JP4098205B2 - Heat-resistant Ti alloy with excellent high-temperature strength - Google Patents

Heat-resistant Ti alloy with excellent high-temperature strength Download PDF

Info

Publication number
JP4098205B2
JP4098205B2 JP2003339570A JP2003339570A JP4098205B2 JP 4098205 B2 JP4098205 B2 JP 4098205B2 JP 2003339570 A JP2003339570 A JP 2003339570A JP 2003339570 A JP2003339570 A JP 2003339570A JP 4098205 B2 JP4098205 B2 JP 4098205B2
Authority
JP
Japan
Prior art keywords
alloy
phase
amount
resistant
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003339570A
Other languages
Japanese (ja)
Other versions
JP2005105335A (en
Inventor
公輔 小野
壮一郎 小島
英人 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003339570A priority Critical patent/JP4098205B2/en
Publication of JP2005105335A publication Critical patent/JP2005105335A/en
Application granted granted Critical
Publication of JP4098205B2 publication Critical patent/JP4098205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

本発明は、高温強度に優れたα型Ti合金、α+β型Ti合金に関する。   The present invention relates to an α-type Ti alloy and an α + β-type Ti alloy having excellent high-temperature strength.

耐熱Ti合金としては、Tiにα安定化元素を添加して固溶強化させることが有効である。α安定化元素としてはAl、O、Cが知られており、特にTiに大きな固溶度を有し、固溶強化能が大きいAlが主として用いられる。   As a heat-resistant Ti alloy, it is effective to add an α-stabilizing element to Ti for solid solution strengthening. Al, O, and C are known as α-stabilizing elements. Al, which has a large solid solubility in Ti and a large solid solution strengthening ability, is mainly used.

このような高温強度の良好な耐熱Ti合金としては、例えばTi−5Al−2.5Sn合金(数値はmass%を示す。以下同様)、Ti−8Al−1Mo−1V合金、Ti−6Al−2Sn−4Zr−2Mo合金、Ti−6Al−2Nb−1Ta−0.8Mo合金、Ti−6Al−2.75Sn−4Zr−0.4Mo−0.45Si合金、Ti−5Al−3.5Sn−3Zr−1Nb−0.3Si合金(IMI829)、Ti−5.8Al−4Sn−3.5Zr−0.7Nb−0.5Mo−0.35Si合金(IMI834)などが実用化されている。 Examples of such heat-resistant Ti alloys having good high-temperature strength include Ti-5Al-2.5Sn alloy (numerical values indicate mass% , the same applies hereinafter), Ti-8Al-1Mo-1V alloy, Ti-6Al-2Sn- 4Zr-2Mo alloy, Ti-6Al-2Nb-1Ta-0.8Mo alloy, Ti-6Al-2.75Sn-4Zr-0.4Mo-0.45Si alloy, Ti-5Al-3.5Sn-3Zr-1Nb-0 .3Si alloy (IMI829), Ti-5.8Al-4Sn-3.5Zr-0.7Nb-0.5Mo-0.35Si alloy (IMI834) and the like have been put into practical use.

近年、ますます高温強度に対する要求が高まっており、高温強度の向上のために、Alと複合してCを添加することが試みられている。
しかし、Cを多量に添加すると粗大なTiCが析出し、疲労強度を著しく低下させる。このため、従来、その添加量は0.1mass%(以下、単に「%」と表示することがある。)未満に抑えられている場合が多い
In recent years, there has been an increasing demand for high temperature strength, and attempts have been made to add C in combination with Al in order to improve high temperature strength.
However, when a large amount of C is added, coarse TiC precipitates and the fatigue strength is remarkably lowered. Therefore, conventionally, the amount added is 0.1mass% (hereinafter sometimes simply indicated as "%".) Suppressed and if is often below.

なお、Cを0.2%と多量に添加したTi合金として、Ti−4.5Al−4Cr−0.5Fe−0.2C合金が知られているが、この合金は室温で高強度を発現するものの、高温(例えば、760℃程度)では高強度を発現しない。   Note that a Ti-4.5Al-4Cr-0.5Fe-0.2C alloy is known as a Ti alloy with a large amount of C added at 0.2%, but this alloy exhibits high strength at room temperature. However, high strength is not exhibited at high temperature (for example, about 760 ° C.).

本発明はかかる問題点に鑑みなされたもので、Cを0.1%以上に添加することにより、高温強度を向上させた耐熱Ti合金を提供することを目的とする。   This invention is made | formed in view of this problem, and it aims at providing the heat resistant Ti alloy which improved the high temperature strength by adding C to 0.1% or more.

本発明者は、前記Ti−4.5Al−4Cr−0.5Fe−0.2C合金がCを0.2%含有するにも拘わらず、高温強度が劣る点について鋭意研究したところ、このTi合金のMo当量(添加元素量を代表的β安定化元素であるMoの量に換算したもの。Mo当量の算出法は後述する。)は3.35(%)と大きく、いわゆるβリッチのTi合金であり、760℃程度の高温下ではCによって強化すべきα相の量が少ないため、C添加が高温強度の向上に寄与しないことを知見した。また、Cを多量に添加することによって生成するTiCも、高温で十分な量のα相があれば、適宜の加工熱処理を施すことによってα相に固溶させることができ、その後の冷却によりα相の固溶限を越えるCはTiCとなって組織中に微細分散する。微細分散したTiCは引張強度や疲労強度などの機械的性質に悪影響を及ぼさず、また高温においてCがα相に再固溶されることを知見した。本発明はかかる知見に基づいてなされたものである。   The present inventor has earnestly studied that the high-temperature strength is inferior even though the Ti-4.5Al-4Cr-0.5Fe-0.2C alloy contains 0.2% of C. Mo equivalent (the amount of additive element converted to the amount of Mo which is a typical β stabilizing element. The calculation method of Mo equivalent will be described later) is as large as 3.35 (%), so-called β-rich Ti alloy It was found that the addition of C does not contribute to the improvement of the high temperature strength because the amount of α phase to be strengthened by C is small at a high temperature of about 760 ° C. In addition, TiC produced by adding a large amount of C can be dissolved in the α phase by performing an appropriate processing heat treatment if there is a sufficient amount of α phase at a high temperature. C exceeding the solid solubility limit of the phase becomes TiC and is finely dispersed in the structure. It was found that finely dispersed TiC does not adversely affect mechanical properties such as tensile strength and fatigue strength, and that C is re-dissolved in the α phase at a high temperature. The present invention has been made based on such findings.

すなわち、本発明の耐熱Ti合金は、α相あるいはα+β相からなるTi合金であって、化学成分がmass%で、Al:6.5〜9.0%、Mo:0.5〜1.5%、V:0.6〜1.4%、C:0.1〜0.25%、残部Tiおよび不純物からなり、下記式で示すMo当量([Mo]eq)が−4以下であって、α相の固溶限を越えるCはTiCとして組織中に微細分散したものである。
[Mo]eq=1.0[Mo]+0.67[V]+0.44[W]+0.28[Nb]
+0.22[Ta]+2.9[Fe]+1.6[Cr]+1.1[Ni]
+1.4[Co]+0.77[Cu]−1.0[Al]
但し、[X]は元素Xの含有量mass%を示す。
That is, the heat-resistant Ti alloy of the present invention is a Ti alloy composed of an α phase or an α + β phase, the chemical composition is mass%, Al: 6.5 to 9.0%, Mo: 0.5 to 1.5. %, V: 0.6~1.4%, C : 0.1~0.25%, the balance being Ti and impurities, Mo equivalent represented by the following formula ([Mo] eq) is not more -4 C exceeding the solid solubility limit of the α phase is finely dispersed in the structure as TiC.
[Mo] eq = 1.0 [Mo] +0.67 [V] +0.44 [W] +0.28 [Nb]
+0.22 [Ta] +2.9 [Fe] +1.6 [Cr] +1.1 [Ni]
+1.4 [Co] +0.77 [Cu] -1.0 [Al]
However, [X] shows content mass% of element X.

前記耐熱Ti合金におけるMo当量の規定は、高温におけるα相の量に着目すると、760℃におけるα相の量が面積率で80%以上、好ましくは90%以上に対応する。   The Mo equivalent in the heat-resistant Ti alloy is focused on the amount of α phase at a high temperature, and the amount of α phase at 760 ° C. corresponds to an area ratio of 80% or more, preferably 90% or more.

この耐熱Ti合金によると、所定の化学組成の下、β安定化元素がMo当量で−4以下(好ましくは−6以下)に規制されているので、高温、例えば760℃におけるα相の量が80面積%以上(好ましくは90%以上)となり、また室温においてα相の固溶限を越えるCはTiCの形で組織中に微細分散しているので、0.1〜0.25%と多量に添加したCは、高温においてα相に固溶され、α相を有効に固溶強化することができ、優れた高温強度を得ることができる。 According to this heat-resistant Ti alloy, since the β-stabilizing element is regulated to a Mo equivalent of −4 or less (preferably −6 or less) under a predetermined chemical composition, the amount of α phase at a high temperature, for example, 760 ° C. 80% by area or more (preferably 90% or more), and C exceeding the solid solubility limit of the α phase at room temperature is finely dispersed in the structure in the form of TiC, so a large amount of 0.1 to 0.25% C added to is dissolved in the α phase at a high temperature, the α phase can be effectively solid-solution strengthened, and an excellent high temperature strength can be obtained.

本発明の耐熱Ti合金によれば、所定化学組成の下、β安定化元素がMo当量で−4以下に規制され、このため760℃での高温下でのα相量が80面積%以上となり、また室温でα相の固溶限を越えるCはTiCの形で組織中に微細分散しているので、0.1〜0.25%と多量に添加したCは、高温において多量に生成したα相に有効に固溶されるため、優れた高温強度を得ることができる。 According to the heat-resistant Ti alloy of the present invention , the β-stabilizing element is regulated to a Mo equivalent of −4 or less under a predetermined chemical composition , and therefore the α phase content at a high temperature at 760 ° C. is 80 area% or more. In addition, C exceeding the solid solubility limit of the α phase at room temperature is finely dispersed in the structure in the form of TiC, so a large amount of C added in a large amount of 0.1 to 0.25% was generated at a high temperature. Since it is effectively dissolved in the α phase, an excellent high temperature strength can be obtained.

実施形態にかかる耐熱Ti合金について説明する。
この耐熱Ti合金は、Al:6.5〜9.0%、Mo:0.5〜1.5%、V:0.6〜1.4%、C:0.1〜0.25%、残部Tiおよび不純物からなり、下記式で算出されるMo当量が−4以下の範囲内に調整される。なお、下記式は当業者にとって周知であり、例えば特許第3365190号に開示されている。
[Mo]eq=1.0[Mo]+0.67[V]+0.44[W]+0.28[Nb]
+0.22[Ta]+2.9[Fe]+1.6[Cr]+1.1[Ni]
+1.4[Co]+0.77[Cu]−1.0[Al]
但し、[X]は元素Xの含有量mass%を示す。
The heat-resistant Ti alloy according to the embodiment will be described.
This heat-resistant Ti alloy is Al: 6.5-9.0%, Mo: 0.5-1.5%, V: 0.6-1.4%, C: 0.1-0.25%, It consists of the remainder Ti and impurities, and the Mo equivalent calculated by the following formula is adjusted within a range of −4 or less. The following formula is well known to those skilled in the art and is disclosed in, for example, Japanese Patent No. 3365190.
[Mo] eq = 1.0 [Mo] +0.67 [V] +0.44 [W] +0.28 [Nb]
+0.22 [Ta] +2.9 [Fe] +1.6 [Cr] +1.1 [Ni]
+1.4 [Co] +0.77 [Cu] -1.0 [Al]
However, [X] shows content mass% of element X.

前記Mo当量は、高温におけるα相の量を間接的に規定するものであり、Mo当量が−4より大きくなると、760℃においてもβ相の量が優勢になり、α量が80面積%未満となり、α相が不足するようになる。Mo当量は−5以下とすることが好ましく、−6以下とすることがさらに好ましい。Mo当量を−6以下とすることによって、760℃におけるα相は90%以上となり、高温強度がより向上するようになる。The Mo equivalent indirectly defines the amount of α phase at a high temperature. When the Mo equivalent is larger than −4, the amount of β phase becomes dominant even at 760 ° C., and the α amount is less than 80 area%. Thus, the α phase becomes insufficient. The Mo equivalent is preferably -5 or less, and more preferably -6 or less. By setting the Mo equivalent to −6 or less, the α phase at 760 ° C. is 90% or more, and the high-temperature strength is further improved.

CはAlと同様、α相に固溶して、α相を固溶強化する作用を有し、室温強度のみならず高温強度を上昇させ、変態点(α相が消失する温度)を上昇させる。0.1%未満では高温強度、変態点の上昇作用が少なく、一方2.5%を越えると760℃の高温において80面積%以上の多量のα相を確保しても、加工熱処理により再固溶されない粗大TiCが残存するようになり、機械的性質が劣化する。このため、本発明ではC量の下限を0.10%、好ましくは0.12%とし、その上限を0.25%、好ましくは0.20%とする。 C , like Al, dissolves in the α phase and has the effect of solid solution strengthening of the α phase, increasing not only the room temperature strength but also the high temperature strength and increasing the transformation point (the temperature at which the α phase disappears). . If it is less than 0.1%, the effect of increasing the high-temperature strength and transformation point is small. Coarse TiC which is not melt | dissolves comes to remain, and a mechanical property deteriorates. Therefore, in the present invention, the lower limit of the C amount is 0.10%, preferably 0.12%, and the upper limit is 0.25%, preferably 0.20%.

Alはα安定化元素であり、α相を固溶強化し、高温強度を向上させると共に変態点を上昇させる。6.5%未満ではかかる作用が過小であり、一方9.0%を超えるTi3Al が生成し、靭性が低下する。このため、Al量の下限を6.5%、好ましくは7.0%とし、その上限を9.0%、好ましくは8.5%とする。 Al is an α-stabilizing element, strengthens the α-phase by solid solution, improves the high-temperature strength, and raises the transformation point. If it is less than 6.5%, such an action is too small. On the other hand, Ti 3 Al exceeding 9.0% is generated, and the toughness is lowered. For this reason, the lower limit of the Al amount is 6.5%, preferably 7.0%, and the upper limit is 9.0%, preferably 8.5%.

Moはβ安定化元素であり、β相を若干強化し、α+βの2相組織にするために添加する。0.5%未満ではかかる作用が過小であり、一方1.5%を超えるとβ相が強化され高温強度が低下するようになる。このためMoの下限を0.5%とし、その上限を1.5%とする。   Mo is a β-stabilizing element, and is added to slightly strengthen the β phase and form a two-phase structure of α + β. If it is less than 0.5%, such an action is too small. On the other hand, if it exceeds 1.5%, the β phase is strengthened and the high-temperature strength is lowered. For this reason, the lower limit of Mo is 0.5%, and the upper limit is 1.5%.

Vもβ安定化元素であり、β相を若干強化し、2相組織にするために添加される。0.6%未満ではかかる作用が過小であり、一方1.4%を超えるとβ相が強化され高温強度が低下するようになる。このためVの下限を0.6%とし、その上限を1.4%とする。   V is also a β-stabilizing element, and is added to slightly strengthen the β phase and form a two-phase structure. If it is less than 0.6%, such action is too small. On the other hand, if it exceeds 1.4%, the β phase is strengthened and the high-temperature strength is lowered. Therefore, the lower limit of V is 0.6%, and the upper limit is 1.4%.

本発明のTi合金は、前記Ti−Al−Mo−V−C合金であるが、参考としてMo当量が−4以下となるようなC添加前のTi合金(ベース合金)を挙げれば、Ti−6Al−2Sn−4Zr−2Mo、Ti−5Al−3.5Sn−3Zr−1Nb−0.3Si、Ti−5Al−2.5Sn、Ti−8Al−1Mo−1V、Ti−5.8Al−4Sn−3.5Zr−0.7Nb−0.5Mo−0.35Si、Ti−6Al−2Nb−1Ta−0.8Mo、Ti−6Al−2.75Sn−4Zr−0.4Mo−0.45Siなどを例示することができる。なお、これらのベース合金を用いて、C量が0.1〜0.25%となるようにCを添加した後のTi合金のMo当量は、正確には(ベース合金のMo当量)×(100−添加C%)/100であるが、C量は多くても0.25%であるので、ベース合金のMo当量と実質的に同一と考えて差し支えない。 The Ti alloy of the present invention is the Ti—Al—Mo—V—C alloy . For reference, a Ti alloy before C addition (base alloy) in which the Mo equivalent is −4 or less is given as follows: 6Al-2Sn-4Zr-2Mo, Ti-5Al-3.5Sn-3Zr-1Nb-0.3Si, Ti-5Al-2.5Sn, Ti-8Al-1Mo-1V, Ti-5.8Al-4Sn-3. Examples include 5Zr-0.7Nb-0.5Mo-0.35Si, Ti-6Al-2Nb-1Ta-0.8Mo, Ti-6Al-2.75Sn-4Zr-0.4Mo-0.45Si, and the like. . Note that the Mo equivalent of the Ti alloy after adding C so that the C amount is 0.1 to 0.25% using these base alloys is precisely (Mo equivalent of the base alloy) × ( 100-added C%) / 100, but the C content is at most 0.25%, so it can be considered that it is substantially the same as the Mo equivalent of the base alloy.

次に、実施形態にかかるTi合金の製造例について説明する。
まず、所定成分を有するTi合金を溶解し、鋳造して得られた鋳塊を1000〜1200℃に加熱した後、70〜80%の圧下率で圧延、鍛造などの熱間粗加工を行う。次いで、加工熱処理として(包析温度−150)℃から(包析温度−50)℃程度の温度範囲(成分系によって異なるが概ね850〜1090℃程度)で60〜80%程度の圧下率で圧延、鍛造などの熱間加工を施す。これによって、鋳造時に生成した粗大なTiCをα相に再固溶させることができる。一旦、α相に再固溶されたCは、その後の冷却によっても粗大なTiCとなって析出せず、組織中に微細に分散して析出する。高温で使用する場合、微細分散したTiCは分解して、そのCがα相に固溶される。
Next, a manufacturing example of the Ti alloy according to the embodiment will be described.
First, after melting a Ti alloy having a predetermined component and heating the ingot obtained by casting at 1000 to 1200 ° C., hot roughing such as rolling and forging is performed at a rolling reduction of 70 to 80%. Next, as a heat treatment, rolling at a rolling reduction of about 60 to 80% in a temperature range of (sheathing temperature−150) ° C. to (sheathing temperature−50) ° C. (depending on the component system, but approximately 850 to 1090 ° C.). Apply hot working such as forging. Thereby, coarse TiC produced at the time of casting can be dissolved again in the α phase. C once re-dissolved in the α-phase does not precipitate as coarse TiC even by subsequent cooling, and is finely dispersed and precipitated in the structure. When used at a high temperature, the finely dispersed TiC is decomposed and the C is dissolved in the α phase.

熱間加工後、一般的には、応力除去、加工組織の回復、再結晶を目的として焼鈍が施される。この焼鈍により、組織や寸法の安定化、機械的性質の向上などが図られる。焼鈍は、典型的には、例えば600〜800℃で1hr〜10hr程度保持される。また、ベース合金の種類によっては、熱間加工後に900〜1200℃で5min 〜120min 保持する溶体化処理が施され、急冷後、時効処理あるいは前記焼鈍が施される。   After hot working, annealing is generally performed for the purpose of removing stress, recovering the work structure, and recrystallization. This annealing can stabilize the structure and dimensions, improve the mechanical properties, and the like. Annealing is typically maintained for about 1 hr to 10 hr at 600 to 800 ° C., for example. Depending on the type of the base alloy, a solution treatment for holding at 900 to 1200 ° C. for 5 minutes to 120 minutes after hot working is performed, and after quenching, an aging treatment or the annealing is performed.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はかかる実施例によって限定的に解釈されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limitedly interpreted by this Example.

表1に示す化学成分を有するベース合金にC添加量(C添加後のTi合金のC量)が0.12%、0.20%となるようにCを添加した溶解原料をアーク溶解し、その溶湯を鋳造して直径50mm×厚さ15mmの鋳塊を得た。この鋳塊を1200℃に加熱し、厚さ10mmまで粗圧延を行い、その後、850℃に加熱して4mmまで熱間圧延を施した。なお、C添加Ti合金試料の包析温度は1000〜1140℃程度である。   Arc melting is performed on the melting raw material in which C is added to the base alloy having the chemical components shown in Table 1 so that the C addition amount (C amount of the Ti alloy after C addition) is 0.12% and 0.20%, The molten metal was cast to obtain an ingot having a diameter of 50 mm and a thickness of 15 mm. The ingot was heated to 1200 ° C. and rough-rolled to a thickness of 10 mm, and then heated to 850 ° C. and hot-rolled to 4 mm. In addition, the sieving temperature of a C addition Ti alloy sample is about 1000-1140 degreeC.

得られた圧延板(板厚4mm)から長さ10mm×幅10mmの試験片を採取し、760℃でのα相量を測定するため、760℃にて2hr加熱保持後、水冷した。この試験片を用いて、光学顕微鏡による組織観察を行い、撮影した組織写真を用いて0.2mm×0.5mmの視野内のα量(面積%)を画像ソフトを用いて求めた。その結果を表2に示す。また、表2にはベース合金のMo当量も併記した。   A test piece having a length of 10 mm and a width of 10 mm was taken from the obtained rolled plate (plate thickness: 4 mm), and heated at 760 ° C. for 2 hours and then water-cooled in order to measure the amount of α phase at 760 ° C. Using this test piece, the structure was observed with an optical microscope, and the α amount (area%) in the field of view of 0.2 mm × 0.5 mm was determined using image software using the photographed tissue photograph. The results are shown in Table 2. Table 2 also shows the Mo equivalent of the base alloy.

さらに、得られた圧延材を1200℃×5min 保持後空冷する溶体化処理を行った後、引き続いて760℃×2h保持後空冷する焼鈍を行った。焼鈍後の圧延板から圧延方向に引張試験片を採取し、760℃で高温引張試験を行い引張強さ(TS)を測定した。同様に、ベース合金についても引張強さ(TS)を測定した。これらの引張強さから差を取って、C添加による引張強さの上昇量を求めた。その結果を表2に併せて示す。   Further, the obtained rolled material was subjected to a solution treatment for air cooling after being held at 1200 ° C. for 5 minutes, and subsequently annealing for air cooling after being held at 760 ° C. for 2 hours was performed. Tensile test specimens were collected from the rolled sheet after annealing in the rolling direction, and subjected to a high-temperature tensile test at 760 ° C. to measure the tensile strength (TS). Similarly, the tensile strength (TS) was also measured for the base alloy. Taking the difference from these tensile strengths, the amount of increase in tensile strength due to the addition of C was determined. The results are also shown in Table 2.

Figure 0004098205
Figure 0004098205

Figure 0004098205
Figure 0004098205

表2を基にMo当量、α相の量と引張強さ(TS)の上昇量との関係を図1および図2に示す。表2および図1、2から、Mo当量が−4以下では760℃でのα相の量は80%以上となっており、また添加C量が同量であっても、Mo当量が−4以下、α相量が80%以上のTi合金では引張強さの上昇量が著しいことがわかる。   Based on Table 2, the relationship between the Mo equivalent, the amount of α phase and the amount of increase in tensile strength (TS) is shown in FIG. 1 and FIG. From Table 2 and FIGS. 1 and 2, when the Mo equivalent is −4 or less, the amount of α phase at 760 ° C. is 80% or more, and even if the amount of added C is the same, the Mo equivalent is −4. In the following, it can be seen that the amount of increase in tensile strength is significant in a Ti alloy having an α phase content of 80% or more.

前記表1のNo. 12およびNo. 1のベース合金を用い、表3に示すようにC添加量(C添加後のTi合金のC量)を種々変えたTi合金を溶製し、実施例1と同様の工程で板厚4mmのTi合金板を製作した。また、このTi合金板から実施例1と同様にして引張試験片を採取し、760℃における引張強さを測定した。得られた結果を表3に併せて示す。   Examples No. 12 and No. 1 base alloys shown in Table 1 above were used to melt Ti alloys having various C addition amounts (C amounts of Ti alloys after addition of C) as shown in Table 3. A Ti alloy plate having a thickness of 4 mm was manufactured in the same process as in No. 1. Further, a tensile test piece was collected from this Ti alloy plate in the same manner as in Example 1, and the tensile strength at 760 ° C. was measured. The obtained results are also shown in Table 3.

Figure 0004098205
Figure 0004098205

表3を基にC添加量と760℃における引張強さ(TS)との関係を図3に示す。表3および図3より、表1のNo. 1のベース合金(Mo当量=3.4)を用いたC添加Ti合金では、Cを添加してもほとんど高温強度の向上は見られない。一方、表1のNo. 12のベース合金(Mo当量=−6.3)を用いたC添加Ti合金では、Cの添加量が増すに従って高温強度が上昇しており、0%CのNo. 21と0.20%CのNo. 24では引張強さが30MPa程度上昇したことがわかる。また、C添加合金のNo. 22〜24ではヤング率が130GPa以上であった。   FIG. 3 shows the relationship between the amount of C added and the tensile strength (TS) at 760 ° C. based on Table 3. From Table 3 and FIG. 3, in the C-added Ti alloy using the No. 1 base alloy (Mo equivalent = 3.4) in Table 1, even when C is added, almost no improvement in high-temperature strength is observed. On the other hand, in the C-added Ti alloy using the base alloy No. 12 in Table 1 (Mo equivalent = −6.3), the high-temperature strength increased as the amount of C added increased. It can be seen that No. 24 of 21 and 0.20% C increased the tensile strength by about 30 MPa. In addition, in Nos. 22 to 24 of the C-added alloy, the Young's modulus was 130 GPa or more.

実施例1におけるMo当量と引張強さ(TS)の上昇量との関係を示すグラフである。It is a graph which shows the relationship between the Mo equivalent in Example 1, and the raise amount of tensile strength (TS). 実施例1におけるα相の量と引張強さ(TS)の上昇量との関係を示すグラフである。It is a graph which shows the relationship between the quantity of (alpha) phase in Example 1, and the raise amount of tensile strength (TS). 実施例2におけるC添加量と760℃における引張強さ(TS)との関係を示す図である。It is a figure which shows the relationship between C addition amount in Example 2, and the tensile strength (TS) in 760 degreeC.

Claims (4)

α相あるいはα+β相からなるTi合金であって、化学成分がmass%で、Al:6.5〜9.0%、Mo:0.5〜1.5%、V:0.6〜1.4%、C:0.1〜0.25%、残部Tiおよび不純物からなり、下記式で示すMo当量([Mo]eq)が−4以下であって、α相の固溶限を越えるCはTiCとして組織中に微細分散した高温強度に優れた耐熱Ti合金。
[Mo]eq=1.0[Mo]+0.67[V]+0.44[W]+0.28[Nb]
+0.22[Ta]+2.9[Fe]+1.6[Cr]+1.1[Ni]
+1.4[Co]+0.77[Cu]−1.0[Al]
但し、[X]は元素Xの含有量mass%を示す。
Ti alloy composed of α phase or α + β phase, the chemical composition is mass%, Al: 6.5-9.0%, Mo: 0.5-1.5%, V: 0.6-1. 4%, C: 0.1 to 0.25%, the balance is Ti and impurities, and the Mo equivalent ([Mo] eq) represented by the following formula is -4 or less and exceeds the solid solubility limit of the α phase. Is a heat-resistant Ti alloy with excellent high temperature strength finely dispersed in the structure as TiC.
[Mo] eq = 1.0 [Mo] +0.67 [V] +0.44 [W] +0.28 [Nb]
+0.22 [Ta] +2.9 [Fe] +1.6 [Cr] +1.1 [Ni]
+1.4 [Co] +0.77 [Cu] -1.0 [Al]
However, [X] shows content mass% of element X.
Mo当量が−6以下である請求項1に記載した耐熱Ti合金。   The heat resistant Ti alloy according to claim 1, wherein the Mo equivalent is -6 or less. 760℃におけるα相の面積率が80%以上である請求項1又は2に記載した高温強度に優れた耐熱Ti合金。 The heat-resistant Ti alloy excellent in high-temperature strength according to claim 1 or 2, wherein the area ratio of the α phase at 760 ° C is 80% or more. 760℃におけるα相の面積率が90%以上である請求項1から3のいずれか1項に記載した耐熱Ti合金。 The heat-resistant Ti alloy according to any one of claims 1 to 3, wherein the area ratio of the α phase at 760 ° C is 90% or more.
JP2003339570A 2003-09-30 2003-09-30 Heat-resistant Ti alloy with excellent high-temperature strength Expired - Fee Related JP4098205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339570A JP4098205B2 (en) 2003-09-30 2003-09-30 Heat-resistant Ti alloy with excellent high-temperature strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339570A JP4098205B2 (en) 2003-09-30 2003-09-30 Heat-resistant Ti alloy with excellent high-temperature strength

Publications (2)

Publication Number Publication Date
JP2005105335A JP2005105335A (en) 2005-04-21
JP4098205B2 true JP4098205B2 (en) 2008-06-11

Family

ID=34534729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339570A Expired - Fee Related JP4098205B2 (en) 2003-09-30 2003-09-30 Heat-resistant Ti alloy with excellent high-temperature strength

Country Status (1)

Country Link
JP (1) JP4098205B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299110A (en) * 2008-06-11 2009-12-24 Kobe Steel Ltd HIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN INTERMITTENT MACHINABILITY
CN114645156B (en) * 2022-04-01 2022-11-11 中国航空制造技术研究院 Short-time high-temperature-resistant titanium alloy material and preparation method thereof

Also Published As

Publication number Publication date
JP2005105335A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP3959766B2 (en) Treatment method of Ti alloy with excellent heat resistance
JP3319195B2 (en) Toughening method of α + β type titanium alloy
JP5287062B2 (en) Low specific gravity titanium alloy, golf club head, and method for manufacturing low specific gravity titanium alloy parts
JP4493028B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
JP6826879B2 (en) Manufacturing method of Ni-based super heat-resistant alloy
JP3873313B2 (en) Method for producing high-strength titanium alloy
JP2009007625A (en) Method for producing high strength copper alloy for electric/electronic component
JP3908987B2 (en) Copper alloy excellent in bendability and manufacturing method thereof
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP7144840B2 (en) Titanium alloy, method for producing the same, and engine parts using the same
JP4507094B2 (en) Ultra high strength α-β type titanium alloy with good ductility
JP3824944B2 (en) Copper alloy excellent in stress corrosion cracking resistance and dezincing resistance and manufacturing method thereof
JP2005076098A (en) HIGH-STRENGTH alpha-beta TITANIUM ALLOY
JP4098205B2 (en) Heat-resistant Ti alloy with excellent high-temperature strength
JP3374553B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
JP2020152965A (en) Aluminum alloy material, method for producing the same, and impeller
JP2541042B2 (en) Heat treatment method for (α + β) type titanium alloy
JP4263987B2 (en) High-strength β-type titanium alloy
JP4304425B2 (en) Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet
JPS6389649A (en) Manufacture of al-mg-zn alloy material having superior formability
JP7387139B2 (en) Titanium alloy, its manufacturing method, and engine parts using it
JP2005113227A (en) Low young's modulus titanium alloy
JP4371201B2 (en) β-type titanium alloy and method for producing the same
JP6927418B2 (en) Titanium alloy and its manufacturing method
JP2608689B2 (en) High strength and high ductility Ti alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

R150 Certificate of patent or registration of utility model

Ref document number: 4098205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees