JP3851491B2 - Apparatus and method for purifying boron eluent - Google Patents

Apparatus and method for purifying boron eluent Download PDF

Info

Publication number
JP3851491B2
JP3851491B2 JP2000154889A JP2000154889A JP3851491B2 JP 3851491 B2 JP3851491 B2 JP 3851491B2 JP 2000154889 A JP2000154889 A JP 2000154889A JP 2000154889 A JP2000154889 A JP 2000154889A JP 3851491 B2 JP3851491 B2 JP 3851491B2
Authority
JP
Japan
Prior art keywords
boron
ion exchange
column
type
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000154889A
Other languages
Japanese (ja)
Other versions
JP2001335315A (en
Inventor
智 早川
仁紀 木谷
Original Assignee
日本電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電工株式会社 filed Critical 日本電工株式会社
Priority to JP2000154889A priority Critical patent/JP3851491B2/en
Publication of JP2001335315A publication Critical patent/JP2001335315A/en
Application granted granted Critical
Publication of JP3851491B2 publication Critical patent/JP3851491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸根を含むホウ素溶離液を精製し、固体として回収するホウ素溶離液の精製装置及び精製方法に関する。
【0002】
【従来の技術】
一般にニッケルメッキ液或いはアルミ表面処理液中にはホウ素化合物(ホウ酸等)が含まれており、これらを扱う工場においてはホウ素を含有する洗浄排水が発生する。またガラス、釉薬、アルミコンデンサー等ホウ素を使用する工場においてもホウ素を含む工場排水が発生する。ホウ素化合物は植物にとっては必須微量元素であり、海水には4〜5mg/L程度含まれていることは周知のことである。一方、ホウ素が人体に与える影響は必ずしも明確ではないものの、低濃度の継続摂取において生殖機能の低下などの健康障害を起こす可能性が指摘されている。平成11年2月、ホウ素の環境基準として1mg/L以下が告示され、追って排水基準も定められることになるものと予想されるため、これらのホウ素を含む工程排水中のホウ素除去処理が必要となる。
【0003】
ホウ素の除去方法としては、ホウ素含有排水にアルミニウム化合物及びカルシウム化合物を用いて凝集沈殿によりホウ素化合物を分離除去する方法(特公昭58-15193号公報、同59-24876号公報)或いはニッケルメッキ洗浄排水にマグネシウム塩を添加して凝集沈殿によりホウ素を分離除去する方法等(平成11年度東京都立産業技術研究所発表会予稿集p52)が知られている。しかし、ホウ素を不溶化させるために多量の薬剤を使用する必要があり、発生汚泥も多くその処理が困難であるという問題がある。更にこの方法ではアルミニウム、カルシウム或いはマグネシウム化合物が大量に含まれており、ホウ素を再利用することは不可能である。
【0004】
またホウ素含有排水を陰イオン交換樹脂、或いはホウ素選択吸着樹脂により吸着処理する方法も数多く知られている(特許公報平2-32952号公報、その他)。しかし、ホウ素含有水を、ホウ素を吸着するイオン交換樹脂に通液させて処理した後、当該イオン交換樹脂からホウ素を溶離するためには酸溶液を使用するため、再生した酸根を含むホウ素含有水の処理に課題を持っている。
【0005】
酸根を含むホウ酸溶離液の精製方法としては、アルカリで中和しホウ酸と中和によって生成する塩の混合溶液にした後ホウ酸と塩との溶解度差を利用して分離する方法が知られているが(12695の化学商品P−151、無機ファインケミカルの原単位&プロセス中日社刊1990年)、この方法は工程も複雑であり、かつ設備費も高くホウ酸の製造プラントのように規模が大きくないと実用的ではない。
【0006】
また溶離液を抽出剤と接触させてホウ素を抽出し、逆抽出剤と接触させて逆抽出させ晶析法によってホウ素化合物を結晶化させる方法も知られている。(特公平1-50476号公報)抽出剤としてはオクチレングリコール、2−エチルヘキサノール等が知られているが、これらは消防法で定める危険物であり火気を避けるなど取り扱いが難しい。
【0007】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたもので、工程が簡単で、設備費も安く、高純度のホウ素溶液を得るための酸根を有するホウ素溶離液の精製方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明方法はこの課題を解決するためになされたもので、
(1) OH型に調整したI型強塩基性陰イオン交換樹脂、OH型に調整したII型強塩基性陰イオン交換樹脂、及びOH型に調整した弱塩基性陰イオン交換樹脂の群から選択された陰イオン交換樹脂を充填し、互いに直列に連通した少なくとも二塔のイオン交換塔と、イオン交換塔内の陰イオン交換樹脂を脱液状態にする脱液手段と、陰イオン交換樹脂を脱液状態にした際にイオン交換塔から押出されるホウ素溶離液を貯溜する精製ホウ素溶離液タンクとを備え、イオン交換塔に酸根を含むホウ素溶離液を通液させて酸根を除去して高純度のホウ酸溶液を得るようにしたことを特徴とするホウ素溶離液の精製装置。
【0009】
(2) OH型に調整したI型強塩基性陰イオン交換樹脂、OH型に調整したII型強塩基性陰イオン交換樹脂、及びOH型に調整した弱塩基性陰イオン交換樹脂の群から選択された陰イオン交換樹脂を充填し、互いに直列に連通した少なくとも二塔のイオン交換塔を脱液状態にする工程と、脱液状態のイオン交換塔に酸根を含むホウ素溶離液を通液させて酸根を除去し、高純度のホウ酸溶液を得る工程とを備えたことを特徴とするホウ素溶離液の精製方法。
【0010】
(3) 上流側の第一塔目の陰イオン交換塔に充填された陰イオン交換樹脂から酸根が漏出するのを検知する工程と、漏出を検知した時点で圧縮空気により上流側の第一塔目及び下流側の第二塔目の陰イオン交換塔に残留するホウ素溶離液を精製ホウ酸溶液タンクに押出す工程と、第一塔目の陰イオン交換塔に充填され、ホウ素を付着し酸根を吸着した陰イオン交換樹脂に水を通液してイオン交換塔に残留するホウ素及び酸根を溶離する工程と、溶離した酸根を含むホウ素をホウ素溶離液に混合する工程と、前記ホウ素を溶離した第一塔目のイオン交換塔にアルカリ溶液を通液してイオン交換塔に充填されたイオン交換樹脂のイオン型をOH型に調整する工程と、第二塔目の陰イオン交換塔を上流側に、第一塔目の陰イオン交換塔を下流側にして直列に接続した後これらイオン交換塔を脱液状態にして、再び、酸根を含むホウ素溶離液を通液させて酸根を除去し、高純度のホウ酸溶液を得る工程とを備えたことを特徴とする(2)に記載のホウ素溶離液の精製方法。
【0011】
なお、酸根を吸着したイオン交換塔に水を通液してイオン交換塔に残留するホウ素及び酸根を溶離する工程では、通常、水洗よりイオン交換樹脂に残留するホウ素は全量流出するが、吸着している酸根は一部しか流出しない。
【0012】
(4) 充填されたイオン交換塔を脱液する際に、その調整をタイマーにより制御し、イオン交換塔に酸根を含むホウ素溶離液を通液させて酸根を除去する際は、第一のイオン交換塔出口のpHが7〜1に低下する時点を検知して、この検知信号に基づいて通液停止を制御し、圧縮空気によるイオン交換塔に残留するホウ素溶離液を押出す際は、タイマーによって制御し、ついで、通液停止後に第一のイオン交換塔を水洗、及びアルカリ処理によりイオン交換塔内に充填したイオン交換樹脂をOH型に調整する際に、その調整を積算流量により制御し、しかる後、第二塔目のイオン交換塔を上流側に、第一塔目を下流側にして直列に接続する(2)または(3)に記載のホウ素溶離液の精製方法。、
(5) 充填されたイオン交換塔を脱液する際に、その調整をタイマーにより制御し、イオン交換塔に酸根を含むホウ素溶離液を通液させて酸根を除去する際は、第一のイオン交換塔出口での電気伝導率が1000μs/cm以上となる時点を検知して、この検知信号に基づいて通液停止を制御し、圧縮空気によるイオン交換塔に残留するホウ素溶離液を押出す際は、タイマーによって制御し、ついで、通液停止後に第一のイオン交換塔を水洗、及びアルカリ処理によりイオン交換塔内に充填したイオン交換樹脂をOH型に調整する際に、その調整を積算流量により制御し、しかる後、第二塔目のイオン交換塔を上流側に、第一塔目を下流側にして直列に接続する(2)または(3)に記載のホウ素溶離液の精製方法。
【0013】
これら発明において、「積算流量により制御する」とは、積算流量制御計での制御に限定されるものではなく、例えば、水及びアルカリ溶液の流速を一定にすることによりタイマーで制御する方法をも含むものである。
【0014】
(6) (2)〜(5)のいずれかに記載の精製方法で得られた高純度のホウ酸溶液を濃縮、結晶化してホウ酸固体とすることを特徴とするホウ素原料の製造方法である。
【0015】
本発明によれば、イオン交換塔に、酸根を含むホウ素溶離液から酸根を除去して高純度のホウ酸溶液を得ることができる。更に当該ホウ酸溶液は通常の濃縮結晶化によりホウ酸結晶として、ガラス、釉薬、アルミコンデンサー、ニッケルめっき液等ホウ酸を使用する工程、或いは酸化ホウ素、ボロン系合金鉄等の原料として使用することができる。
【0016】
特に、陰イオン交換樹脂を予め脱液状態にした後、酸根を含むホウ素溶離液に通液するので、ホウ素濃度の低下を防ぎ、且つ、ホウ素回収率を高めながら酸根を除去し、高純度のホウ酸溶液を得ることができる。更に、イオン交換塔からの酸根の漏出はpHの急激な低下或いは電気伝導率の上昇によって判定できるが、一塔目から酸根が漏出しても二塔目で吸着するため処理液への酸根の混入を完全に防ぐことができる。更に一塔目出口で酸根が漏出した後、圧縮空気でイオン交換塔残留するホウ素溶離液を押出すことにより、ホウ素回収率も飛躍的にアップできる。
【0017】
なお、酸根を含むホウ素溶離液は、例えば、ホウ素含有水を通液して、ホウ素を吸着したI型若しくはII型強塩基性陰イオン交換樹脂、弱塩基性陰イオン交換樹脂、或いはN−メチルグルカミン基を有するホウ素選択吸着樹脂を充填したイオン交換塔に酸溶液を通液することにより生じる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。
【0019】
本発明者は、イオン交換樹脂に対するホウ素及び種々の酸根のイオン選択性及びイオン交換樹脂の物性を鋭意研究し、酸根を含むホウ素溶離液から酸根を効率的に分離し、高純度のホウ酸溶液を得る精製装置及び精製方法を開発した。すなわち、ホウ素は溶液中酸性領域ではイオン化することなくH3 BO3 分子として溶解している。従って酸根を含むホウ素溶離液のように酸性の液をOH型に調整したI型若しくはII型強塩基性陰イオン交換樹脂、或いはOH型に調整した弱塩基性陰イオン交換樹脂を充填したイオン交換塔に通液すると酸根のみ吸着してホウ素はそのまま漏出することが明らかになった。処理液のpHは酸根が吸着されている間はアルカリ或いは中性であり、電気伝導率も数100μs/cmであるが酸根が漏出し始めるとpH値の急激な低下或いは電気伝導率の急激な上昇により終点は容易に管理できる。しかし、この際、少量ではあるが酸根の漏出は避けられなかった。このためイオン交換塔を二塔直列に接続することにより、一塔目から酸根が漏出しても二塔目で吸着し精製ホウ酸溶液に酸根が混入するのを完全に防止することができた。
【0020】
また、イオン交換塔への通液は充填されたイオン交換樹脂と液との接触しない部分の生成をなくすため充水状態で行うのが通常であるが、この場合、処理液のホウ素濃度低下が避けられず、且つ、ホウ素回収率も低いという問題がある。このため脱液状態のイオン交換塔にダウンフローで流速を大きくして通液する、或いはアップフローで通液することによりイオン交換樹脂と液との接触しない部分の生成をなくしながら、ホウ素濃度の低下を防ぎ、且つ、ホウ素回収率を高めることができた。更に一塔目出口で酸根が漏出した後、圧縮空気でイオン交換塔に残留するホウ素溶離液を押出すことにより、ホウ素回収率も飛躍的に向上することができる。
【0021】
しかし、ゲル型、ポーラス型を問わずOH型に調整したI型若しくはII型強塩基性陰イオン交換樹脂、或いはOH型に調整した弱塩基性陰イオン交換樹脂は粒子中に数10%の水を含んでいるため、酸根を含むホウ素溶離液をOH型に調整したI型若しくはII型強塩基性陰イオン交換樹脂、或いはOH型に調整した弱塩基性陰イオン交換樹脂を充填したイオン交換塔を予め脱液状態にした後酸根を含む溶離液を通液すると当該イオン交換樹脂中にホウ素が残留することが明らかになった。当該イオン交換樹脂をそのまま通常のアルカリ溶液で再生すると、残存しているホウ素も流出してしまい、ホウ素の回収率が低下してしまうとともに、当該液のホウ素除去も必要となる。
【0022】
本発明者はこれらの課題の解決方法も見出したものである。すなわち酸根を含むホウ素溶離液をOH型に調整したI型若しくはII型強塩基性陰イオン交換樹脂、或いはOH型に調整した弱塩基性陰イオン交換樹脂を充填したイオン交換塔を予め脱液状態にした後酸根を含む溶離液を通液し、引き続いて水を通液することにより当該イオン交換樹脂に残留するホウ素を回収し当該液は酸根を含むホウ素溶離液に混合し、再び陰イオン交換樹脂等に通液する。この方法によって、ホウ素は高純度のホウ酸として回収できる。
【0023】
【実施例】
以下本発明の実施例について図面を参照して具体的に説明する。
【0024】
まず、図示する装置について説明すると、この装置は、酸根を含有するホウ素溶離液タンク(10)と、水タンク(20)と、NaOH溶液タンク(30)とを配置し、夫々のタンクの液出口に自動バルブ(61)、(62)、(63)を設け、これらの液をそれぞれ液供給ポンプ(80)によりOH型に調整したI型若しくはII型強塩基性陰イオン交換樹脂、或いはOH型に調整した弱塩基性陰イオン交換樹脂を充填した陰イオン交換塔(51)又は(52)に供給するようになっている。液供給ポンプ出口には自動バルブ(64)を設けている。さらに陰イオン交換塔(51)、(52)の入り口側配管には陰イオン交換樹脂を脱液状態とするための圧縮空気の供給を制御する自動バルブ(76)を設けている。陰イオン交換塔(51)及び(52)の接続配管には自動バルブ(65)〜(72)が取付けられ、陰イオン交換塔(51)及び(52)の液出口には、pH制御計(PHC)、積算流量制御計(FQC)が装着されている。陰イオン交換塔(51)、(52)の出側は、途中で分岐され、一つは排水処理工程に、他の一つは精製ホウ素溶離液タンク(40)に、残りはホウ素溶離液タンク(10)へ戻る配管が配設されている。夫々の配管には、自動バルブ(73)、(74)、(75)が設けられている。
【0025】
この装置では、イオン交換塔の脱液は自動バルブ(65)、(68)、(69)、(72)、(74)、(76)を開き、圧縮空気をタイマーで制御しながら行い、タイマー信号を検知すると自動バルブ(65)、(68)、(69)、(72)、(74)、(76)を閉じる。次に、酸根含有ホウ素溶離液通液時には、液供給ポンプ(80)を起動し、自動バルブ(61)、(64)、(65)、(67)、(70)、(72)、(73)を開き、pH制御計により一塔目出口のpH値を制御しながらホウ酸溶液を精製する。
【0026】
次にpHが7〜1、好ましくは4に低下したのを検知すると、自動バルブ(61)、(64)を閉じ、自動バルブ(76)を開き、圧縮空気により陰イオン交換塔(51)、(52)に残留するホウ素溶離液を押出す。(この間、自動バルブ(65)、(67)、(70)、(72)、(73)は開いたままである。)この制御はタイマーによって行い、所定の時間を検知すると、自動バルブ(67)、(70)、(72)、(73)を閉じ、液供給ポンプ(80)を起動し、自動バルブ(62)、(64)、(69)、(75)を開き、水洗により第一塔に吸着するホウ素を溶離してホウ素溶離液タンク(10)に戻す。陰イオン交換塔(50)を水洗する。(この間、自動バルブ(65)は開いたまま)
この水洗の制御は、積算流量制御計により行い、所定の流量を検出すると、自動バルブ(62)、(75)を閉じ、自動バルブ(63)、(74)を開き、陰イオン交換塔(51)をアルカリ処理する。(アルカリ処理から水洗の間、自動バルブ(64)、(65)、(69)、(74)は開いたまま) このアルカリ処理の制御は、積算流量制御計により行い、所定の流量を検出すると、自動バルブ(63)を閉じ、自動バルブ(62)を開き、陰イオン交換塔(51)を水洗する。この水洗の制御は、積算流量制御計により行ない、自動バルブ所定の流量を検出すると、水洗が完了し、液供給ポンプ(80)を停止する。続いて、自動バルブ(65)、(69)、(74)、(76)を開き、陰イオン交換塔(51)を脱液状態にする。この制御はタイマーによって行い、所定の時間を検出すると、自動バルブ(65)、(69)、(74)、(76)を閉じ、再使用が可能となる。なお、次回は陰イオン交換塔(52)を第一塔目とし、陰イオン交換塔(51)を第二塔目とする。表1にホウ素溶離液の分析例を示す。
【0027】
なお、上記実施例では、pH値を制御しながらホウ酸溶液を精製したが、これに限らず、電気伝導率を検出して(1000μs/cm以上となった時点を検出して)この値に基づいて制御することもできる。
【0028】
[実施例]
内径34mm、高さ1,000mmのアクリル製カラムを二塔用意し、それそれにOH型に調整した弱塩基性陰イオン交換樹脂を300mL充填する。樹脂床にイオン交換水を流速3,000mL/Hrで1時間通液してイオン交換樹脂に残存する薬剤を抽出、洗浄し、圧縮空気によって脱液状態にする。その後、表1に示す組成を示すホウ素を吸着したN−メチルグルカミン基を有するホウ素選択吸着樹脂を充填したイオン交換塔に5%硫酸を通液することにより再生した硫酸を含むホウ素溶離液を流速3,000mL/Hrで直列に通液した。一塔目及び二塔目出口水のホウ素、硫酸濃度曲線は図1(a),(b)のとおりであり、一塔目処理液のpHが急激に低下するまでの二塔目出口水は硫酸が除去されたホウ酸溶液であった。一塔目出口液に硫酸が漏出するまでに得られる処理液のホウ素濃度は0.93g/Lであり、処理液中のホウ素回収率は硫酸を含むホウ素溶離液の通液量に対し、85%であった。
【0029】
なお、図1(a),(b)では、右縦軸にpH値を取ったが、右縦軸に電気伝導率を取ると、図2(a),(b)のようになる。この図から、pHとともに電気伝導率によっても制御可能であることがわかる。また、本発明は、pHと電気伝導率の両方で制御することも可能である。
【0030】
[比較例]
内径34mm、高さ1,000mmのアクリル製カラムを用意し、OH型に調整した弱塩基性陰イオン交換樹脂を300mL充填する。樹脂床にイオン交換水を流速3,000mL/Hrで1時間通液してイオン交換樹脂に残存する薬剤を抽出、洗浄、圧縮空気により脱液状態にする。その後表1に示す組成を示すホウ素を吸着したN−メチルグルカミン基を有するホウ素選択吸着樹脂を充填したイオン交換塔に5%硫酸を通液することにより再生した硫酸を含むホウ素溶離液を流速3,000mL/Hrで通液した。出口水のホウ素、硫酸濃度曲線は図3に示すとおりであり、処理液のpHが低下するまでの出口水は硫酸が除去されたホウ酸溶液であった。
【0031】
硫酸が漏出するまでに得られる処理液のホウ素濃度は0.77g/Lであり、処理液中のホウ素回収率は硫酸を含むホウ素溶離液の通液量に対し、70%であった。
【0032】
【表1】

Figure 0003851491
【0033】
【発明の効果】
以上説明したように、本発明によれば、脱液状態に調整した、OH型に調整したI型若しくはII型強塩基性陰イオン交換樹脂、或いはOH型に調整した弱塩基性陰イオン交換樹脂を充填したイオン交換塔に、酸根を含むホウ素溶離液を通液することにより、処理液のホウ素濃度低下を少なくし、且つホウ素回収率も高い状態で酸根のみを吸着し、高純度のホウ酸溶液として回収することができる。更に処理液への酸根の混入を完全に防ぐことができる。
【図面の簡単な説明】
【図1】実施例の出口水のホウ素、硫酸濃度及びpH曲線を示す図で、(a)は一塔目出口分析値、(b)は二塔目出口分析値。
【図2】実施例の出口水のホウ素、硫酸濃度及び電気伝導率を示す図で、(a)は一塔目出口分析値、(b)は二塔目出口分析値。
【図3】比較例1の出口水のホウ素、硫酸濃度及びpH曲線を示す図。
【図4】本発明装置の説明図。
【符号の説明】
10…酸根を含有するホウ素溶離液タンク、
20…水タンク、
30…NaOH溶液タンク、
40…精製ホウ酸溶液タンク、
51,52…陰イオン交換塔、
61〜76…自動バルブ、
80…液供給ポンプ、
PHC…pH制御計、
FQC…積算流量制御計、
タイマー…時間制御計。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a boron eluent purification apparatus and a purification method for purifying a boron eluent containing an acid radical and recovering it as a solid.
[0002]
[Prior art]
In general, a nickel plating solution or an aluminum surface treatment solution contains a boron compound (boric acid or the like), and cleaning wastewater containing boron is generated in factories that handle these. Also, factories that use boron, such as glass, glaze, and aluminum condensers, generate factory wastewater containing boron. Boron compounds are essential trace elements for plants, and it is well known that seawater contains about 4 to 5 mg / L. On the other hand, although the effect of boron on the human body is not necessarily clear, it has been pointed out that it may cause health problems such as a decrease in reproductive function when continuously ingested at a low concentration. In February 1999, 1 mg / L or less was announced as an environmental standard for boron, and it is expected that a drainage standard will be established later. Therefore, it is necessary to remove boron from process wastewater containing boron. Become.
[0003]
As a boron removal method, a boron compound is separated and removed by coagulation precipitation using an aluminum compound and a calcium compound in a boron-containing wastewater (Japanese Patent Publication Nos. 58-15193 and 59-24876) or a nickel plating washing wastewater. A method of separating and removing boron by coagulating precipitation by adding a magnesium salt (1999 Tokyo Metropolitan Industrial Technology Research Institute Preliminary Proceedings p52) is known. However, in order to insolubilize boron, it is necessary to use a large amount of chemicals, and there is a problem that the amount of generated sludge is large and the treatment is difficult. Further, this method contains a large amount of aluminum, calcium or magnesium compound, and boron cannot be reused.
[0004]
Many methods of adsorbing boron-containing wastewater with an anion exchange resin or a boron selective adsorption resin are also known (Japanese Patent Publication No. 2-32952, etc.). However, since boron-containing water is treated by passing it through an ion-exchange resin that adsorbs boron, and an acid solution is used to elute boron from the ion-exchange resin, boron-containing water containing regenerated acid radicals is used. Have a problem with processing.
[0005]
As a purification method of boric acid eluent containing acid radicals, a method is known in which it is neutralized with an alkali to form a mixed solution of boric acid and a salt produced by neutralization, and then separated using the difference in solubility between boric acid and the salt. (12695 chemical products P-151, basic unit of inorganic fine chemicals & process Chunichisha published 1990), but this method is complicated and has high equipment costs, like a boric acid production plant. It is not practical unless the scale is large.
[0006]
In addition, a method is also known in which an eluent is brought into contact with an extractant to extract boron, contacted with a back extractant, back extracted, and a boron compound is crystallized by a crystallization method. (Japanese Patent Publication No. 1-50476) Octylene glycol, 2-ethylhexanol, and the like are known as extractants, but these are dangerous materials defined by the Fire Service Act and are difficult to handle such as avoiding fire.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances. It is an object of the present invention to provide a method for purifying a boron eluent having an acid radical for obtaining a high-purity boron solution with a simple process and low equipment cost.
[0008]
[Means for Solving the Problems]
The method of the present invention has been made to solve this problem,
(1) Selected from the group of type I strongly basic anion exchange resin adjusted to OH type, type II strongly basic anion exchange resin adjusted to OH type, and weakly basic anion exchange resin adjusted to OH type At least two ion exchange columns that are filled with the anion exchange resin and communicated in series with each other, a liquid removing means for decontaminating the anion exchange resin in the ion exchange column, and the anion exchange resin. It is equipped with a purified boron eluent tank that stores boron eluent that is extruded from the ion exchange tower when it is in a liquid state. An apparatus for purifying a boron eluent characterized in that a boric acid solution is obtained.
[0009]
(2) Selected from the group of type I strongly basic anion exchange resin adjusted to OH type, type II strongly basic anion exchange resin adjusted to OH type, and weakly basic anion exchange resin adjusted to OH type And a step of bringing at least two ion exchange columns connected in series with each other into a liquid-removed state, and passing a boron eluent containing an acid group through the deionized ion-exchange column. And a step of removing the acid radical to obtain a high-purity boric acid solution.
[0010]
(3) a step of detecting leakage of acid radicals from the anion exchange resin packed in the first anion exchange tower on the upstream side, and the upstream first tower by compressed air when the leakage is detected The process of extruding the boron eluent remaining in the anion exchange column of the second column on the first and downstream sides to the purified boric acid solution tank, and filling the anion exchange column of the first column with boron adhering to the acid radical Elution of boron and acid radicals remaining in the ion exchange column by passing water through the anion exchange resin adsorbing sorbent, mixing boron containing the eluted acid radicals in the boron eluent, and eluting the boron The step of adjusting the ion type of the ion exchange resin filled in the ion exchange column to OH type by passing an alkaline solution through the first ion exchange column, and the second anion exchange column on the upstream side The first anion exchange tower on the downstream side And a step of removing these acid radicals by passing the boron eluent containing acid radicals again to obtain a high-purity boric acid solution. The method for purifying a boron eluent according to (2), which is characterized in that
[0011]
In the step of eluting boron and acid radicals remaining in the ion exchange tower by passing water through the ion exchange tower that has adsorbed the acid radicals, all the boron remaining in the ion exchange resin usually flows out from the water washing, but is adsorbed. Only a part of the acid radicals are released.
[0012]
(4) When draining the packed ion exchange tower, the adjustment is controlled by a timer, and when removing the acid radical by passing the boron eluent containing the acid radical through the ion exchange tower, the first ion is used. A timer is used to detect the time when the pH at the outlet of the exchange tower drops to 7 to 1, and to control the flow stop based on this detection signal, and to extrude the boron eluent remaining in the ion exchange tower by compressed air. Next, when the ion exchange resin filled in the ion exchange tower is adjusted to OH type by washing with water and alkali treatment after stopping the liquid flow, the adjustment is controlled by the integrated flow rate. Then, the method for purifying a boron eluent according to (2) or (3), wherein the second column ion exchange column is connected in series with the first column on the upstream side and the first column on the downstream side. ,
(5) When draining the packed ion exchange tower, the adjustment is controlled by a timer, and when removing the acid radical by passing a boron eluent containing an acid radical through the ion exchange tower, the first ion is used. When the electrical conductivity at the outlet of the exchange tower is detected to be 1000 μs / cm or more, the suspension of liquid flow is controlled based on this detection signal, and the boron eluent remaining in the ion exchange tower by compressed air is extruded. Is controlled by a timer, then, after stopping the flow of water, the first ion exchange tower is washed with water, and when the ion exchange resin filled in the ion exchange tower is adjusted to OH type by alkali treatment, the adjustment is integrated flow rate. After that, the boron ion eluent purification method according to (2) or (3), wherein the second ion exchange column is connected in series with the second column on the upstream side and the first column on the downstream side.
[0013]
In these inventions, “control by the integrated flow rate” is not limited to the control by the integrated flow rate controller, and for example, a method of controlling by a timer by making the flow rates of water and alkaline solution constant. Is included.
[0014]
(6) A method for producing a boron raw material characterized in that a high-purity boric acid solution obtained by the purification method according to any one of (2) to (5) is concentrated and crystallized to obtain a boric acid solid. is there.
[0015]
According to the present invention, a high-purity boric acid solution can be obtained by removing acid radicals from a boron eluent containing acid radicals in an ion exchange column. Furthermore, the boric acid solution should be used as a boric acid crystal by normal concentration crystallization, a process using boric acid such as glass, glaze, aluminum condenser, nickel plating solution, or as a raw material for boron oxide, boron alloy iron, etc. Can do.
[0016]
In particular, since the anion exchange resin is preliminarily dehydrated and then passed through a boron eluent containing acid radicals, the decrease in boron concentration is prevented, and acid radicals are removed while increasing the boron recovery rate. A boric acid solution can be obtained. Furthermore, leakage of acid radicals from the ion exchange column can be determined by a rapid drop in pH or an increase in electrical conductivity, but even if the acid radicals leak from the first tower, they are adsorbed in the second tower, so the acid radicals leak into the treatment liquid. Mixing can be completely prevented. Further, after the acid radical leaks at the outlet of the first tower, the boron eluent remaining in the ion exchange tower is extruded with compressed air, so that the boron recovery rate can be dramatically increased.
[0017]
In addition, the boron eluent containing an acid radical is, for example, a type I or type II strongly basic anion exchange resin, weakly basic anion exchange resin, or N-methyl which adsorbs boron by passing boron-containing water. It is generated by passing an acid solution through an ion exchange column packed with a boron selective adsorption resin having a glucamine group.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0019]
The present inventor has eagerly studied the ion selectivity of boron and various acid radicals with respect to the ion exchange resin and the physical properties of the ion exchange resin, and efficiently separated the acid radical from the boron eluent containing the acid radical, thereby obtaining a high-purity boric acid solution. Has been developed. That is, boron is dissolved as H 3 BO 3 molecules without being ionized in the acidic region in the solution. Therefore, an ion exchange filled with a strongly basic anion exchange resin of type I or type II that is adjusted to OH type, such as boron eluent containing acid radicals, or weakly basic anion exchange resin that is adjusted to OH type. It was clarified that when the liquid was passed through the tower, only the acid radicals were adsorbed and boron leaked out as it was. The pH of the treatment solution is alkaline or neutral while the acid radical is adsorbed, and the electric conductivity is several hundred μs / cm. However, when the acid radical starts to leak, the pH value rapidly decreases or the electric conductivity rapidly increases. The end point can be easily managed by rising. At this time, however, leakage of acid radicals was unavoidable even in a small amount. For this reason, by connecting two ion exchange towers in series, it was possible to completely prevent acid radicals from adsorbing in the second tower and mixing in the purified boric acid solution even if the acid radical leaks from the first tower. .
[0020]
In addition, the liquid flow to the ion exchange tower is usually carried out in a charged state in order to eliminate the formation of a portion where the packed ion exchange resin and the liquid do not contact, but in this case, the boron concentration of the treatment liquid is reduced. There is a problem that it is inevitable and the boron recovery rate is low. For this reason, it is possible to increase the flow rate through the ion exchange tower in the liquid removal state through the down flow, or to pass through the up flow, thereby eliminating the formation of the portion where the ion exchange resin does not contact the liquid, while maintaining the boron concentration. It was possible to prevent the decrease and increase the boron recovery rate. Further, after the acid radical leaks out at the outlet of the first tower, the boron eluent remaining in the ion exchange tower is extruded with compressed air, so that the boron recovery rate can be dramatically improved.
[0021]
However, the type I or II type strongly basic anion exchange resin adjusted to OH type, whether gel type or porous type, or weakly basic anion exchange resin adjusted to OH type is several tens of percent water in the particles. Ion-exchange tower packed with type I or type II strongly basic anion exchange resin whose acid eluant boron eluent is adjusted to OH type, or weakly basic anion exchange resin adjusted to OH type It was revealed that boron was left in the ion exchange resin when the eluent containing acid radicals was passed after the solution was previously lysed. If the ion exchange resin is regenerated as it is with a normal alkaline solution, the remaining boron will also flow out, reducing the boron recovery rate and necessitating removal of the boron from the liquid.
[0022]
The inventor has also found a solution to these problems. In other words, an ion exchange column filled with a type I or type II strongly basic anion exchange resin adjusted to OH type or a weakly basic anion exchange resin adjusted to OH type in an OH type is used as a liquid removal state in advance. After that, the eluent containing acid radicals is passed through, and then water is passed through to recover boron remaining in the ion exchange resin, and the liquid is mixed with the boron eluent containing acid radicals, and then anion exchange is performed again. Pass through resin. By this method, boron can be recovered as high purity boric acid.
[0023]
【Example】
Embodiments of the present invention will be specifically described below with reference to the drawings.
[0024]
First, the illustrated apparatus will be described. In this apparatus, a boron eluent tank (10) containing an acid radical, a water tank (20), and an NaOH solution tank (30) are arranged, and the liquid outlet of each tank is arranged. Are provided with automatic valves (61), (62), (63), and these liquids are adjusted to OH type by a liquid supply pump (80), respectively, or strongly basic anion exchange resin, or OH type It supplies to the anion exchange tower (51) or (52) filled with the weakly basic anion exchange resin adjusted to (5). An automatic valve (64) is provided at the outlet of the liquid supply pump. Furthermore, an automatic valve (76) for controlling the supply of compressed air for bringing the anion exchange resin into a liquid-removed state is provided on the inlet side piping of the anion exchange columns (51) and (52). Automatic valves (65) to (72) are attached to the connecting pipes of the anion exchange columns (51) and (52), and a pH controller (at the liquid outlet of the anion exchange columns (51) and (52)). PHC) and an integrated flow rate controller (FQC) are installed. The outlet side of the anion exchange columns (51) and (52) is branched in the middle, one for the waste water treatment step, the other for the purified boron eluent tank (40), and the rest for the boron eluent tank. The piping which returns to (10) is arrange | positioned. Each pipe is provided with automatic valves (73), (74) and (75).
[0025]
In this apparatus, deionization of the ion exchange column is performed while the automatic valves (65), (68), (69), (72), (74), (76) are opened and the compressed air is controlled by a timer. When the signal is detected, the automatic valves (65), (68), (69), (72), (74), (76) are closed. Next, at the time of passing the acid radical-containing boron eluent, the liquid supply pump (80) is started, and the automatic valves (61), (64), (65), (67), (70), (72), (73) And the boric acid solution is purified while controlling the pH value at the outlet of the first tower with a pH controller.
[0026]
Next, when it is detected that the pH has dropped to 7-1, preferably 4, the automatic valves (61), (64) are closed, the automatic valve (76) is opened, and the anion exchange column (51), The boron eluent remaining in (52) is extruded. (During this time, the automatic valves (65), (67), (70), (72), (73) remain open.) This control is performed by a timer. When a predetermined time is detected, the automatic valve (67) , (70), (72), (73) are closed, the liquid supply pump (80) is started, the automatic valves (62), (64), (69), (75) are opened, and the first tower is washed with water. The boron adsorbed on the eluate is returned to the boron eluent tank (10). The anion exchange tower (50) is washed with water. (During this time, the automatic valve (65) remains open)
This washing control is performed by an integrated flow rate controller, and when a predetermined flow rate is detected, the automatic valves (62) and (75) are closed, the automatic valves (63) and (74) are opened, and the anion exchange tower (51 ) Is treated with alkali. (Automatic valves (64), (65), (69), (74) remain open during the alkali treatment to water washing) The alkali treatment is controlled by an integrated flow rate controller, and when a predetermined flow rate is detected. Then, the automatic valve (63) is closed, the automatic valve (62) is opened, and the anion exchange tower (51) is washed with water. This washing control is performed by an integrated flow rate controller, and when a predetermined flow rate of the automatic valve is detected, the washing is completed and the liquid supply pump (80) is stopped. Subsequently, the automatic valves (65), (69), (74), (76) are opened, and the anion exchange column (51) is brought into a liquid removal state. This control is performed by a timer. When a predetermined time is detected, the automatic valves (65), (69), (74), and (76) are closed and can be reused. The next time, the anion exchange column (52) is the first column, and the anion exchange column (51) is the second column. Table 1 shows an analysis example of the boron eluent.
[0027]
In the above embodiment, the boric acid solution was purified while controlling the pH value. However, the present invention is not limited to this, and the electrical conductivity is detected (at the time when the value is 1000 μs / cm or more). It is also possible to control based on this.
[0028]
[Example]
Two towers made of acrylic having an inner diameter of 34 mm and a height of 1,000 mm are prepared, and 300 mL of weakly basic anion exchange resin adjusted to OH type is packed in it. Ion exchange water is passed through the resin bed at a flow rate of 3,000 mL / Hr for 1 hour to extract and wash the drug remaining on the ion exchange resin, and the liquid is brought into a liquid-removed state with compressed air. Thereafter, a boron eluent containing sulfuric acid regenerated by passing 5% sulfuric acid through an ion exchange column filled with a boron selective adsorption resin having an N-methylglucamine group adsorbing boron having the composition shown in Table 1 was obtained. The solution was passed in series at a flow rate of 3,000 mL / Hr. The boron and sulfuric acid concentration curves of the first and second tower outlet water are as shown in FIGS. 1 (a) and (b), and the second tower outlet water until the pH of the first tower treatment liquid rapidly decreases is as follows. It was a boric acid solution from which sulfuric acid was removed. The concentration of boron in the treatment liquid obtained before the sulfuric acid leaks into the first column outlet liquid is 0.93 g / L, and the boron recovery rate in the treatment liquid is 85 with respect to the flow rate of the boron eluent containing sulfuric acid. %Met.
[0029]
In FIGS. 1A and 1B, the right vertical axis represents the pH value, but the right vertical axis represents the electrical conductivity as shown in FIGS. 2A and 2B. From this figure, it can be seen that it can be controlled by the electrical conductivity as well as the pH. The present invention can also be controlled by both pH and electrical conductivity.
[0030]
[Comparative example]
An acrylic column having an inner diameter of 34 mm and a height of 1,000 mm is prepared, and 300 mL of weakly basic anion exchange resin adjusted to OH type is packed. Ion exchange water is passed through the resin bed at a flow rate of 3,000 mL / Hr for 1 hour to extract the drug remaining on the ion exchange resin, wash it, and make it dehydrated with compressed air. Thereafter, a boron eluent containing sulfuric acid regenerated by passing 5% sulfuric acid through an ion exchange column filled with a boron selective adsorption resin having an N-methylglucamine group adsorbing boron having the composition shown in Table 1 was flowed. The solution was passed at 3,000 mL / Hr. The boron and sulfuric acid concentration curves of the outlet water are as shown in FIG. 3, and the outlet water until the pH of the treatment liquid was lowered was a boric acid solution from which sulfuric acid was removed.
[0031]
The boron concentration of the treatment liquid obtained until the sulfuric acid leaked was 0.77 g / L, and the boron recovery rate in the treatment liquid was 70% with respect to the flow rate of the boron eluent containing sulfuric acid.
[0032]
[Table 1]
Figure 0003851491
[0033]
【The invention's effect】
As described above, according to the present invention, the I-type or II-type strongly basic anion exchange resin adjusted to the OH type, or the weakly basic anion exchange resin adjusted to the OH type, adjusted to a liquid removal state. By passing a boron eluent containing acid radicals through an ion exchange column packed with acid, only the acid radicals are adsorbed in a state in which the decrease in the boron concentration of the treatment liquid is reduced and the boron recovery rate is high. It can be recovered as a solution. Furthermore, it is possible to completely prevent acid radicals from being mixed into the treatment liquid.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing boron, sulfuric acid concentration and pH curves of outlet water of an example, where (a) is the first tower outlet analysis value and (b) is the second tower outlet analysis value.
FIG. 2 is a graph showing boron, sulfuric acid concentration, and electrical conductivity of outlet water in the examples, where (a) is the first tower outlet analysis value, and (b) is the second tower outlet analysis value.
3 is a graph showing boron, sulfuric acid concentration and pH curve of outlet water of Comparative Example 1. FIG.
FIG. 4 is an explanatory diagram of the device of the present invention.
[Explanation of symbols]
10 ... Boron eluent tank containing acid radicals,
20 ... Water tank,
30 ... NaOH solution tank,
40 ... Purified boric acid solution tank,
51, 52 ... anion exchange tower,
61-76 ... automatic valve,
80 ... Liquid supply pump,
PHC ... pH controller,
FQC ... Integrated flow controller,
Timer ... Time controller.

Claims (6)

OH型に調整したI型強塩基性陰イオン交換樹脂、OH型に調整したII型強塩基性陰イオン交換樹脂、及びOH型に調整した弱塩基性陰イオン交換樹脂の群から選択された陰イオン交換樹脂を充填し、互いに直列に連通した少なくとも二塔のイオン交換塔と、イオン交換塔内の陰イオン交換樹脂を脱液状態にする脱液手段と、陰イオン交換樹脂を脱液状態にした際にイオン交換塔から押出されるホウ素溶離液を貯溜する精製ホウ素溶離液タンクとを備え、イオン交換塔に酸根を含むホウ素溶離液を通液させて酸根を除去して高純度のホウ酸溶液を得るようにしたことを特徴とするホウ素溶離液の精製装置。An anion selected from the group of type I strongly basic anion exchange resin adjusted to OH type, type II strongly basic anion exchange resin adjusted to OH type, and weakly basic anion exchange resin adjusted to OH type At least two ion exchange columns filled with the ion exchange resin and communicating in series with each other, a dehydrating means for decontaminating the anion exchange resin in the ion exchange column, and deionizing the anion exchange resin A purified boron eluent tank that stores the boron eluent extruded from the ion exchange tower, and the boron eluent containing acid radicals is passed through the ion exchange tower to remove the acid radicals, thereby obtaining high purity boric acid. An apparatus for purifying boron eluent, characterized in that a solution is obtained. OH型に調整したI型強塩基性陰イオン交換樹脂、OH型に調整したII型強塩基性陰イオン交換樹脂、及びOH型に調整した弱塩基性陰イオン交換樹脂の群から選択された陰イオン交換樹脂を充填し、互いに直列に連通した少なくとも二塔のイオン交換塔を脱液状態にする工程と、脱液状態のイオン交換塔に酸根を含むホウ素溶離液を通液させて酸根を除去し、高純度のホウ酸溶液を得る工程とを備えたことを特徴とするホウ素溶離液の精製方法。An anion selected from the group of type I strongly basic anion exchange resin adjusted to OH type, type II strongly basic anion exchange resin adjusted to OH type, and weakly basic anion exchange resin adjusted to OH type Filling the ion-exchange resin and bringing the at least two ion-exchange towers connected in series with each other into a liquid-removed state, and passing the boron eluent containing acid radicals through the liquid-extracted ion-exchange tower to remove the acid radical And a step of obtaining a high-purity boric acid solution. 上流側の第一塔目の陰イオン交換塔に充填された陰イオン交換樹脂から酸根が漏出するのを検知する工程と、漏出を検知した時点で圧縮空気により上流側の第一塔目及び下流側の第二塔目の陰イオン交換塔に残留するホウ素溶離液を精製ホウ酸溶液タンクに押出す工程と、第一塔目の陰イオン交換塔に充填され、ホウ素を付着し酸根を吸着した陰イオン交換樹脂に水を通液してイオン交換塔に残留するホウ素及び酸根を溶離する工程と、溶離した酸根を含むホウ素をホウ素溶離液に混合する工程と、前記ホウ素を溶離した第一塔目のイオン交換塔にアルカリ溶液を通液してイオン交換塔に充填されたイオン交換樹脂のイオン型をOH型に調整する工程と、第二塔目の陰イオン交換塔を上流側に、第一塔目の陰イオン交換塔を下流側にして直列に接続した後これらイオン交換塔を脱液状態にして、再び、酸根を含むホウ素溶離液を通液させて酸根を除去し、高純度のホウ酸溶液を得る工程とを備えたことを特徴とする請求項2に記載のホウ素溶離液の精製方法。A step of detecting leakage of acid radicals from the anion exchange resin packed in the first anion exchange column on the upstream side, and the upstream side of the first column and the downstream side by compressed air when the leakage is detected Extruding the boron eluent remaining in the second anion exchange column on the side to the purified boric acid solution tank, filling the first anion exchange column, adhering boron and adsorbing acid radicals The step of eluting boron and acid radicals remaining in the ion exchange column by passing water through the anion exchange resin, the step of mixing boron containing the eluted acid radicals with the boron eluent, and the first column eluting the boron A step of adjusting the ion type of the ion exchange resin filled in the ion exchange column to OH type by passing an alkaline solution through the second ion exchange column, and the second anion exchange column on the upstream side; Series with the first anion exchange tower downstream And a step of removing the acid radicals by bringing the ion exchange tower into a liquid-removed state after the connection and then passing the boron eluent containing the acid radicals again to obtain a high-purity boric acid solution. The method for purifying a boron eluent according to claim 2. 充填されたイオン交換塔を脱液する際に、その調整をタイマーにより制御し、イオン交換塔に酸根を含むホウ素溶離液を通液させて酸根を除去する際は、第一のイオン交換塔出口のpHが7〜1に低下する時点を検知して、この検知信号に基づいて通液停止を制御し、圧縮空気によるイオン交換塔に残留するホウ素溶離液を押出す際は、タイマーによって制御し、ついで、通液停止後に第一のイオン交換塔を水洗、及びアルカリ処理によりイオン交換塔内に充填したイオン交換樹脂をOH型に調整する際に、その調整を積算流量により制御し、しかる後、第二塔目のイオン交換塔を上流側に、第一塔目を下流側にして直列に接続する請求項2または3に記載のホウ素溶離液の精製方法。When draining the packed ion exchange column, the adjustment is controlled by a timer, and when removing the acid radical by passing the boron eluent containing the acid radical through the ion exchange tower, the outlet of the first ion exchange tower When the pH of the water drops to 7-1, the flow stoppage is controlled based on this detection signal, and the boron eluent remaining in the ion exchange tower by compressed air is controlled by a timer. Then, when the ion exchange resin filled in the ion exchange tower by washing with water and alkali treatment is adjusted to OH type after stopping the liquid flow, the adjustment is controlled by the integrated flow rate, and thereafter The method for purifying a boron eluent according to claim 2 or 3, wherein the ion exchange column of the second column is connected in series with the upstream side of the first column and the downstream side of the first column. 充填されたイオン交換塔を脱液する際に、その調整をタイマーにより制御し、イオン交換塔に酸根を含むホウ素溶離液を通液させて酸根を除去する際は、第一のイオン交換塔出口での電気伝導率が1000μs/cm以上となる時点を検知して、この検知信号に基づいて通液停止を制御し、圧縮空気によるイオン交換塔に残留するホウ素溶離液を押出す際は、タイマーによって制御し、ついで、通液停止後に第一のイオン交換塔を水洗、及びアルカリ処理によりイオン交換塔内に充填したイオン交換樹脂をOH型に調整する際に、その調整を積算流量により制御し、しかる後、第二塔目のイオン交換塔を上流側に、第一塔目を下流側にして直列に接続する請求項2または3に記載のホウ素溶離液の精製方法。When draining the packed ion exchange column, the adjustment is controlled by a timer, and when removing the acid radical by passing the boron eluent containing the acid radical through the ion exchange tower, the outlet of the first ion exchange tower When the electric conductivity at 1000 μs / cm or more is detected, the flow stoppage is controlled based on this detection signal, and when the boron eluent remaining in the ion exchange tower by compressed air is extruded, a timer is used. Next, when the ion exchange resin filled in the ion exchange tower is adjusted to OH type by washing with water and alkali treatment after stopping the liquid flow, the adjustment is controlled by the integrated flow rate. 4. The method for purifying a boron eluent according to claim 2, wherein the boron ion eluent is connected in series with the second column ion exchange column on the upstream side and the first column on the downstream side. 請求項2〜5のいずれかに記載の精製方法で得られた高純度のホウ酸溶液を濃縮、結晶化してホウ酸固体とすることを特徴とするホウ素原料の製造方法。A method for producing a boron raw material, characterized in that a high-purity boric acid solution obtained by the purification method according to claim 2 is concentrated and crystallized to obtain a boric acid solid.
JP2000154889A 2000-05-25 2000-05-25 Apparatus and method for purifying boron eluent Expired - Fee Related JP3851491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000154889A JP3851491B2 (en) 2000-05-25 2000-05-25 Apparatus and method for purifying boron eluent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000154889A JP3851491B2 (en) 2000-05-25 2000-05-25 Apparatus and method for purifying boron eluent

Publications (2)

Publication Number Publication Date
JP2001335315A JP2001335315A (en) 2001-12-04
JP3851491B2 true JP3851491B2 (en) 2006-11-29

Family

ID=18659915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000154889A Expired - Fee Related JP3851491B2 (en) 2000-05-25 2000-05-25 Apparatus and method for purifying boron eluent

Country Status (1)

Country Link
JP (1) JP3851491B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073086A (en) * 2013-01-18 2013-05-01 上海化学工业区中法水务发展有限公司 Method for adsorbing glycerol contained in wastewater by using resin treated by boric acid
CN104364202A (en) * 2012-04-05 2015-02-18 Posco公司 Boron recovery apparatus, boron recovery method, and boron recovery system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136800B2 (en) * 2009-04-02 2013-02-06 住友金属鉱山株式会社 Method for separating cadmium from aqueous solution
KR20150048866A (en) * 2012-10-22 2015-05-07 오르가노 코포레이션 Method of desalinating boron-containing solution
WO2015025896A1 (en) * 2013-08-23 2015-02-26 味の素株式会社 Method for producing 1,5-pentadiamine
CL2014000579A1 (en) 2014-03-10 2014-06-20 Fundacion Chile Continuous and modular treatment system for boron removal, consisting of a boron system next to a resin regeneration system, comprising 3 columns that operate alternately, two of the columns are in operation, in boron removal, while the third column is in regeneration

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104364202A (en) * 2012-04-05 2015-02-18 Posco公司 Boron recovery apparatus, boron recovery method, and boron recovery system
US9790096B2 (en) 2012-04-05 2017-10-17 Posco Boron recovery apparatus, boron recovery method, and boron recovery system
CN103073086A (en) * 2013-01-18 2013-05-01 上海化学工业区中法水务发展有限公司 Method for adsorbing glycerol contained in wastewater by using resin treated by boric acid
CN103073086B (en) * 2013-01-18 2013-12-11 上海化学工业区中法水务发展有限公司 Method for adsorbing glycerol contained in wastewater by using resin treated by boric acid

Also Published As

Publication number Publication date
JP2001335315A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
JPS60132693A (en) Washing method of granular ion exchange resin with ultra-pure water and preparation of ultra-pure water
WO2011036942A1 (en) Process for production of tetraalkylammonium hydroxide
JP3646900B2 (en) Apparatus and method for treating boron-containing water
JP6185924B2 (en) Desalination method for boron-containing solution
JP3851491B2 (en) Apparatus and method for purifying boron eluent
JPS6231613B2 (en)
JP3231228B2 (en) Regeneration method of ion exchange resin tower
JPH11352283A (en) Condensate processing method and condensate demineralization device
JP3883781B2 (en) Apparatus and method for purifying boron eluent
JP4733807B2 (en) Method for purifying boron eluent and method for producing boron raw material
JP4618937B2 (en) How to remove phosphorus from wastewater.
JP3913939B2 (en) Boron recovery method
JPH01194988A (en) Treatment of metal-containing water
JPH07232915A (en) Method for recovering fluorine in waste water
JP4691276B2 (en) Method and apparatus for recovering high purity boron-containing water
JP3613376B2 (en) Pure water production apparatus and pure water production method
JP3887767B2 (en) High purity boron-containing water recovery method and recovery device
JP3907937B2 (en) Method for treating boron-containing eluent containing alkali
JP3614548B2 (en) Hydrogen peroxide purification method
JP2607534B2 (en) Device for removing odor components in pure water
JP2002029731A (en) Method for recovering high purity boron-containing water and apparatus therefor
JP4756911B2 (en) Boron recovery method
JP2003053342A (en) Method and device for removing impurity in boron- containing solution
JP4918197B2 (en) Method for recovering mineral acid from mixed acid of boric acid and mineral acid
JP3993370B2 (en) Method for recovering Cr (V1) from anion exchange resin tower

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060901

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees