JP4096548B2 - Air conditioner for vehicles - Google Patents

Air conditioner for vehicles Download PDF

Info

Publication number
JP4096548B2
JP4096548B2 JP2001346245A JP2001346245A JP4096548B2 JP 4096548 B2 JP4096548 B2 JP 4096548B2 JP 2001346245 A JP2001346245 A JP 2001346245A JP 2001346245 A JP2001346245 A JP 2001346245A JP 4096548 B2 JP4096548 B2 JP 4096548B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
air conditioner
pressure
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001346245A
Other languages
Japanese (ja)
Other versions
JP2003146059A (en
Inventor
圭一 北村
雄一 城田
恒吏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001346245A priority Critical patent/JP4096548B2/en
Publication of JP2003146059A publication Critical patent/JP2003146059A/en
Application granted granted Critical
Publication of JP4096548B2 publication Critical patent/JP4096548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両用空調装置に関するもので、特に、ハイブリッド駆動方式の圧縮機を備える空調装置に適用して有効である。
【0002】
【従来の技術及び発明が解決しようとする課題】
ハイブリッド駆動方式の圧縮機とは、実用新案登録公報第2596291号に記載されているように、走行用のエンジンと電動モータとを切り換えて圧縮機を駆動するものである。
【0003】
ところで、このハイブリッド駆動方式の圧縮機は、一般的に、車両燃費の向上及び排出ガスの低減を図った車両の空調装置に適用されるもので、ハイブリッド駆動方式の圧縮機を備える車両では、走行時はエンジンにて圧縮機を駆動し、信号待ちや渋滞等の車両停止時には、エンジンを停止させて車両燃費の向上及び排出ガスの低減を図りつつ、電動モータにて圧縮機を駆動することにより空調能力を維持する。
【0004】
しかし、電動モータにて圧縮機を駆動する際には、エンジンが停止して発電機が停止しているので、バッテリに蓄えられた電力のみで電動モータを駆動しなければならず、バッテリに蓄えられた電力量が低下してまう。
【0005】
そこで、発明者等は、電動モータでの消費電力を低減すべく、電動モータにて圧縮機を駆動する際には、エンジンにて圧縮機を駆動する場合に比べて、冷凍機内を循環する冷媒流量を低減することにより、圧縮機の消費動力、すなわち電動モータの消費電力を低減する空調装置を試作検討したが、以下に述べる問題が新たに発生した。
【0006】
すなわち、圧縮機の駆動トルクは、圧縮機の吐出圧(高圧側冷媒圧力)が高くなるほど大きくなるが、前述のごとく、エンジンにて圧縮機を駆動する場合には電動モータにて圧縮機を駆動する場合に比べて冷媒流量を増大させて大きな冷凍能力を発揮させているので、圧縮機の吐出圧は比較的高い圧力となっている。
【0007】
しかも、減圧装置である温度式膨張弁の開度は圧縮機が停止しても、直ぐにはその開度が変化しないことに加えて、圧縮機が停止すると、膨張弁の弁体は弁口を閉じる向きに移動するので、高圧側冷媒圧力は、エンジン駆動時の比較的高い圧力が維持された状態となっている。
【0008】
したがって、エンジンが停止した後、高圧側冷媒圧力が高い状態のまま電動モータにて圧縮機を駆動すると、大きな駆動トルクを電動モータで必要とするので、電動モータの消費動力の増大及び大型化を招いてしまう。
【0009】
本発明は、上記点に鑑み、走行用のエンジンと電動モータ等のエンジンと異なる駆動源とを切り換えて圧縮機を駆動する空調装置において、エンジンと異なる駆動源の消費動力を低減、及び小型化を図ることを目的とする。
【0010】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、走行用の駆動源(200)、及び駆動源(200)と異なる第2の駆動源(210)から動力を得て冷媒を吸入圧縮する圧縮機(100)と、圧縮機(100)から吐出した冷媒を冷却する放熱器(110)と、少なくとも空調装置の稼働時には、常に連通した状態で放熱器(110)から流出した冷媒を減圧する減圧装置(120)と、減圧装置(120)にて減圧された冷媒を蒸発させる蒸発器(130)とを備え、
第2の駆動源(210)は電動式のモータであり、
さらに、第2の駆動源(210)は、減圧装置(120)前後の冷媒圧力が略等しくなった時に稼動し始めることを特徴とする。
【0011】
これにより、駆動源(200)が停止すると、減圧装置(120)を介して放熱器(110)側の冷媒が蒸発器(130)側に移動して高圧側冷媒圧力が低下し、減圧装置(120)前後の冷媒圧力が略等しくなるように冷凍機が均圧化するので、第2の駆動源(210)にて圧縮機(100)を駆動する際の駆動トルクを小さくすることができる。したがって、第2の駆動源(210)をなす電動式モータの消費動力を低減しつつ、第2の駆動源(210)をなす電動式モータの小型化を図ることができる。
【0012】
なお、減圧装置(120)は、請求項2に記載の発明のごとく、キャピラリーチューブ又は固定絞りにて構成してもよい。
【0013】
また、請求項3に記載の発明のごとく、蒸発器(130)出口側の冷媒過熱度が所定値となるように弁開度を機械的調節する温度式膨張弁(121)、及び温度式膨張弁(121)を迂回させて冷媒を流す絞り手段(122)にて減圧装置(120)を構成してもよい。
【0020】
請求項に記載の発明では、請求項1ないし3のいずれか1つに記載の車両用空調装置において、圧縮機(100)は、吐出容量を変化させることができる可変容量型の圧縮機であり、さらに、圧縮機(100)を第2の駆動源(210)にて駆動する際には、圧縮機(100)の吐出容量を最大吐出容量より小さい吐出容量とすることを特徴とする。
【0021】
これにより、圧縮機(100)を駆動する際のトルクを更に小さくすることができるので、第2の駆動源(210)をなす電動式モータの消費動力を更に小さくすることができる。
【0022】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0023】
【発明の実施の形態】
(第1実施形態)
図1は本実施形態に係る車両用空調装置(蒸気圧縮式冷凍機)の模式図であり、圧縮機100は冷媒を吸入圧縮するもので、この圧縮機100は、走行用のエンジン200及び電動式のモータ210から駆動力を得て稼動する。
【0024】
なお、モータ210は、エンジン200の動力を圧縮機100に伝達するVベルト220が掛けられるプーリ230に一体化されている。
【0025】
放熱器(凝縮器)110は圧縮機100から吐出した冷媒と外気とを熱交換させて冷媒を冷却させるもので、減圧装置120は放熱器110から流出した冷媒を減圧膨張させるものである。
【0026】
蒸発器130は減圧装置120にて減圧された低圧冷媒と室内に吹き出す空気とを熱交換させて液相冷媒を蒸発させるものであり、アキュムレータ140は蒸発器130から流出した冷媒を液相冷媒と気相冷媒とに分離して液相冷媒を蓄えるとともに、気相冷媒を圧縮機100の吸入側に流出させる気液分離手段である。
【0027】
ここで、減圧装置120は、開度が固定された固定絞り(オリフィス)のごとく、常に冷媒通路が連通した状態で冷媒流量に応じて所定の圧力損失を発生させる細管状のキャピラリーチューブである。
【0028】
次に、本実施形態の特徴的作動を述べる。
【0029】
図2は冷凍機内を循環する冷媒流量の変化示すチャートであり、走行時はエンジン200にて圧縮機100を駆動し、信号待ちや渋滞等の車両停止時には、エンジン200を停止させた後、所定時間ΔTが経過した時にモータ210を稼動させて圧縮機100を駆動するとともに、蒸発器130での空調負荷によらず、冷凍機内を循環する平均冷媒流量Vaが、エンジン200にて圧縮機100を駆動するとき冷媒流量に比べて小さくなるように圧縮機100から吐出する冷媒の流量を周期的に変化させる。
【0030】
ここで、モータ210にて圧縮機100を駆動する際の平均冷媒流量Vaは、空調フィーリングが大きく悪化しない程度の冷媒流量であり、モータ210にて圧縮機100を駆動する際の最大冷媒流量Vmaxは、蒸発器130内において冷媒流れに顕著な偏りが発生しない冷媒流量の下限値相当である。
【0031】
次に、本実施形態の作用効果を述べる。
【0032】
本実施形態によれば、減圧装置120はキャピラリーチューブにて構成されているので、減圧装置120前後は常に連通した状態となる。このため、エンジン200が停止すると、減圧装置120を介して高圧側の冷媒が低圧側に移動して高圧側冷媒圧力が低下し、減圧装置120前後の冷媒圧力が略等しくなるように冷凍機が均圧化するので、モータ210にて圧縮機100を駆動する際の駆動トルクを小さくすることができる。したがって、モータ210の消費動力を低減しつつ、モータ210の小型化を図ることができる。
【0033】
また、本実施形態では、信号待ちや渋滞等の車両停止時には、エンジン200を停止させた後、所定時間ΔTが経過した時にモータ210を稼動させるので、モータ210の消費電力をより一層低減することができる。
【0034】
なお、所定時間ΔTとは、エンジン200が停止した後、減圧装置120前後の冷媒圧力が略等しくなるに必要な時間であり、本実施形態では、予め試験にて求めた時間(例えば、20秒)を所定時間ΔTとしている。
【0035】
ところで、冷媒流量が低下すると、蒸発器130内を流れる冷媒が冷媒入口から冷媒出口に至る多数の冷媒通路のうち圧力損失が小さい通路に集まるようにして蒸発器130内を流れるため、蒸発器130内において冷媒流れに顕著な偏りが発生し、蒸発器130を通過した冷風の温度が、通過する蒸発器130の部位に異なってしまい、空調フィーリングが悪化するおそれが高い。
【0036】
これに対して、本実施形態では、圧縮機100から吐出する冷媒の流量を周期的に変化させるので、蒸発器130内において冷媒流れに顕著な偏りが発生することを防止することができる。
【0037】
したがって、蒸発器130内で発生する冷媒流れの偏りに起因する空調フィーリングの悪化を防止しながら、平均冷媒流量Vaを下げることによりモータ210での消費動力(消費電力)を低減することができる。
【0038】
ところで、圧縮機100が停止した後は、蒸発器130内に残留する冷媒及び蒸発器130の熱容量に従って蒸発器130の温度又は蒸発器130を通過した直後の空気温度が上昇していくが、減圧装置120をキャピラリチューブにて構成しているので、残存する高低圧差により高圧(放熱器110)側の液相冷媒を蒸発器130に供給することが可能であるので、この供給された液相冷媒が蒸発することにより蒸発器130の温度上昇を抑制することができる。
【0039】
したがって、エンジン200が停止すると同時にモータ210を稼動させなくても、空調フィーリング(涼感)が大きく損なわれることを防止できるので、モータ210の稼働時間を短縮することができ、モータ210の消費電力を更に低減することができる。
【0040】
(第2実施形態)
第1実施形態では、キャピラリチューブにて減圧装置120を構成したが、本実施形態は、図3に示すように、蒸発器130出口側の冷媒過熱度が所定値となるように弁開度を機械的調節する温度式膨張弁121、及び温度式膨張弁121を迂回させて冷媒を流すキャピラリチューブや固定絞り等の絞り122により減圧装置120を構成したものである。
【0041】
因みに、温度式膨張弁121とは、図4に示すように、ダイヤフラム121aの上面側に蒸発器130の冷媒出口側の冷媒温度による飽和圧力を作用させ、一方、ダイヤフラム121aの下面側には、蒸発器130の冷媒出口側の冷媒圧力及びバネ121bによる弾性力を作用させることにより、ダイヤフラム121aの作用する圧力差に応じて弁体121cが変位して弁開度が調節されるものである。
【0042】
なお、本実施形態では、圧力センサ123により高圧側冷媒圧力を検出し、空調装置の稼働時(A/Cスイッチが投入された状態)であってエンジン200が停止した後、この圧力センサ123の検出圧力が所定圧力以下となったときに、冷凍機が均圧化したものと見なして、モータ210を稼動させている。
【0043】
次に、本実施形態の作用効果を述べる。
【0044】
エンジン200が停止して圧縮機100が停止すると、温度式膨張弁121はその構造上、弁が閉じる向きに移動する(図4参照)ことに加えて、エンジン200にて圧縮機100を駆動するときの冷媒流量が、モータ210にて圧縮機110を駆動するとの冷媒流量より大きいため、エンジン200が停止した直後は高圧側の冷媒圧力は比較的高い。
【0045】
これに対して、本実施形態では、温度式膨張弁121が閉じても絞り122を介して高圧側の冷媒が低圧側に移動して高圧側冷媒圧力が低下し、減圧装置120前後の冷媒圧力が略等しくなるように(冷凍機が均圧化するので、モータ210にて圧縮機100を駆動する際の駆動トルクを小さくすることができる。したがって、モータ210の消費動力を低減しつつ、モータ210の小型化を図ることができる。
【0046】
なお、本実施形態は、絞り122を温度式膨張弁121内に設けてもよいことは、言うまでもない。
【0047】
(その他の実施形態)
上述の実施形態では、所定時間ΔTは、予め試験にて求めた固定した時間であったが、本発明はこれに限定されるものではなく、冷凍機が均圧化すると、蒸発器130内の温度及び圧力が上昇することから、エンジン200が停止した後、蒸発器130の温度が所定温度以上となった時にモータ210を始動してもよい。また、所定時間ΔTを内気温度、外気温度、日射量等の空調負荷に関するパラメータに基づいて変化させてもよい。
【0048】
また、上述の実施形態では、圧縮機110は固定容量型のものであったが、圧縮機100を周知の可変容量型圧縮機とするとともに、モータ210にて圧縮機100を駆動する際には、圧縮機100の吐出容量を最大吐出容量より小さい吐出容量としてもよい。このようにすれば、圧縮機100を駆動する際のトルクを小さくすることができるので、モータ210の消費動力をさらに小さくしつつ、モータ210の小型化を図ることができる。
【0049】
また、上述実施形態では、矩形波状に冷媒流量を変化させたが、本発明はこれに限定されるものではなく、例えば三角波状、鋸波状又は正弦波状であってもよい。
【0050】
また、上述実施形態では、モータ駆動時の最大流量Vmax及び周期は一定であったが、本発明はこれに限定されるものではなく、最大流量Vmax及び周期を変化させてもよい。
【0051】
また、上述実施形態では、キャピラリチューブに代えてオリフィス等の固定絞りを採用しても本発明を実施することができる。
【0052】
また、減圧装置120を電気式膨張弁として、少なくとも空調装置の稼働時は、常に連通した状態で放熱器110から流出した冷媒を減圧するようにしてもよい。
【0053】
また、上述の実施形態では、モータ駆動時には、冷媒流量を変化させたが、本発明はこれに限定されるものではなく、モータ駆動時における冷媒流量を略一定としてもよい。
【0054】
また、キャピラリーチューブ120の冷媒流れ上流側に電磁弁を設け、走行用のエンジンが停止した時からモータ210が稼動する前まで、つまりエンジンが停止した時から所定時間ΔTより短い時間ΔT’(例えば、10〜15秒)の間は電磁弁を閉じて、高温・高圧冷媒が蒸発器130に流入することを防止してもよい。
【0055】
また、信号待ちや渋滞等の車両停止時には、空調負荷を低減すべく、内気循環モードとして上記した制御を実施することが望ましい。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る空調装置の模式図である。
【図2】本発明の第1実施形態に係る空調装置における冷媒流量と時間との関係を示すチャートである。
【図3】本発明の第2実施形態に係る空調装置の模式図である。
【図4】本発明の第2実施形態に係る空調装置に適用される膨張弁の模式図である。
【符号の説明】
100…圧縮機、110…放熱器、
120…キャピラリーチューブ(減圧装置)、130…蒸発器、
140…アキュムレータ、200…エンジン(駆動源)、
210…モータ(第2の駆動源)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicle air conditioner, and is particularly effective when applied to an air conditioner including a hybrid drive type compressor.
[0002]
[Prior art and problems to be solved by the invention]
As described in Utility Model Registration Publication No. 2596291, the hybrid drive type compressor switches a traveling engine and an electric motor to drive the compressor.
[0003]
By the way, this hybrid drive type compressor is generally applied to a vehicle air-conditioning system that improves vehicle fuel efficiency and reduces exhaust gas. At times, the compressor is driven by the engine, and when the vehicle stops, such as when waiting for traffic lights or traffic jams, the engine is stopped to improve vehicle fuel efficiency and reduce exhaust gas, while driving the compressor with an electric motor. Maintain air conditioning capacity.
[0004]
However, when the compressor is driven by the electric motor, the engine is stopped and the generator is stopped. Therefore, the electric motor must be driven only by the electric power stored in the battery. The amount of power saved will drop.
[0005]
Therefore, the inventors circulate the refrigerant in the refrigerator when driving the compressor with the electric motor, compared with the case where the compressor is driven with the engine, in order to reduce power consumption in the electric motor. A prototype of an air conditioner that reduces the power consumption of the compressor, that is, the power consumption of the electric motor, by reducing the flow rate has been studied, but the following problems have newly occurred.
[0006]
That is, the driving torque of the compressor increases as the discharge pressure (high-pressure side refrigerant pressure) of the compressor increases. As described above, when the compressor is driven by the engine, the compressor is driven by the electric motor. Since the refrigerant flow rate is increased and a large refrigerating capacity is exhibited as compared with the case where the refrigerant is discharged, the discharge pressure of the compressor is relatively high.
[0007]
In addition to the fact that the opening of the thermal expansion valve, which is a decompression device, does not change immediately after the compressor stops, the valve body of the expansion valve opens the valve opening when the compressor stops. Since it moves in the closing direction, the high-pressure side refrigerant pressure is in a state where a relatively high pressure is maintained when the engine is driven.
[0008]
Therefore, if the compressor is driven by the electric motor after the engine is stopped and the high-pressure side refrigerant pressure is high, a large driving torque is required by the electric motor, so that the power consumption and the size of the electric motor are increased. I will invite you.
[0009]
In view of the above points, the present invention reduces and reduces the power consumption of a driving source different from the engine in an air conditioner that drives a compressor by switching between a driving engine and a driving source different from the engine such as an electric motor. It aims to plan.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in the invention described in claim 1, power is obtained from the driving source (200) for traveling and the second driving source (210) different from the driving source (200). The compressor (100) that sucks and compresses the refrigerant, the radiator (110) that cools the refrigerant discharged from the compressor (100), and the radiator (110) that is in continuous communication at least when the air conditioner is in operation. e Bei decompressor for decompressing the leaked refrigerant (120), decompressor evaporator for evaporating the refrigerant reduced in pressure by (120) and (130),
The second drive source (210) is an electric motor,
Furthermore, the second drive source (210) is characterized in that it starts to operate when the refrigerant pressure before and after the pressure reducing device (120) becomes substantially equal .
[0011]
As a result, when the drive source (200) is stopped, the refrigerant on the radiator (110) side moves to the evaporator (130) side via the decompression device (120), the high-pressure side refrigerant pressure decreases, and the decompression device ( 120) Since the refrigerator equalizes pressure so that the refrigerant pressure before and after becomes substantially equal, the driving torque when the compressor (100) is driven by the second driving source (210) can be reduced. Therefore, it is possible to reduce the size of the electric motor forming the second driving source (210) while reducing the power consumption of the electric motor forming the second driving source (210).
[0012]
The decompression device (120) may be constituted by a capillary tube or a fixed throttle as in the invention described in claim 2.
[0013]
Further, as in the third aspect of the present invention, the temperature type expansion valve (121) for mechanically adjusting the valve opening degree so that the refrigerant superheat degree on the outlet side of the evaporator (130) becomes a predetermined value, and the temperature type expansion The decompression device (120) may be configured by a throttle means (122) that causes the refrigerant to flow around the valve (121).
[0020]
According to a fourth aspect of the present invention, in the vehicle air conditioner according to any one of the first to third aspects, the compressor (100) is a variable capacity compressor capable of changing a discharge capacity. In addition, when the compressor (100) is driven by the second drive source (210), the discharge capacity of the compressor (100) is set to a discharge capacity smaller than the maximum discharge capacity.
[0021]
Thereby, since the torque at the time of driving the compressor (100) can be further reduced, the power consumption of the electric motor constituting the second drive source (210) can be further reduced.
[0022]
Incidentally, the reference numerals in parentheses of each means described above are an example showing the correspondence with the specific means described in the embodiments described later.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 is a schematic view of a vehicle air conditioner (vapor compression refrigerator) according to the present embodiment. The compressor 100 sucks and compresses a refrigerant. The compressor 100 includes a traveling engine 200 and an electric motor. A driving force is obtained from the motor 210 of the formula.
[0024]
The motor 210 is integrated with a pulley 230 on which a V-belt 220 that transmits the power of the engine 200 to the compressor 100 is applied.
[0025]
The radiator (condenser) 110 heats the refrigerant discharged from the compressor 100 and the outside air to cool the refrigerant, and the decompression device 120 decompresses and expands the refrigerant flowing out of the radiator 110.
[0026]
The evaporator 130 heat-exchanges the low-pressure refrigerant decompressed by the decompression device 120 and the air blown into the room to evaporate the liquid-phase refrigerant. The accumulator 140 converts the refrigerant flowing out of the evaporator 130 into the liquid-phase refrigerant. Gas-liquid separation means that separates the gas-phase refrigerant and stores the liquid-phase refrigerant, and causes the gas-phase refrigerant to flow out to the suction side of the compressor 100.
[0027]
Here, the decompression device 120 is a narrow capillary tube that generates a predetermined pressure loss in accordance with the flow rate of the refrigerant in a state where the refrigerant passage is always in communication, like a fixed throttle (orifice) having a fixed opening.
[0028]
Next, the characteristic operation of this embodiment will be described.
[0029]
FIG. 2 is a chart showing changes in the flow rate of the refrigerant circulating in the refrigerator. When the vehicle is running, the compressor 100 is driven by the engine 200, and when the vehicle is stopped such as waiting for a signal or traffic jam, When the time ΔT has elapsed, the motor 210 is operated to drive the compressor 100, and the average refrigerant flow rate Va circulating in the refrigerator regardless of the air conditioning load in the evaporator 130 causes the engine 200 to cause the compressor 100 to operate. The flow rate of the refrigerant discharged from the compressor 100 is periodically changed so as to be smaller than the refrigerant flow rate when driving.
[0030]
Here, the average refrigerant flow rate Va when driving the compressor 100 with the motor 210 is a refrigerant flow rate that does not greatly deteriorate the air conditioning feeling, and the maximum refrigerant flow rate when the compressor 100 is driven with the motor 210. Vmax is equivalent to the lower limit value of the refrigerant flow rate in which no significant deviation occurs in the refrigerant flow in the evaporator 130.
[0031]
Next, the function and effect of this embodiment will be described.
[0032]
According to this embodiment, since the decompression device 120 is constituted by a capillary tube, the front and rear of the decompression device 120 are always in communication. For this reason, when the engine 200 is stopped, the high-pressure side refrigerant moves to the low-pressure side via the decompression device 120, the high-pressure side refrigerant pressure decreases, and the refrigerator is arranged so that the refrigerant pressure before and after the decompression device 120 becomes substantially equal. Since the pressure is equalized, the driving torque when the compressor 210 is driven by the motor 210 can be reduced. Therefore, it is possible to reduce the size of the motor 210 while reducing the power consumption of the motor 210.
[0033]
Further, in the present embodiment, when the vehicle is stopped such as waiting for a signal or traffic jam, the motor 210 is operated when the predetermined time ΔT has elapsed after the engine 200 is stopped, so that the power consumption of the motor 210 can be further reduced. Can do.
[0034]
Note that the predetermined time ΔT is a time required for the refrigerant pressures before and after the decompression device 120 to become substantially equal after the engine 200 is stopped. In the present embodiment, a predetermined time (for example, 20 seconds) ) As a predetermined time ΔT.
[0035]
By the way, when the refrigerant flow rate decreases, the refrigerant flowing in the evaporator 130 flows in the evaporator 130 so as to gather in a passage having a small pressure loss among the many refrigerant passages from the refrigerant inlet to the refrigerant outlet. There is a high risk that air flow feeling will deteriorate because the temperature of the cold air that has passed through the evaporator 130 is different in the portion of the evaporator 130 that passes through, due to a significant bias in the refrigerant flow.
[0036]
On the other hand, in this embodiment, since the flow rate of the refrigerant discharged from the compressor 100 is periodically changed, it is possible to prevent a significant deviation in the refrigerant flow in the evaporator 130.
[0037]
Therefore, the power consumption (power consumption) in the motor 210 can be reduced by lowering the average refrigerant flow rate Va while preventing the deterioration of the air conditioning feeling due to the bias of the refrigerant flow generated in the evaporator 130. .
[0038]
By the way, after the compressor 100 is stopped, the temperature of the evaporator 130 or the air temperature immediately after passing through the evaporator 130 increases according to the refrigerant remaining in the evaporator 130 and the heat capacity of the evaporator 130. Since the device 120 is constituted by a capillary tube, the liquid phase refrigerant on the high pressure (heat radiator 110) side can be supplied to the evaporator 130 due to the difference between the high and low pressures remaining. As a result of evaporation, the temperature rise of the evaporator 130 can be suppressed.
[0039]
Therefore, it is possible to prevent the air conditioning feeling (cool feeling) from being greatly impaired even if the motor 210 is not operated at the same time as the engine 200 is stopped. Therefore, the operation time of the motor 210 can be shortened, and the power consumption of the motor 210 is reduced. Can be further reduced.
[0040]
(Second Embodiment)
In the first embodiment, the decompression device 120 is configured by a capillary tube. However, in this embodiment, as shown in FIG. 3, the valve opening degree is set so that the refrigerant superheat degree on the outlet side of the evaporator 130 becomes a predetermined value. The pressure-reducing device 120 includes a temperature-controlled expansion valve 121 that is mechanically adjusted, and a capillary tube that bypasses the temperature-type expansion valve 121 and flows a refrigerant, and a throttle 122 such as a fixed throttle.
[0041]
Incidentally, as shown in FIG. 4, the temperature type expansion valve 121 causes the saturation pressure due to the refrigerant temperature on the refrigerant outlet side of the evaporator 130 to act on the upper surface side of the diaphragm 121a, while the lower surface side of the diaphragm 121a By applying the refrigerant pressure on the refrigerant outlet side of the evaporator 130 and the elastic force by the spring 121b, the valve element 121c is displaced according to the pressure difference applied by the diaphragm 121a, and the valve opening degree is adjusted.
[0042]
In the present embodiment, the pressure sensor 123 detects the high-pressure side refrigerant pressure, and after the engine 200 is stopped when the air conditioner is in operation (the A / C switch is turned on), the pressure sensor 123 When the detected pressure becomes equal to or lower than a predetermined pressure, the motor 210 is operated assuming that the refrigerator is equalized.
[0043]
Next, the function and effect of this embodiment will be described.
[0044]
When the engine 200 is stopped and the compressor 100 is stopped, the temperature type expansion valve 121 moves in the direction in which the valve closes due to its structure (see FIG. 4), and the engine 200 drives the compressor 100. Since the refrigerant flow rate at that time is larger than the refrigerant flow rate at which the motor 210 drives the compressor 110, the refrigerant pressure on the high-pressure side is relatively high immediately after the engine 200 is stopped.
[0045]
On the other hand, in the present embodiment, even if the temperature type expansion valve 121 is closed, the high-pressure side refrigerant moves to the low-pressure side via the throttle 122 and the high-pressure side refrigerant pressure decreases, and the refrigerant pressure before and after the decompression device 120 (The refrigerator equalizes the pressure so that the driving torque when the compressor 100 is driven by the motor 210 can be reduced. Therefore, the motor 210 consumes less power and reduces the motor power consumption. The size of 210 can be reduced.
[0046]
Needless to say, in the present embodiment, the throttle 122 may be provided in the temperature type expansion valve 121.
[0047]
(Other embodiments)
In the above-described embodiment, the predetermined time ΔT is a fixed time obtained in advance by a test. However, the present invention is not limited to this, and when the refrigerator is equalized, the predetermined time ΔT Since the temperature and pressure rise, the motor 210 may be started when the temperature of the evaporator 130 becomes a predetermined temperature or higher after the engine 200 is stopped. Further, the predetermined time ΔT may be changed based on parameters related to the air conditioning load such as the inside air temperature, the outside air temperature, and the amount of solar radiation.
[0048]
In the above-described embodiment, the compressor 110 is of a fixed capacity type. However, when the compressor 100 is a known variable capacity compressor and the motor 210 is driven by the motor 210, the compressor 110 is a fixed capacity type. The discharge capacity of the compressor 100 may be smaller than the maximum discharge capacity. In this way, since the torque when driving the compressor 100 can be reduced, the power consumption of the motor 210 can be further reduced, and the motor 210 can be reduced in size.
[0049]
Further, in the above-described embodiment, the refrigerant flow rate is changed in a rectangular wave shape, but the present invention is not limited to this, and may be, for example, a triangular wave shape, a sawtooth wave shape, or a sine wave shape.
[0050]
In the above-described embodiment, the maximum flow rate Vmax and the period when the motor is driven are constant, but the present invention is not limited to this, and the maximum flow rate Vmax and the period may be changed.
[0051]
In the above-described embodiment, the present invention can be implemented even if a fixed throttle such as an orifice is employed instead of the capillary tube.
[0052]
Further, the decompression device 120 may be an electric expansion valve, and at least when the air conditioner is in operation, the refrigerant flowing out of the radiator 110 may be decompressed in a constantly connected state.
[0053]
In the above-described embodiment, the refrigerant flow rate is changed when the motor is driven. However, the present invention is not limited to this, and the refrigerant flow rate when the motor is driven may be substantially constant.
[0054]
Further, an electromagnetic valve is provided on the upstream side of the refrigerant flow in the capillary tube 120, and the time ΔT ′ (for example, shorter than a predetermined time ΔT from when the traveling engine is stopped until before the motor 210 is started, that is, when the engine is stopped). 10 to 15 seconds), the solenoid valve may be closed to prevent the high temperature / high pressure refrigerant from flowing into the evaporator 130.
[0055]
Further, when the vehicle is stopped such as waiting for a signal or traffic jam, it is desirable to implement the above-described control as the inside air circulation mode in order to reduce the air conditioning load.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an air conditioner according to a first embodiment of the present invention.
FIG. 2 is a chart showing the relationship between the refrigerant flow rate and time in the air conditioner according to the first embodiment of the present invention.
FIG. 3 is a schematic diagram of an air conditioner according to a second embodiment of the present invention.
FIG. 4 is a schematic diagram of an expansion valve applied to an air conditioner according to a second embodiment of the present invention.
[Explanation of symbols]
100 ... Compressor, 110 ... Heat radiator,
120 ... capillary tube (decompression device), 130 ... evaporator,
140 ... accumulator, 200 ... engine (drive source),
210: Motor (second drive source).

Claims (4)

走行用の駆動源(200)、及び前記駆動源(200)と異なる第2の駆動源(210)から動力を得て冷媒を吸入圧縮する圧縮機(100)と、
前記圧縮機(100)から吐出した冷媒を冷却する放熱器(110)と、
少なくとも空調装置の稼働時には、常に連通した状態で前記放熱器(110)から流出した冷媒を減圧する減圧装置(120)と、
前記減圧装置(120)にて減圧された冷媒を蒸発させる蒸発器(130)とを備え、
前記第2の駆動源(210)は電動式のモータであり、
さらに、前記第2の駆動源(210)は、前記減圧装置(120)前後の冷媒圧力が略等しくなった時に稼動し始めることを特徴とする車両用空調装置。
A driving source (200) for traveling, and a compressor (100) that obtains power from a second driving source (210) different from the driving source (200) and sucks and compresses the refrigerant;
A radiator (110) for cooling the refrigerant discharged from the compressor (100);
At least during operation of the air conditioner, a decompression device (120) that decompresses the refrigerant that has flowed out of the radiator (110) in a constantly communicating state;
Bei example an evaporator and (130) for evaporating the decompressed refrigerant by the pressure reducing device (120),
The second drive source (210) is an electric motor,
Further, the vehicle air conditioner is characterized in that the second drive source (210) starts to operate when the refrigerant pressure before and after the pressure reducing device (120) becomes substantially equal .
前記減圧装置(120)は、キャピラリーチューブ又は固定絞りにて構成されていることを特徴とする請求項1に記載の車両用空調装置。  The vehicle air conditioner according to claim 1, wherein the pressure reducing device (120) is configured by a capillary tube or a fixed throttle. 前記減圧装置(120)は、前記蒸発器(130)出口側の冷媒過熱度が所定値となるように弁開度を機械的調節する温度式膨張弁(121)、及び前記温度式膨張弁(121)を迂回させて冷媒を流す絞り手段(122)を有して構成されていることを特徴とする請求項1に記載の車両用空調装置。  The pressure reducing device (120) includes a temperature type expansion valve (121) that mechanically adjusts the valve opening degree so that the degree of refrigerant superheating on the outlet side of the evaporator (130) becomes a predetermined value, and the temperature type expansion valve ( 121. The vehicle air conditioner according to claim 1, wherein the vehicle air conditioner includes a throttle means (122) that causes the refrigerant to flow while bypassing 121). 前記圧縮機(100)は、吐出容量を変化させることができる可変容量型の圧縮機であり、
さらに、前記圧縮機(100)を前記第2の駆動源(210)にて駆動する際には、前記圧縮機(100)の吐出容量を最大吐出容量より小さい吐出容量とすることを特徴とする請求項1ないしのいずれか1つに記載の車両用空調装置。
The compressor (100) is a variable capacity compressor capable of changing a discharge capacity,
Further, when the compressor (100) is driven by the second drive source (210), the discharge capacity of the compressor (100) is set to a discharge capacity smaller than the maximum discharge capacity. The vehicle air conditioner according to any one of claims 1 to 3 .
JP2001346245A 2001-11-12 2001-11-12 Air conditioner for vehicles Expired - Fee Related JP4096548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001346245A JP4096548B2 (en) 2001-11-12 2001-11-12 Air conditioner for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001346245A JP4096548B2 (en) 2001-11-12 2001-11-12 Air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JP2003146059A JP2003146059A (en) 2003-05-21
JP4096548B2 true JP4096548B2 (en) 2008-06-04

Family

ID=19159452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001346245A Expired - Fee Related JP4096548B2 (en) 2001-11-12 2001-11-12 Air conditioner for vehicles

Country Status (1)

Country Link
JP (1) JP4096548B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10317184A1 (en) * 2003-04-15 2004-11-04 Audi Ag Motor vehicle with air conditioning

Also Published As

Publication number Publication date
JP2003146059A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
US20190111756A1 (en) Refrigeration cycle device
US11383583B2 (en) Thermal management device for vehicle
US9170038B2 (en) Air conditioning unit for vehicles and method of operating the same
US20150059375A1 (en) Air conditioner for vehicle with heat pump cycle
US20020108384A1 (en) Air conditioning systems
US20070151270A1 (en) Refrigerating cycle
JP5316321B2 (en) Air conditioner for vehicles
JP4006782B2 (en) Air conditioner having a cooler for heat generating equipment
US6484523B2 (en) Vehicle air conditioner with refrigerant flow-amount control of compressor
US10989447B2 (en) Refrigeration cycle device
JP2003080936A (en) Air conditioner for vehicle
JP7099425B2 (en) In-vehicle temperature control device
WO2013145537A1 (en) Air conditioner device for vehicle
US10589597B2 (en) Vehicle air conditioner with auxiliary heat exchanger
US20210252941A1 (en) Vehicle air conditioner
JP3704814B2 (en) Air conditioner for vehicles
WO2021095338A1 (en) Refrigeration cycle device
WO2019017168A1 (en) Ejector-type refrigeration cycle
JP4096548B2 (en) Air conditioner for vehicles
JP3952746B2 (en) Air conditioner for vehicles
JP4232567B2 (en) Refrigeration cycle equipment
JP3961108B2 (en) Clutch control device for externally controlled variable displacement compressor
JP2000280733A (en) Automobile air conditioner
JP5954059B2 (en) Air conditioner for vehicles
JP3961107B2 (en) Torque prediction device for externally controlled variable displacement compressor and automobile engine control device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees