JP4096433B2 - Removal of nickel from caustic potash - Google Patents

Removal of nickel from caustic potash Download PDF

Info

Publication number
JP4096433B2
JP4096433B2 JP37278798A JP37278798A JP4096433B2 JP 4096433 B2 JP4096433 B2 JP 4096433B2 JP 37278798 A JP37278798 A JP 37278798A JP 37278798 A JP37278798 A JP 37278798A JP 4096433 B2 JP4096433 B2 JP 4096433B2
Authority
JP
Japan
Prior art keywords
nickel
caustic potash
activated carbon
caustic
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP37278798A
Other languages
Japanese (ja)
Other versions
JP2000203828A (en
Inventor
俊博 川口
宗司 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP37278798A priority Critical patent/JP4096433B2/en
Publication of JP2000203828A publication Critical patent/JP2000203828A/en
Application granted granted Critical
Publication of JP4096433B2 publication Critical patent/JP4096433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Removal Of Specific Substances (AREA)
  • Filtration Of Liquid (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、工業的に製造される苛性カリ中のニッケルを効果的に除去することができる苛性カリ中のニッケルの除去方法に関するものである。
【0002】
【従来の技術】
たとえば、半導体ウェーハなどの電子部品の製造においては、ウェーハの表面をエッチングして平面化し、あるいは表面を洗浄するために苛性アルカリが使用されている。
【0003】
かゝる電子部品の洗浄に使用される苛性アルカリは、半導体ウェーハの劣化、半導体デバイスの特性の低下などを防ぐため、ニッケル、クロム、鉄、銅などの金属不純物を含まない高純度の苛性アルカリを水溶液として用いることが要求されているので、たとえば、特開昭63−8215号公報では、イオン交換膜法で得られた苛性ソーダ中のクロムとニッケルを吸着共沈によって同時に除去する金属不純物の除去方法を提案している。
【0004】
特開平10−310883号公報においては、アルカリ水溶液中に存在している金属イオンの可逆電位より卑な酸化電位を持つ還元剤、たとえば、亜二チオン酸塩などを溶解して不純な金属イオンを非イオン化してアルカリ溶液を純化する手段を開示している。
【0005】
【発明が解決しようとする課題】
前記の電子部品等の製造に際して使用される高純度の苛性アルカリのうち、苛性カリの需要はかなり高く、かゝる高純度苛性カリは他にも工業用試薬や医薬品関連に用いられている。
この電子部品等の製造に際して用いられる苛性カリ水溶液は、その中に含まれる不純金属としてのニッケルが、アルカリエッチングにおいて半導体ウェーハの内部に拡散してウェーハを劣化させるため、これを除去する要望が特に強い。
【0006】
かゝるニッケルは、電解等で得た苛性カリを高濃度に濃縮する際に、ニッケルを含むステンレス鋼を材質とした濃縮装置を使用した場合に僅かではあるが溶出する。
本来、このニッケルは苛性アルカリに耐性のある金属素材であるので、苛性カリの一般販売濃度である48.5%程度、高々50%までの濃縮で0.1ppmのオーダーのニッケルの溶出量に留まっているが、濃縮温度を高めるとニッケルの溶出量は多くなってくる。
【0007】
前記特開昭63−8215号公報や特開平10−310883号公報に開示されている金属不純物の除去は、いずれも実質的に苛性ソーダを対象にしているものゝ、苛性カリの高純度化についてなんら具体的な開示はない。
【0008】
一方、特開昭63−8315号公報においては、金属不純物としてのニッケルとクロムを、0.1ppm程度のオーダーにまで低下させること開示しており、ニッケルと共にクロムの存在を必要な条件としているものであって、ニッケルのみを除去するものではなく、特開平10−310883号公報では、前記の還元剤によって金属イオンを非イオン化してニッケル濃度が10ppb(0.01ppm)程度のかなりの低い値に純化している。
【0009】
しかしながら、この純化の方法は不純な金属イオンを非イオンとして還元しているのみで、これをアルカリ溶液から積極的に除去するものではなく、この非イオン化不純物が固体として存在していても金属イオンとして存在しなければ純化された状態にあるとして液中に存在することを許容しているものである。
したがって、この純化したとされるアルカリ水溶液が前記半導体ウェーハの製造に適用できるとしても、工業用試薬や医薬品関連用などの他の用途に使用するにはなんらかの手段でこの還元析出物を除去する必要がある。
【0010】
この発明はかゝる問題点に鑑み、苛性カリの濃縮などで溶出してくる0.1ppmのオーダーのニッケルをきわめて簡単な手段でより効率的に除去して0.01ppm程度のオーダーまで低下させることによって、電子部品関係はもとより他の高純度苛性カリの用途にも支障なく使用することができるニッケル含有量の少ない苛性カリを得んとするものである。
【0011】
【課題を解決するための手段】
前記の目的を達成するため、この発明の苛性カリ中のニッケルの除去方法は、活性炭をプレコートした濾過装置を用いた濾過操作により苛性カリ水溶液中に存在するニッケルを0.1ppmオーダーから0.01ppmオーダーである0.05ppm以下に減少させることを特徴とするものである。
【0012】
【発明の実施の形態】
この発明の苛性カリ中のニッケルの除去方法は、活性炭をプレコート剤とした濾過装置によってニッケルを含む苛性カリ水溶液を濾過するものであるが、プレコート剤としての活性炭は、ヤシ殻、木材、木炭、亜炭などを炭化処理して得られる吸着能の大きな多孔性炭素を使用することができ、それらの中でもヤシ殻活性炭がニッケルの吸着能に優れているので最も好ましい。
【0013】
使用する濾過装置は、活性炭をプレコートした濾過装置であればよく、特に制限はない。
【0014】
前記ニッケルを含む苛性カリの濃度、活性炭の使用量、濾過装置への通液流速や通液量などについても特別な制限はないが、たとえば、濃度約50%の苛性カリ水溶液中に約0.1ppmのオーダーで含まれているニッケルの除去には、濾過装置の濾過面積に対して100〜2000g/m2 の範囲の量のヤシ殻活性炭を使用することが好ましい。
【0015】
【作用】
この発明の苛性カリ中のニッケルの除去方法は、活性炭、特に、ヤシ殻活性炭をプレコート剤として用いた濾過装置にニッケルを不純物として含む苛性カリ水溶液を通液することによって、優れた濾過性能を発揮して短時間に苛性カリ水溶液中のニッケルを除去することができ、電子部品等の製造やその他の純度の高い苛性カリを要求する用途に適用し得る高純度苛性カリを容易に得ることができるものである。
【0016】
【実施例】
以下、実施例によってこの発明の苛性カリ中のニッケルの除去方法をより具体的に説明する。
<実施例1>
ニッケルを含有した濃度48%の苛性カリ水溶液を、濾過装置を使用して下記の条件下で苛性カリ中のニッケルを除去した。
濾過装置 ; 三進濾過器(濾過面積3m2 )(三進製作所製)
活性炭 ; 「花B」ドライ (セラケム(株)製のヤシ殻活性炭)
活性炭使用量; 500g/m2
通液速度 ; 500l/h(0.17m/h)
通液量 ; 2000m3
上記の条件下で、前記三進濾過器の入口と出口の苛性カリ中のニッケル含有量(単位;ppm)を測定し、下記〔表1〕の結果を得た。
【0017】
【表1】
【0018】
この〔表1〕から明らかなように、苛性カリ水溶液中のニッケルが濾過器の入口で0.1ppmのオーダーであったものが、濾過器の出口においては、これより1桁低い0.01ppmのオーダーである0.05ppm以下に下げることができたもので、通液によってきわめて優れたニッケル除去が達成されていることが判る。
【0019】
【発明の効果】
この発明の苛性カリ中のニッケル除去方法は、活性炭、特にヤシ殻活性炭をプレコート剤として用いた濾過装置に、ニッケルを不純物として含む苛性カリ水溶液を通液することにより、優れた濾過性能を発揮して短時間に苛性カリ中のニッケルを取り除くことができる。
【0020】
特に、この発明の苛性カリ中のニッケル除去方法は、簡単な処理手段と安価な費用によって苛性カリ水溶液中のニッケルを低レベルまで除去し、電子部品等の製造やその他の用途に充分に使用できる純度の高い苛性カリが容易に得られる点で優れたものである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing nickel in caustic potash that can effectively remove nickel in caustic potash produced industrially.
[0002]
[Prior art]
For example, in the manufacture of electronic components such as semiconductor wafers, caustic is used to etch and planarize the surface of the wafer or to clean the surface.
[0003]
Caustic alkali used for cleaning such electronic components is a high-purity caustic alkali that does not contain metallic impurities such as nickel, chromium, iron, and copper to prevent deterioration of semiconductor wafers and semiconductor device characteristics. Is required to be used as an aqueous solution. For example, in Japanese Patent Application Laid-Open No. 63-8215, removal of metal impurities by simultaneously removing chromium and nickel in caustic soda obtained by an ion exchange membrane method by adsorption coprecipitation Proposed method.
[0004]
In Japanese Patent Application Laid-Open No. 10-310883, an impure metal ion is dissolved by dissolving a reducing agent having a base oxidation potential lower than the reversible potential of a metal ion present in an alkaline aqueous solution, such as dithionite. A means for deionizing and purifying an alkaline solution is disclosed.
[0005]
[Problems to be solved by the invention]
Among the high-purity caustic alkalis used in the production of the electronic parts and the like, the demand for caustic potash is quite high, and such high-purity caustic potash is used for industrial reagents and pharmaceuticals.
In the caustic potash aqueous solution used in the manufacture of electronic parts and the like, nickel as an impure metal contained therein is diffused into the semiconductor wafer by alkali etching to deteriorate the wafer. .
[0006]
Such nickel elutes, though slightly, when a concentration device made of stainless steel containing nickel is used when caustic potash obtained by electrolysis or the like is concentrated to a high concentration.
Originally, this nickel is a metal material that is resistant to caustic, so the concentration of caustic potash is about 48.5%, and the concentration of nickel up to 50% is only about 0.1ppm. However, the elution amount of nickel increases with increasing concentration temperature.
[0007]
The removal of metal impurities disclosed in JP-A-63-8215 and JP-A-10-310883 is practically intended for caustic soda, and there is nothing specific about increasing the purity of caustic potash. There is no formal disclosure.
[0008]
On the other hand, JP-A-63-8315 discloses that nickel and chromium as metal impurities are reduced to the order of about 0.1 ppm, and the presence of chromium together with nickel is a necessary condition. However, it does not remove only nickel. In Japanese Patent Laid-Open No. 10-310883, the metal ions are deionized by the reducing agent, and the nickel concentration is reduced to a considerably low value of about 10 ppb (0.01 ppm). Purified.
[0009]
However, this purification method only reduces the impure metal ions as non-ions and does not actively remove them from the alkaline solution. Even if these non-ionized impurities exist as solids, the metal ions If it does not exist, it is allowed to exist in the liquid as being in a purified state.
Therefore, even if this purified alkaline aqueous solution can be applied to the production of the semiconductor wafer, it is necessary to remove this reduced precipitate by some means for use in other applications such as industrial reagents and pharmaceuticals. There is.
[0010]
In view of such problems, the present invention removes nickel in the order of 0.1 ppm eluted by caustic potash concentration and the like more efficiently and lowers it to the order of about 0.01 ppm. Therefore, it is intended to obtain caustic potash with a low nickel content that can be used without problems for electronic parts and other uses of high purity caustic potash.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the method for removing nickel in caustic potash according to the present invention is characterized in that the nickel present in the caustic potash aqueous solution is filtered from a 0.1 ppm order to an 0.01 ppm order by using a filtration device pre-coated with activated carbon. It is characterized by being reduced to a certain 0.05 ppm or less .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The method for removing nickel in caustic potash of the present invention is to filter a caustic potash aqueous solution containing nickel by a filtering device using activated carbon as a precoat agent. The activated carbon as a precoat agent is coconut shell, wood, charcoal, lignite, etc. Porous carbon having a large adsorptive capacity obtained by carbonizing can be used, and among these, coconut shell activated carbon is most preferable because it has an excellent ability to adsorb nickel.
[0013]
The filtration device to be used is not particularly limited as long as it is a filtration device pre-coated with activated carbon.
[0014]
There are no particular restrictions on the concentration of caustic potash containing nickel, the amount of activated carbon used, the flow rate or the flow rate of liquid through the filtration device. For example, about 0.1 ppm of caustic potash aqueous solution having a concentration of about 50%. For removing nickel contained in the order, it is preferable to use coconut shell activated carbon in an amount in the range of 100 to 2000 g / m 2 with respect to the filtration area of the filtration device.
[0015]
[Action]
The method for removing nickel in caustic potash of the present invention exhibits excellent filtration performance by passing a caustic potash aqueous solution containing nickel as an impurity through a filter using activated carbon, in particular, coconut shell activated carbon as a precoat agent. Nickel in an aqueous caustic potash solution can be removed in a short time, and high-purity caustic potash can be easily obtained that can be applied to the manufacture of electronic components and other uses that require high-purity caustic potash.
[0016]
【Example】
Hereinafter, the method for removing nickel in caustic potash of the present invention will be described more specifically with reference to examples.
<Example 1>
The nickel in caustic potash was removed from the 48% concentration caustic potash aqueous solution containing nickel under the following conditions using a filter.
Filtration device; Sanshin filter (filtration area 3m 2 ) (manufactured by Sanshin Seisakusho)
Activated carbon : “Hana B” dry (coconut shell activated carbon manufactured by Serakhem Co., Ltd.)
Activated carbon consumption: 500 g / m 2
Flow rate: 500 l / h (0.17 m / h)
Through volume: 2000m 3
Under the above conditions, the nickel content (unit: ppm) in the caustic potash at the inlet and outlet of the ternary filter was measured, and the results shown in Table 1 below were obtained.
[0017]
[Table 1]
[0018]
As is clear from this [Table 1], the nickel in the caustic potash aqueous solution was on the order of 0.1 ppm at the inlet of the filter, but at the outlet of the filter, it was on the order of 0.01 ppm, which is one digit lower than this. It can be seen that the nickel removal can be reduced to 0.05 ppm or less .
[0019]
【The invention's effect】
The method for removing nickel in caustic potash according to the present invention exhibits excellent filtration performance and is short by passing a caustic potash aqueous solution containing nickel as an impurity through a filtering device using activated carbon, particularly coconut shell activated carbon, as a precoat agent. The nickel in caustic potash can be removed in time.
[0020]
In particular, the method for removing nickel in caustic potash according to the present invention removes nickel in a caustic potash aqueous solution to a low level by simple processing means and low cost, and has a purity sufficient for use in the manufacture of electronic components and other applications. It is excellent in that high caustic potash can be easily obtained.

Claims (2)

活性炭をプレコートした濾過装置を用いた濾過操作により苛性カリ水溶液中に0.1ppmオーダーで存在するニッケルを0.05ppm以下に減少させること
を特徴とする苛性カリ中のニッケルの除去方法。
A method for removing nickel in caustic potash, characterized in that nickel present on the order of 0.1 ppm in a caustic potash aqueous solution is reduced to 0.05 ppm or less by a filtering operation using a filter pre-coated with activated carbon.
前記活性炭がヤシ殻活性炭であることを特徴とする請求項1に記載の苛性カリ中のニッケルの除去方法。  The method for removing nickel in caustic potash according to claim 1, wherein the activated carbon is coconut shell activated carbon.
JP37278798A 1998-12-28 1998-12-28 Removal of nickel from caustic potash Expired - Lifetime JP4096433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37278798A JP4096433B2 (en) 1998-12-28 1998-12-28 Removal of nickel from caustic potash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37278798A JP4096433B2 (en) 1998-12-28 1998-12-28 Removal of nickel from caustic potash

Publications (2)

Publication Number Publication Date
JP2000203828A JP2000203828A (en) 2000-07-25
JP4096433B2 true JP4096433B2 (en) 2008-06-04

Family

ID=18501047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37278798A Expired - Lifetime JP4096433B2 (en) 1998-12-28 1998-12-28 Removal of nickel from caustic potash

Country Status (1)

Country Link
JP (1) JP4096433B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI306837B (en) * 2004-08-06 2009-03-01 Asahi Kasei Chemicals Corp Method for purifying aqueous alkaline solution
JP2007045678A (en) * 2005-08-11 2007-02-22 Toagosei Co Ltd Vessel useful for producing high purity potassium hydroxide
JP5125509B2 (en) * 2005-08-11 2013-01-23 東亞合成株式会社 Manufacturing method of high purity caustic potash
JP5049528B2 (en) * 2006-07-31 2012-10-17 東亞合成株式会社 Method for producing high purity alkali metal hydroxide
RU2446102C1 (en) * 2010-11-01 2012-03-27 Российская Федерация, От Имени Которой Выступает Министерство Образования И Науки Российской Федерации Method of purifying potassium hydroxide solution

Also Published As

Publication number Publication date
JP2000203828A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
US5122274A (en) Method of treating fluids
US4642192A (en) Method of treating fluids
US5149437A (en) Water filter
US5269932A (en) Method of treating fluids
KR101167354B1 (en) Method of purifying aqueous alkali solution
JP4096433B2 (en) Removal of nickel from caustic potash
JP2004515431A (en) Method for removing mercury from gas
EP0185031B1 (en) Method of treating fluids
US4744825A (en) Removal and recovery of silver from waste stream
JP2007505736A5 (en)
UA80456C2 (en) Method for removing mercury from solutions contaminated with mercury
JP4297663B2 (en) Boron recovery method
JPH11235595A (en) Treatment of boron-containing waste water
JP4996172B2 (en) Method for producing high purity alkali metal hydroxide
JPH0478438A (en) Activated alumina for removing heavy metal and production of silver nitrate using the same
JP4013646B2 (en) Anion exchange resin, method for producing the same, and method for producing purified hydrogen peroxide water using the same
JPH0683789B2 (en) Sulfate ion removal method with inorganic ion exchanger
JP2008050197A (en) Method for producing high-purity alkali metal hydroxide
JP3992996B2 (en) Wastewater treatment method and apparatus
JP4116163B2 (en) Purification method
JP2500568B2 (en) Method for purifying chemical solution containing hydrofluoric acid
JP4505952B2 (en) Manufacturing method of high purity ferric chloride aqueous solution
JP2691016B2 (en) How to regenerate iron liquid
JP4393616B2 (en) Boron fixing agent and treatment method of boron-containing waste water
JP4872097B2 (en) Purification method of gallium-containing solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term