JP4297663B2 - Boron recovery method - Google Patents

Boron recovery method Download PDF

Info

Publication number
JP4297663B2
JP4297663B2 JP2002239129A JP2002239129A JP4297663B2 JP 4297663 B2 JP4297663 B2 JP 4297663B2 JP 2002239129 A JP2002239129 A JP 2002239129A JP 2002239129 A JP2002239129 A JP 2002239129A JP 4297663 B2 JP4297663 B2 JP 4297663B2
Authority
JP
Japan
Prior art keywords
boron
containing water
adsorbent
solution
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002239129A
Other languages
Japanese (ja)
Other versions
JP2004074038A (en
Inventor
学 進藤
万洋 生駒
裕之 朝田
良弘 恵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Kurita Water Industries Ltd
Original Assignee
Tohoku Electric Power Co Inc
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Kurita Water Industries Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2002239129A priority Critical patent/JP4297663B2/en
Publication of JP2004074038A publication Critical patent/JP2004074038A/en
Application granted granted Critical
Publication of JP4297663B2 publication Critical patent/JP4297663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ホウ素の回収方法に関する。さらに詳しくは、本発明は、ホウ素含有水から、利用価値の高いホウ砂又はオルトホウ酸としてホウ素を回収することができるホウ素の回収方法に関する。
【0002】
【従来の技術】
ホウ素化合物は、医薬品、化粧品、石けん、電気メッキなどの種々の用途に使用され、これらの製造工程などから発生する排水にはホウ素が含まれている。また、ごみ焼却場の洗煙排水等にもホウ素が含まれている場合がある。このようなホウ素含有水からホウ素を除去し、有価物として回収するための処理方法が開発されている。
例えば、特開昭59−132986号公報には、低濃度のホウ酸水溶液中より、選択性よく高い効率でホウ酸イオンを分離する方法として、希土類元素の水酸化物にホウ酸イオンを吸着させて分離する方法が提案されおり、希土類元素の水酸化物を担持した造粒体にホウ素を吸着させ、アルカリ水溶液を用いてホウ素を脱着するホウ素含有水の処理方法が知られている。特開昭62−121689号公報には、ホウ素含有水をアニオン交換樹脂で処理する方法において、イオン交換樹脂の再生廃液からホウ素を抽出し、再生廃液を排出することなく再利用する方法が提案されている。また、特開2001−104807号公報には、ホウ素含有水から効率的に高純度のホウ素を分離、回収する方法として、ホウ素を吸着したホウ素選択性樹脂から、鉱酸溶液を用いてホウ素を脱離して得た脱離液を、OH形弱塩基性陰イオン交換樹脂に通液してホウ素溶液と鉱酸溶液に分画する方法が提案されている。
しかし、これらの方法は、いずれも複雑な処理工程が必要であり、設備投資においても、運転管理においても、経済的負担が大きかった。本発明者らは、先にホウ素含有水を希土類元素の含水酸化物を担持した造粒体と接触させてホウ素を吸着除去し、ホウ素を吸着した該造粒体からアルカリ水溶液を用いてホウ素を脱着し、脱着液を蒸発濃縮してホウ酸のアルカリ金属塩を晶析分離することにより、少量の薬品を用いてホウ素含有水を経済的に処理し、ホウ素を有価物として回収し得るこしを見いだした。しかし、この方法により回収されるホウ素は、メタホウ酸ナトリウム(NaBO2)である。メタホウ酸ナトリウムの用途は、防錆剤、不凍液原料、複写液原料などであるが、その需要量は比較的少ない。一方、同じ元素構成からなるホウ砂(四ホウ酸ナトリウム、Na247・10H2O)やオルトホウ酸(H3BO3)はガラス原料として使用されており、市場規模と使用量が大きい。このために、ホウ素含有水からホウ素をホウ砂又はオルトホウ酸として回収することができるホウ素の回収方法が求められていた。
【0003】
【発明が解決しようとする課題】
本発明は、ホウ素含有水から、利用価値の高いホウ砂又はオルトホウ酸としてホウ素を回収することができるホウ素の回収方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、ホウ素含有水から回収されたメタホウ酸ナトリウムを水に再溶解し、酸を加えてpHを調整することにより、ホウ素をホウ砂又はオルトホウ酸として析出させ得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)ホウ素含有水をホウ素吸着体と接触させてホウ素を吸着除去し、ホウ素を吸着した吸着体をアルカリ水溶液と接触させてホウ素を脱着し、ホウ素を含有する脱着液を蒸発濃縮し、蒸発濃縮液から析出する結晶を分離し、該結晶を水に再溶解し、pHを6.5〜12に調整してホウ素化合物を析出させることを特徴とするホウ素含有水からのホウ素の回収方法、及び、
(2)複数の直列に連結した充填塔にホウ素吸着体を充填し、これにホウ素含有水を通水してホウ素吸着体と接触させてホウ素を吸着除去するに当たり、最初の充填塔が飽和したときに、最初の充填塔を系列から外し、再生済みの充填塔を直列の最終段に付け加えるメリーゴーランド方式で行う第1項記載のホウ素含有水からのホウ素の回収方法、
を提供するものである。
【0005】
【発明の実施の形態】
本発明のホウ素の回収方法においては、ホウ素含有水をホウ素吸着体と接触させてホウ素を吸着除去し、ホウ素を吸着した吸着体をアルカリ水溶液と接触させてホウ素を脱着し、ホウ素を含有する脱着液を蒸発濃縮し、蒸発濃縮液から析出した結晶を分離し、該結晶を水に再溶解し、pHを調整してホウ素化合物を析出させる。
本発明方法を適用するホウ素含有水に特に制限はなく、例えば、医薬品、化粧品、石けん、電気メッキなどの工程排水、ごみ焼却場の洗煙排水などを挙げることができる。これらの排水には、ホウ素がホウ酸又はホウ酸塩として含まれ、そのホウ素濃度は、数十ないし数百mg/Lである場合が多い。
本発明方法に用いるホウ素吸着体に特に制限はなく、例えば、アニオン交換樹脂、希土類元素の含水酸化物を担持した造粒体、N−メチルグルミン基を有するイオン交換樹脂などを挙げることができる。これらの中で、希土類元素の含水酸化物を担持した造粒体を好適に用いることができる。希土類元素の含水酸化物を担持した造粒体の製造方法に特に制限はなく、例えば、希土類元素の塩の水溶液を担体に付着させ、アルカリ水溶液で処理し、担体上に不溶性の希土類元素の含水酸化物を沈着させることにより、製造することができる。希土類元素の含水酸化物としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムの水酸化物を挙げることができる。これらの中で、セリウムの含水酸化物を特に好適に用いることができる。希土類元素の含水酸化物を担持する担体に特に制限はなく、例えば、マグネシア、アルミナ、チタニア、シリカ、シリカ−アルミナ、ジルコニア、ゼオライト、活性炭、ケイソウ土、コージェライトなどの多孔質の無機系担体、ポリアミド、セルロース系樹脂、ポリスルホン、ポリアクリロニトリル、ポリ塩化ビニル、エチレン−ビニルアルコール共重合体などの多孔質の有機系担体を挙げることができる。
【0006】
本発明方法において、ホウ素含有水をホウ素吸着体と接触させる方法に特に制限はなく、例えば、ホウ素吸着体を充填した充填塔にホウ素含有水を通水して接触させることができる。ホウ素吸着体を充填した充填塔の数に特に制限はなく、例えば、充填塔1基のみを使用することができ、あるいは、複数基の充填塔を直列につなぎ、最初の塔が飽和したとき、最初の塔を系列からはずし、再生済みの塔を最終段に付け加えるいわゆるメリーゴーラウンド方式とすることもできる。充填塔1基のみを使用する場合は、塔から流出する処理水のホウ素濃度が所定の排水基準に達したときに、脱着工程に移行する。メリーゴーラウンド方式の場合は、最初の塔の流出水のホウ素濃度が入口濃度に等しくなったとき、最初の塔を充填塔列から外して、脱着工程に移行する。
本発明方法において、ホウ素含有水は、pHを3〜12に調整してホウ素吸着体と接触させることが好ましく、pHを4〜10に調整してホウ素吸着体と接触させることがより好ましい。ホウ素含有水のpHが3未満であっても、pHが12を超えても、ともに吸着量が低下するおそれがある。
本発明方法において、ホウ素の脱着に用いるアルカリ水溶液に特に制限はなく、例えば、水酸化ナトリウム、水酸化カリウムなどの水溶液を挙げることができる。これらの中で、水酸化ナトリウム水溶液を好適に用いることができる。アルカリ水溶液の濃度に特に制限はないが、0.1〜2モル/Lであることが好ましく、0.3〜1モル/Lであることがより好ましい。アルカリ水溶液の濃度が0.1モル/L未満であると、必要なアルカリ水溶液の量が過大になるとともに、ホウ素が十分に脱着しないおそれがある。アルカリ水溶液の濃度が2モル/Lを超えても、吸着効率が向上せず、ホウ素吸着体が劣化するおそれがある。
【0007】
本発明方法において、ホウ素を吸着した吸着体と接触させるアルカリ水溶液の量に特に制限はないが、ホウ素吸着体の1〜5容量倍であることが好ましく、ホウ素吸着体の2〜4容量倍であることがより好ましい。アルカリ水溶液の量がホウ素吸着体の1容量倍未満であると、ホウ素の脱着が不十分になるおそれがある。ホウ素吸着体に吸着されたホウ素は、ホウ素吸着体の5容量倍以下のアルカリ水溶液で脱着され、通常はホウ素吸着体の5容量倍を超えるアルカリ水溶液を使用する必要はない。本発明方法によれば、通常はホウ素1〜6g/Lを含有する脱着液を得ることができる。
本発明方法において、ホウ素を含有する脱着液を蒸発濃縮する方法に特に制限はなく、例えば、常圧、減圧のいずれの条件でも蒸発濃縮することができる。常圧で脱着液を蒸発濃縮していくと、液中に溶解しているホウ酸のアルカリ金属塩や、脱着に用いたアルカリによる沸点上昇のために、液温は110〜130℃に達する。濃縮倍数に特に制限はないが、後段の晶析工程においてホウ酸のアルカリ金属塩が析出し、アルカリが析出しない範囲を適宜選定することができる。蒸発濃縮方法に特に制限はなく、例えば、単一缶、蒸気圧縮法、多重効用法、多段フラッシュ蒸発法などを挙げることができる。蒸発濃縮方法は、脱着液の量などを考慮して適宜選択することができる。
蒸発濃縮の程度に特に制限はないが、蒸発濃縮液中のホウ素濃度が30〜100g/Lであることが好ましく、40〜70g/Lであることがより好ましい。蒸発濃縮液中のホウ素濃度が30g/L未満であると、取り扱う液量が多く、析出する結晶が少なく、生産性が低下するおそれがある。蒸発濃縮液中のホウ素濃度が100g/Lを超えると、晶析装置以外の箇所で結晶が析出して、作業性が低下するおそれがある。蒸発濃縮液を冷却することにより、結晶が析出する。本発明方法において、水酸化ナトリウム水溶液を用いてホウ素を脱着したとき、蒸発濃縮液から析出する結晶は、主としてメタホウ酸ナトリウム(NaBO2)である。
【0008】
本発明方法においては、蒸発濃縮液から析出した主としてメタホウ酸塩からなる結晶を水に再溶解する。結晶を再溶解する方法に特に制限はないが、撹拌機を有する溶解槽に結晶を供給し、結晶の全量が溶解するに必要な量の水を加えて常温で撹拌し、常温の水に飽和状態になるまで溶解することが好ましい。結晶を飽和状態になるまで溶解した溶液は、温度20〜30℃において通常はpHが13以上であり、ホウ素を20〜40g/L溶解している。この溶液に、酸を添加してpHを調整することにより、ホウ素化合物を析出させる。
図1は、pHとホウ素の溶解度の関係を示すグラフである。図1に示すように、pH6.5〜12の領域とpH5以下の領域において、ホウ素の溶解度が小さいので、蒸発濃縮液から析出した結晶を溶解した溶液のpHをこのいずれかの領域に調整することにより、ホウ素化合物を析出させ、回収することができる。結晶の溶解と同時に酸を添加してpH調整することができ、あるいは、結晶を溶解したのちに酸を添加してpH調整することもできる。
調整するpHの値は、6.5〜12又は5以下であることが好ましく、8〜10又は3〜4.5であることがより好ましい。析出するホウ素化合物は、pH6.5〜12の領域においてはホウ砂(四ホウ酸ナトリウム、Na247・10H2O)であり、pH5以下の領域においてはオルトホウ酸(H3BO3)である。したがって、ホウ砂又はオルトホウ酸の需要に応じて、いずれのホウ素化合物を析出させるかを選択することができる。一般的に言えば、pH6.5〜12の領域の方が、pH調整に必要な酸の量が少なく、かつホウ素の溶解度が小さく、ホウ素の回収量を大きくすることができるので有利である。
本発明において、メタホウ酸塩を溶解した溶液のpHの調整に用いる酸に特に制限はなく、例えば、塩酸、硫酸、硝酸などの鉱酸や、炭酸ガスなどを挙げることができる。これらの中で、塩酸は、pH調整の際に発生する塩化ナトリウムの40℃以下における溶解度が、硫酸ナトリウムの40℃以下における溶解度よりも大きく、ホウ素化合物の不純物となりにくいので、好適に用いることができる。
本発明において、メタホウ酸ナトリウム溶液のpH調整により析出したホウ砂又はオルトホウ酸は、冷水で洗浄して純度を高めることができ、必要に応じて、熱水に溶解したのち冷却して再結晶することにより、さらに純度を高め、各種産業分野で有効に利用することができる。
【0009】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
0.5モル/L水酸化ナトリウム水溶液5Lにホウ酸85.8gを溶解し、ホウ素濃度3.0g/Lの試験水を調製した。
この試験水を15倍に濃縮し、濃縮液20mLに35重量%塩酸を加えてpHを1.0に調整し、25℃において析出した結晶をろ別して、ろ液のホウ素濃度を測定したところ、12.3g/Lであった。
調整するpHの値を、5.3、5.9、7.0、7.5、8.8、9.8、11.0、11.7、12.1、13.0、13.5又は14.0にして、同様にしてろ液のホウ素濃度を測定した。
実施例1の結果を、第1表に示す。
【0010】
【表1】

Figure 0004297663
【0011】
第1表に見られるように、pH5以下又はpH6.5〜12の領域において、ろ液のホウ素濃度すなわちホウ素の溶解度が小さく、このpH領域でホウ素を回収することにより、ホウ素の回収率を高め得ることが分かる。
実施例2
硫酸イオン1,000mg/L、塩化物イオン1,000mg/L、カルシウムイオン300mg/L、ナトリウムイオン400mg/L、マグネシウムイオン200mg/Lを含有する合成水に、ホウ酸を添加してホウ素濃度200mg/Lの試験水を調製した。この試験水60Lに、水酸化ナトリウム水溶液を加えてpHを7に調整し、セリウムの含水酸化物を多孔質担体に担持させた造粒体1Lを充填したガラスカラムに、流速3L/hで下向で流通水した。この造粒体を、0.5モル/L水酸化ナトリウム水溶液3Lを用いて脱着し、ホウ素濃度2,500mg/Lの脱着液を得た。この脱着液3Lを、20倍に蒸発濃縮した。
得られた蒸発濃縮液150mLをガラスビーカーに取り、30℃まで冷却し、1時間撹拌したのち、ろ過した。その結果、乾燥重量として41gの結晶が得られた。なお、ろ液はホウ素濃度22g/Lであった。結晶は、メタホウ酸ナトリウムであった。
ろ過により含水率が20重量%となったこの結晶を、結晶溶解度が飽和になるように水に溶解した。得られた溶液のホウ素濃度は32.4g/Lであり、pHは13.95であった。
この溶液20mLをガラスビーカーに取り、35重量%塩酸を添加してpHを1.1に調整した。35重量%塩酸の添加量は、3.00gであった。析出した結晶をろ別して乾燥すると、オルトホウ酸2.78gが得られた。
調整するpHの値を、2.8、4.8、5.6又は6.2にして、同様な操作を繰り返した。析出した結晶は、すべてオルトホウ酸であった。
上記の溶液20mLをガラスビーカーに取り、35重量%塩酸を添加してpHを6.5に調整した。35重量%塩酸の添加量は、2.20gであった。析出した結晶をろ別して乾燥すると、ホウ砂2.46g/Lが得られた。
調整するpHの値を、8.0、9.35、10.9、11.7又は12.0にして、同様な操作を繰り返した。析出した結晶は、すべてホウ砂であった。
実施例2の結果を、まとめて第2表に示す。
【0012】
【表2】
Figure 0004297663
【0013】
第2表に見られるように、pH6.2以下ではホウ素はオルトホウ酸として回収され、pH6.5以上ではホウ素はホウ砂として回収される。また、pHが5以下の場合と、pH6.5〜12の場合に、ホウ素の回収率が高い。
【0014】
【発明の効果】
本発明のホウ素の回収方法によれば、ホウ素含有水を処理し、ホウ素を需要量の多いホウ砂又はオルトホウ酸として回収することができ、かつ、需要に応じて、ホウ砂又はオルトホウ酸のいずれかを選択して製造することができる。
【図面の簡単な説明】
【図1】図1は、pHとホウ素の溶解度の関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recovering boron. More specifically, the present invention relates to a boron recovery method capable of recovering boron from boron-containing water as borax or orthoboric acid having high utility value.
[0002]
[Prior art]
Boron compounds are used in various applications such as pharmaceuticals, cosmetics, soaps, electroplating, etc., and wastewater generated from these production processes contains boron. In addition, there are cases where boron is also contained in the wastewater from the waste incineration plant. A treatment method for removing boron from such boron-containing water and recovering it as a valuable material has been developed.
For example, JP-A-59-132986 discloses that a borate ion is adsorbed on a rare earth element hydroxide as a method for separating borate ions with high selectivity and efficiency from a low concentration boric acid aqueous solution. A method for treating boron-containing water is known, in which boron is adsorbed to a granule carrying a rare earth element hydroxide and boron is desorbed using an aqueous alkaline solution. JP-A-62-121689 proposes a method of treating boron-containing water with an anion exchange resin, extracting boron from the regeneration waste liquid of the ion exchange resin, and reusing it without discharging the regeneration waste liquid. ing. Japanese Patent Laid-Open No. 2001-104807 discloses, as a method for efficiently separating and recovering high purity boron from boron-containing water, boron is desorbed from a boron selective resin adsorbing boron using a mineral acid solution. There has been proposed a method in which a separation liquid obtained by separation is passed through an OH-type weakly basic anion exchange resin and fractionated into a boron solution and a mineral acid solution.
However, all of these methods require complicated processing steps, and both the capital investment and the operation management are economically burdensome. The present inventors previously contacted boron-containing water with a granule carrying a rare earth element-containing oxide to adsorb and remove boron, and boron was adsorbed from the granule adsorbed with boron using an aqueous alkaline solution. By decontaminating and evaporating and concentrating the desorbed liquid to crystallize and separate the alkali metal salt of boric acid, the boron-containing water can be economically treated with a small amount of chemicals, and boron can be recovered as a valuable resource. I found it. However, the boron recovered by this method is sodium metaborate (NaBO 2 ). Sodium metaborate is used for rust inhibitors, antifreeze liquid raw materials, copy liquid raw materials, and the like, but the demand is relatively small. On the other hand, borax (sodium tetraborate, Na 2 B 4 O 7 .10H 2 O) and orthoboric acid (H 3 BO 3 ), which have the same elemental composition, are used as raw materials for glass. large. Therefore, there has been a demand for a boron recovery method that can recover boron from boron-containing water as borax or orthoboric acid.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for recovering boron, which can recover boron from boron-containing water as borax or orthoboric acid having high utility value.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have dissolved boron metaborate recovered from boron-containing water in water and added acid to adjust the pH, thereby adjusting boron. It has been found that it can be precipitated as borax or orthoboric acid, and the present invention has been completed based on this finding.
That is, the present invention
(1) Bring boron-containing water into contact with a boron adsorbent to adsorb and remove boron, contact the adsorbent that has adsorbed boron with an alkaline aqueous solution to desorb boron, evaporate and concentrate the desorbed liquid containing boron, and evaporate Separating a crystal precipitated from the concentrate, re-dissolving the crystal in water, adjusting the pH to 6.5 to 12 to precipitate a boron compound, and a method for recovering boron from boron-containing water, as well as,
(2) When a plurality of packed columns connected in series are filled with a boron adsorbent, and boron-containing water is passed through it and brought into contact with the boron adsorbent, the first packed column is saturated. 2. The method for recovering boron from boron-containing water according to claim 1, wherein the first packed tower is removed from the series and the regenerated packed tower is added to the final stage in series in a merry-go-round system .
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the method for recovering boron according to the present invention, boron-containing water is brought into contact with a boron adsorbent to adsorb and remove boron. The liquid is concentrated by evaporation, and the precipitated crystals are separated from the evaporated concentrated liquid. The crystals are redissolved in water, and the pH is adjusted to precipitate the boron compound.
The boron-containing water to which the method of the present invention is applied is not particularly limited, and examples thereof include process wastewater such as pharmaceuticals, cosmetics, soap, and electroplating, and smoke washing wastewater from a garbage incinerator. These wastewaters contain boron as boric acid or borate, and the boron concentration is often several tens to several hundreds mg / L.
Particularly limited to the boron adsorber used in the present invention method is not, for example, can be exemplified anion exchange resins, granulated compound carrying hydrous oxide of a rare earth element, such as an ion-exchange resin having a N- Mechiruguru data Min based on . Among these, a granule carrying a rare earth element hydrated oxide can be suitably used. There is no particular limitation on the method for producing the granule carrying a rare earth element hydrated oxide. For example, an aqueous solution of a rare earth element salt is attached to a support and treated with an alkaline aqueous solution. It can be produced by depositing an oxide. Examples of rare earth element hydrous oxides include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. it can. Of these, cerium-containing hydrated oxide can be particularly preferably used. There is no particular limitation on the carrier supporting the hydrated oxide of the rare earth element, for example, a porous inorganic carrier such as magnesia, alumina, titania, silica, silica-alumina, zirconia, zeolite, activated carbon, diatomaceous earth, cordierite, Examples thereof include porous organic carriers such as polyamide, cellulose resin, polysulfone, polyacrylonitrile, polyvinyl chloride, and ethylene-vinyl alcohol copolymer.
[0006]
In the method of the present invention, the method for bringing the boron-containing water into contact with the boron adsorbent is not particularly limited. For example, the boron-containing water can be brought into contact with the packed tower packed with the boron adsorbent. There is no particular limitation on the number of packed columns packed with boron adsorbent, for example, only one packed column can be used, or when a plurality of packed columns are connected in series and the first column is saturated, A so-called merry-go-round system in which the first tower is removed from the line and the regenerated tower is added to the final stage can be employed. When only one packed tower is used, the process proceeds to the desorption process when the boron concentration of the treated water flowing out of the tower reaches a predetermined drainage standard. In the case of the merry-go-round method, when the boron concentration of the effluent of the first column becomes equal to the inlet concentration, the first column is removed from the packed column and the process proceeds to the desorption process.
In the method of the present invention, the boron-containing water is preferably brought into contact with the boron adsorbent after adjusting the pH to 3 to 12, and more preferably adjusted to pH 4 to 10 and brought into contact with the boron adsorbent. Even if the pH of the boron-containing water is less than 3 or the pH exceeds 12, there is a possibility that the amount of adsorption decreases.
In the method of the present invention, the alkaline aqueous solution used for boron desorption is not particularly limited, and examples thereof include aqueous solutions of sodium hydroxide and potassium hydroxide. Among these, an aqueous sodium hydroxide solution can be suitably used. Although there is no restriction | limiting in particular in the density | concentration of aqueous alkali solution, it is preferable that it is 0.1-2 mol / L, and it is more preferable that it is 0.3-1 mol / L. If the concentration of the aqueous alkaline solution is less than 0.1 mol / L, the amount of the required aqueous alkaline solution becomes excessive, and boron may not be sufficiently desorbed. Even if the concentration of the alkaline aqueous solution exceeds 2 mol / L, the adsorption efficiency may not be improved, and the boron adsorbent may be deteriorated.
[0007]
In the method of the present invention, the amount of the alkaline aqueous solution brought into contact with the adsorbent adsorbing boron is not particularly limited, but is preferably 1 to 5 times the volume of the boron adsorbent, and 2 to 4 times the volume of the boron adsorbent. More preferably. If the amount of the alkaline aqueous solution is less than 1 volume of the boron adsorbent, there is a risk that the desorption of boron will be insufficient. Boron adsorbed on the boron adsorbent is desorbed with an alkaline aqueous solution not more than 5 times the volume of the boron adsorbent, and normally it is not necessary to use an alkaline aqueous solution exceeding 5 volumes of the boron adsorbent. According to the method of the present invention, a desorption liquid usually containing 1 to 6 g / L of boron can be obtained.
In the method of the present invention, the method for evaporating and concentrating the boron-containing desorption liquid is not particularly limited, and for example, it can be evaporated and concentrated under any conditions of normal pressure and reduced pressure. When the desorption liquid is evaporated and concentrated at normal pressure, the liquid temperature reaches 110 to 130 ° C. due to an increase in boiling point due to the alkali metal salt of boric acid dissolved in the liquid and the alkali used for desorption. Although there is no restriction | limiting in particular in a concentration multiplication factor, The range which the alkali metal salt of boric acid precipitates and an alkali does not precipitate can be selected suitably in the latter crystallization process. There is no restriction | limiting in particular in an evaporation concentration method, For example, a single can, a vapor compression method, a multiple effect method, a multistage flash evaporation method etc. can be mentioned. The evaporation concentration method can be appropriately selected in consideration of the amount of the desorption liquid.
Although there is no restriction | limiting in particular in the grade of evaporation concentration, It is preferable that the boron concentration in an evaporation concentrate is 30-100 g / L, and it is more preferable that it is 40-70 g / L. If the concentration of boron in the evaporated concentrated liquid is less than 30 g / L, the amount of liquid to be handled is large, there are few crystals to precipitate, and productivity may be reduced. If the boron concentration in the evaporated concentrate exceeds 100 g / L, crystals may be deposited at places other than the crystallizer and workability may be reduced. Crystals are deposited by cooling the evaporated concentrate. In the method of the present invention, when boron is desorbed using an aqueous sodium hydroxide solution, crystals precipitated from the evaporated concentrate are mainly sodium metaborate (NaBO 2 ).
[0008]
In the method of the present invention, crystals mainly composed of metaborate precipitated from the evaporated concentrate are redissolved in water. There is no particular limitation on the method for re-dissolving the crystal, but the crystal is supplied to a dissolution tank having a stirrer, and the amount of water necessary to dissolve the entire amount of the crystal is added and stirred at room temperature. It is preferable to dissolve until it reaches a state. The solution in which the crystals are dissolved until saturated is usually at pH 13 or higher at a temperature of 20 to 30 ° C., and 20 to 40 g / L of boron is dissolved. The boron compound is precipitated by adding an acid to this solution and adjusting the pH.
FIG. 1 is a graph showing the relationship between pH and boron solubility. As shown in FIG. 1, since the solubility of boron is small in the region of pH 6.5 to 12 and the region of pH 5 or less, the pH of the solution in which the crystals precipitated from the evaporated concentrated solution are dissolved is adjusted to any one of these regions. As a result, the boron compound can be deposited and recovered. The pH can be adjusted by adding an acid simultaneously with the dissolution of the crystals, or the pH can be adjusted by adding an acid after dissolving the crystals.
The pH value to be adjusted is preferably 6.5 to 12 or 5 or less, and more preferably 8 to 10 or 3 to 4.5. The boron compound to be precipitated is borax (sodium tetraborate, Na 2 B 4 O 7 .10H 2 O) in the region of pH 6.5 to 12, and orthoboric acid (H 3 BO 3 ) in the region of pH 5 or lower. ). Therefore, depending on the demand for borax or orthoboric acid, it is possible to select which boron compound is deposited. Generally speaking, the pH range of 6.5 to 12 is advantageous because the amount of acid required for pH adjustment is small, the solubility of boron is small, and the recovery amount of boron can be increased.
In the present invention, the acid used for adjusting the pH of the solution in which the metaborate is dissolved is not particularly limited, and examples thereof include mineral acids such as hydrochloric acid, sulfuric acid, and nitric acid, and carbon dioxide gas. Among these, hydrochloric acid is preferably used because the solubility of sodium chloride generated at the time of pH adjustment at 40 ° C. or less is larger than the solubility of sodium sulfate at 40 ° C. or less, and is less likely to be an impurity of a boron compound. it can.
In the present invention, borax or orthoboric acid precipitated by adjusting the pH of the sodium metaborate solution can be purified by washing with cold water, and if necessary, it is dissolved in hot water and then cooled and recrystallized. As a result, the purity can be further increased and it can be effectively used in various industrial fields.
[0009]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
Boric acid (85.8 g) was dissolved in 5 mol / L sodium hydroxide aqueous solution (5 L) to prepare test water having a boron concentration of 3.0 g / L.
The test water was concentrated 15 times, pH was adjusted to 1.0 by adding 35% by weight hydrochloric acid to 20 mL of the concentrated solution, the crystals precipitated at 25 ° C. were filtered, and the boron concentration of the filtrate was measured. It was 12.3 g / L.
The pH value to be adjusted is 5.3, 5.9, 7.0, 7.5, 8.8, 9.8, 11.0, 11.7, 12.1, 13.0, 13.5. Alternatively, the boron concentration of the filtrate was measured in the same manner at 14.0.
The results of Example 1 are shown in Table 1.
[0010]
[Table 1]
Figure 0004297663
[0011]
As can be seen in Table 1, the boron concentration of the filtrate, ie, the boron solubility, is low at pH 5 or lower or pH 6.5-12, and the boron recovery rate is increased by recovering boron in this pH region. I know you get.
Example 2
Boric acid is added to synthetic water containing 1,000 mg / L of sulfate ion, 1,000 mg / L of chloride ion, 300 mg / L of calcium ion, 400 mg / L of sodium ion and 200 mg / L of magnesium ion, and boron concentration is 200 mg. / L test water was prepared. To 60 L of this test water, an aqueous sodium hydroxide solution was added to adjust the pH to 7, and a glass column filled with 1 L of granulated material in which a cerium hydrated oxide was supported on a porous carrier was loaded at a flow rate of 3 L / h. Circulated in the direction. This granulated body was desorbed using 3 L of 0.5 mol / L sodium hydroxide aqueous solution to obtain a desorption liquid having a boron concentration of 2500 mg / L. 3 L of this desorption liquid was concentrated by evaporation 20 times.
150 mL of the obtained evaporated concentrated solution was taken in a glass beaker, cooled to 30 ° C., stirred for 1 hour, and then filtered. As a result, 41 g of crystals were obtained as a dry weight. The filtrate had a boron concentration of 22 g / L. The crystals were sodium metaborate.
The crystals having a water content of 20% by weight by filtration were dissolved in water so that the crystal solubility was saturated. The resulting solution had a boron concentration of 32.4 g / L and a pH of 13.95.
20 mL of this solution was taken in a glass beaker, and 35 wt% hydrochloric acid was added to adjust the pH to 1.1. The addition amount of 35% by weight hydrochloric acid was 3.00 g. The precipitated crystals were collected by filtration and dried to obtain 2.78 g of orthoboric acid.
The same operation was repeated with the pH value to be adjusted set to 2.8, 4.8, 5.6 or 6.2. The precipitated crystals were all orthoboric acid.
20 mL of the above solution was placed in a glass beaker, and 35 wt% hydrochloric acid was added to adjust the pH to 6.5. The addition amount of 35% by weight hydrochloric acid was 2.20 g. The precipitated crystals were separated by filtration and dried to obtain 2.46 g / L of borax.
The pH was adjusted to 8.0, 9.35, 10.9, 11.7 or 12.0, and the same operation was repeated. The precipitated crystals were all borax.
The results of Example 2 are shown together in Table 2.
[0012]
[Table 2]
Figure 0004297663
[0013]
As seen in Table 2, boron is recovered as orthoboric acid at pH 6.2 or lower, and boron is recovered as borax at pH 6.5 or higher. Moreover, the recovery rate of boron is high when the pH is 5 or less and when the pH is 6.5 to 12.
[0014]
【The invention's effect】
According to the boron recovery method of the present invention, boron-containing water can be treated, and boron can be recovered as borax or orthoboric acid having a large amount of demand, and depending on demand, either borax or orthoboric acid can be recovered. Can be selected and manufactured.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between pH and solubility of boron.

Claims (2)

ホウ素含有水をホウ素吸着体と接触させてホウ素を吸着除去し、ホウ素を吸着した吸着体をアルカリ水溶液と接触させてホウ素を脱着し、ホウ素を含有する脱着液を蒸発濃縮し、蒸発濃縮液から析出する結晶を分離し、該結晶を水に再溶解し、pHを6.5〜12に調整してホウ素化合物を析出させることを特徴とするホウ素含有水からのホウ素の回収方法。The boron-containing water is brought into contact with the boron adsorbent to adsorb and remove boron, the boron-adsorbed adsorbent is brought into contact with an alkaline aqueous solution to desorb boron, and the boron-containing desorbed solution is evaporated and concentrated. A method for recovering boron from boron-containing water, comprising separating precipitated crystals, re-dissolving the crystals in water, and adjusting the pH to 6.5 to 12 to precipitate a boron compound. 複数の直列に連結した充填塔にホウ素吸着体を充填し、これにホウ素含有水を通水してホウ素吸着体と接触させてホウ素を吸着除去するに当たり、最初の充填塔が飽和したときに、最初の充填塔を系列から外し、再生済みの充填塔を直列の最終段に付け加えるメリーゴーランド方式で行う請求項1記載のホウ素含有水からのホウ素の回収方法。 When the boron adsorbent is packed in a plurality of packed towers connected in series, and boron is adsorbed and removed by passing the boron-containing water through the boron-containing water, when the first packed tower is saturated, The method for recovering boron from boron-containing water according to claim 1, wherein the first packed tower is removed from the series, and the regenerated packed tower is added to the final stage in series by a merry-go-round system .
JP2002239129A 2002-08-20 2002-08-20 Boron recovery method Expired - Fee Related JP4297663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002239129A JP4297663B2 (en) 2002-08-20 2002-08-20 Boron recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002239129A JP4297663B2 (en) 2002-08-20 2002-08-20 Boron recovery method

Publications (2)

Publication Number Publication Date
JP2004074038A JP2004074038A (en) 2004-03-11
JP4297663B2 true JP4297663B2 (en) 2009-07-15

Family

ID=32022313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002239129A Expired - Fee Related JP4297663B2 (en) 2002-08-20 2002-08-20 Boron recovery method

Country Status (1)

Country Link
JP (1) JP4297663B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674168B2 (en) * 2005-01-28 2011-04-20 日宝化学株式会社 Wastewater treatment method
TWI383958B (en) * 2005-01-28 2013-02-01 Nippoh Chemicals Wastewater treatment methods
JP5062973B2 (en) * 2005-06-14 2012-10-31 旭化成ケミカルズ株式会社 Water treatment apparatus and method
JP6131450B2 (en) * 2013-04-23 2017-05-24 株式会社化研 Method for purifying radioactive polluted water or factory effluent and method for forming cerium oxide-supported activated carbon used in radioactive polluted water or factory effluent purifying method
JP6337708B2 (en) * 2014-09-12 2018-06-06 住友金属鉱山株式会社 Method for separating nickel from nickel sludge
CN114682244B (en) * 2022-06-01 2022-08-23 浙江晟格生物科技有限公司 Recovery method of lactose isomerization composite catalyst
CN116177557A (en) * 2023-01-13 2023-05-30 格尔木藏格锂业有限公司 Method for preparing borax from wastewater containing boron discharged from electrodialysis process section

Also Published As

Publication number Publication date
JP2004074038A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP6681975B2 (en) Process for recovering lithium valuables from lithium-containing brine
JP5157941B2 (en) Method for treating boron-containing water
ES2379423B1 (en) METHOD FOR PURIFYING LITHIUM BICARBONATE.
JP7165344B2 (en) Method and apparatus for treating polarizing plate manufacturing waste liquid
JP4297663B2 (en) Boron recovery method
JP3995550B2 (en) Method and apparatus for treating boron-containing water
JP2008073639A (en) Boron recovery apparatus
JP3995554B2 (en) Method for treating boron-containing water
JP2008029989A (en) Method for separating and recovering boron form boron-containing water
CN102849756A (en) Device and method for nitre extraction of sodium sulfate type bittern
JP4618937B2 (en) How to remove phosphorus from wastewater.
JP3319053B2 (en) Treatment method for fluoride-containing water
JPS60106532A (en) Regeneration of adsorbent for boron trichloride
JP3913939B2 (en) Boron recovery method
CN101928048B (en) Method for purifying humic acid pollutants in water by utilizing polyaniline
JP2004298738A (en) Boron-containing water treatment method
JPS61192385A (en) Treatment of fluorine-containing waste solution
JP4617476B2 (en) Method for removing potassium ions
JPH0143594B2 (en)
JP4143707B2 (en) Method for producing high purity sodium chloride crystals
JP2005334701A (en) Boron-containing water treatment method
JPH11169864A (en) Treatment of boron-containing water
JP3891189B2 (en) Method for treating boron-containing water
JP2001079564A (en) Treatment of boron-containing water
JPH0150476B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090319

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090414

R150 Certificate of patent or registration of utility model

Ref document number: 4297663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees