JP2500568B2 - Method for purifying chemical solution containing hydrofluoric acid - Google Patents

Method for purifying chemical solution containing hydrofluoric acid

Info

Publication number
JP2500568B2
JP2500568B2 JP4157199A JP15719992A JP2500568B2 JP 2500568 B2 JP2500568 B2 JP 2500568B2 JP 4157199 A JP4157199 A JP 4157199A JP 15719992 A JP15719992 A JP 15719992A JP 2500568 B2 JP2500568 B2 JP 2500568B2
Authority
JP
Japan
Prior art keywords
hydrofluoric acid
silicon particles
chemical solution
metal
containing chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4157199A
Other languages
Japanese (ja)
Other versions
JPH06279005A (en
Inventor
次男 下野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4157199A priority Critical patent/JP2500568B2/en
Priority to US08/077,440 priority patent/US5348722A/en
Publication of JPH06279005A publication Critical patent/JPH06279005A/en
Application granted granted Critical
Publication of JP2500568B2 publication Critical patent/JP2500568B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフッ酸含有薬液中の有害
金属イオンを除去するフッ酸含有薬液の精製方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying a hydrofluoric acid-containing chemical liquid for removing harmful metal ions in the hydrofluoric acid-containing chemical liquid.

【0002】[0002]

【従来の技術】超LSIの高集積化にともない、シリコ
ンウェハ表面の清浄化の要求が一段と厳しくなってい
る。シリコンウェハ表面の熱酸化膜や自然酸化膜をエッ
チング除去するためにフッ酸含有薬液が使用されるが、
フッ酸含有薬液中にSiよりもイオン化傾向の小さい金
属イオン(Cu,Au等)が含有されるとウェハ表面に
付着し、電気特性に影響を与える。従って、フッ酸含有
薬液からこれらの有害金属イオンを除去して高純度化す
ることが必須である。
2. Description of the Related Art The demand for cleaning the surface of a silicon wafer has become more and more strict with the high integration of VLSI. A hydrofluoric acid-containing chemical is used to remove the thermal oxide film and natural oxide film on the surface of the silicon wafer by etching.
When the hydrofluoric acid-containing chemical contains metal ions (Cu, Au, etc.) having a smaller ionization tendency than Si, they adhere to the wafer surface and affect the electrical characteristics. Therefore, it is indispensable to remove these harmful metal ions from the hydrofluoric acid-containing chemical liquid to make it highly purified.

【0003】最近、高純度化が進んできたが、ロット間
での純度のばらつき、保管容器や薬品供給系等からの汚
染などの問題によりユースポイントでの高純度化が必要
である。また、フッ酸含有薬液槽へのウェハの投入に伴
い、投入ウェハによる有害金属イオンの持ち込みによリ
フッ酸含有薬液は汚染される。このため、この薬液の長
寿命化を図るためには、薬液を循環精製して有害金属イ
オンを除去する必要がある。
Recently, high purification has been advanced, but due to problems such as variations in purity between lots and contamination from storage containers, chemical supply systems, etc., high purification at the point of use is required. Further, along with the introduction of the wafer into the hydrofluoric acid-containing chemical solution tank, the harmful liquid metal carried by the input wafer contaminates the hydrofluoric acid-containing chemical solution. Therefore, in order to extend the life of the chemical solution, it is necessary to circulate and purify the chemical solution to remove harmful metal ions.

【0004】従来、有害金属イオンの除去法として、イ
オン交換法とシリコン粒子吸着法が用いられていた。イ
オン交換法は希フッ酸にしか適用できず、高濃度フッ酸
(数10%)やフッ化アンモニウムが共存する薬液には
適用できなかった。また、イオン交換樹脂からの有機物
の溶出が問題になっていた。これらの問題を解決する方
法としてシリコン粒子吸着法が開発された。
Conventionally, an ion exchange method and a silicon particle adsorption method have been used as a method for removing harmful metal ions. The ion exchange method can be applied only to dilute hydrofluoric acid, and cannot be applied to a chemical solution in which high-concentration hydrofluoric acid (several 10%) and ammonium fluoride coexist. Further, the elution of organic substances from the ion exchange resin has been a problem. A silicon particle adsorption method has been developed as a method for solving these problems.

【0005】フッ酸含有薬液中では、シリコン表面の酸
化膜が除去され、活性な金属シリコン面が露出するた
め、Siよりイオン化傾向の小さい金属(Cu,Au
等)が存在すると、例えばCuが存在すると次式の反応
により金属シリコン表面にCuが析出し、液中から除去
される。
In the hydrofluoric acid-containing chemical solution, the oxide film on the silicon surface is removed and the active metal silicon surface is exposed, so that metals (Cu, Au) having a smaller ionization tendency than Si are exposed.
And the like), for example, when Cu is present, Cu is deposited on the surface of the metal silicon by the reaction of the following equation and removed from the liquid.

【0006】2Cu2++Si→2Cu+Si4+ 従って、シリコン粒子吸着法で除去できる金属イオン
は、Siよりもイオン化傾向の小さいものに限定され
る。しかしながら、薬液中でシリコンウェハを汚染する
有害金属イオンはこれらの元素であり、実用上問題はな
い。
2Cu 2+ + Si → 2Cu + Si 4+ Therefore, the metal ions that can be removed by the silicon particle adsorption method are limited to those having a smaller ionization tendency than Si. However, the harmful metal ions that contaminate the silicon wafer in the chemical liquid are these elements, and there is no practical problem.

【0007】従来のシリコン粒子吸着法(特開平3−1
02827号公報)によるフッ酸含有薬液の精製法を図
8を用いて説明する。フッ酸含有薬液21をフッ酸含有
薬液供給系に設けられたシリコン粒子混入フィルタ22
を通過させ、フッ酸含有薬液21中のCuイオン等の有
害金属イオンをシリコン粒子23に吸着させ除去するも
のであった。
A conventional silicon particle adsorption method (Japanese Patent Laid-Open No. 3-1
A method for purifying a hydrofluoric acid-containing chemical solution according to JP-A-02827) will be described with reference to FIG. A silicon particle-containing filter 22 provided with a hydrofluoric acid-containing chemical liquid 21 in a hydrofluoric acid-containing chemical liquid supply system
To remove harmful metal ions such as Cu ions in the hydrofluoric acid-containing chemical liquid 21 by adsorbing them to the silicon particles 23.

【0008】[0008]

【発明が解決しようとする課題】上述した従来のシリコ
ン粒子によるフッ酸含有薬液の精製法では、吸着効率
(吸着速度)が低い(遅い)ために、有害金属イオンを
要求されている低濃度レベルまで除去できず、また、シ
リコン粒子混入フィルターに流す薬液の流速を早くする
と有害金属イオンの流出濃度が高くなるために流量を上
げられないという問題があった。
In the above-mentioned conventional method for purifying a hydrofluoric acid-containing chemical solution using silicon particles, since the adsorption efficiency (adsorption rate) is low (slow), harmful metal ions required at a low concentration level are required. However, there is a problem in that the flow rate cannot be increased because the toxic metal ion outflow concentration becomes high if the flow rate of the chemical liquid flowing through the silicon particle-containing filter is increased.

【0009】本発明の目的は、これらの問題を解決した
フッ酸含有薬液の精製方法を提供することにある。
An object of the present invention is to provide a method for purifying a hydrofluoric acid-containing chemical solution which solves these problems.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するた
め、本発明のフッ酸含有薬液の精製方法では、フッ酸含
有薬液を金属イオンを表面に析出させた金属析出シリコ
ン粒子と接触させて、薬液中の有害金属イオン(Cuイ
オン等)を金属析出シリコン粒子に吸着させて除去す
る。金属析出シリコン粒子をカラムに充填し、充填カラ
ムにフッ酸含有薬液を流して、当該薬液中の有害金属イ
オンを除去する。金属析出シリコン粒子は、金属イオン
を添加したフッ酸含有薬液にシリコン粒子を浸漬して調
製する。精製効果の低下した金属析出シリコン粒子は洗
浄液で洗浄してその表面を清浄化し、再生して使用す
る。
In order to achieve the above object, in the method for purifying a hydrofluoric acid-containing chemical solution of the present invention, the hydrofluoric acid-containing chemical solution is brought into contact with metal-deposited silicon particles having metal ions deposited on the surface, The harmful metal ions (Cu ions, etc.) in the chemical solution are adsorbed to the metal-deposited silicon particles and removed. A column is packed with metal-deposited silicon particles, and a hydrofluoric acid-containing chemical solution is flown through the packed column to remove harmful metal ions in the chemical solution. The metal-deposited silicon particles are prepared by immersing the silicon particles in a hydrofluoric acid-containing chemical solution containing metal ions. The metal-precipitated silicon particles having a reduced purification effect are washed with a washing liquid to clean the surface and regenerated before use.

【0011】[0011]

【作用】図7は、シリコン粒子表面への有害金属イオン
の吸着のメカニズムを示す断面図である。有害金属イオ
ンとしてCuイオンを例にとり示した。フッ酸含有薬液
中にCuイオンが存在すると、薬液中のシリコン粒子1
表面には、Cuの析出核(あるいはCuの析出物)の部
分を局部カソード2,周辺の金属シリコン露出部分を局
部アノード3とする局部電池が形成される。Cuイオン
(Cu2+)は局部カソード2に析出する形でシリコン粒
子1に吸着され、フッ酸含有薬液から除去される。吸着
速度は局部カソード2の表面積に依存するため、吸着の
初期においては、局部カソード2が生成し、その表面積
が増加するまで吸着が有効に進まず、吸着速度が遅い。
吸着速度を上げるためには、局部カソード2となる金属
を析出させ、その表面積を増やしたシリコン粒子1(金
属析出シリコン粒子)が有効である。
FIG. 7 is a sectional view showing the mechanism of adsorption of harmful metal ions on the surface of silicon particles. Cu ions are shown as an example of harmful metal ions. If Cu ions are present in the hydrofluoric acid-containing chemical liquid, the silicon particles 1 in the chemical liquid 1
On the surface, a local battery is formed in which the portion of the Cu precipitation nucleus (or Cu precipitate) is the local cathode 2 and the surrounding exposed metal silicon portion is the local anode 3. Cu ions (Cu 2+ ) are adsorbed by the silicon particles 1 in the form of depositing on the local cathode 2 and removed from the hydrofluoric acid-containing chemical solution. Since the adsorption rate depends on the surface area of the local cathode 2, the adsorption does not proceed effectively until the local cathode 2 is generated and the surface area increases in the initial stage of adsorption, and the adsorption rate is slow.
In order to increase the adsorption rate, silicon particles 1 (metal-deposited silicon particles) in which a metal to be the local cathode 2 is deposited and the surface area thereof is increased is effective.

【0012】[0012]

【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の実施例1を説明するための反応容器
の断面図であり、バッチ法による精製方法を示す。
Next, the present invention will be described with reference to the drawings. 1 is a cross-sectional view of a reaction container for explaining a first embodiment of the present invention, showing a purification method by a batch method.

【0013】本実施例では有害金属イオンとしてCuイ
オン、フッ酸含有薬液として5%フッ酸、および金属析
出シリコン粒子としてAu析出シリコン粒子(粒径;約
1mm)を用いた。
In this example, Cu ions were used as harmful metal ions, 5% hydrofluoric acid was used as the hydrofluoric acid-containing chemical solution, and Au-precipitated silicon particles (particle diameter: about 1 mm) were used as the metal-precipitated silicon particles.

【0014】Cuイオン(50ppb)を含有する5%
フッ酸4(500ml)をいれた反応容器5に、Au析
出シリコン粒子6(50g)を添加して攪拌機7で攪拌
し、反応させた時の5%フッ酸4中のCuイオン濃度の
経時変化を図2に示す。この時の温度は23℃であっ
た。横軸に反応時間、縦軸に5%フッ酸4中のCuイオ
ン濃度を示す。比較のために従来用いられている未処理
のシリコン粒子を用いたときの結果を併せて示す。図2
に示したように、液中のCuイオン濃度は急激に減少
し、30分以降ほぼ一定の濃度になった。その時の濃度
は0.5ppbで、初期の1/100の濃度まで除去で
きた。20分以降では、Au析出シリコン粒子と未処理
シリコン粒子で差異は見られなかったが、反応の初期に
おいては前者の場合の方が除去速度が早く、5分後の溶
液中のCuイオン濃度は後者の場合の1/2以下であっ
た。
5% containing Cu ions (50 ppb)
The Au ion-concentrated silicon particles 6 (50 g) were added to the reaction vessel 5 containing hydrofluoric acid 4 (500 ml), and the mixture was stirred by the stirrer 7 to change the Cu ion concentration in 5% hydrofluoric acid 4 with time when reacted. Is shown in FIG. The temperature at this time was 23 ° C. The horizontal axis represents the reaction time, and the vertical axis represents the Cu ion concentration in 5% hydrofluoric acid 4. For comparison, the results of using untreated silicon particles that are conventionally used are also shown. Figure 2
As shown in, the Cu ion concentration in the liquid decreased sharply and became almost constant after 30 minutes. The concentration at that time was 0.5 ppb, and it was possible to remove to a concentration of 1/100 of the initial concentration. After 20 minutes, no difference was observed between the Au-precipitated silicon particles and the untreated silicon particles, but the removal rate was faster in the former case at the initial stage of the reaction, and the Cu ion concentration in the solution after 5 minutes was higher. It was 1/2 or less of the latter case.

【0015】本実施例のAuを局部カソードとして析出
させたシリコン粒子(Au析出シリコン粒子)を用いれ
ば、未処理のシリコン粒子よりも吸着速度が2倍以上
(5分後)速かった。局部カソードとして析出させる金
属の種類は、フッ酸含有薬液中でシリコン粒子表面に析
出し、科学的に安定で薬液中に溶出しないものであれば
よい。
When the silicon particles in which Au was deposited as the local cathode of the present example (Au-deposited silicon particles) were used, the adsorption rate was twice or more (5 minutes later) than the untreated silicon particles. The metal to be deposited as the local cathode may be any metal as long as it deposits on the surface of silicon particles in a hydrofluoric acid-containing chemical solution, is chemically stable, and does not elute into the chemical solution.

【0016】図3は本発明の実施例2を説明するための
装置の断面図であり、カラム法による精製方法を示す。
本実施例では、有害金属イオンとしてCuイオン、金属
溶出シリコン粒子としてAu析出シリコン粒子(粒径;
1mm)、およびフッ酸含有薬液として5%フッ酸を用
いた。
FIG. 3 is a sectional view of an apparatus for explaining the second embodiment of the present invention, showing a purification method by a column method.
In this embodiment, Cu ions are used as harmful metal ions, and Au-deposited silicon particles (particle diameter;
1 mm), and 5% hydrofluoric acid was used as a hydrofluoric acid-containing chemical solution.

【0017】Au析出シリコン粒子8をカラム9に充填
し、カラム9の上方からCuイオンを含有する5%フッ
酸10をポンプ11で送液した。カラムサイズ;10m
mφx25cm(容積;19.5cm3 )、Cuイオン
濃度;1000ppb、温度;23℃、流速;4ml/
minの条件で薬液(Cuを含有)を送液した時の、流
出液12中のCu濃度の変化を図4に示す。
A column 9 was filled with Au-precipitated silicon particles 8, and 5% hydrofluoric acid 10 containing Cu ions was fed from above the column 9 by a pump 11. Column size; 10m
mφ × 25 cm (volume: 19.5 cm 3), Cu ion concentration: 1000 ppb, temperature: 23 ° C., flow rate: 4 ml /
FIG. 4 shows changes in the Cu concentration in the outflow liquid 12 when the chemical liquid (containing Cu) was sent under the condition of min.

【0018】横軸に流出液12の流出量、縦軸に流出液
12中のCuイオン濃度を示す。比較のために従来の未
処理のシリコン粒子を用いたときの結果を併せて示す。
Au析出シリコン粒子8を用いた場合、実施例1のバッ
チ法では5%フッ酸4中のCuイオン濃度を検出限界以
下(0.02ppb)まで低減できなかったが、本実施
例のカラム法によれば流出液12中のCuイオン濃度を
直ちに検出限界以下(0.02ppb)まで低減でき
た。従来の未処理のシリコン粒子を用いた場合、流出液
12中のCuイオン濃度は初期には非常に高く、徐々に
減少して流出量120ml以降一定の値(1ppb)に
なった。このように実施例のAu析出シリコン粒子8を
用いるフッ酸含有薬液の精製方法は、従来の未処理のシ
リコン粒子を用いる方法より吸着能力が非常に優れてい
た。
The horizontal axis represents the outflow amount of the effluent 12, and the vertical axis represents the Cu ion concentration in the effluent 12. For comparison, the results when using conventional untreated silicon particles are also shown.
When the Au precipitated silicon particles 8 were used, the Cu ion concentration in the 5% hydrofluoric acid 4 could not be reduced to below the detection limit (0.02 ppb) by the batch method of Example 1, but by the column method of this Example. According to this, the Cu ion concentration in the effluent 12 could be immediately reduced to below the detection limit (0.02 ppb). When the conventional untreated silicon particles were used, the Cu ion concentration in the effluent 12 was very high at the beginning and gradually decreased to a constant value (1 ppb) after the effluent amount of 120 ml. As described above, the method for purifying the hydrofluoric acid-containing chemical solution using the Au-precipitated silicon particles 8 of the example was much superior in adsorption ability to the conventional method using untreated silicon particles.

【0019】次にカラム9に流すCuイオンを含有する
5%フッ酸10の流速を変化させたときの流出液12中
のCuイオンの濃度の変化を表1に示す。この時の5%
フッ酸10中のCuイオン濃度は10ppmである。比
較のために従来の未処理のシリコン粒子を用いた場合の
結果を併せて表1に示す。
Table 1 shows changes in the concentration of Cu ions in the effluent 12 when the flow rate of the 5% hydrofluoric acid 10 containing Cu ions flowing in the column 9 is changed. 5% of this time
The Cu ion concentration in hydrofluoric acid 10 is 10 ppm. For comparison, Table 1 also shows the results when conventional untreated silicon particles were used.

【0020】[0020]

【表1】 [Table 1]

【0021】未処理のシリコン粒子を用いた場合、既に
4ml/minで1ppbのCuイオンが流出したが、
Au析出シリコン粒子8を用いた場合、12ml/mi
nでも流出濃度は0.1ppb以下であった。従って、
本実施例のフッ酸含有薬液の精製方法によれば、従来よ
り3倍以上の流速でフッ酸含有薬液を処理できる。
When untreated silicon particles were used, 1 ppb of Cu ions had already flowed out at 4 ml / min.
When using Au-deposited silicon particles 8, 12 ml / mi
Even with n, the outflow concentration was 0.1 ppb or less. Therefore,
According to the method for purifying the hydrofluoric acid-containing chemical liquid of the present embodiment, the hydrofluoric acid-containing chemical liquid can be treated at a flow rate three times or more that of the conventional method.

【0022】図5は本発明の実施例3の金属析出シリコ
ン粒子の調製法を説明するための反応容器の断面図であ
る。本実施例では、析出金属イオンとしてAuイオン、
フッ酸含有薬液として5%フッ酸を用いた。
FIG. 5 is a sectional view of a reaction vessel for explaining a method for preparing metal-deposited silicon particles of Example 3 of the present invention. In this example, Au ions were used as the deposited metal ions,
5% hydrofluoric acid was used as the hydrofluoric acid-containing chemical solution.

【0023】Auイオン(1ppm)を含有する5%フ
ッ酸13(500ml)をいれた反応容器14に、シリ
コン粒子15(粒径;約1mm、50g)を添加し、室
温で10分間攪拌機16で攪拌しシリコン粒子15の表
面にAuイオンを析出させた。攪拌後、濾過,水洗し、
Au析出シリコン粒子を得た。5%フッ酸13中のAu
イオンの約95%がシリコン粒子15表面に析出した。
析出メカニズムは〔作用〕の項で述べた有害金属イオン
のシリコン粒子表面への吸着と同じメカニズムであり、
シリコン粒子15表面に析出したAuは局部カソードと
して作用する。本実施例3で調製したAu析出シリコン
粒子を実施例1,2でフッ酸含有薬液の精製に適用し
た。
Silicon particles 15 (particle size: about 1 mm, 50 g) were added to a reaction vessel 14 containing 5% hydrofluoric acid 13 (500 ml) containing Au ions (1 ppm), and stirred with a stirrer 16 at room temperature for 10 minutes. By stirring, Au ions were deposited on the surface of the silicon particles 15. After stirring, filtering, washing with water,
Au precipitated silicon particles were obtained. Au in 5% hydrofluoric acid 13
About 95% of the ions were deposited on the surface of the silicon particles 15.
The precipitation mechanism is the same mechanism as the adsorption of harmful metal ions on the surface of silicon particles described in the section [Action],
Au deposited on the surface of the silicon particles 15 acts as a local cathode. The Au-precipitated silicon particles prepared in this Example 3 were applied to the purification of the hydrofluoric acid-containing chemical liquid in Examples 1 and 2.

【0024】5%フッ酸13中のAuイオンの濃度が高
すぎると、シリコン粒子15表面への析出濃度が高くな
りすぎて有害金属イオンの吸着容量が低下するだけでな
く、コスト上昇の原因になる。従って、Auイオン濃度
は、要求される吸着能力を有するAu析出シリコン粒子
を調製するのに十分な濃度であればよい。
If the concentration of Au ions in the 5% hydrofluoric acid 13 is too high, the concentration of precipitation on the surface of the silicon particles 15 becomes too high, which not only lowers the adsorption capacity of harmful metal ions but also causes a cost increase. Become. Therefore, the Au ion concentration may be a concentration sufficient to prepare Au-precipitated silicon particles having the required adsorption capacity.

【0025】析出金属イオンとしてCuイオンを用いて
調製したCu析出シリコンの場合、大気に接触すると析
出したCuが酸化され、フッ酸含有薬液に溶解する。こ
のため、Cu析出シリコン粒子を用いカラム法で薬液の
精製を行うと、Cuイオンが流出し、逆に薬液を汚染す
る。従って、金属析出シリコン粒子を調製するために使
用される金属イオンは、その析出物が化学的に安定する
ものでなければならない。
In the case of Cu-precipitated silicon prepared by using Cu ions as the precipitating metal ions, when the Cu-precipitated silicon comes into contact with the atmosphere, the precipitated Cu is oxidized and dissolved in the hydrofluoric acid-containing chemical solution. Therefore, when the chemical solution is purified by the column method using Cu-deposited silicon particles, Cu ions flow out and conversely contaminate the chemical solution. Therefore, the metal ions used to prepare the metal-deposited silicon particles must be such that the deposit is chemically stable.

【0026】図6は本発明の実施例4の金属析出シリコ
ン粒子の再生機能を組み込んだフッ酸含有薬液の精製法
を説明するための装置の断面図である。吸着飽和に達し
た金属析出シリコン粒子は有害金属イオンの吸着能力が
なくなるが、金属析出シリコン粒子表面に析出した有害
金属を酸性溶液で溶解除去すれば再生利用が可能であ
る。
FIG. 6 is a sectional view of an apparatus for explaining a method for purifying a hydrofluoric acid-containing chemical solution incorporating a function of regenerating metal-deposited silicon particles according to Example 4 of the present invention. The metal-deposited silicon particles that have reached the adsorption saturation have no ability to adsorb harmful metal ions, but can be recycled by dissolving and removing the harmful metal deposited on the surface of the metal-deposited silicon particles with an acidic solution.

【0027】本実施例では実施例2で使用したAu析出
シリコン粒子充填カラム17の再生方法について示す。
カラム17の吸着能力が低下したところで、5N硝酸1
8(200ml,60℃)を送液し、さらに純水19で
洗浄した。この処理により、表面に吸着した有害金属
(Cu)だけがほぼ完全に除去され、Au析出シリコン
粒子20は使用前の状態まで再生することができた。
In this example, a method of regenerating the column 17 packed with Au-precipitated silicon particles used in Example 2 will be described.
When the adsorption capacity of column 17 decreased, 5N nitric acid 1
8 (200 ml, 60 ° C.) was fed and further washed with pure water 19. By this treatment, only the harmful metal (Cu) adsorbed on the surface was almost completely removed, and the Au-deposited silicon particles 20 could be regenerated to the state before use.

【0028】金属析出シリコン粒子を再生するための酸
性溶液は、シリコンおよび析出金属を溶解せず、有害金
属だけを溶解できるものであればよく、使用温度も目的
を達成できる範囲であればよい。
The acidic solution for regenerating the metal-precipitated silicon particles may be one that does not dissolve the silicon and the precipitated metal but can dissolve only the harmful metal, and the operating temperature may be within the range where the purpose can be achieved.

【0029】[0029]

【発明の効果】以上に説明したように本発明のフッ酸含
有薬液の精製法によれば、金属析出シリコン粒子が従来
の未処理シリコン粒子よりも有害金属イオンの吸着能力
が高いため、フッ酸含有薬液中の有害金属イオンを今後
要求される濃度レベル(0.1ppb以下)まで低減で
きる。また、従来技術よりも3倍以上の流速で処理でき
るため、処理能力の向上、特に処理時間の短縮を図るこ
とができる。
As described above, according to the method for purifying a hydrofluoric acid-containing chemical solution of the present invention, the metal-deposited silicon particles have a higher ability to adsorb harmful metal ions than the conventional untreated silicon particles. It is possible to reduce harmful metal ions in the contained chemical liquid to a concentration level (0.1 ppb or less) required in the future. Further, since the treatment can be performed at a flow rate three times or more that of the conventional technique, the treatment capacity can be improved, and particularly the treatment time can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1を説明するための反応容器の
断面図。
FIG. 1 is a sectional view of a reaction container for explaining a first embodiment of the present invention.

【図2】実施例1におけるCuイオン濃度の経時変化を
示す図。
FIG. 2 is a diagram showing a change over time in Cu ion concentration in Example 1.

【図3】本発明の実施例2を説明するための装置の断面
図。
FIG. 3 is a sectional view of an apparatus for explaining a second embodiment of the present invention.

【図4】実施例2における流出量とCuイオン濃度との
関係を示す図。
FIG. 4 is a diagram showing a relationship between an outflow amount and a Cu ion concentration in Example 2.

【図5】本発明の実施例3を説明するための反応容器の
断面図。
FIG. 5 is a sectional view of a reaction container for explaining a third embodiment of the present invention.

【図6】本発明の実施例4を説明するための装置の断面
図。
FIG. 6 is a sectional view of an apparatus for explaining a fourth embodiment of the present invention.

【図7】本発明の基本原理を説明するためのシリコン粒
子の断面図。
FIG. 7 is a cross-sectional view of silicon particles for explaining the basic principle of the present invention.

【図8】従来の技術を説明するためのフィルター内部の
構造を示す図。
FIG. 8 is a diagram showing an internal structure of a filter for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

1,15,23 シリコン粒子 2 局部カソード 3 局部アノード 4,10,13 5%フッ酸 5,14 反応容器 6,8,20 Au析出シリコン粒子 7,16 攪拌機 9,17 カラム 11 ポンプ 12 流出液 18 5N硝酸 19 純水 21 フッ酸含有薬液 22 シリコン粒子混入フィルタ 1,15,23 Silicon particles 2 Local cathode 3 Local anode 4,10,13 5% Hydrofluoric acid 5,14 Reaction vessel 6,8,20 Au precipitated silicon particles 7,16 Stirrer 9,17 Column 11 Pump 12 Effluent 18 5N nitric acid 19 Pure water 21 Chemical solution containing hydrofluoric acid 22 Silicon particle mixed filter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 39/08 B01J 39/08 49/00 49/00 E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B01J 39/08 B01J 39/08 49/00 49/00 E

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フッ酸含有薬液をシリコン粒子表面に金
属イオンを析出させた金属析出シリコン粒子と接触させ
て、該薬液中の有害金属イオン(Cuイオン等)を金属
析出シリコン粒子に吸着させて除去することを特徴とす
るフッ酸含有薬液の精製方法。
1. A hydrofluoric acid-containing chemical solution is brought into contact with metal-deposited silicon particles in which metal ions are deposited on the surface of silicon particles, and harmful metal ions (Cu ions, etc.) in the chemical solution are adsorbed on the metal-deposited silicon particles. A method for purifying a hydrofluoric acid-containing chemical solution, which comprises removing the chemical solution.
【請求項2】 金属析出シリコン粒子を充填したカラム
にフッ酸含有薬液を通液し、該薬液中の有害金属イオン
を除去することを特徴とするフッ酸含有薬液の精製方
法。
2. A method for purifying a hydrofluoric acid-containing chemical liquid, which comprises passing a hydrofluoric acid-containing chemical liquid through a column packed with metal-deposited silicon particles to remove harmful metal ions in the chemical liquid.
【請求項3】 金属イオンを添加したフッ酸含有薬液と
シリコン粒子を接触させて該シリコン粒子表面に金属イ
オンを析出させた金属析出シリコン粒子をフッ酸含有薬
液中の有害金属イオン除去のために使用することを特徴
とするフッ酸含有薬液の精製方法。
3. A method for removing harmful metal ions from a hydrofluoric acid-containing chemical solution by contacting the hydrofluoric acid-containing chemical solution containing metal ions with silicon particles to deposit metal ions on the surface of the silicon particles. A method for purifying a hydrofluoric acid-containing chemical solution, which is used.
【請求項4】 精製効果の低下した金属析出シリコン粒
子を洗浄液で洗浄してその表面を清浄化し、再生して使
用することを特徴とするフッ酸含有薬液の精製方法。
4. A method for purifying a hydrofluoric acid-containing chemical solution, which comprises cleaning metal-deposited silicon particles having a reduced refining effect with a cleaning solution to clean the surface and reusing the particles for reuse.
JP4157199A 1992-06-17 1992-06-17 Method for purifying chemical solution containing hydrofluoric acid Expired - Lifetime JP2500568B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4157199A JP2500568B2 (en) 1992-06-17 1992-06-17 Method for purifying chemical solution containing hydrofluoric acid
US08/077,440 US5348722A (en) 1992-06-17 1993-06-17 Removal of detrimental metal ions from hydrofluoric acid solution for cleaning silicon surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4157199A JP2500568B2 (en) 1992-06-17 1992-06-17 Method for purifying chemical solution containing hydrofluoric acid

Publications (2)

Publication Number Publication Date
JPH06279005A JPH06279005A (en) 1994-10-04
JP2500568B2 true JP2500568B2 (en) 1996-05-29

Family

ID=15644373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4157199A Expired - Lifetime JP2500568B2 (en) 1992-06-17 1992-06-17 Method for purifying chemical solution containing hydrofluoric acid

Country Status (1)

Country Link
JP (1) JP2500568B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11717313B2 (en) 2016-09-16 2023-08-08 Terumo Kabushiki Kaisha Medical device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131821A (en) * 1994-11-15 1996-05-28 Nec Corp Adsorbent for refining liquid chemical and its preparation
CN113336194B (en) * 2021-05-14 2022-07-05 浙江凯圣氟化学有限公司 Method for separating metal ions in anhydrous hydrogen fluoride by complexing agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11717313B2 (en) 2016-09-16 2023-08-08 Terumo Kabushiki Kaisha Medical device

Also Published As

Publication number Publication date
JPH06279005A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
JP3530209B2 (en) Method and apparatus for treating suspended sewage containing dissolved contaminants
JPH0684875A (en) Method and apparatus for reduction of fine- particle concentration in working fluid
JP2500568B2 (en) Method for purifying chemical solution containing hydrofluoric acid
JP2508983B2 (en) Method and apparatus for removing metal impurities
US5348722A (en) Removal of detrimental metal ions from hydrofluoric acid solution for cleaning silicon surfaces
JP2500732B2 (en) Adsorbent for chemical liquid purification and method for preparing the same
JP2576409B2 (en) Method and apparatus for removing metal impurities
JP3715570B2 (en) Removal of radium in water
JP4081503B2 (en) Mixed bed type ion exchange resin
JP2008050197A (en) Method for producing high-purity alkali metal hydroxide
JPH08131821A (en) Adsorbent for refining liquid chemical and its preparation
JP2806836B2 (en) Adsorbent for chemical liquid purification and its preparation method
JP3784940B2 (en) Method for removing arsenic in copper electrolyte
JP2749938B2 (en) Cleaning method for semiconductor wafer
JPH09246227A (en) Silicon wafer cleaning equipment
JPH07115848B2 (en) Hydrogen peroxide water purification method
JP2893493B2 (en) Silicon wafer cleaning method
WO2023210370A1 (en) Organic solvent purification method and purification apparatus
JP2003334550A (en) Ultrapure water and production method therefor
JP4389301B2 (en) Method for treating trace metal-containing water
JP2691016B2 (en) How to regenerate iron liquid
JPH05109683A (en) Removal of metallic impurity in semiconductor silicon wafer cleaning fluid
JP3426032B2 (en) Method for producing mercury in gas
JP2002121628A (en) Method for recovering cerium
JPS59102805A (en) Purification of hydrochloric acid

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960123