である。It is a characteristic view which shows the relationship of the roundness ((DELTA) d) of the processing hole with respect to the number of ribs of the reflective mirror measured about the reflective mirror which used the carbide system ceramics as the base material. 炭化物系セラミックスをベース材料とした反射ミラーの反射面を研磨したときのリブ位置と研磨面の凹凸との関係を模式的に示す断面図である。It is sectional drawing which shows typically the relationship between the rib position when the reflective surface of the reflective mirror which used the carbide-type ceramics as the base material is grind | polished, and the unevenness | corrugation of a grinding | polishing surface. この発明の実施の形態1による反射ミラーの製造時に用いる研磨治具の使用方法を説明する断面図である。It is sectional drawing explaining the usage method of the polishing jig used at the time of manufacture of the reflective mirror by Embodiment 1 of this invention. この発明の実施の形態3によるレーザ加工機の炭化物系セラミックスをベース材料とした反射ミラーの背面部を示す斜視図である。It is a perspective view which shows the back part of the reflective mirror which used as a base material the carbide type ceramics of the laser beam machine by Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 レーザ発振器、 2 被加工物(プリント基板)、 3 スキャナ(X軸)、 4 スキャナ(Y軸)、 5 集光レンズ(f−θレンズ)、 6 レーザビーム(光路)、 100 反射ミラー(X軸)、 200 反射ミラー(Y軸)、 210 基体部、 211 反射面、 220 補強構造部、 221 背面構造中心軸部、 222 リブ、 205 揺動回転軸、 206 倒れ方向(1次モード)、 207 ねじれ方向(2次モード)、 230 研磨治具、 231 接着材、 300 設計穴位置、 301 加工穴。
DESCRIPTION OF SYMBOLS 1 Laser oscillator, 2 Workpiece (printed circuit board), 3 Scanner (X axis), 4 Scanner (Y axis), 5 Condensing lens (f-theta lens), 6 Laser beam (optical path), 100 Reflection mirror (X Axis), 200 reflecting mirror (Y axis), 210 base part, 211 reflecting surface, 220 reinforcing structure part, 221 rear structure central axis part, 222 rib, 205 swinging rotation axis, 206 tilting direction (primary mode), 207 Twist direction (secondary mode), 230 polishing jig, 231 adhesive, 300 design hole position, 301 processing hole.

Claims (1)

表面に反射面が形成された基体部と、この基体部の裏面に設けられ該基体部の歪みを防ぐ補強構造部とが一体に形成された反射ミラーにおいて、上記基体部および補強構造部の構成材が炭化硼素(B C)と硼化クロム(CrB )の複合体、または炭化硼素(B C)と硼化チタン(TiB )の複合体であることを特徴とする反射ミラーを製造する方法であって、炭化硼素(BC)と硼化クロム(CrB)の複合体、または炭化硼素(BC)と硼化チタン(TiB)の複合体から、上記反射ミラーを構成する補強構造部を放電加工により成形する工程、上記補強構造部の反対側の反射面となる面を必要な面粗さに光学研磨する工程を含むことを特徴とする反射ミラーの製造方法。 In a reflecting mirror in which a base part having a reflecting surface formed on the surface and a reinforcing structure part provided on the back surface of the base part to prevent distortion of the base part are integrally formed, the structure of the base part and the reinforcing structure part A reflecting mirror characterized in that the material is a composite of boron carbide (B 4 C) and chromium boride (CrB 2 ), or a composite of boron carbide (B 4 C) and titanium boride (TiB 2 ). a method of manufacturing a composite of boron carbide (B 4 C) and the complex of chromium boride (CrB 2), or boron carbide (B 4 C) and titanium boride (TiB 2), the reflection mirror And a step of optically polishing a surface to be a reflection surface opposite to the reinforcement structure portion to a required surface roughness. .
JP2003371362A 2003-10-31 2003-10-31 Manufacturing method of reflection mirror Expired - Lifetime JP4099135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003371362A JP4099135B2 (en) 2003-10-31 2003-10-31 Manufacturing method of reflection mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003371362A JP4099135B2 (en) 2003-10-31 2003-10-31 Manufacturing method of reflection mirror

Publications (2)

Publication Number Publication Date
JP2005134680A JP2005134680A (en) 2005-05-26
JP4099135B2 true JP4099135B2 (en) 2008-06-11

Family

ID=34648042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003371362A Expired - Lifetime JP4099135B2 (en) 2003-10-31 2003-10-31 Manufacturing method of reflection mirror

Country Status (1)

Country Link
JP (1) JP4099135B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184868A (en) * 2012-03-09 2013-09-19 Mitsubishi Electric Corp Boron carbide-titanium diboride ceramics and reflecting mirror for laser machining device and method for manufacturing the same
CN104204900A (en) * 2012-03-23 2014-12-10 松下电器产业株式会社 Scanning mirror and scanning image display device
JP7116234B1 (en) 2021-09-24 2022-08-09 美濃窯業株式会社 Manufacturing method of composite ceramics

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164878A (en) * 2003-12-02 2005-06-23 Tadahiro Omi Exposure apparatus
EP1640781A3 (en) * 2004-08-18 2006-09-27 LG Electronics, Inc. Scanning device and fabrication method thereof
JP4522315B2 (en) * 2005-04-28 2010-08-11 三菱電機株式会社 Scan mirror, method for manufacturing the same, and laser processing machine
US8617672B2 (en) 2005-07-13 2013-12-31 Applied Materials, Inc. Localized surface annealing of components for substrate processing chambers
WO2009024181A1 (en) * 2007-08-20 2009-02-26 Optosic Ag Method of manufacturing and processing silicon carbide scanning mirrors
JP5868226B2 (en) * 2012-03-12 2016-02-24 住友重機械工業株式会社 Galvano scanner
JP2017129650A (en) * 2016-01-19 2017-07-27 株式会社ディスコ Scanning mirror
DE102018205786A1 (en) * 2018-04-17 2019-10-17 Trumpf Laser Gmbh Scanner mirror, scanner device and irradiation device
JP2020052231A (en) * 2018-09-27 2020-04-02 住友重機械工業株式会社 Mirror for galvano scanner
US11226438B2 (en) 2018-10-03 2022-01-18 Corning Incorporated Reflective optical element
CN112269261A (en) * 2020-09-30 2021-01-26 广州新可激光设备有限公司 Manufacturing process of high-speed reciprocating rotary galvanometer
CN113030916A (en) * 2021-03-17 2021-06-25 福州高意光学有限公司 Reflecting mirror for laser radar scanning

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184868A (en) * 2012-03-09 2013-09-19 Mitsubishi Electric Corp Boron carbide-titanium diboride ceramics and reflecting mirror for laser machining device and method for manufacturing the same
CN104204900A (en) * 2012-03-23 2014-12-10 松下电器产业株式会社 Scanning mirror and scanning image display device
JP7116234B1 (en) 2021-09-24 2022-08-09 美濃窯業株式会社 Manufacturing method of composite ceramics
JP2023046932A (en) * 2021-09-24 2023-04-05 美濃窯業株式会社 Manufacturing method of composite ceramic

Also Published As

Publication number Publication date
JP2005134680A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP4099135B2 (en) Manufacturing method of reflection mirror
US20100212470A1 (en) Disklike cutting tool and cutting device
US7788998B2 (en) Precision machining system and methods
WO2011055627A1 (en) Cutting tool, method for manufacturing molding die, and molding die for array lens
JP2012006135A (en) End mill and manufacturing method therefor
JP4512737B2 (en) Ultrasonic vibration processing equipment
CN109333385B (en) Diamond grinding wheel with microstructure and preparation method thereof
JP5868226B2 (en) Galvano scanner
JP2012006134A (en) End mill and manufacturing method therefor
CN110398795B (en) Scanning mirror, scanning device, and irradiation device
KR102273981B1 (en) Galvanometer mirror, galvanometer scanner using galvanometer mirror, laser processing machine using galvanometer mirror and manufacturing method of galvanometer mirror
JP2010142890A (en) Method of correcting outer circumferential shape of cutting member, dresser board, and cutting device
KR20170087039A (en) Scanning mirror
WO2007072681A1 (en) Vibrator for cutting, vibration cutting unit, processing device, mold, and optical element
JP2002036001A (en) Cutting method, cutting device, tool holding device, optical element, and molding die for optical element
CN108406097A (en) A kind of laser processing device and processing method being suitable for processing superhard material
JP4899375B2 (en) Cutting tool, processing apparatus, and cutting method
JP4746339B2 (en) Cutting tool manufacturing method
JP2005001042A (en) Cutting method and cutting device
JP2003311527A (en) Method and apparatus for producing undulation by cutting
JP7033368B1 (en) A method for manufacturing a mold for a retroreflective optical element and a method for manufacturing a retroreflective optical element.
JP4320644B2 (en) Grinding method
JP2004216483A (en) Ultraprecision machining tool
JP2004098256A (en) Working method, processing device, and optical element die
JP2014030987A (en) Method for manufacturing metal mold for producing optical member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080314

R150 Certificate of patent or registration of utility model

Ref document number: 4099135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term