JP2005334701A - Boron-containing water treatment method - Google Patents

Boron-containing water treatment method Download PDF

Info

Publication number
JP2005334701A
JP2005334701A JP2004153416A JP2004153416A JP2005334701A JP 2005334701 A JP2005334701 A JP 2005334701A JP 2004153416 A JP2004153416 A JP 2004153416A JP 2004153416 A JP2004153416 A JP 2004153416A JP 2005334701 A JP2005334701 A JP 2005334701A
Authority
JP
Japan
Prior art keywords
boron
concentration
containing water
regenerated
effluent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004153416A
Other languages
Japanese (ja)
Inventor
Hiroyuki Asada
裕之 朝田
Yasuhiko Takabayashi
泰彦 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004153416A priority Critical patent/JP2005334701A/en
Publication of JP2005334701A publication Critical patent/JP2005334701A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boron-containing water treatment method for recovering boron by evaporation and concentration of recycled drainage obtained by adsorbing and removing boron in boron-containing water and desorbing the boron, which can recover boron economically by fractionating and collecting high boron concentration recycled drainage, and reducing the evaporation and concentration volume of the drainage. <P>SOLUTION: In the boron-containing water treatment method for recovering boron by evaporating and concentrating the recycled drainage which is obtained by adsorbing and removing the boron in the boron-containing water by using a granular material where a hydrous oxide of a rare earth element is carried by a porous carrier, and desorbing the boron from the granulated material by an alkali aqueous solution, the concentration of the boron in the recycled drainage is decided from the electric conductivity or pH of the recycled drainage to fractionate and collect the high boron concentration recycled drainage. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ホウ素含有水の処理方法に関する。さらに詳しくは、本発明は、ホウ素含有水からホウ素を吸着除去し、ホウ素を脱着して得られる再生排液の蒸発濃縮によりホウ素を回収するホウ素含有水の処理方法において、ホウ素濃度の高い再生排液を分画採取し、排液の蒸発濃縮量を減少して、経済的にホウ素を回収することができるホウ素含有水の処理方法に関する。   The present invention relates to a method for treating boron-containing water. More specifically, the present invention relates to a method for treating boron-containing water in which boron is adsorbed and removed from boron-containing water and boron is recovered by evaporating and concentrating the regenerated waste liquid obtained by desorbing boron. The present invention relates to a method for treating boron-containing water, which can fractionate and collect the liquid, reduce the evaporation and concentration of the effluent, and recover the boron economically.

ホウ素化合物は、ガラス、陶器、ほうろう、断熱材、電気メッキ、半導体材料、医薬品、化粧品などのさまざまな用途に使用され、これらの製造工程などから発生する排水にはホウ素が含まれている。また、火力発電所排煙脱硫排水、地熱発電排水、ごみ焼却場洗煙排水、埋立処分場浸出排水などにもホウ素が含まれる場合がある。排水中のホウ素により人の健康にかかわる被害が生ずるおそれがあり、過剰のホウ素は水稲や甜菜の生育を阻害するおそれがあるために、水質汚濁防止法施行令の一部が改正され、平成13年7月からホウ素及びその化合物の排水基準が、陸水域10mg/L、海水域230mg/Lに定められた。また、半導体製造工場の洗浄用水には、ホウ素濃度がppbレベル以下の超純水が要求されている。さらに、ホウ素の原料のほとんど全量を輸入に依存している現状を考慮すると、排水中のホウ素の捕集は、有害物質除去と有用物質の再利用の両面から重要である。このために、ホウ素含有水からホウ素を吸着除去し、次いで脱着することにより、ホウ素を回収するためのさまざまな試みがなされている。   Boron compounds are used in various applications such as glass, ceramics, enamels, heat insulating materials, electroplating, semiconductor materials, pharmaceuticals, and cosmetics, and wastewater generated from these manufacturing processes contains boron. Boron may also be contained in thermal power plant flue gas desulfurization effluent, geothermal power effluent, waste incineration smoke effluent, landfill disposal leachate, and the like. Since boron in wastewater may cause damage to human health and excessive boron may inhibit the growth of paddy rice and sugar beet, part of the Enforcement Ordinance for Water Pollution Prevention Law was revised. Since July 2015, the drainage standards for boron and its compounds have been set at 10 mg / L for inland waters and 230 mg / L for seawater. In addition, ultrapure water having a boron concentration of ppb or less is required for cleaning water in a semiconductor manufacturing factory. Furthermore, considering the current situation that almost all of the raw material of boron is dependent on imports, the collection of boron in wastewater is important in terms of both removal of harmful substances and reuse of useful substances. For this purpose, various attempts have been made to recover boron by adsorbing and removing boron from boron-containing water and then desorbing it.

例えば、ホウ素含有排水から効率的に高純度のホウ素を分離、回収する方法として、ホウ素を吸着したホウ素選択性樹脂から溶離液として鉱酸溶液を用いて吸着したホウ素を脱離させて得た脱離液を、OH型弱塩基性陰イオン交換樹脂に通液してホウ素溶液と鉱酸溶液とに分画する方法が提案されている(特許文献1)。イオン交換樹脂又はホウ素選択吸着樹脂に吸着するホウ素を酸を通液して再生した酸根を含むホウ素溶離液を処理して高純度のホウ酸溶液を得る方法として、酸根を含むホウ素溶離液をH型に調整した強酸性陽イオン交換樹脂及びOH型に調整した陰イオン交換樹脂を混合して充填したイオン交換塔に通液する方法が提案されている(特許文献2)。工程が簡単で、設備費も安く、高純度のホウ素溶液を得るための酸根を有するホウ素溶離液の精製方法として、OH型に調整した陰イオン交換樹脂を充填し、直列に連通した少なくとも二塔のイオン交換塔と、イオン交換塔内のイオン交換樹脂を脱液状態にする工程と、脱液状態のイオン交換塔に酸根を含むホウ素溶離液を通液させて酸根を除去する方法が提案されている(特許文献3)。酸根を含むホウ素含有水を処理して高純度のホウ素含有水を回収する場合に、強酸性陽イオン交換樹脂を充填したイオン交換塔の寿命が短くなるという問題を解決する方法として、酸根を含むホウ素含有液を、OH型陰イオン交換樹脂を充填した陰イオン交換塔に通液し、次いでH型に調整した強酸性陽イオン交換樹脂を充填した陽イオン交換塔に通液する方法が提案されている(特許文献4)。ホウ素を含む排水を処理して得られたN−メチルグルカミン基を有するホウ素選択吸着樹脂に鉱酸を通液してホウ素溶離液を回収する際に生ずる夾雑物混入の問題を解決し、後続工程に純度の高いホウ素溶離液を供給できる手段として、回収を行う期間を少なくとも2以上に分割し、夾雑物の少ない期間の溶離液のみをホウ素回収用溶液とする方法が提案されている(特許文献5)。   For example, as a method for efficiently separating and recovering high-purity boron from boron-containing wastewater, desorption obtained by desorbing boron adsorbed using a mineral acid solution as an eluent from a boron-selective resin that has adsorbed boron. A method has been proposed in which the separated liquid is passed through an OH type weakly basic anion exchange resin and fractionated into a boron solution and a mineral acid solution (Patent Document 1). As a method for obtaining a high-purity boric acid solution by treating a boron eluent containing an acid radical obtained by regenerating boron adsorbed on an ion exchange resin or a boron selective adsorption resin by passing an acid, the boron eluent containing an acid radical is H A method has been proposed in which a strongly acidic cation exchange resin adjusted to a mold and an anion exchange resin adjusted to an OH type are mixed and passed through an ion exchange tower packed (Patent Document 2). At least two towers filled with an anion exchange resin adjusted to OH type and communicated in series as a purification method of boron eluent having an acid radical to obtain a high purity boron solution with simple process and low equipment cost The ion exchange tower, the step of desorbing the ion exchange resin in the ion exchange tower, and the method of removing the acid radicals by passing the boron eluent containing acid radicals through the deionized ion exchange tower are proposed. (Patent Document 3). As a method for solving the problem of shortening the life of an ion exchange column filled with a strongly acidic cation exchange resin when treating boron-containing water containing acid radicals to recover high purity boron-containing water, acid radicals are included. A method is proposed in which a boron-containing liquid is passed through an anion exchange column packed with an OH type anion exchange resin and then passed through a cation exchange column packed with a strongly acidic cation exchange resin adjusted to an H type. (Patent Document 4). Solves the problem of contamination that occurs when the boron eluate is recovered by passing a mineral acid through a boron selective adsorption resin having N-methylglucamine groups obtained by treating wastewater containing boron. As a means for supplying a high-purity boron eluent to the process, a method has been proposed in which the recovery period is divided into at least two and only the eluent in a period with less impurities is used as a boron recovery solution (patent) Reference 5).

本発明者らは、薬品使用量が少なく、ホウ素含有水を経済的に処理することができ、ホウ素を有価物として回収し得るホウ素含有水の処理方法として、(A)ホウ素含有水を希土類元素の水酸化物を担持した造粒体と接触させて、ホウ素を吸着除去する吸着工程、(B)ホウ素を吸着した該造粒体をアルカリ水溶液と接触させてホウ素を脱着する脱着工程、(C)ホウ素を高濃度に含有する脱着液を蒸発濃縮する蒸発工程、(D)蒸発濃縮液中のホウ酸のアルカリ金属塩を晶析する晶析工程、及び、(E)晶析したホウ酸のアルカリ金属塩を液から分離する固液分離工程を有するホウ素含有水の処理方法を提案した(特許文献6)。この方法によれば、再生排液のホウ素濃度の高い部分のみを採取し、蒸発装置への供給液量を少なくすることが経済的に有利である。一方、樹脂塔のヘッドスペースの大きさなどの形状から、再生後どの程度通液した時点で、高濃度のホウ素が脱着してくるかは一律には決められない。また、樹脂再生排液を循環再利用すると、再生剤のアルカリ濃度は多少変動するために、高濃度のホウ素が脱着してくるタイミングが変動する。そのために、再生排液中のホウ素濃度を判定して、ホウ素濃度の高い再生排液のみを効率的に分画採取し得る手段が求められていた。
特開2001−104807号公報(第2頁) 特開2001−335314号公報(第2−3頁) 特開2001−335315号公報(第2−3頁) 特開2003−10845号公報(第2頁) 特開2002−233864号公報(第2頁) 特開2004−50069号公報(第2頁)
As a method for treating boron-containing water, the amount of chemical use is small, boron-containing water can be economically treated, and boron can be recovered as a valuable material. (B) a desorption step in which boron is adsorbed and removed by contact with an aqueous solution of alkali, and (B) a desorption step in which boron is adsorbed and removed by contacting with an alkaline aqueous solution. E) an evaporation step for evaporating and concentrating a desorption solution containing boron at a high concentration; (D) a crystallization step for crystallizing an alkali metal salt of boric acid in the evaporative concentrate; and (E) an crystallization step of boric acid. A treatment method for boron-containing water having a solid-liquid separation process for separating an alkali metal salt from a liquid was proposed (Patent Document 6). According to this method, it is economically advantageous to collect only a portion having a high boron concentration in the regenerated effluent and reduce the amount of liquid supplied to the evaporator. On the other hand, from the shape such as the size of the head space of the resin tower, it is not possible to uniformly determine how much high concentration boron is desorbed when the liquid is passed after regeneration. Further, when the resin regeneration waste liquid is circulated and reused, the alkali concentration of the regenerant varies somewhat, so the timing at which the high concentration boron is desorbed varies. Therefore, there has been a demand for a means that can determine the boron concentration in the regenerated effluent and efficiently fractionate and collect only the regenerated effluent having a high boron concentration.
JP 2001-104807 A (page 2) JP 2001-335314 A (page 2-3) JP 2001-335315 A (page 2-3) JP 2003-10845 A (page 2) JP 2002-233864 A (second page) JP 2004-50069 (page 2)

本発明は、ホウ素含有水からホウ素を吸着除去し、ホウ素を脱着して得られる再生排液の蒸発濃縮によりホウ素を回収するホウ素含有水の処理方法において、ホウ素濃度の高い再生排液を分画採取し、排液の蒸発濃縮量を減少して、経済的にホウ素を回収することができるホウ素含有水の処理方法を提供することを目的としてなされたものである。   The present invention relates to a method for treating boron-containing water in which boron is adsorbed and removed from boron-containing water and boron is recovered by evaporating and concentrating the regenerated waste liquid obtained by desorbing boron. The object of the present invention is to provide a method for treating boron-containing water that can be collected and reduced in the amount of evaporation and concentration of the drainage to recover boron economically.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、希土類元素の含水酸化物を多孔質担体に担持させた造粒体の再生排液のホウ素濃度は、該再生排液の電気伝導率及びpHと相関関係を有し、再生排液の電気伝導率又はpHを測定することにより、再生排液のホウ素濃度が上昇し始める時点を判定し、ホウ素濃度の高い再生排液のみを効率的に分画採取し得ることを見いだし、この知見に基づいて本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined that the boron concentration of the regenerated drainage of the granulated body in which the rare earth element hydrous oxide is supported on the porous carrier is By measuring the electrical conductivity or pH of the regenerated wastewater, it is determined when the boron concentration of the regenerated wastewater starts to rise, and the regenerative wastewater having a high boron concentration. It was found that only fractions could be efficiently collected, and the present invention was completed based on this finding.

すなわち、本発明は、
(1)希土類元素の含水酸化物を多孔質担体に担持させた造粒体を用いてホウ素含有水からホウ素を吸着除去し、アルカリ水溶液により該造粒体からホウ素を脱着して得られる再生排液を蒸発濃縮してホウ素を回収するホウ素含有水の処理方法において、再生排液の電気伝導率又はpHにより再生排液中のホウ素濃度を判定し、ホウ素濃度の高い再生排液を分画採取することを特徴とするホウ素含有水の処理方法、
(2)アルカリ水溶液が、水酸化ナトリウム水溶液である(1)記載のホウ素含有水の処理方法、
(3)水酸化ナトリウム水溶液の濃度を20g/L以上とし、再生排液の電気伝導率が500mS/m以上になったとき、ホウ素濃度の高い再生排液の分画採取を開始する(2)記載のホウ素含有水の処理方法、
(4)水酸化ナトリウム水溶液の濃度を20g/L以上とし、再生排液のpHが9.5以上になったとき、ホウ素濃度の高い再生排液の分画採取を開始する(2)記載のホウ素含有水の処理方法、及び、
(5)再生排液を蒸発濃縮してホウ酸のアルカリ金属塩を析出させ、固液分離によりホウ酸のアルカリ金属塩を回収し、分離された液体をホウ素の脱着に用いるアルカリ水溶液の調製に使用する(1)記載のホウ素含有水の処理方法、
を提供するものである。
That is, the present invention
(1) Regenerated waste obtained by adsorbing and removing boron from boron-containing water using a granulated body in which a rare earth element hydrous oxide is supported on a porous carrier, and desorbing boron from the granulated body with an alkaline aqueous solution In the method for treating boron-containing water, which recovers boron by evaporating and concentrating the liquid, the boron concentration in the regenerated wastewater is judged by the electrical conductivity or pH of the regenerated wastewater, and the regenerated wastewater having a high boron concentration is fractionated. A method for treating boron-containing water,
(2) The method for treating boron-containing water according to (1), wherein the aqueous alkali solution is an aqueous sodium hydroxide solution,
(3) When the concentration of the sodium hydroxide aqueous solution is set to 20 g / L or more and the electrical conductivity of the regeneration effluent becomes 500 mS / m or more, fraction collection of the regeneration effluent having a high boron concentration is started (2) The method for treating boron-containing water according to the description,
(4) When the concentration of the sodium hydroxide aqueous solution is 20 g / L or higher and the pH of the regenerated wastewater is 9.5 or higher, fraction collection of the regenerated wastewater having a high boron concentration is started. A method for treating boron-containing water, and
(5) Evaporating and concentrating the regenerated effluent to precipitate an alkali metal salt of boric acid, recovering the alkali metal salt of boric acid by solid-liquid separation, and preparing the aqueous alkali solution to use the separated liquid for boron desorption A method for treating boron-containing water as described in (1),
Is to provide.

本発明のホウ素含有水の処理方法によれば、ホウ素を吸着した希土類元素の含水酸化物を多孔質担体に担持させた造粒体のアルカリ水溶液による脱着に際して、再生排液の電気伝導率又はpHを測定することにより、再生排液のホウ素濃度の上昇開始点を判定し、ホウ素濃度の高い再生排液のみを分画採取し、蒸発液量を減少し、経済的にホウ素を回収することができる。   According to the method for treating boron-containing water of the present invention, when desorbing a granulated material in which a porous oxide is supported by a rare earth element-containing hydrous oxide adsorbing boron with an alkaline aqueous solution, the electrical conductivity or pH of the regenerated waste liquid By measuring the starting point of the increase in the boron concentration of the regenerated effluent, fractionally collecting only the regenerated effluent with a high boron concentration, reducing the amount of evaporated liquid, and recovering boron economically it can.

本発明のホウ素含有水の処理方法においては、希土類元素の含水酸化物を多孔質担体に担持させた造粒体を用いてホウ素含有水からホウ素を吸着除去し、アルカリ水溶液により該造粒体からホウ素を脱着して得られる再生排液を蒸発濃縮してホウ素を回収するホウ素含有水の処理方法において、再生排液の電気伝導率又はpHにより再生排液中のホウ素濃度を判定し、ホウ素濃度の高い再生排液を分画採取する。
なお、本発明においては、含水酸化物とは、含水・酸化物も含水酸化物も対象とする。
In the method for treating boron-containing water according to the present invention, boron is adsorbed and removed from boron-containing water using a granule in which a rare earth element hydrous oxide is supported on a porous carrier, and the aqueous solution is washed with an alkaline aqueous solution. In the method for treating boron-containing water, which recovers boron by evaporating and concentrating the regenerated effluent obtained by desorbing boron, the boron concentration in the regenerated effluent is determined by the electrical conductivity or pH of the regenerated effluent, and the boron concentration Fractionation of high regenerative drainage.
In the present invention, the hydrous oxide includes both hydrous oxides and hydrous oxides.

図1は、本発明方法を適用するホウ素回収系の一態様の工程系統図である。希土類元素の含水酸化物を担持した造粒体を充填した充填塔1に、ホウ素含有水を通水し、該造粒体と接触させてホウ素を吸着除去する。ホウ素が吸着除去された処理水は、充填塔の塔底から流出する。流出する処理水のホウ素濃度が所定の値に達したとき、ホウ素含有水の通水を停止し、造粒体の再生脱着工程に移行する。まず、充填塔の塔頂から洗浄水を送り、充填塔内のホウ素含有水を押し出す。このときに発生する排液は、希薄排液として希薄排液貯槽2に貯留したのち、ホウ素含有水とともに再度充填塔に通水する。次いで、再生液貯槽3からアルカリ水溶液を充填塔に送り、ホウ素を吸着した造粒体をアルカリ水溶液と接触させて、ホウ素を脱着する。このとき発生する再生排液の電気伝導率又はpHを電気伝導率計又はpH計4を用いて測定し、電気伝導率又はpHが所定の値に達するまでは、希薄排液として希薄排液貯槽に送り込む。電気伝導率又はpHが所定の値に達したとき、電気伝導率計又はpH計から自動弁5及び6に信号が送られ、自動弁の開閉により、ホウ素濃度の高い再生排液が、濃厚排液として蒸発缶7に送られ、蒸発濃縮される。所定の時間が経過して、再生排液のホウ素濃度が低下したとき、タイマー(図示しない)が作動して自動弁が開閉し、ホウ素濃度の低い再生排液は希薄排液貯槽に送られる。自動弁の開閉による濃厚排液から希薄排液への切り換えは、電気伝導率計からの信号によって行うこともできる。   FIG. 1 is a process flow diagram of one embodiment of a boron recovery system to which the method of the present invention is applied. Boron-containing water is passed through a packed column 1 packed with a granule carrying a hydrous oxide of a rare earth element, and boron is adsorbed and removed by contacting with the granule. The treated water from which boron has been adsorbed and removed flows out from the bottom of the packed tower. When the boron concentration of the outflowing treated water reaches a predetermined value, the flow of the boron-containing water is stopped and the process proceeds to the regeneration / desorption process of the granulated body. First, wash water is sent from the top of the packed tower, and the boron-containing water in the packed tower is pushed out. The effluent generated at this time is stored in the dilute effluent storage tank 2 as a dilute effluent, and then again flows through the packed tower together with the boron-containing water. Next, an alkaline aqueous solution is sent from the regenerative liquid storage tank 3 to the packed tower, and the granulated body adsorbing boron is brought into contact with the alkaline aqueous solution to desorb boron. The electrical conductivity or pH of the regenerated drainage generated at this time is measured using an electrical conductivity meter or pH meter 4, and the diluted drainage storage tank is used as the diluted drainage until the electrical conductivity or pH reaches a predetermined value. To send. When the electric conductivity or pH reaches a predetermined value, a signal is sent from the electric conductivity meter or pH meter to the automatic valves 5 and 6, and the automatic drain valve opens and closes to regenerate drainage liquid with high boron concentration. It is sent to the evaporator 7 as a liquid and evaporated and concentrated. When the boron concentration of the regenerated waste liquid decreases after a predetermined time has elapsed, a timer (not shown) is activated to open and close the automatic valve, and the regenerated waste liquid having a low boron concentration is sent to the lean waste liquid storage tank. Switching from the concentrated drainage to the lean drainage by opening and closing the automatic valve can be performed by a signal from the electric conductivity meter.

蒸発缶で発生する蒸気は、冷却凝縮器で冷却し、発生する凝縮水を再生液貯槽に送り、アルカリ水溶液の水分として利用することができる。蒸発缶で得られた蒸発濃縮液は、晶析装置8へ送り、冷却することにより、ホウ酸のアルカリ金属塩を晶析する。ホウ酸のアルカリ金属塩が晶析した懸濁液は、固液分離装置9へ送り、固液分離によりホウ酸のアルカリ金属塩の結晶とろ液とに分離する。ホウ酸のアルカリ金属塩の結晶は、洗浄装置10において水洗することにより、純結晶とする。ろ液は、濃厚なアルカリ水溶液であるので、再生液貯槽に送って、脱着工程のアルカリ水溶液の調製に使用する。各工程を経由することにより、アルカリと水の一部が失われるので、再生液貯槽において、アルカリと補充水を追加して、所定の濃度のアルカリ水溶液を必要量調製する。本発明方法においては、必要に応じて、脱着工程の後で、充填塔を洗浄することができる。このとき発生する排液は、希薄排液として希薄排液貯槽に貯留したのち、ホウ素含有水とともに再度充填塔に通水する。   The steam generated in the evaporator can be cooled by a cooling condenser, and the generated condensed water can be sent to the regenerated liquid storage tank and used as the water of the alkaline aqueous solution. The evaporated concentrate obtained with the evaporator is sent to the crystallizer 8 and cooled to crystallize the alkali metal salt of boric acid. The suspension in which the alkali metal salt of boric acid is crystallized is sent to the solid-liquid separator 9 and separated into crystals and filtrate of the alkali metal salt of boric acid by solid-liquid separation. The alkali metal salt crystal of boric acid is washed with water in the cleaning device 10 to obtain a pure crystal. Since the filtrate is a concentrated alkaline aqueous solution, it is sent to a regenerating liquid storage tank and used for preparing an alkaline aqueous solution in the desorption process. Since a part of alkali and water is lost by going through each step, alkali and supplementary water are added to the regenerated liquid storage tank to prepare a required amount of an aqueous alkali solution having a predetermined concentration. In the method of the present invention, if necessary, the packed tower can be washed after the desorption step. The drainage generated at this time is stored in the lean drainage storage tank as a lean drainage, and then again flows through the packed tower together with the boron-containing water.

本発明方法によれば、ホウ素の脱着の際に発生する再生排液のホウ素濃度を電気伝導率又はpHにより判定し、ホウ素濃度の高い再生排液のみを蒸発濃縮してホウ素を回収するので、蒸発濃縮に消費する時間と熱エネルギーを節減し、経済的にホウ素含有水を処理してホウ素を回収することができる。ホウ素濃度の低い再生排液は、ホウ素含有水とともに再度充填塔に通水し、希土類元素の含水酸化物を多孔質担体に担持させた造粒体にホウ素を吸着させることができるので、ホウ素が失われることがなく、高い回収率でホウ素を回収することができる。   According to the method of the present invention, the boron concentration of the regenerated effluent generated during the desorption of boron is determined by electric conductivity or pH, and only the regenerated effluent having a high boron concentration is evaporated and concentrated to recover boron. The time and heat energy consumed for evaporative concentration can be saved, and boron can be recovered economically by treating boron-containing water. The regenerated effluent having a low boron concentration is allowed to pass through the packed tower again together with the boron-containing water, and the boron can be adsorbed to the granulated body in which the hydrated oxide of the rare earth element is supported on the porous carrier. Boron can be recovered at a high recovery rate without being lost.

本発明方法において、再生に用いるアルカリ水溶液の濃度を一定にしたとき、再生排液のホウ素濃度の上昇が開始する時点と、電気伝導率又はpHの値の間には再現性のよい相関関係があるので、電気伝導率又はpHを指標として再生排液中のホウ素濃度を判定し、ホウ素濃度の高い再生排液を分画採取することができる。ホウ素濃度の高い再生排液の分画採取の終点の管理方法に特に制限はないが、時間又は電気伝導率により管理することができる。ホウ素濃度の高い再生排液として採取し、蒸発濃縮する再生排液の量が多いほど、1回の処理当たりのホウ素の回収量が多くなり、アルカリ水溶液の回収率も高くなる。しかし、蒸発濃縮する再生排液の量が増えると、蒸発装置が大きくなり、蒸発濃縮に必要な熱エネルギーと時間が増加する。本発明方法においては、ホウ素濃度の高い再生排液の採取時間は、再生液の通液時間と同程度とすることが好ましい。再生排液の採取の終点を時間で管理する場合は、タイマーを用いて自動弁を切り換えることができる。   In the method of the present invention, when the concentration of the aqueous alkaline solution used for regeneration is constant, there is a highly reproducible correlation between the time when the boron concentration of the regeneration drainage starts to increase and the value of electrical conductivity or pH. Therefore, it is possible to determine the boron concentration in the regenerated drainage using the electrical conductivity or pH as an index, and fractionate and collect the regenerated drainage having a high boron concentration. Although there is no particular limitation on the management method of the end point of fraction collection of the regenerated effluent having a high boron concentration, it can be managed by time or electrical conductivity. The larger the amount of the regenerated waste liquid collected as a regenerated waste liquid having a high boron concentration and evaporated and concentrated, the greater the amount of boron recovered per treatment and the higher the recovery rate of the alkaline aqueous solution. However, as the amount of the regenerated waste liquid to be evaporated and concentrated increases, the evaporator becomes larger and the heat energy and time required for evaporation and concentration increase. In the method of the present invention, it is preferable that the collection time of the regeneration drainage having a high boron concentration is approximately the same as the passing time of the regeneration solution. When managing the end point of collection of regenerated drainage by time, the automatic valve can be switched using a timer.

本発明方法において、ホウ素を吸着した造粒体と接触させるアルカリ水溶液の量に特に制限はないが、造粒体の1〜5体積倍であることが好ましく、造粒体の2〜4体積倍であることがより好ましい。アルカリ水溶液の量が造粒体の1体積倍未満であると、ホウ素の脱着が不十分になるおそれがある。造粒体に吸着されたホウ素は、造粒体の5体積倍以下のアルカリ水溶液で脱着され、通常は造粒体の5体積倍を超えるアルカリ水溶液を使用する必要はない。例えば、ホウ素含有水の処理を終了した充填塔を1〜3体積倍の純水を用いて洗浄したのち、3体積倍のアルカリ水溶液を用いてホウ素を脱着再生し、さらに1〜3体積倍の純水を用いて洗浄し、次のホウ素吸着工程に移ることができる。本発明方法によれば、通常はホウ素1,000〜6,000mg/Lを含有する再生排液を得ることができる。   In the method of the present invention, the amount of the alkaline aqueous solution brought into contact with the granulated body adsorbed with boron is not particularly limited, but is preferably 1 to 5 times the volume of the granulated body, and 2 to 4 times the volume of the granulated body. It is more preferable that When the amount of the alkaline aqueous solution is less than 1 volume times that of the granulated body, the desorption of boron may be insufficient. Boron adsorbed on the granulated body is desorbed with an alkaline aqueous solution of 5 volume times or less of the granulated body, and it is usually unnecessary to use an alkaline aqueous solution exceeding 5 volume times of the granulated body. For example, after the packed tower that has finished the treatment of boron-containing water is washed with 1 to 3 volume times pure water, boron is desorbed and regenerated using 3 volume times alkaline aqueous solution, and further 1 to 3 volume times It can wash | clean using a pure water and can move to the next boron adsorption | suction process. According to the method of the present invention, it is possible to obtain a regenerated effluent usually containing 1,000 to 6,000 mg / L of boron.

本発明方法において、ホウ素の脱着に用いるアルカリ水溶液に特に制限はなく、例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液などを挙げることができる。これらの中で、回収されるホウ酸化合物がナトリウム塩の場合、ガラス原料として再利用できるため、水酸化ナトリウム水溶液を好適に用いることができる。脱着に用いる水酸化ナトリウム水溶液の濃度は、8〜80g/Lであることが好ましく、15〜40g/Lであることがより好ましい。水酸化ナトリウム水溶液の濃度が8g/L未満であると、必要な水酸化ナトリウム水溶液の量が過大になるとともに、ホウ素が十分に脱着しないおそれがある。水酸化ナトリウム水溶液の濃度が80g/Lを超えると、希土類元素の含水酸化物を担持した造粒体が劣化するおそれがある。   In the method of the present invention, the alkaline aqueous solution used for boron desorption is not particularly limited, and examples thereof include a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution. In these, since the boric-acid compound collect | recovered is a sodium salt, since it can recycle | reuse as a glass raw material, sodium hydroxide aqueous solution can be used suitably. The concentration of the aqueous sodium hydroxide solution used for desorption is preferably 8 to 80 g / L, and more preferably 15 to 40 g / L. When the concentration of the aqueous sodium hydroxide solution is less than 8 g / L, the amount of the required aqueous sodium hydroxide solution becomes excessive, and boron may not be sufficiently desorbed. If the concentration of the aqueous sodium hydroxide solution exceeds 80 g / L, the granulated body carrying the rare earth element hydrous oxide may be deteriorated.

図2は、希土類元素の含水酸化物を多孔質担体に担持させた造粒体を塔に充填して、ホウ素を吸着させたのち、濃度の異なる水酸化ナトリウム水溶液を再生液としてホウ素を脱着させたときの脱着曲線である。この図に見られるように、同じ形状の充填塔でも再生液の濃度によってホウ素の脱着曲線が変化する。したがって、再生液の濃度によらずに、ホウ素濃度の高い再生排液を分画採取することができる指標が必要である。本発明方法においては、再生排液の電気伝導率又はpHを指標として再生排液中のホウ素濃度を判定し、ホウ素濃度の高い再生排液の分画採取を開始する時点を決定する。   FIG. 2 shows a structure in which a granulated body in which a rare earth element hydrated oxide is supported on a porous carrier is packed in a tower to adsorb boron, and then boron is desorbed using a sodium hydroxide aqueous solution having a different concentration as a regenerating solution. It is a desorption curve when. As seen in this figure, the boron desorption curve changes depending on the concentration of the regenerated solution even in packed towers of the same shape. Therefore, there is a need for an index that can fractionate and collect a regenerated effluent having a high boron concentration regardless of the concentration of the regenerated solution. In the method of the present invention, the boron concentration in the regenerated drainage is determined using the electrical conductivity or pH of the regenerated drainage as an index, and the time point at which fraction collection of the regenerated wastewater having a high boron concentration is started is determined.

本発明方法においては、ホウ素の脱着に用いるアルカリ水溶液を濃度20g/L以上の水酸化ナトリウム水溶液とし、再生排液の電気伝導率が500mS/m以上になったときホウ素濃度の高い再生排液の分画採取を開始することができる。図3は、ホウ素の脱着工程における通液倍量とホウ素濃度及び電気伝導率との関係を示すグラフの一例である。本図に見られるように、再生排液の電気伝導率が上昇しはじめ、500mS/mに達したとき、再生排液のホウ素濃度も上昇しはじめるので、再生排液の電気伝導率を指標として分画採取の開始時点を決めることができる。   In the method of the present invention, the aqueous alkaline solution used for boron desorption is a sodium hydroxide aqueous solution having a concentration of 20 g / L or more, and when the electrical conductivity of the regenerated waste liquid is 500 mS / m or more, Fraction collection can be started. FIG. 3 is an example of a graph showing the relationship between the liquid flow rate, the boron concentration, and the electrical conductivity in the boron desorption process. As can be seen in this figure, the electrical conductivity of the regenerated wastewater begins to rise, and when it reaches 500 mS / m, the boron concentration of the regenerated wastewater also begins to rise. The starting point of fraction collection can be determined.

本発明方法においては、ホウ素の脱着に用いるアルカリ水溶液を濃度20g/L以上の水酸化ナトリウム水溶液とし、再生排液のpHが9.5以上になったときホウ素濃度の高い再生排液の分画採取を開始することができる。図4は、ホウ素の脱着工程における通液倍量とホウ素濃度及びpHとの関係を示すグラフの一例である。本図に見られるように、再生排液のpHが上昇しはじめ、9.5に達したとき、再生排液のホウ素濃度も上昇しはじめるので、再生排液のpHを指標として分画採取の開始時点を決めることができる。ただし、再生排液は強アルカリ性であるために、管理手段としてはpHよりも電気伝導率の方が好ましい。実装置における希薄排液と濃厚排液の切り換えは、自動弁で行うことが好ましい。   In the method of the present invention, the aqueous alkaline solution used for boron desorption is a sodium hydroxide aqueous solution having a concentration of 20 g / L or more, and the fraction of the regenerated effluent having a high boron concentration when the pH of the regenerated effluent becomes 9.5 or higher. Sampling can be started. FIG. 4 is an example of a graph showing the relationship between the fluid flow rate, the boron concentration, and the pH in the boron desorption process. As can be seen in this figure, the pH of the regenerated wastewater begins to rise, and when it reaches 9.5, the boron concentration of the regenerated wastewater also begins to rise. The starting point can be determined. However, since the regenerated drainage is strongly alkaline, the electrical conductivity is more preferable than the pH as the management means. It is preferable to switch between the diluted drainage and the concentrated drainage in the actual apparatus by an automatic valve.

本発明方法を適用するホウ素含有水に特に制限はなく、例えば、医薬品、化粧品、石けん、電気メッキなどの工程排水、ごみ焼却場の洗煙排水などを挙げることができる。これらの排水には、ホウ素がホウ酸又はホウ酸塩として含まれ、そのホウ素濃度は、数十ないし数百mg/Lである場合が多い。   The boron-containing water to which the method of the present invention is applied is not particularly limited, and examples thereof include process wastewater such as pharmaceuticals, cosmetics, soap, and electroplating, and smoke washing wastewater from a garbage incinerator. These wastewaters contain boron as boric acid or borate, and the boron concentration is often several tens to several hundreds mg / L.

本発明方法において、ホウ素含有水は、pHを3〜12に調整して希土類元素の含水酸化物を担持した造粒体と接触させることが好ましく、pHを4〜10に調整して該造粒体と接触させることがより好ましい。ホウ素含有水のpHが3未満であっても、pHが12を超えても、ともに吸着量が低下するおそれがある。   In the method of the present invention, the boron-containing water is preferably brought into contact with a granule carrying a rare earth element hydrous oxide by adjusting the pH to 3 to 12, and the granulation is carried out by adjusting the pH to 4 to 10 More preferably, it is brought into contact with the body. Even if the pH of the boron-containing water is less than 3 or more than 12, there is a possibility that the amount of adsorption decreases.

本発明方法に用いる希土類元素の含水酸化物を担持した造粒体の製造方法に特に制限はなく、例えば、希土類元素の塩の水溶液を担体に付着させ、アルカリ水溶液で処理し、担体上に不溶性の希土類元素の含水酸化物を沈着、乾燥させることにより、製造することができる。希土類元素の含水酸化物としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムの含水酸化物を挙げることができる。これらの中で、セリウムの含水酸化物を特に好適に用いることができる。希土類元素の含水酸化物を担持する多孔質担体に特に制限はなく、例えば、マグネシア、アルミナ、チタニア、シリカ、シリカ−アルミナ、ジルコニア、ゼオライト、活性炭、ケイソウ土、コージェライトなどの無機系担体、ポリアミド、セルロース系樹脂、ポリスルホン、ポリアクリロニトリル、ポリ塩化ビニル、エチレン−ビニルアルコール共重合体などの有機系担体を挙げることができる。   There is no particular limitation on the method for producing a granule carrying a rare earth element hydrous oxide used in the method of the present invention. For example, an aqueous solution of a salt of a rare earth element is attached to a carrier, treated with an alkaline aqueous solution, and insoluble on the carrier. This can be produced by depositing and drying the rare earth element hydrous oxide. Examples of rare earth element hydrous oxides include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. it can. Of these, cerium-containing hydrated oxide can be particularly preferably used. There are no particular limitations on the porous carrier supporting the hydrated oxide of rare earth elements, for example, magnesia, alumina, titania, silica, silica-alumina, zirconia, zeolite, activated carbon, diatomaceous earth, cordierite and other inorganic carriers, polyamide And organic carriers such as cellulose resin, polysulfone, polyacrylonitrile, polyvinyl chloride, and ethylene-vinyl alcohol copolymer.

本発明方法において、ホウ素含有水を希土類元素の含水酸化物を担持した造粒体と接触させる方法に特に制限はなく、例えば、該造粒体を充填した充填塔にホウ素含有水を通水して接触させることができる。造粒体を充填した充填塔の数に特に制限はなく、例えば、充填塔1基のみを使用することができ、あるいは、複数基の充填塔を直列につなぎ、最初の塔が飽和したとき、最初の塔を系列からはずし、再生済みの塔を最終段に付け加えるいわゆるメリーゴーラウンド方式とすることもできる。充填塔1基のみを使用する場合は、塔から流出する処理水のホウ素濃度が所定の排水基準に達したときに、脱着工程に移行する。メリーゴーラウンド方式の場合は、最初の塔の流出水のホウ素濃度が入口濃度に等しくなったとき、最初の塔を充填塔列から外して、脱着工程に移行する。   In the method of the present invention, there is no particular limitation on the method of bringing boron-containing water into contact with the granule carrying a hydrated oxide of a rare earth element. For example, boron-containing water is passed through a packed tower packed with the granule. Can be contacted. There is no particular limitation on the number of packed towers packed with granulation, for example, only one packed tower can be used, or when a plurality of packed towers are connected in series and the first tower is saturated, A so-called merry-go-round system in which the first tower is removed from the line and the regenerated tower is added to the final stage can be employed. When only one packed tower is used, the process proceeds to the desorption process when the boron concentration of the treated water flowing out of the tower reaches a predetermined drainage standard. In the case of the merry-go-round method, when the boron concentration of the effluent of the first column becomes equal to the inlet concentration, the first column is removed from the packed column and the process proceeds to the desorption process.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
ホウ素濃度が150mg/Lになるようにホウ酸を純水に溶解し、水酸化ナトリウムによりpHを7.0に調整して試験水とした。セリウムの含水酸化物をエチレン−ビニルアルコール共重合体に担持させた造粒体20mLを充填したガラスカラムに、試験水を60mL/h(SV=3h-1)で通水した。通水を20時間継続し、試験水1,200mLを通水したとき、ガラスカラムから流出する水のホウ素濃度が150mg/Lとなったので、通水を停止した。
次いで、造粒体の再生に移行し、純水20mL、20g/L水酸化ナトリウム水溶液100mL、純水60mLを、60mL/h(SV=3h-1)でこの順に通液し、ガラスカラムから流出する流出水について、電気伝導率、pH及びホウ素濃度を測定した。造粒体によるホウ素の吸着と、再生を6回繰り返した。6回目の再生における通液倍量と電気伝導率及びホウ素濃度との関係を図3に、通液倍量とpH及びホウ素濃度との関係を図4に示す。
図3に見られるように、ガラスカラムからの流出水の電気伝導率が上昇しはじめ、500mS/mに達したときに採取を開始すると、流出水のホウ素濃度の上昇開始時と一致し、ホウ素濃度の高い再生排液を分画採取することができる。分画採取の終点は、採取の開始より通液倍量3倍のときとすることにより、ホウ素濃度の高い再生排液をほぼ完全に採取することができる。
図4に見られるように、ガラスカラムからの流出水のpHが上昇しはじめ、9.5に達したときに採取を開始すると、流出水のホウ素濃度の上昇開始時と一致し、ホウ素濃度の高い再生排液を分画採取することができる。分画採取の終点は、採取の開始より通液倍量3倍のときとすることにより、ホウ素濃度の高い再生排液をほぼ完全に採取することができる。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
Boric acid was dissolved in pure water so that the boron concentration was 150 mg / L, and the pH was adjusted to 7.0 with sodium hydroxide to obtain test water. Test water was passed at a rate of 60 mL / h (SV = 3 h −1 ) through a glass column filled with 20 mL of a granulated product in which a cerium hydrated oxide was supported on an ethylene-vinyl alcohol copolymer. When water flow was continued for 20 hours and 1,200 mL of test water was passed, the boron concentration of water flowing out of the glass column was 150 mg / L, so water flow was stopped.
Next, the process proceeds to regeneration of the granulated body, and 20 mL of pure water, 100 mL of 20 g / L sodium hydroxide aqueous solution, and 60 mL of pure water are passed in this order at 60 mL / h (SV = 3 h −1 ) and flow out of the glass column. The effluent water was measured for electrical conductivity, pH and boron concentration. The adsorption and regeneration of boron by the granulated body were repeated 6 times. FIG. 3 shows the relationship between the fluid passing volume, electrical conductivity, and boron concentration in the sixth regeneration, and FIG. 4 shows the relationship between the fluid passing volume, pH, and boron concentration.
As can be seen in FIG. 3, the electrical conductivity of the effluent from the glass column starts to increase, and when sampling is started when it reaches 500 mS / m, it coincides with the start of the increase in the boron concentration of the effluent. A high-concentration regenerative effluent can be fractionated. By setting the end point of fraction collection to be when the flow rate is 3 times from the start of collection, regeneration drainage liquid with a high boron concentration can be collected almost completely.
As can be seen in FIG. 4, when the pH of the effluent from the glass column starts to rise and starts to be collected when it reaches 9.5, it coincides with the beginning of the rise in the boron concentration of the effluent. A high regeneration drainage can be fractionated. By setting the end point of fraction collection to be when the flow rate is 3 times from the start of collection, regeneration drainage liquid with a high boron concentration can be collected almost completely.

参考例1
実施例1と同様にして、セリウムの含水酸化物をエチレン−ビニルアルコール共重合体に担持させた造粒体20mLを充填したガラスカラムに、ホウ素濃度210mg/L、pH7の試験水を、20mL/h(SV=1h-1)で通水した。通水を45時間継続し、試験水900mLを通水したとき、流出水のホウ素濃度が210mg/Lとなったので、通水を停止した。
次いで、造粒体の再生に移行し、純水20mL、20g/L水酸化ナトリウム水溶液100mL、純水60mLを、20mL/h(SV=1h-1)でこの順に通液し、ガラスカラムから流出する流出水について、ホウ素濃度を測定した。
水酸化ナトリウム水溶液の濃度を、40g/L、80g/L、200g/L又は8g/Lとして、同様にしてホウ素を吸着した造粒体の脱着再生を行い、ガラスカラムから流出する流出水について、ホウ素濃度を測定した。結果を図2に示す。
図2に見られるように、同じ状態のガラスカラムであっても、水酸化ナトリウム水溶液の濃度によってホウ素の脱着曲線が変化し、通液倍量又は通液時間を指標として再生排液の分画採取の開始時を決めることは不可能であることが分かる。
Reference example 1
In the same manner as in Example 1, 20 mL / L of test water having a boron concentration of 210 mg / L and a pH of 7 was added to a glass column packed with 20 mL of a granulated product in which a cerium hydrated oxide was supported on an ethylene-vinyl alcohol copolymer. Water was passed through at h (SV = 1 h −1 ). The water flow was continued for 45 hours, and when 900 mL of test water was passed, the boron concentration of the effluent reached 210 mg / L, so the water flow was stopped.
Next, the process proceeds to regeneration of the granulated body, and 20 mL of pure water, 100 mL of 20 g / L sodium hydroxide aqueous solution, and 60 mL of pure water are passed in this order at 20 mL / h (SV = 1h −1 ) and flow out of the glass column. Boron concentration was measured for the effluent.
The concentration of the sodium hydroxide aqueous solution was 40 g / L, 80 g / L, 200 g / L or 8 g / L, and the desorbed regeneration of the granulated body adsorbing boron was performed in the same manner. Boron concentration was measured. The results are shown in FIG.
As shown in FIG. 2, even in a glass column in the same state, the boron desorption curve changes depending on the concentration of the sodium hydroxide aqueous solution. It turns out that it is impossible to determine when to start sampling.

本発明方法によれば、ホウ素を吸着した造粒体からホウ素を脱着する際に発生する再生排液から、ホウ素濃度の高い部分のみを選択的に分画採取することができるので、ホウ素の回収のために蒸発濃縮する液の量を減少し、経済的にホウ素を回収することができる。   According to the method of the present invention, since only a portion having a high boron concentration can be selectively fractionated from a regenerated effluent generated when boron is desorbed from a granulated body adsorbing boron, recovery of boron Therefore, the amount of liquid to be evaporated and concentrated can be reduced, and boron can be recovered economically.

本発明方法を適用するホウ素回収系の一態様の工程系統図である。It is a process flow diagram of one mode of a boron recovery system to which the method of the present invention is applied. 水酸化ナトリウム水溶液によるホウ素の脱着曲線である。It is a desorption curve of boron by an aqueous sodium hydroxide solution. 通液倍量とホウ素濃度及び電気伝導率との関係を示すグラフの一例である。It is an example of the graph which shows the relationship between liquid passing volume, boron concentration, and electrical conductivity. 通液倍量とホウ素濃度及びpHとの関係を示すグラフの一例である。It is an example of the graph which shows the relationship between a fluid passing volume, a boron concentration, and pH.

符号の説明Explanation of symbols

1 充填塔
2 希薄排液貯槽
3 再生液貯槽
4 電気伝導率計又はpH計
5 自動弁
6 自動弁
7 蒸発缶
8 晶析装置
9 固液分離装置
10 洗浄装置
DESCRIPTION OF SYMBOLS 1 Packing tower 2 Dilute drainage storage tank 3 Reclaimed liquid storage tank 4 Electrical conductivity meter or pH meter 5 Automatic valve 6 Automatic valve 7 Evaporator 8 Crystallizer 9 Solid-liquid separation device 10 Washing device

Claims (5)

希土類元素の含水酸化物を多孔質担体に担持させた造粒体を用いてホウ素含有水からホウ素を吸着除去し、アルカリ水溶液により該造粒体からホウ素を脱着して得られる再生排液を蒸発濃縮してホウ素を回収するホウ素含有水の処理方法において、再生排液の電気伝導率又はpHにより再生排液中のホウ素濃度を判定し、ホウ素濃度の高い再生排液を分画採取することを特徴とするホウ素含有水の処理方法。   Adsorbing and removing boron from boron-containing water using a granulated product in which a rare earth element hydrous oxide is supported on a porous carrier, and evaporating the regenerated waste liquid obtained by desorbing boron from the granulated product with an aqueous alkaline solution In the method for treating boron-containing water, which recovers boron by concentrating, determining the boron concentration in the regenerated effluent based on the electrical conductivity or pH of the regenerated effluent, and fractionally collecting the regenerated effluent having a high boron concentration. A method for treating boron-containing water. アルカリ水溶液が、水酸化ナトリウム水溶液である請求項1記載のホウ素含有水の処理方法。   The method for treating boron-containing water according to claim 1, wherein the alkaline aqueous solution is an aqueous sodium hydroxide solution. 水酸化ナトリウム水溶液の濃度を20g/L以上とし、再生排液の電気伝導率が500mS/m以上になったとき、ホウ素濃度の高い再生排液の分画採取を開始する請求項2記載のホウ素含有水の処理方法。   The boron according to claim 2, wherein fraction collection of the regenerated effluent having a high boron concentration is started when the concentration of the sodium hydroxide aqueous solution is 20 g / L or more and the electrical conductivity of the regenerated effluent becomes 500 mS / m or more. Treatment method of contained water. 水酸化ナトリウム水溶液の濃度を20g/L以上とし、再生排液のpHが9.5以上になったとき、ホウ素濃度の高い再生排液の分画採取を開始する請求項2記載のホウ素含有水の処理方法。   The boron-containing water according to claim 2, wherein fraction collection of the regenerated effluent having a high boron concentration is started when the concentration of the aqueous sodium hydroxide solution is 20 g / L or higher and the pH of the regenerated effluent becomes 9.5 or higher. Processing method. 再生排液を蒸発濃縮してホウ酸のアルカリ金属塩を析出させ、固液分離によりホウ酸のアルカリ金属塩を回収し、分離された液体をホウ素の脱着に用いるアルカリ水溶液の調製に使用する請求項1記載のホウ素含有水の処理方法。   A request for evaporation and concentration of the regenerated effluent to precipitate an alkali metal salt of boric acid, recover the alkali metal salt of boric acid by solid-liquid separation, and use the separated liquid for the preparation of an aqueous alkaline solution used for boron desorption. Item 6. A method for treating boron-containing water according to Item 1.
JP2004153416A 2004-05-24 2004-05-24 Boron-containing water treatment method Pending JP2005334701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004153416A JP2005334701A (en) 2004-05-24 2004-05-24 Boron-containing water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004153416A JP2005334701A (en) 2004-05-24 2004-05-24 Boron-containing water treatment method

Publications (1)

Publication Number Publication Date
JP2005334701A true JP2005334701A (en) 2005-12-08

Family

ID=35488838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004153416A Pending JP2005334701A (en) 2004-05-24 2004-05-24 Boron-containing water treatment method

Country Status (1)

Country Link
JP (1) JP2005334701A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184120A (en) * 2012-03-08 2013-09-19 Dowa Eco-System Co Ltd Selenium adsorbent, method of manufacturing the same, and treatment method of selenium-containing liquid
JP2017148729A (en) * 2016-02-24 2017-08-31 三菱重工メカトロシステムズ株式会社 Waste water treatment method and waste water treatment equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184120A (en) * 2012-03-08 2013-09-19 Dowa Eco-System Co Ltd Selenium adsorbent, method of manufacturing the same, and treatment method of selenium-containing liquid
JP2017148729A (en) * 2016-02-24 2017-08-31 三菱重工メカトロシステムズ株式会社 Waste water treatment method and waste water treatment equipment

Similar Documents

Publication Publication Date Title
US8216476B2 (en) Method for removing phosphorus
JP5157941B2 (en) Method for treating boron-containing water
JP5518372B2 (en) Water treatment equipment
KR100196103B1 (en) Absorbent production with lithium recovery
JP2010149040A (en) Organic solvent-containing gas treating system
JP3995550B2 (en) Method and apparatus for treating boron-containing water
JP3995554B2 (en) Method for treating boron-containing water
JP4297663B2 (en) Boron recovery method
JP2008073639A (en) Boron recovery apparatus
JP5400845B2 (en) Boron adsorption device, boron removal system, and boron removal method
JP2005334701A (en) Boron-containing water treatment method
JP2009273975A (en) System for treatment of gas containing organic solvent
JP2010029739A (en) Organic solvent-containing gas treatment system
JP3913939B2 (en) Boron recovery method
JP2002370086A (en) Dephosphorization method for wastewater
JPH0747371A (en) Treatment of fluoride-containing water
JP4058787B2 (en) Method for treating boron-containing water
JP3851491B2 (en) Apparatus and method for purifying boron eluent
JP2004298738A (en) Boron-containing water treatment method
KR102059293B1 (en) System for manufacturing ultrapure water and chilled water
KR200211618Y1 (en) Unit capable of adsorbing, desorbing and recovering toxic ions using ion exchangers
JP2003230840A (en) Method for regenerating ion exchanger and regenerating agent for anion exchanger
JP4446426B2 (en) Thallium-containing liquid processing method and processing equipment
JP2003094053A (en) Method for treating effluent containing boron and sulfate group
JP2004283767A (en) Method and apparatus for treating geothermal water