JP4733807B2 - Method for purifying boron eluent and method for producing boron raw material - Google Patents

Method for purifying boron eluent and method for producing boron raw material Download PDF

Info

Publication number
JP4733807B2
JP4733807B2 JP2000131666A JP2000131666A JP4733807B2 JP 4733807 B2 JP4733807 B2 JP 4733807B2 JP 2000131666 A JP2000131666 A JP 2000131666A JP 2000131666 A JP2000131666 A JP 2000131666A JP 4733807 B2 JP4733807 B2 JP 4733807B2
Authority
JP
Japan
Prior art keywords
boron
ion exchange
type
eluent
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000131666A
Other languages
Japanese (ja)
Other versions
JP2001316108A (en
Inventor
智 早川
保雄 鈴木
寅雄 石田
Original Assignee
日本電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電工株式会社 filed Critical 日本電工株式会社
Priority to JP2000131666A priority Critical patent/JP4733807B2/en
Publication of JP2001316108A publication Critical patent/JP2001316108A/en
Application granted granted Critical
Publication of JP4733807B2 publication Critical patent/JP4733807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、酸根を含むホウ素溶離液を精製し、固体として回収するホウ素溶離液の精製装置及び精製方法に関する。
【0002】
【従来の技術】
一般にニッケルメッキ液或いはアルミ表面処理液中にはホウ素化合物(ホウ酸等)が含まれており、これらを扱う工場においてはホウ素を含有する洗浄排水が発生する。またガラス、釉薬、アルミコンデンサー等ホウ素を使用する工場においてもホウ素を含む工場排水が発生する。ホウ素化合物は植物にとっては必須微量元素であり、海水には4〜5mg/L程度含まれていることは周知のことである。一方、ホウ素が人体に与える影響は必ずしも明確ではないものの、低濃度の継続摂取において生殖機能の低下などの健康障害を起こす可能性が指摘されている。平成11年2月、ホウ素の環境基準として1mg/L以下が告示され、追って排水基準も定められることになるものと予想されるため、これらのホウ素を含む工程排水中のホウ素除去処理が必要となる。
【0003】
ホウ素の除去方法としては、ホウ素含有排水にアルミニウム化合物及びカルシウム化合物を用いて凝集沈殿によりホウ素化合物を分離除去する方法(特公昭58-15193号公報、同59-24876号公報)或いはニッケルメッキ洗浄排水にマグネシウム塩を添加して凝集沈殿によりホウ素を分離除去する方法等(平成11年度東京都立産業技術研究所発表会予稿集p52)が知られている。しかし、ホウ素を不溶化させるために多量の薬剤を使用する必要があり、発生汚泥も多くその処理が困難であるという問題がある。更にこの方法ではアルミニウム、カルシウム或いはマグネシウム化合物が大量に含まれており、ホウ素を再利用することは不可能である。
【0004】
またホウ素含有排水を陰イオン交換樹脂、或いはホウ素選択吸着樹脂により吸着処理する方法も数多く知られている(特許公報平2-32952号公報、その他)。しかし、ホウ素含有水を、ホウ素を吸着するイオン交換樹脂に通液させて処理した後、当該イオン交換樹脂からホウ素を溶離するためには酸溶液を使用するため、再生した酸根を含むホウ素含有水の処理に課題を持っている。
【0005】
酸根を含むホウ酸溶離液の精製方法としては、アルカリで中和しホウ酸と中和によって生成する塩の混合溶液にした後ホウ酸と塩との溶解度差を利用して分離する方法が知られているが(12695の化学商品P−151、無機ファインケミカルの原単位&プロセス中日社刊1990年)、この方法は工程も複雑であり、かつ設備費も高くホウ酸の製造プラントのように規模が大きくないと実用的ではない。
【0006】
また溶離液を抽出剤と接触させてホウ素を抽出し、逆抽出剤と接触させて逆抽出させ晶析法によってホウ素化合物を結晶化させる方法も知られている。(特公平1-50476号公報)抽出剤としてはオクチレングリコール、2−エチルヘキサノール等が知られているが、これらは消防法で定める危険物であり火気を避けるなど取り扱いが難しい。
【0007】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたもので、工程が簡単で、設備費も安く、高純度のホウ素溶液を得るための酸根を有するホウ素溶離液の精製装置及び精製方法を提供することを課題とする。
【0010】
(1) OH型に調整したI型強塩基性陰イオン交換樹脂、OH型に調整したII型強塩基性陰イオン交換樹脂、及びOH型に調整した弱塩基性陰イオン交換樹脂の群から選択された陰イオン交換樹脂を充填したイオン交換塔に、酸根を含むホウ素溶離液を通液させて酸根を除去し、高純度のホウ酸溶液を得ることを特徴とするホウ素溶離液の精製方法であって、酸根を吸着したイオン交換塔に水を通液してイオン交換塔に残留するホウ素及び酸根を溶離する工程と、溶離した酸根を含むホウ素をホウ素溶離液に混合する工程と、前記ホウ素を溶離したイオン交換塔にアルカリ溶液を通液してイオン交換塔に充填されたイオン交換樹脂のイオン型をOH型に調整する工程と、このイオン交換塔に酸根を含むホウ素溶離液を通液する工程とを備えたホウ素溶離液の精製方法。なお、酸根を吸着したイオン交換塔に水を通液してイオン交換塔に残留するホウ素及び酸根を溶離する工程では、通常、水洗よりイオン交換樹脂に残留するホウ素は全量流出するが、吸着している酸根は一部しか流出しない。
【0011】
(2) イオン交換塔に酸根を含むホウ素溶離液を通液させて酸根を除去する際に、イオン交換塔出口のpHが7〜1に低下する時点を検知して、この検知信号に基づいて通液停止を制御し、ついで、通液停止後に水洗、及びアルカリ処理によりイオン交換塔内に充填したイオン交換樹脂をOH型に調整する際に、その調整を積算流量により制御する(1)に記載のホウ素溶離液の精製方法。
【0012】
(3) (1)又は(2)に記載の精製方法で得られた高純度のホウ酸溶液を濃縮、結晶化してホウ酸固体とすることを特徴とするホウ素原料の製造方法である。
【0013】
本発明によれば、イオン交換塔に、酸根を含むホウ素溶離液から酸根を除去して高純度のホウ酸溶液を得ることができる。更に当該ホウ酸溶液は通常の濃縮結晶化によりホウ酸結晶として、ガラス、釉薬、アルミコンデンサー、ニッケルめっき液等ホウ酸を使用する工程、或いは酸化ホウ素、ボロン系合金鉄等の原料として使用することができる。
【0014】
なお、酸根を含むホウ素溶離液は、例えば、ホウ素含有水を通液して、ホウ素を吸着したI型若しくはII型強塩基性陰イオン交換樹脂、弱塩基性陰イオン交換樹脂、或いはN−メチルグルカミン基を有するホウ素選択吸着樹脂を充填したイオン交換塔に酸溶液を通液することにより生じる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。
【0016】
本発明者は、イオン交換樹脂に対するホウ素及び種々の酸根のイオン選択性及びイオン交換樹脂の物性を鋭意研究し、酸根を含むホウ素溶離液から酸根を効率的に分離し、高純度のホウ酸溶液を得る精製装置及び精製方法を開発した。すなわち、ホウ素は溶液中酸性領域ではイオン化することなくH3 BO3 分子として溶解している。従って酸根を含むホウ素溶離液のように酸性の液をOH型に調整したI型若しくはII型強塩基性陰イオン交換樹脂、或いはOH型に調整した弱塩基性陰イオン交換樹脂を充填したイオン交換塔に通液すると酸根のみ吸着してホウ素はそのまま漏出することが明らかになった。処理液のpHは酸根が吸着されている間はアルカリ或いは中性であるが酸根が漏出し始めると急激に低下するため終点は容易に管理できる。しかし、ゲル型、ポーラス型を問わずOH型に調整したI型若しくはII型強塩基性陰イオン交換樹脂、或いはOH型に調整した弱塩基性陰イオン交換樹脂は粒子中に数10%の水を含んでいるため、酸根を含むホウ素溶離液をOH型に調整したI型若しくはII型強塩基性陰イオン交換樹脂、或いはOH型に調整した弱塩基性陰イオン交換樹脂を充填したイオン交換塔に通液すると当該イオン交換樹脂中にホウ素が残留することが明らかになった。当該イオン交換樹脂をそのまま通常のアルカリ溶液で再生すると、残存しているホウ素も流出してしまい、ホウ素の回収率が低下してしまうとともに、当該液のホウ素除去も必要となる。
【0017】
本発明者はこれらの課題の解決方法も見出したものである。すなわち酸根を含むホウ素溶離液をOH型に調整したI型若しくはII型強塩基性陰イオン交換樹脂、或いはOH型に調整した弱塩基性陰イオン交換樹脂を充填したイオン交換塔に通液した後、引き続いて水を通液することにより当該イオン交換樹脂に残留するホウ素を回収し当該液は酸根を含むホウ素溶離液に混合し、再び陰イオン交換樹脂等に通液する。この方法によって、ホウ素は高純度のホウ酸として回収できる。
【0018】
【実施例】
以下本発明の実施例について図面を参照して具体的に説明する。
【0019】
まず、図示する装置について説明すると、この装置は、酸根を含有するホウ素溶離液タンク(10)と、NaOH溶液タンク(20)と、水タンク(30)とを配置し、夫々のタンクの液出口に自動バルブ(61)、(62)、(63)を設け、これらの液をそれぞれ液供給ポンプ(70)によりOH型に調整したI型若しくはII型強塩基性陰イオン交換樹脂、或いはOH型に調整した弱塩基性陰イオン交換樹脂を充填した陰イオン交換塔(50)に供給するようになっている。陰イオン交換塔(50)の液出口には、pH制御計(PHC)、積算流量制御計(FQC)が取付けられている。陰イオン交換塔(50)の出側は、途中で分岐され、一つは排水処理工程に、他の一つは精製ホウ素溶離液タンク(40)に、残りはホウ素溶離液タンク(10)へ戻る配管が配設されている。夫々の配管には、自動バルブ(66)、(64)、(65)が設けられている。
【0020】
この装置では、酸根含有ホウ素溶離液通液時には、自動バルブ(61)、(64)を開き、pH制御計によりpHを制御しながらホウ酸溶液を精製する。次にpHが7〜1、好ましくは4に低下したのを検知すると、自動バルブ(61)、(64)を閉じ、自動バルブ(63)、(65)を開き、陰イオン交換塔(50)を水洗する。この水洗の制御は、積算流量制御計により行い、所定の流量を検出すると、自動バルブ(63)、(65)を閉じ、自動バルブ(62)、(66)を開き、陰イオン交換塔(50)をアルカリ処理する。このアルカリ処理の制御は、積算流量制御計により行い、所定の流量を検出すると、自動バルブ(62)を閉じ、自動バルブ(63)を開き(なお、自動バルブ(66)は開いたまま)、陰イオン交換塔(50)を水洗する。この水洗の制御は、積算流量制御計により行なう。そして、所定の流量を検出すると、水洗が完了し、陰イオン交換樹脂が再生され、再使用可能となる。表1にホウ素溶離液の分析例を示す。また、表2に各工程でのPHC,FQCの制御を示す。
【0021】
[実施例1]
内径34mm、高さ1,000mmのアクリル製カラムを用意し、OH型に調整した弱塩基性陰イオン交換樹脂を300mL充填する。樹脂床にイオン交換水を流速3,000mL/Hrで1時間通液してイオン交換樹脂に残存する薬剤を抽出、洗浄する。その後、表1に示す組成を示すホウ素を吸着したN−メチルグルカミン基を有するホウ素選択吸着樹脂を充填したイオン交換塔に5%硫酸塩を通液することにより再生した硫酸を含むホウ素溶離液を流速3,000mL/Hrで通液した。出口水のホウ素、硫酸濃度曲線は図1のとおりであり、処理液のpHが急激に低下するまでの出口水は硫酸が除去されたホウ酸溶液であった。
【0022】
硫酸が漏出するまでに得られる処理液のホウ素濃度は0.36g/Lであり、処理液中のホウ素回収率は硫酸を含むホウ素溶離液の通液量に対し、32%であった。
【0023】
【表1】

Figure 0004733807
【0024】
[実施例2]
内径34mm、高さ1,000mmのアクリル製カラムを用意し、OH型に調整した弱塩基性陰イオン交換樹脂を300mL充填する。樹脂床にイオン交換水を流速3,000mL/Hrで1時間通液してイオン交換樹脂に残存する薬剤を抽出、洗浄する。その後表1に示す組成を示すホウ素を吸着したN−メチルグルカミン基を有するホウ素選択吸着樹脂を充填したイオン交換塔に5%硫酸塩を通液することにより再生した硫酸を含むホウ素溶離液を流速3,000mL/Hrで通液した。漏出曲線は図2に示すが、処理液のpHが低下する時点での溶離液の通液を停止し、水を流速3,000mL/Hrで通液する。この溶離液はホウ素の他に硫酸を含むため溶離液に戻して、硫酸除去原液として使用する。
【0025】
硫酸が漏出するまでに得られる処理液のホウ素濃度は0.36g/Lであり、処理液中のホウ素回収率は硫酸を含むホウ素溶離液の通液量に対し、33%であった。また水洗においては約600mL通液することによりイオン交換樹脂に残留するホウ素をすべて処理液に回収され、硫酸を含むホウ素溶離液に混合し、再びOH型に調整した弱塩基性陰イオン交換樹脂に通液して硫酸を除去する。
【0026】
【表2】
Figure 0004733807
【0027】
【発明の効果】
以上説明したように、本発明によれば、酸根を含むホウ素溶離液を、OH型に調整したI型若しくはII型強塩基性陰イオン交換樹脂、或いはOH型に調整した弱塩基性陰イオン交換樹脂を充填したイオン交換塔に通液することにより、高純度のホウ酸溶液として回収することができる。
【図面の簡単な説明】
【図1】実施例1の出口水のホウ素、硫酸濃度曲線を示す図。
【図2】実施例2の漏出曲線を示す図。
【図3】本発明装置の説明図。
【符号の説明】
10…酸根を含有するホウ素溶離液タンク、
20…NaOH溶液タンク、
30…水タンク、
40…精製ホウ酸溶液タンク、
50…陰イオン交換塔、
61〜66…自動バルブ、
70…液供給ポンプ、
PHC…pH制御計、
FQC…積算流量制御計。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a boron eluent purification apparatus and a purification method for purifying a boron eluent containing an acid radical and recovering it as a solid.
[0002]
[Prior art]
In general, a nickel plating solution or an aluminum surface treatment solution contains a boron compound (boric acid or the like), and cleaning wastewater containing boron is generated in factories that handle these. Also, factories that use boron, such as glass, glaze, and aluminum condensers, generate factory wastewater containing boron. Boron compounds are essential trace elements for plants, and it is well known that seawater contains about 4 to 5 mg / L. On the other hand, although the effect of boron on the human body is not necessarily clear, it has been pointed out that it may cause health problems such as a decrease in reproductive function when continuously ingested at a low concentration. In February 1999, 1 mg / L or less was announced as an environmental standard for boron, and it is expected that a drainage standard will be established later. Therefore, it is necessary to remove boron from process wastewater containing boron. Become.
[0003]
As a method for removing boron, a boron compound is separated and removed by coagulation precipitation using an aluminum compound and a calcium compound in boron-containing wastewater (Japanese Patent Publication Nos. 58-15193 and 59-24876) or nickel plating washing wastewater. A method of separating and removing boron by coagulating precipitation by adding a magnesium salt (1999 Tokyo Metropolitan Industrial Technology Research Institute Preliminary Proceedings p52) is known. However, in order to insolubilize boron, it is necessary to use a large amount of chemicals, and there is a problem that the amount of generated sludge is large and the treatment is difficult. Further, this method contains a large amount of aluminum, calcium or magnesium compound, and boron cannot be reused.
[0004]
Many methods of adsorbing boron-containing wastewater with an anion exchange resin or a boron selective adsorption resin are also known (Japanese Patent Publication No. 2-32952, etc.). However, since boron-containing water is treated by passing it through an ion-exchange resin that adsorbs boron, and an acid solution is used to elute boron from the ion-exchange resin, boron-containing water containing regenerated acid radicals is used. Have a problem with processing.
[0005]
As a purification method of boric acid eluent containing acid radicals, a method is known in which it is neutralized with an alkali to form a mixed solution of boric acid and a salt produced by neutralization, and then separated using the difference in solubility between boric acid and the salt. (12695 chemical products P-151, basic unit of inorganic fine chemicals & process Chunichisha published 1990), but this method is complicated and has high equipment costs, like a boric acid production plant. It is not practical unless the scale is large.
[0006]
In addition, a method is also known in which an eluent is brought into contact with an extractant to extract boron, contacted with a back extractant, back extracted, and a boron compound is crystallized by a crystallization method. (Japanese Patent Publication No. 1-50476) Octylene glycol, 2-ethylhexanol, and the like are known as extractants, but these are dangerous materials defined by the Fire Service Act and are difficult to handle such as avoiding fire.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and it is an object to provide a purification apparatus and a purification method for a boron eluent having an acid radical for obtaining a high-purity boron solution with a simple process and a low equipment cost. And
[0010]
(1) Selected from the group of type I strongly basic anion exchange resin adjusted to OH type, type II strongly basic anion exchange resin adjusted to OH type, and weakly basic anion exchange resin adjusted to OH type The boron eluent purification method is characterized in that a boron eluent containing acid radicals is passed through an ion exchange column packed with the anion exchange resin thus obtained to remove the acid radicals to obtain a high-purity boric acid solution. A step of eluting boron and acid radicals remaining in the ion exchange column by passing water through the ion exchange column adsorbing the acid radicals, a step of mixing boron containing the eluted acid radicals in the boron eluent, and the boron The step of adjusting the ion type of the ion exchange resin filled in the ion exchange column to OH type by passing an alkaline solution through the ion exchange column eluting the ion exchange column, and passing the boron eluent containing acid radicals through the ion exchange column With the process of The purification method of the window containing the eluent. In the step of eluting boron and acid radicals remaining in the ion exchange tower by passing water through the ion exchange tower that has adsorbed the acid radicals, all the boron remaining in the ion exchange resin usually flows out from the water washing, but is adsorbed. Only a part of the acid radicals are released.
[0011]
(2) When removing the acid radical by passing the boron eluent containing the acid radical through the ion exchange tower, the time point when the pH at the outlet of the ion exchange tower drops to 7-1 is detected, and based on this detection signal When the ion exchange resin filled in the ion exchange tower is adjusted to OH type by washing with water and alkali treatment after the liquid passage is stopped, the adjustment is controlled by the integrated flow rate (1) . A method for purifying the boron eluent as described.
[0012]
(3) A method for producing a boron raw material characterized in that a high-purity boric acid solution obtained by the purification method according to (1) or (2) is concentrated and crystallized to form a boric acid solid.
[0013]
According to the present invention, a high-purity boric acid solution can be obtained by removing acid radicals from a boron eluent containing acid radicals in an ion exchange column. Furthermore, the boric acid solution should be used as a boric acid crystal by normal concentration crystallization, a process using boric acid such as glass, glaze, aluminum condenser, nickel plating solution, or as a raw material for boron oxide, boron alloy iron, etc. Can do.
[0014]
In addition, the boron eluent containing an acid radical is, for example, a type I or type II strongly basic anion exchange resin, weakly basic anion exchange resin, or N-methyl which adsorbs boron by passing boron-containing water. It is generated by passing an acid solution through an ion exchange column packed with a boron selective adsorption resin having a glucamine group.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0016]
The present inventor has eagerly studied the ion selectivity of boron and various acid radicals with respect to the ion exchange resin and the physical properties of the ion exchange resin, and efficiently separated the acid radical from the boron eluent containing the acid radical, thereby obtaining a high-purity boric acid solution. Has been developed. That is, boron is dissolved as H 3 BO 3 molecules without being ionized in the acidic region in the solution. Therefore, an ion exchange filled with a strongly basic anion exchange resin of type I or type II that is adjusted to OH type, such as boron eluent containing acid radicals, or weakly basic anion exchange resin that is adjusted to OH type. It was clarified that when the liquid was passed through the tower, only the acid radicals were adsorbed and boron leaked out as it was. The pH of the treatment liquid is alkaline or neutral while the acid radical is adsorbed, but the end point can be easily managed because it rapidly decreases when the acid radical begins to leak. However, the type I or II type strongly basic anion exchange resin adjusted to OH type, whether gel type or porous type, or weakly basic anion exchange resin adjusted to OH type is several tens of percent water in the particles. Ion-exchange tower packed with type I or type II strongly basic anion exchange resin whose acid eluant boron eluent is adjusted to OH type, or weakly basic anion exchange resin adjusted to OH type It was clarified that boron remained in the ion exchange resin when the solution was passed through. If the ion exchange resin is regenerated as it is with a normal alkaline solution, the remaining boron will also flow out, reducing the boron recovery rate and necessitating removal of the boron from the liquid.
[0017]
The inventor has also found a solution to these problems. That is, after passing the boron eluent containing acid radicals through an ion exchange column filled with an OH type I or II type strongly basic anion exchange resin, or an OH type weakly basic anion exchange resin. Subsequently, boron remaining in the ion exchange resin is recovered by passing water, and the liquid is mixed with a boron eluent containing acid radicals and again passed through the anion exchange resin or the like. By this method, boron can be recovered as high purity boric acid.
[0018]
【Example】
Embodiments of the present invention will be specifically described below with reference to the drawings.
[0019]
First, the illustrated apparatus will be described. This apparatus includes a boron eluent tank (10) containing an acid radical, an NaOH solution tank (20), and a water tank (30), and the liquid outlet of each tank. Are provided with automatic valves (61), (62), (63), and these liquids are each adjusted to OH type by a liquid supply pump (70), respectively, or I type or II type strongly basic anion exchange resin, or OH type It supplies to the anion exchange tower (50) filled with the weakly basic anion exchange resin adjusted to (5). A pH controller (PHC) and an integrated flow rate controller (FQC) are attached to the liquid outlet of the anion exchange column (50). The exit side of the anion exchange tower (50) is branched halfway, one for the wastewater treatment process, the other for the purified boron eluent tank (40), and the other for the boron eluent tank (10). Return piping is provided. Each pipe is provided with an automatic valve (66), (64), (65).
[0020]
In this apparatus, when the acid radical-containing boron eluent is passed, the automatic valves (61) and (64) are opened, and the boric acid solution is purified while controlling the pH with a pH controller. Next, when it is detected that the pH has dropped to 7 to 1, preferably 4, automatic valves (61) and (64) are closed, automatic valves (63) and (65) are opened, and the anion exchange column (50). Wash with water. This washing control is performed by an integrated flow rate controller. When a predetermined flow rate is detected, the automatic valves (63) and (65) are closed, the automatic valves (62) and (66) are opened, and the anion exchange tower (50 ) Is treated with alkali. This alkali treatment is controlled by an integrated flow rate controller. When a predetermined flow rate is detected, the automatic valve (62) is closed and the automatic valve (63) is opened (the automatic valve (66) remains open). The anion exchange tower (50) is washed with water. This washing control is performed by an integrated flow rate controller. When a predetermined flow rate is detected, washing with water is completed, the anion exchange resin is regenerated, and can be reused. Table 1 shows an analysis example of the boron eluent. Table 2 shows the control of PHC and FQC in each process.
[0021]
[Example 1]
An acrylic column having an inner diameter of 34 mm and a height of 1,000 mm is prepared, and 300 mL of weakly basic anion exchange resin adjusted to OH type is packed. Ion exchange water is passed through the resin bed at a flow rate of 3,000 mL / Hr for 1 hour to extract and wash the drug remaining on the ion exchange resin. Thereafter, a boron eluent containing sulfuric acid regenerated by passing 5% sulfate through an ion exchange column filled with a boron selective adsorption resin having an N-methylglucamine group adsorbing boron having the composition shown in Table 1. At a flow rate of 3,000 mL / Hr. The boron and sulfuric acid concentration curves of the outlet water are as shown in FIG. 1, and the outlet water was a boric acid solution from which sulfuric acid had been removed until the pH of the treatment liquid dropped rapidly.
[0022]
The boron concentration of the treatment liquid obtained until the sulfuric acid leaked was 0.36 g / L, and the boron recovery rate in the treatment liquid was 32% with respect to the flow rate of the boron eluent containing sulfuric acid.
[0023]
[Table 1]
Figure 0004733807
[0024]
[Example 2]
An acrylic column having an inner diameter of 34 mm and a height of 1,000 mm is prepared, and 300 mL of weakly basic anion exchange resin adjusted to OH type is packed. Ion exchange water is passed through the resin bed at a flow rate of 3,000 mL / Hr for 1 hour to extract and wash the drug remaining on the ion exchange resin. Thereafter, a boron eluent containing sulfuric acid regenerated by passing 5% sulfate through an ion exchange column filled with a boron selective adsorption resin having an N-methylglucamine group adsorbing boron having the composition shown in Table 1. The solution was passed at a flow rate of 3,000 mL / Hr. Although the leakage curve is shown in FIG. 2, the flow of the eluent is stopped at the time when the pH of the treatment liquid is lowered, and water is passed at a flow rate of 3,000 mL / Hr. Since this eluent contains sulfuric acid in addition to boron, it is returned to the eluent and used as a sulfuric acid removal stock solution.
[0025]
The boron concentration of the treatment liquid obtained until the sulfuric acid leaked was 0.36 g / L, and the boron recovery rate in the treatment liquid was 33% with respect to the flow rate of the boron eluent containing sulfuric acid. In addition, in the water washing, about 600 mL of liquid is passed to recover all boron remaining in the ion exchange resin into the treatment liquid, mixed with the boron eluent containing sulfuric acid, and again into a weakly basic anion exchange resin adjusted to OH type. Pass the solution to remove the sulfuric acid.
[0026]
[Table 2]
Figure 0004733807
[0027]
【The invention's effect】
As described above, according to the present invention, the boron eluent containing acid radicals is an I-type or II-type strongly basic anion exchange resin adjusted to OH type, or weakly basic anion exchange adjusted to OH type. By passing the solution through an ion exchange column filled with a resin, it can be recovered as a high-purity boric acid solution.
[Brief description of the drawings]
1 is a graph showing a boron and sulfuric acid concentration curve of outlet water of Example 1. FIG.
FIG. 2 is a diagram showing a leakage curve of Example 2.
FIG. 3 is an explanatory diagram of the apparatus of the present invention.
[Explanation of symbols]
10 ... Boron eluent tank containing acid radicals,
20 ... NaOH solution tank,
30 ... Water tank,
40 ... Purified boric acid solution tank,
50 ... anion exchange tower,
61-66 ... Automatic valve,
70: Liquid supply pump,
PHC ... pH controller,
FQC ... Integral flow controller.

Claims (3)

OH型に調整したI型強塩基性陰イオン交換樹脂、OH型に調整したII型強塩基性陰イオン交換樹脂、及びOH型に調整した弱塩基性陰イオン交換樹脂の群から選択された陰イオン交換樹脂を充填したイオン交換塔に、酸根を含むホウ素溶離液を通液させて酸根を除去し、高純度のホウ酸溶液を得るホウ素溶離液の精製方法であつて、
酸根を吸着したイオン交換塔に水を通液してイオン交換塔に残留するホウ素及び酸根を溶離する工程と、溶離した酸根を含むホウ素をホウ素溶離液に混合する工程と、前記ホウ素を溶離したイオン交換塔にアルカリ溶液を通液してイオン交換塔に充填されたイオン交換樹脂のイオン型をOH型に調整する工程と、このイオン交換塔に酸根を含むホウ素溶離液を通液する工程とを備えたことを特徴とするホウ素溶離液の精製方法。
An anion selected from the group of type I strongly basic anion exchange resin adjusted to OH type, type II strongly basic anion exchange resin adjusted to OH type, and weakly basic anion exchange resin adjusted to OH type A boron eluent purification method for obtaining a high-purity boric acid solution by passing a boron eluent containing an acid radical through an ion exchange column filled with an ion exchange resin to remove the acid radical,
The step of eluting boron and acid radicals remaining in the ion exchange column by passing water through the ion exchange column adsorbing the acid radicals, the step of mixing boron containing the eluted acid radicals with the boron eluent, and eluting the boron A step of passing an alkaline solution through the ion exchange column to adjust the ion type of the ion exchange resin filled in the ion exchange column to an OH type, and a step of passing a boron eluent containing an acid radical through the ion exchange column; A method for purifying a boron eluent, comprising:
イオン交換塔に酸根を含むホウ素溶離液を通液させて酸根を除去する際に、イオン交換塔出口のpHが7〜1に低下する時点を検知して、この検知信号に基づいて通液停止を制御し、ついで、通液停止後に水洗、及びアルカリ処理によりイオン交換塔内に充填したイオン交換樹脂をOH型に調整する際に、その調整を積算流量により制御する請求項1に記載のホウ素溶離液の精製方法。  When removing the acid radical by passing the boron eluent containing the acid radical through the ion exchange tower, the time point when the pH at the outlet of the ion exchange tower drops to 7 to 1 is detected, and the flow is stopped based on this detection signal. And then adjusting the ion exchange resin filled in the ion exchange column to OH type by washing with water and alkali treatment after the stop of liquid flow to an OH type. Purification method of eluent. 請求項1又は2に記載の精製方法で得られた高純度のホウ酸溶液を濃縮、結晶化してホウ酸固体とすることを特徴とするホウ素原料の製造方法。  A method for producing a boron raw material, comprising concentrating and crystallizing a high-purity boric acid solution obtained by the purification method according to claim 1 or 2 to form a boric acid solid.
JP2000131666A 2000-04-28 2000-04-28 Method for purifying boron eluent and method for producing boron raw material Expired - Lifetime JP4733807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000131666A JP4733807B2 (en) 2000-04-28 2000-04-28 Method for purifying boron eluent and method for producing boron raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000131666A JP4733807B2 (en) 2000-04-28 2000-04-28 Method for purifying boron eluent and method for producing boron raw material

Publications (2)

Publication Number Publication Date
JP2001316108A JP2001316108A (en) 2001-11-13
JP4733807B2 true JP4733807B2 (en) 2011-07-27

Family

ID=18640530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000131666A Expired - Lifetime JP4733807B2 (en) 2000-04-28 2000-04-28 Method for purifying boron eluent and method for producing boron raw material

Country Status (1)

Country Link
JP (1) JP4733807B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756911B2 (en) * 2005-05-26 2011-08-24 日本錬水株式会社 Boron recovery method
JP4936772B2 (en) * 2006-04-10 2012-05-23 三菱電機株式会社 Water treatment method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3913939B2 (en) * 1999-10-07 2007-05-09 日本錬水株式会社 Boron recovery method

Also Published As

Publication number Publication date
JP2001316108A (en) 2001-11-13

Similar Documents

Publication Publication Date Title
JPH04134054A (en) Purification of amino acid using ion exchange resin
US4855494A (en) Process for producing citric acid
JP5666196B2 (en) Copper sulfate recovery method and copper sulfate recovery device
JP3646900B2 (en) Apparatus and method for treating boron-containing water
WO2011036942A1 (en) Process for production of tetraalkylammonium hydroxide
CN110395816A (en) The acid recovery and purification system of pickle liquor
JP3851491B2 (en) Apparatus and method for purifying boron eluent
JP4733807B2 (en) Method for purifying boron eluent and method for producing boron raw material
JP3883781B2 (en) Apparatus and method for purifying boron eluent
JP3231228B2 (en) Regeneration method of ion exchange resin tower
JPH11352283A (en) Condensate processing method and condensate demineralization device
JP3319053B2 (en) Treatment method for fluoride-containing water
JP3913939B2 (en) Boron recovery method
JPH01194988A (en) Treatment of metal-containing water
JPH07232915A (en) Method for recovering fluorine in waste water
JP4691276B2 (en) Method and apparatus for recovering high purity boron-containing water
JP3907937B2 (en) Method for treating boron-containing eluent containing alkali
JP3727212B2 (en) Apparatus and method for treating wastewater containing boron
JP3613376B2 (en) Pure water production apparatus and pure water production method
JP3887767B2 (en) High purity boron-containing water recovery method and recovery device
Schoeman Performance of a water defluoridation plant in a rural area in South Africa
JP4756911B2 (en) Boron recovery method
JP2003053342A (en) Method and device for removing impurity in boron- containing solution
JP2002029731A (en) Method for recovering high purity boron-containing water and apparatus therefor
JP2004283767A (en) Method and apparatus for treating geothermal water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4733807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term