JP4093076B2 - 車両運動モデルの生成装置および車両運動モデルの生成方法 - Google Patents
車両運動モデルの生成装置および車両運動モデルの生成方法 Download PDFInfo
- Publication number
- JP4093076B2 JP4093076B2 JP2003041507A JP2003041507A JP4093076B2 JP 4093076 B2 JP4093076 B2 JP 4093076B2 JP 2003041507 A JP2003041507 A JP 2003041507A JP 2003041507 A JP2003041507 A JP 2003041507A JP 4093076 B2 JP4093076 B2 JP 4093076B2
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- recurrent neural
- node
- neural network
- nodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 25
- 238000013528 artificial neural network Methods 0.000 claims description 76
- 230000000306 recurrent effect Effects 0.000 claims description 55
- 230000006870 function Effects 0.000 claims description 46
- 230000008878 coupling Effects 0.000 claims description 37
- 238000010168 coupling process Methods 0.000 claims description 37
- 238000005859 coupling reaction Methods 0.000 claims description 37
- 238000004422 calculation algorithm Methods 0.000 claims description 20
- 230000002068 genetic effect Effects 0.000 claims description 20
- 238000005457 optimization Methods 0.000 claims description 17
- 238000012545 processing Methods 0.000 claims description 17
- 230000006399 behavior Effects 0.000 claims description 12
- 238000012546 transfer Methods 0.000 claims description 9
- 230000002596 correlated effect Effects 0.000 claims description 4
- 239000006227 byproduct Substances 0.000 claims 2
- 230000001133 acceleration Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 15
- 230000000875 corresponding effect Effects 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000003111 delayed effect Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000002945 steepest descent method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/016—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
- B60G17/0162—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/018—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
- B60G17/0182—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method involving parameter estimation, e.g. observer, Kalman filter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/0195—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/174—Using electrical or electronic regulation means to control braking characterised by using special control logic, e.g. fuzzy logic, neural computing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
- G05B13/027—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B17/00—Systems involving the use of models or simulators of said systems
- G05B17/02—Systems involving the use of models or simulators of said systems electric
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0808—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
- G05D1/0816—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
- G05D1/0825—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability using mathematical models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/05—Attitude
- B60G2400/052—Angular rate
- B60G2400/0521—Roll rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/05—Attitude
- B60G2400/052—Angular rate
- B60G2400/0522—Pitch rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/05—Attitude
- B60G2400/052—Angular rate
- B60G2400/0523—Yaw rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/10—Acceleration; Deceleration
- B60G2400/104—Acceleration; Deceleration lateral or transversal with regard to vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/10—Acceleration; Deceleration
- B60G2400/106—Acceleration; Deceleration longitudinal with regard to vehicle, e.g. braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/20—Speed
- B60G2400/204—Vehicle speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/40—Steering conditions
- B60G2400/41—Steering angle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/40—Steering conditions
- B60G2400/42—Steering torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/40—Steering conditions
- B60G2400/44—Steering speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2600/00—Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
- B60G2600/18—Automatic control means
- B60G2600/187—Digital Controller Details and Signal Treatment
- B60G2600/1877—Adaptive Control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2600/00—Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
- B60G2600/18—Automatic control means
- B60G2600/187—Digital Controller Details and Signal Treatment
- B60G2600/1878—Neural Networks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/01—Attitude or posture control
- B60G2800/012—Rolling condition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/24—Steering, cornering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/70—Estimating or calculating vehicle parameters or state variables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/90—System Controller type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2270/00—Further aspects of brake control systems not otherwise provided for
- B60T2270/86—Optimizing braking by using ESP vehicle or tire model
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0002—Automatic control, details of type of controller or control system architecture
- B60W2050/0004—In digital systems, e.g. discrete-time systems involving sampling
- B60W2050/0006—Digital architecture hierarchy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0019—Control system elements or transfer functions
- B60W2050/0022—Gains, weighting coefficients or weighting functions
- B60W2050/0025—Transfer function weighting factor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0019—Control system elements or transfer functions
- B60W2050/0028—Mathematical models, e.g. for simulation
- B60W2050/0031—Mathematical model of the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0043—Signal treatments, identification of variables or parameters, parameter estimation or state estimation
- B60W2050/0057—Frequency analysis, spectral techniques or transforms
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Artificial Intelligence (AREA)
- Automation & Control Theory (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Health & Medical Sciences (AREA)
- Transportation (AREA)
- Data Mining & Analysis (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Algebra (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Fuzzy Systems (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Processing Or Creating Images (AREA)
Description
【発明の属する技術分野】
本発明は、車両の運動状態を表す車両運動モデルの生成装置およびその方法に係り、特に、リカレントニューラルネットワークを用いた車両運動モデルに関する。
【0002】
【従来の技術】
従来より、車両の操縦安定性の向上を目的として、種々の技術の研究および開発が行われている。この類の技術の一例に、車両の運動理論に基づいて車両の挙動をモデル化した車両運動モデルがある。車両運動モデルは、ある走行状況における車両のヨー運動、横運動、或いはロール運動などを実験やシミュレーションを通してモデル化したものであり、車両に関する運動方程式に基づいて設定される。この車両運動モデルに基づき、車両の挙動、すなわち、運動状態を解析することにより、車両の操縦安定性を評価することができる。
【0003】
また、トラクション制御、制動力制御、またはトルク配分制御といった車両の制御では、制御パラメータの演算に路面摩擦係数が用いられる。そこで、上述した車両運動モデルを用いることにより、この車両運動モデルと実際の車両の運動状態とに基づき、路面摩擦係数を推定する技術が提案されている。例えば、特許文献1には、適応制御を利用して路面摩擦係数を推定する手法が開示されている。また、特許文献2には、オブザーバにより推定した車体すべり角を、車両運動モデルに基づいた高μ路での基準値および車両運動モデルに基づいた低μ路での基準値と比較することにより、路面摩擦係数を推定する手法が開示されている。
【0004】
一方、特許文献3には、ニューラルネットワークを用いて車両の運動状態を推定する手法が開示されている。具体的には、車両の運動状態を表す車両パラメータのうち測定が容易なパラメータ(例えば、前後加速度、横加速度、上下加速度、操舵トルク、前輪舵角、車速、後輪舵角等)を入力とし、測定が困難なパラメータ(横滑り角およびヨーレート)を出力とするニューラルネットワークに基づいて、横滑り角やヨーレートが推定される。また、特許文献4には、ニューラルネットワークを用い、検出された車両の走行状況に基づいて、路面摩擦係数を推定する手法が開示されている。これらの特許文献3,4において、ニューラルネットワークは、バックプロパゲーション等のアルゴリズムに従い、出力が教師信号に対応するように結合重み係数の調整(学習)が予め行われている。
【0005】
【特許文献1】
特開平8−2274号公報
【特許文献2】
特開平10−242030号公報
【特許文献3】
特開平4−138970号公報
【特許文献4】
特開平6−286630号公報
【0006】
【発明が解決しようとする課題】
ところで、上記特許文献1または2に記載された手法では、車両運動モデルを設定する場合、解算出における煩雑な演算処理を避けるため、運動方程式を線形近似している。そのため、この車両運動モデルでは、非線形領域において、車両の運動状態、すなわち、車両の挙動を正確に表現することができない可能性がある。
【0007】
また、特許文献3に記載された手法では、フィードフォワード型のニューラルネットワークを用いているため、ニューラルネットワークから出力された値と、ニューラルネットワークに対して入力された値とが互いに独立している。そのため、このようなニューラルネットワークでは、車両の運動状態を正確に再現できない可能性がある。なぜならば、ニューラルネットワークから出力された値(例えば、横滑り角やヨーレート)は、入力のみならず、現在の自己の値(現在値)にも依存して変化するからである。そのため、車両の運動状態を精度よく推定するためには、出力された値をフィードバックし、この値をニューラルネットワークに反映させる必要がある。この点に関し、特許文献4では、ARAMモデルを用いて、出力値の時間遅れ値を入力層に供給することで、路面摩擦係数の推定精度の向上を図っている。しかしながら、このようなフィードバックが存在するニューラルネットワークでは、バックプロパゲーションといった学習則の原理より、その結合重み係数を学習することができないという問題があるため、路面摩擦係数の正確な推定が困難である。
【0008】
本発明は、かかる事情に鑑みてなされたものであり、その目的は、フィードバックループを含むリカレントニューラルネットワークを用いて車両の運動モデルを生成する新規な手法を提供することにある。
【0009】
【課題を解決するための手段】
かかる課題を解決するために、第1の発明は、車両の運動状態を表す車両運動モデルの生成装置を提供する。この生成装置は、複数のノードを接続することによりネットワークが形成され、一のノードからの出力が所定の結合重み係数に応じて他のノードへ入力されるとともに、少なくとも一つのノードからの出力が自己のノードまたは他のノードへフィードバックされるループを有する第1のリカレントニューラルネットワークと、遺伝的アルゴリズムを用いた学習則に基づいて、第1のリカレントニューラルネットワークにおける結合重み係数の最適解を決定する最適化部とを有する。ここで、第1のリカレントニューラルネットワークは、所定の入力情報に基づき、車両の運動状態を表す第1のパラメータを出力することにより、車両運動モデルとして機能する。
【0010】
ここで、第1の発明において、第1のリカレントニューラルネットワークは、一つ以上のノードで構成される入力層と、一つ以上のノードで構成される出力層とを少なくとも含む階層型の構造を有してもよい。この場合、最適化部は、隣接する層間の各ノードの接続を処理対象として結合重み係数の最適解を決定することが好ましい。これに対して、第1の発明において、第1のリカレントニューラルネットワークは、一のノードの出力が自己のノードを含む複数のノードのすべてへ入力され、かつ、複数のノードのそれぞれの出力が一のノードへ入力されるようにノードのそれぞれが相互に接続されていてもよい。この場合、最適化部は、前記ノードのそれぞれにおける相互の接続を処理対象として結合重み係数の最適解を決定することが好ましい。
【0011】
また、第1の発明において、ノードのそれぞれは、シグモイド関数、または、シグモイド関数以外の非シグモイド関数を伝達関数として用いることが好ましい。
【0012】
また、第1の発明において、上記生成装置は、第1のリカレントニューラルネットワークとは異なるネットワークを構成し、第1のパラメータとは異なる車両の運動状態を表す第2のパラメータを出力することにより、車両運動モデルとして機能する第2のリカレントニューラルネットワークをさらに有していてもよい。最適化部は、遺伝的アルゴリズムを用いた学習則に基づき、第2のニューラルネットワークにおける結合重み係数の最適解をさらに決定することが好ましい。この場合、第1のリカレントニューラルネットワークおよび第2のリカレントニューラルネットワークは、第1のリカレントニューラルネットワークから出力される、第1のパラメータと相関を有する状態変数が第2のニューラルネットワークに入力されるように互いに接続されていることが好ましい。ここで、状態変数は、路面状態または車両の運動状態を表す。
【0013】
また、第2の発明は、車両の運動状態を表す車両運動モデルの生成方法を提供する。この生成方法は、複数のノードを接続することによりネットワークが形成され、一のノードからの出力が所定の結合重み係数に応じて他のノードへ入力されるとともに、少なくとも一つのノードからの出力が自己のノードまたは他のノードへフィードバックするループを有する第1のリカレントニューラルネットワークであり、コンピュータが、第1のニューラルネットワークにおける結合重み係数を遺伝子型として、遺伝的アルゴリズムを用いた学習則に基づき、遺伝子型の最適解を決定する第1のステップと、コンピュータが、決定された遺伝子型の最適解に基づき、結合重み係数の最適解を第1のリカレントニューラルネットワークに対して出力する第2のステップとを有する。この場合、第1のリカレントニューラルネットワークは、所定の入力情報に基づき、車両の運動状態を表す第1のパラメータを出力することにより、車両運動モデルとして機能する。
【0014】
ここで、第2の発明において、第1のリカレントニューラルネットワークは、一つ以上のノードで構成される入力層と、一つ以上のノードで構成される出力層とを少なくとも含む階層型の構造を有しており、第1のステップは、隣接する層間の各ノードの接続を処理対象として遺伝子型の最適解を決定してもよい。これに対して、第2の発明において、第1のリカレントニューラルネットワークは、一のノードの出力が自己のノードを含む複数のノードのすべてへ入力され、かつ、複数のノードのそれぞれの出力が一のノードへ入力されるようにノードのそれぞれが相互に接続されており、第1のステップは、ノードのそれぞれにおける相互の接続を処理対象として結合重み係数の最適解を決定してもよい。
【0015】
また、第2の発明において、第1のステップは、第1のリカレントニューラルネットワークとは異なるネットワークを構成し、かつ、第1のパラメータとは異なる車両の運動状態を表す第2のパラメータを出力することで車両運動モデルとして機能する第2のリカレントニューラルネットワークにおける結合重み係数を遺伝子型として、遺伝子型の最適解をさらに決定し、第2のステップは、決定された遺伝子型の最適解に基づき、結合重み係数の最適解を第2のリカレントニューラルネットワークに対して出力することが好ましい。さらに、第1のリカレントニューラルネットワークおよび第2のリカレントニューラルネットワークは、第1のリカレントニューラルネットワークから出力される、第1のパラメータと相関を有する状態変数が第2のニューラルネットワークに入力されるように互いに接続されていることが好ましい。ここで、状態変数は、路面状態または車両の運動状態を表す。
【0016】
また、第3の発明は、路面摩擦係数を推定する路面摩擦係数推定装置を提供する。この摩擦係数推定装置は、上記第1の発明に記載された生成装置によって生成された車両運動モデルに基づいて路面摩擦係数を推定する。
【0017】
また、第4の発明は、車両の挙動を推定する車両挙動推定装置を提供する。この車両挙動推定装置は、上記第1の発明に記載された生成装置によって生成された車両運動モデルに基づいて車両の挙動を推定する。
【0018】
【発明の実施の形態】
(第1の実施形態)
図1は、本実施形態にかかる車両運動モデルの生成装置のブロック構成図である。この生成装置は、車両の運動状態を表す車両運動モデルを生成する。この生成装置1としては、CPU、RAM、ROM、入出力インターフェース等で構成されたコンピュータを用いることができる。図1には明記しないが、生成装置1には、キーボードおよびマウスを含む入力装置、CRTや液晶ディスプレイ等の表示装置などが接続されている。オペレータは、表示装置に表示された情報に基づいて、入力装置を操作して、必要な情報の入力等を行うことができる。生成装置1は、これを機能的に捉えた場合、最適化部10と、車両運動モデル部20とで構成されている。
【0019】
最適化部10は、遺伝的アルゴリズムを用いた学習則に基づいて演算を行い、演算結果として所定のパラメータを車両運動モデル部20に対して出力する。後述するように、車両運動モデル部20を構成する各推定モジュール21〜24がリカレントニューラルネットワークで構成されている関係上、このパラメータは、リカレントニューラルネットワークの結合重み係数Kij、およびしきい値θjがこれに該当する。ここで、「リカレントニューラルネットワーク」とは、フィードバックループを有するニューラルネットワークをいう。
【0020】
車両運動モデル部20は一つ以上の推定モジュール(本実施形態では、推定モジュール21〜24)で構成されており、これらの推定モジュール21〜24は各々が異なる一つの運動状態を表す車両運動モデルとして機能する。各推定モジュール21〜24は、リカレントニューラルネットワーク(以下、単に「RNN」という)で構成されており、所定の入力情報に基づき、車両の運動状態を表すパラメータ(以下、「車両パラメータ」という)を出力する。本実施形態では、車両運動モデル部20から4つの車両パラメータが出力される。具体的には、推定モジュール21は車両パラメータとしてヨーレートの推定値を出力し、推定モジュール22は車両パラメータとして横加速度(以下、単に「横G」という)の推定値を出力する。また、推定モジュール23は車両パラメータとしてロールの推定値を出力し、推定モジュール24は車両パラメータとしてピッチの推定値を出力する。
【0021】
図2は、推定モジュールとして機能するRNNの構造を示す説明図である。以下、RNNを説明するにあたり、ヨーレート用の推定モジュール21を構成するRNNを用いる。ただし、他の推定モジュール22〜24を構成するRNNについても基本的な構造に変わりはないので、他の推定モジュール22〜24については説明を省略する。このRNNでは、複数のノードNn(図2では例示的にノードN1〜N18)を接続することによりネットワークが形成されており、これらのノードNnが階層的に区分けされ、入力層、中間層および出力層で構成された階層型の構造になっている。各層を構成するノードNnの数は、オペレータによって適宜設定される。この場合、オペレータは、ノードNnの数を増やすことで得られる解の信頼性の向上と、ノードNnの数を減らすことで得られる処理速度の向上という相反する両者の関係を考慮した上で、各層が最適なノード数となるようにネットワーク構造を決定する。
【0022】
出力層には、基本的に、車両パラメータを出力するためのノードNn(ノードN16)が一つ設定されている。ただし、本実施形態では、後述するように出力層から入力層に対するフィードバックループが存在しており、入力層に対するフィードバックを多重的に行うべく、フィードバックのみを目的としたノードN17がさらに設定されている。また、図2において、ヨーレート用の推定モジュール21を構成するRNNは、車両パラメータとは別個に、状態変数Pを出力するためのノードN18が設定されている。なお、このノードN18から出力される状態変数Pは、横G、ロールおよびピッチ用の推定モジュール22〜24を構成するRNNの入力層ノードNnに入力される。
【0023】
入力層には、入力情報を入力するために必要な個数分のノードNnが設定されている。ここで、入力情報とは、RNNが車両パラメータを出力するために必要とされる情報をいい、本実施形態では、ハンドル角、ハンドル角速度、ハンドル角加速度、ステアリング反力、車体速度、車体加速度などがこれに該当する。また、出力層ノードN16,N17の出力を入力層にフィードバックさせる関係上、これに対応するノードN7〜N10も入力層に設定されている。なお、図2では、ヨーレート用の推定モジュール21を構成するRNNが図示されているため特に明記していないが、他の推定モジュール22〜24には、図1に示した状態変数Pを入力するためのノードNnがさらに設定されている。
【0024】
一方、中間層のノードNnとしては、上述したような関係を考慮した上で、オペレータの経験などを頼りに必要な個数分のノードNnが用意されている。図2に示す例では、中間層は、ノードN11〜N15の5つのノードNnで構成されている。
【0025】
このようにして各層を構成するノードNnが設定されると、ノード間の接続は自動的に決定される。階層型のRNNでは、ある層を構成する各ノードNnの出力は後段の層を構成するすべてのノードNnへ入力されるようにノード間の接続が決定される。例えば、図2に示すように、入力層のノードN1は、その出力が中間層のすべてのノードN11〜N15へ入力されるように接続されるといった如くである。
【0026】
また、本実施形態の特徴の一つとして、このRNNは、あるノードNnの出力をフィードバックさせるループを有している。具体的には、図2に示すように出力層ノードN16の出力は、車両パラメータの一つであるヨーレートとして出力されるととともに、第1の遅延回路Z-1によって一サイクルだけ遅延された後に、入力層ノードN7に入力される。また、その第1の遅延回路Z-1からの出力は、その後段に設けられた第2の遅延回路Z-1によって更に一サイクルだけ遅延された後に(したがって、ノードN16の出力に対応する初期の入力からは二サイクルだけ遅延された後に)、入力層ノードN8に入力される。一方、出力層ノードN17の出力は、上記第1および第2の遅延回路Z-1とは異なる第3の遅延回路Z-1によって一サイクルだけ遅延された後に、入力層ノードN9に入力される。また、第3の回路Z-1からの出力は、その後段に設けられた第4の遅延回路Z-1によって更に一サイクルだけ遅延された後(したがって、ノードN17の出力に対応する初期の入力からは二サイクルだけ遅延された後)に、入力層ノードN10に入力される。
【0027】
このようなRNNにおいて、それぞれのノードNnは、所定の伝達関数に従い、所定個数の入力yiに対して一つの出力Yiを生成する。そして、生成された出力Yiは、後段の層を構成するノードNnに対して出力される。具体的には、それぞれのノードNnは、入力データyiに対して数式1,2に示す計算を行い、その演算結果を出力データYjして出力する。ここで、Kijはn=i(i=1〜15)番目のノードNiと、n=j(j=11〜15(i=1〜10),j=16〜18(i=11〜15))番目のノードNjとの間の結合重み係数であり、θjはしきい値である。
【数1】
Xj=ΣKij・yi(i=1〜n)
【数2】
Yj=1/(1+exp(-(Xj-θj)))
【0028】
これらの数式1,2から分かるように、あるノードNnからの出力は、所定の結合重み係数Kijに応じて他のノードNnへ入力される。ここで、数式2は、シグモイド関数と呼ばれ、RNNにおけるノードの関数として一般に用いられる。シグモイド関数は、0から1まで連続的に変化し、しきい値θjが小さくなるにつれて、ステップ関数に近づいていく。
【0029】
RNNを用いて車両パラメータを推定する場合、その推定結果の精度向上を図るためには、結合重み係数Kijとしきい値θjとを適切に調整(学習)する必要がある。これらの結合重み係数Kijとしきい値θjとの最適解は、上述した最適化部10によって学習され適宜決定される。最適化部10によって処理対象となる接続は、フィードバックのループを除く隣接する層間の各ノードの接続となる。
【0030】
図3は、遺伝的アルゴリズムを用いた重み係数wijとしきい値θjとの最適解の決定手順を示すフローチャートであり、このフローチャートに示す処理は最適化部10によって行われる。この最適化部10は、それぞれの推定モジュール21〜24に対して以下に示す処理を行う。ここでは、ヨーレート用の推定モジュール(RNN)21を例に説明するが、他の推定モジュール(RNN)22〜24について行われる処理も変わりはないので、他の推定モジュール22〜24については説明を省略する。
【0031】
まず、ステップ1において、遺伝子型で構成される個体がN個だけ集合した初期個体集団が生成される。本実施形態において、遺伝子型は、結合重み係数Kijおよびしきい値θjが該当する。この場合、一つの個体は、RNNにおけるすべての結合重み係数Kij、およびしきい値θjを含んだ遺伝子型で構成される。また、初期個体集団は、このような個体がN個だけ集合したものであり、個体毎にいろいろな値を有する遺伝子型Kij,θjで構成される。各個体1〜Nを構成する遺伝子型Kij,θjは、例えば、乱数によって初期値が決定される。すなわち、個体1〜N毎に結合重み係数Kijとしきい値θjとをRNNに代入すれば、結合重み係数Kijとしきい値θjが確定されたN個のRNNが得られる。
【0032】
ステップ2において、適応度Aが算出される。適応度Aを算出する前提として、オペレータは、実験やシミュレーションを通じ、所定の条件下において実際に車両が示す車両パラメータ(以下、「実車両パラメータ」という)を予め取得しておく。そして、オペレータは、この所定の条件と、実車両パラメータとの対応関係を記述したマップを生成装置1のROMに格納しておく。このマップに記述された所定の条件は、フィードバック要素を除く入力層ノードNnに入力されるパラメータであり、ハンドル角、ハンドル角速度、ハンドル角加速度、ステアリング反力、車体速度および車体加速度がこれに該当する。このような前提に基づき、最適化部10は、マップを参照し、これらの条件をRNNの入力層ノードN1〜N6にそれぞれ入力し、出力層ノードN16からの出力として、車両パラメータの推定値(以下、「推定車両パラメータ」という)を取得する。そして、この推定車両パラメータと、実車両パラメータとに基づき、数式3に示す評価関数を用いて適応度Aを算出する。
【数式3】
A=Σ|Vt−Vc|
【0033】
図4は、評価関数を説明する概略図である。同図には、実車両パラメータ(例えば、ヨーレート)の時系列的な変化が実線で示されており、推定車両パラメータ(例えば、ヨーレート)の時系列的な変化が点線で示されている。数式3に示すように、評価関数は、所定時間における、実車両パラメータVtと推定車両パラメータVcとの差分(絶対値)の総和である(図4に示すハッチング領域の面積)。すなわち、この評価関数は、推定ヨーレートが実ヨーレートに近ければ近いほど、適応度Aが低くなるように設定されている。
【0034】
最適化部10は、各個体1〜Nについて適応度Aを算出し、適応度Aが低い順に、個体1〜Nを並び替える。すなわち、個体集団中の各固体1〜Nは、推定車両パラメータが実車両パラメータに近いものから順番に、個体1〜Nとして新たに並び替えられる。
【0035】
ステップ3において、個体1に関する適応度Aの値が、判定適応度Aerrorの値より大きいか否かが判断される。この判定適応度Aerrorは、推定ヨーレートと実ヨーレートとが実質的に同一とみなせるような適応度Aの最大値として設定されている。したがって、このステップ3において、肯定判定された場合(適応度Aが判定適応度Aerrorよりも大きい場合)、続くステップ4に進む。一方、このステップ3において、否定判定された場合(適応度Aが判定適応度Aerror以下の場合)、後段のステップ6に進む。
【0036】
ステップ4において、周知の手法を用いて、個体1〜Nが選択・淘汰される。このような選択・淘汰の手法としては、逆ルーレット式選択,ランク方式選択,トーナメント式選択等が挙げられる。このステップ4の処理により、ある個体(或いは、個体群)が選択され、選択された個体が個体集団の中から削除される。この削除された個体の位置には、例えば、適応度Aが低い方から同数の個体を移すことで、母集団を構成する個体の数が維持される。
【0037】
ステップ5において、次世代の個体母集団が生成される。具体的には、最適化部10は、集団中の個体を構成する遺伝子型Kij,θjを突然変異および交叉させる。突然変異は、ある個体中の任意の遺伝子型Kij(またはθj)を例えば乱数により選び、乱数により発生した値に変化させる。また、交叉は、乱数により選択したある個体群において、これもまた乱数により選択された遺伝子型Kij(またはθj)の値を互いに交換する。ただし、突然変異および交叉を行う個体の選択手法としては、乱数によって選び出すことに限定されず、適応度Aが最も低い個体については、その個体を維持するために、突然変異および交叉を行わないようにしてもよい。そして、ステップ2以降の処理に戻り、個体1の適応度Aが判定適応度Aerror以下となるまで、上述した処理が繰り返される。
【0038】
一方、ステップ3の肯定判定にともなうステップ6では、個体1を構成する遺伝子型Kij,θjが最適解として決定され、本ルーチンを抜ける。この場合、最適化部10は、この個体1を構成する遺伝子型Kij,θjに基づき、これらの遺伝子型Kij,θjの値を、それぞれ対応する結合重み係数Kijおよびしきい値θjの最適解として決定する。そして、決定された最適解がRNNに対して出力され、各推定モジュール21〜24において、この最適解がRNNの結合重み係数Kijと、しきい値θjとに設定される。これにより、推定モジュール21〜24を含む車両運動モデル部20が単独で、或いは、この生成装置1自体が、車両運動モデルとして機能する。
【0039】
図5〜図7はRNNの学習結果を示す図であり、図5は1世代目の個体に関する学習結果、図6は100世代目の個体に関する学習結果、図7は30000世代目の個体に関する学習結果を示す。これらの図には、上述した所定の条件(例えば、図8に示すようなハンドル角)を与えた場合の実車両パラメータ(ヨーレート)が細い実線で描かれており、同一の条件を与えた場合の推定車両パラメータ(ヨーレート)がそれよりも太い実線で描かれている。これらの図から分かるように、1世代目では、両者の線は振幅の周期が同様の傾向を示すものの、値として差が大きく、推定車両パラメータは実車両パラメータを再現し切れていない。100世代目では、両者の線は基本的に同様の傾向を示すものの、極大(或いは極小)点付近で相違が見られる。そして、30000世代目では、全域に亘り両者の線はほぼ同じ値を示し、実車両パラメータを示す細い実線が、推定車両パラメータを示す太い実線によって覆われている。このように、例えば、30000世代といった程度まで学習を行うことで、推定パラメータは実車両パラメータを高レベルで再現することができる。すなわち、遺伝的アルゴリズムを用いて学習することで、フィードバックのループを含むRNNの重み係数Kijの最適解を有効に見つけ出すことができることが理解できる。
【0040】
このように、本実施形態によれば、遺伝的アルゴリズムを用いて、RNNの結合重み係数Kij(さらには、しきい値θj)の学習を行い、その最適解を決定している。フィードバックを含むRNNは、バックプロパゲーションといった最急降下法の原理に基づいた学習則を行うことができないという問題があるが、本実施形態では、遺伝的アルゴリズムを用いることでこれを解決することができる。
【0041】
また、RNNを用いることで、車両パラメータを含む出力層ノードNnの出力が、入力層ノードNnにフィードバックされている。このため、RNN中にフィードバックされた値が反映されるので、本実施形態のRNNは、自己の以前の出力を加味した状態で車両パラメータを推定することができる。したがって、本実施形態に示す手法は、フィードフォワード型のニューラルネットワークよりも実際の車両の運動状態に即した、すなわち、車両の運動状態の再現性に優れた車両運動モデルを生成することができる。
【0042】
また、本実施形態では、各推定モジュール21〜24が一つの車両パラメータを出力している。例えば、一つのRNNにおいて、出力層に上述した4つの車両パラメータを出力させるノードNnを設け、これにより、4つのRNNを一つのRNNで代替することもできる。しかしながら、本実施形態のシステム構成によれば、車両パラメータを出力するノードNnを単一とすることで、各RNNを構成するノードNnの数を減らすことができる。これにより、最適化部10によって行われる各推定モジュール21〜24に対する学習速度を向上させることができる。また、学習速度が向上すれば、遺伝的アルゴリズムを用いて学習を行う際に、初期個体集団中の個体数を増やし、様々な個体を個体集団に含め学習を行うことができる。これにより、遺伝子型Kij,θjの最適解をより精度よく決定することができる。また、ノード数が少ないと、その組合わせが小規模となるので、遺伝的アルゴリズムにおける解空間の次元数が下がり、最適解が発見し易くなるという効果を奏する。
【0043】
なお、推定モジュール21〜24から出力される車両パラメータは、共通の車両に関する運動状態を表すものであり、たとえその種類が異なったとしても、車両の運動に起因して互いに同期して変化する必要がある。そのため、本実施形態では、例示的に、ヨーレート用の推定モジュール21から状態変数Pを出力させ、この状態変数Pを推定モジュール22〜24に入力させている。ヨーレート用の推定モジュール21から出力される状態変数Pは、遺伝的アルゴリズムを用いて結合重み係数Kijの学習を行うことにより、推定モジュール21の出力結果である車両パラメータ(具体的には、ヨーレート)と高い相関を有する。例えば、この状態変数Pは、車両のヨーレートに応じた車両の運動状態または路面状態を表している。このため、状態変数Pが入力される推定モジュール22〜24では、ヨーレートと相関を有する状態変数Pを加味した状態で結合重み係数Kijの学習が行われることになるので、4つの推定モジュール21〜24を構成するRNNの同期をとることができる。すなわち、状態変数Pは、推定モジュール22〜24において推定モジュール21に対する同期付けの基準となる値として作用する。よって、本実施形態のシステム構成では、それぞれの推定モジュール21〜24が独立して構成される場合と比較して、各車両パラメータがより実車の運動状態に近い値を再現することができる。
【0044】
なお、このような作用を奏する状態変数Pとしては、本実施形態に示すようなヨーレート用の推定モジュール21からの出力のみに限定されず、他の推定モジュール22〜24からの出力のいずれかを用いてもよい。ただし、車両のパラメータのうち、ヨーレートは他の車両パラメータと比べ、比較的に精度良くその値を検出することができるので、このヨーレート用の推定モジュール21から状態変数Pを出力することが好ましい(すなわち、状態変数Pの信頼性の向上)。また、これらの推定モジュール21〜24から各々状態変数Pを出力させ、各状態変数Pを出力側の推定モジュールとは異なる推定モジュールに入力させ、相互に関連(同期)を持たせるような構成にしてもよい。なお、上述した実施形態では、状態変数Pをヨーレートと相関を有する、路面状態または車両の運動状態を表す変数として取り扱った。ただし、状態変数Pがヨーレートと相関を有するという観点からすれば、ノードN16から出力される車両パラメータ(ヨーレート)そのものを状態変数Pとして用いてもよい。
【0045】
なお、本実施形態において、車両運動モデル部20は、4つの推定モジュール21〜24で構成されるが、本発明はこれに限定されるものではない。推定モジュールの数は、必要とする車両パラメータに応じて任意に決定することができる。また、車両パラメータも、ヨーレート、横G、ロールおよびピッチの4つにのみ限定されず、例えば、車体すべり角、前輪すべり角、後輪すべり角、車輪と路面との間の摩擦係数といったその他のパラメータをさらに含めてもよい。
【0046】
また、本実施形態では、マップを参照し、これをRNNの出力と比較することで、RNNの結合重み係数Kij、しきい値θjの学習を行っているが、生成装置1を実車に搭載し、リアルタイムで学習を行ってもよい。この場合、入力に相当するハンドル角、ハンドル角速度、ハンドル角加速度、ステアリング反力、車体速度、車体加速度をセンサ等から検出、或いは検出値に基づき算出し、RNNの入力させる。そして、出力に相当する車両パラメータをセンサで検出し、この検出値とRNNの出力とを比較するといった如くである。
【0047】
(第2の実施形態)
図9は、第2の実施形態にかかる各推定モジュール21〜24を構成するRNNのネットワーク構造を示す説明図である。なお、同図に示す例では、便宜上、ノードNnの一部が省略して描かれている。各推定モジュール21〜24は複数のノードNnで構成されるRNNであり、結合重み係数Kijとしきい値θjとの最適解を遺伝的アルゴリズムを用いて決定する点については、第1の実施形態と同様である。しかしながら、本実施形態は、前提となるRNNのネットワーク構造が第1の実施形態のそれと相違する。第1の実施形態におけるRNNは階層型の構造を有し、各層を構成するノードNnの数を設定することにより、ノードNn間の接続は予め決定される。一方、第2の実施形態におけるRNNは、あるノードNnが自己を含むすべてのノードNnと結合するように、複数のノードが相互に接続されている。したがって、例えば、ノードN1の出力は、このノードN1を含むすべてのノードN1〜Nnへ入力され、かつ、すべてのノードN1〜Nnの出力がノードN1へ入力される。
【0048】
図10は、ノード間の結合重み係数Kijの対応関係を示した説明図である。このようなネットワークにおいて、ノード間の結合重み係数Kijは図10に示すマトリクスとして表現される。このマトリクスは、フィードフォワード、フィードバックといった種類を問わず、すべてのノード間の接続に関する結合重み係数Kijを表している。本実施形態では、このようなネットワーク構造において、上述した最適化部10が、複数のノードの相互の接続を処理対象として結合重み係数Kijおよびしきい値θjの最適解を決定する。
【0049】
結合重み係数Kij,しきい値θjの最適解を決定する手法は、第1の実施形態のそれと基本的に同じであるため、ここでは概略のみを説明し、その詳細な説明は省略する。具体的には、まず、図10に示す結合重み係数Kij(すなわち、K11〜Knn)およびしきい値θjを遺伝子型とし、いろいろな値をもつ遺伝子型で構成される個体を複数用意する(初期個体集団の生成)。そして、これらの個体ごとに適応度Aを算出する。この場合、ネットワークを構成するノードNnの中から任意に6つのノードNnを選択し、上記マップに基づき、ハンドル角、ハンドル角速度、ハンドル角加速度、ステアリング反力、車体速度および車体加速度を選択されたノードNnに入力する。そして、入力に用いたノードNnとは異なるノードNnを任意に一つ選択し、そのノードNnから出力を得る。そして、この出力と、マップに記述された車両パラメータとに基づいて、数式3に示す評価関数を用いて適応度Aを算出する。そして、図3に示す処理と同様、適応度Aが判定適応度Aerror以下となるまで、選択・淘汰、次世代の個体集団の生成が繰り返され、最適な遺伝子型Kij,θjが決定される。これにより、RNNにおける結合重み係数Kijおよびしきい値θjの最適解が決定される。
【0050】
このように本実施形態によれば、ネットワークの結合状態を初期的に限定せずに、フィードフォワード、フィードバックを含み、すべてのノード間が接続されたネットワーク構造を有するRNNを採用している。このようなネットワーク構成であっても、遺伝的アルゴリズムを用いることで、結合重み係数Kij(およびしきい値θj)を決定することができる。この場合、決定された結合重み係数Kijが値として「0」となれば、ノードNiと、ノードNjとの結合が不要であることを意味している。すなわち、形式的にはすべてのノードNnがネットワークとして結合しているが、この結合重み係数Kijの値に応じて必要なノードのみが実質的に残されることになる。換言すれば、遺伝的アルゴリズムにより結合重み係数Kijを学習させることにより、等価的に、車両パラメータを算出するために必要なノードが選択されることになる。当然、学習の結果、その結合重み係数Kijの値によっては、実質的に図2に示すようなネットワーク構成が出来上がることも予想される。しかしながら、このような場合、すべてのノードNnの接続がなされたRNNのなかから、必要なノードのみが選択され、そのネットワーク構成が車両パラメータを推定する上で最適な構造であることが遺伝的アルゴリズムによって保証されるという効果を奏する。
【0051】
なお、上述した第1および第2の実施形態では、伝達関数をシグモイド関数を前提として説明を行ったが、遺伝的アルゴリズムを用いて学習を行うのであれば、RNNを構成するノードの伝達関数は、シグモイド関数に限定されない。例えば、図11に示すような、非シグモイド関数を伝達関数として用いてもよい。同図(a)は、入力に対して出力がヒステリシスと呼ばれる非線形特性を示す関数の一例を示す。また、同図(b)〜(d)には、二値化、不感帯、リミッタと呼ばれる非線形特性を示す関数の一例が示されている。
【0052】
また、伝達関数としては、このような非線形特性を示す関数だけでなく、順序回路的な要素を含む関数を用いてもよい。すなわち、過去の入力系列によって出力が決まるような関数を用いることができる。このような関数としては、時間遅れ(Z-1)、ピークホールド(所定のインターバル間のピーク値を出力する)、最大値(時系列的なピーク値を出力する)、積分、微分といったものが挙げられる。
【0053】
このように、非シグモイド関数をノードNnの伝達関数に含めることで、シグモイド関数では表現しきれないような入出力特性をも表現できる車両運動モデルを生成することができる。よって、このような車両運動モデルは、例えば、車両の後輪がスリップし、車両運動モデルが一気に激変してしてしまうような場合の入出力応答を表現することができる。これにより、車両の運動状態の再現性を向上させることができる。
【0054】
なお、上述した車両運動モデルの生成装置、或いは、この装置によって生成された車両運動モデルは、路面摩擦係数を推定する装置や車両の挙動を推定する装置の一部に組み込まれて使用することができる。例えば、路面摩擦係数推定装置にこの車両運動モデルを適用する場合には、路面摩擦係数の高い路面での車両の運動状態を学習させた高μ用車両運動モデルと、路面摩擦係数の低い路面で車両の運動状態を学習させた低μ用車両運動モデルとを用意しておく。そして、各車両運動モデルに、現在の車両に関するハンドル角、ハンドル角速度、ハンドル角加速度、ステアリング反力、車体速度、車体加速を入力し、ヨーレートといった車両パラメータを取得する。また、取得した車両パラメータに相当する車両の運動状態をセンサ等で検出し、検出された値を、車両運動モデルから取得した値と比較する。これにより、その値が近似する傾向を示す、一方の車両運動モデルの学習状況に相当する路面状態を、現在の路面摩擦係数として推定することができる。一方、車両挙動推定装置は、車両運動モデルに、現在の車両に関するハンドル角、ハンドル角速度、ハンドル角加速度、ステアリング反力、車体速度、車体加速を入力し、ヨーレートといった車両パラメータを取得する。そして、取得した車両パラメータに基づき、車両がどのような挙動を示すか推定するといった如くである。また、この車両運動モデルを用いることにより、車両の挙動、車両の乗り心地を評価することもできる。
【0055】
【発明の効果】
このように本発明によれば、遺伝的アルゴリズムを用いることにより、フィードバックのループを有するリカレントニューラルネットワークの結合重み係数の最適解を決定することができる。また、車両運動モデルにリカレントニューラルネットワークを用いることにより、リカレントニューラルネットワーク中にフィードバック要素が考慮されることになる。したがって、フィードフォワード型のリカレントニューラルネットワークよりも実際の車両の運動状態に即した、すなわち、車両の運動状態の再現性が向上した車両運動モデルを生成することができる。
【図面の簡単な説明】
【図1】本実施形態にかかる車両運動モデルの生成装置のブロック構成図
【図2】推定モジュールとして機能するRNNの構造を示す図
【図3】遺伝的アルゴリズムを用いた重み係数としきい値との最適解の決定手順を示すフローチャート
【図4】評価関数の概念を示す説明図
【図5】RNNの1世代目の個体に関する学習結果を示す図
【図6】RNNの100世代目の個体に関する学習結果を示す図
【図7】RNNの30000世代目の個体に関する学習結果を示す図
【図8】RNNに与えた条件の一例を示す図
【図9】第2の実施形態にかかる各推定モジュールを構成するRNNのネットワーク構造を示す説明図
【図10】ノード間の結合重み係数の対応関係を示した説明図
【図11】伝達関数の一例を示す説明図
【符号の説明】
1 生成装置
10 最適化部
20 車両運動モデル部
21 推定モジュール
22 推定モジュール
23 推定モジュール
24 推定モジュール
Claims (11)
- 車両の運動状態を表す車両運動モデルの生成装置において、
複数のノードを接続することによりネットワークが形成され、一のノードからの出力が所定の結合重み係数に応じて他のノードへ入力されるとともに、少なくとも一つのノードからの出力が自己のノードまたは他のノードへフィードバックされるループを有する第1のリカレントニューラルネットワークと、
前記第1のリカレントニューラルネットワークとは異なるネットワークを構成する複数の第2のリカレントニューラルネットワークと、
遺伝的アルゴリズムを用いた学習則に基づいて、前記第1のリカレントニューラルネットワークにおける前記結合重み係数の最適解、および前記複数の第2のリカレントニューラルネットワークにおける前記結合重み係数の最適解を決定する最適化部とを有し、
前記第1のリカレントニューラルネットワークは、所定の入力情報に基づき、車両の運動状態を表す第1のパラメータを出力することで、車両運動モデルとして機能し、
前記複数の第2のリカレントニューラルネットワークは、互いにかつ前記第1のパラメータとは異なる車両の運動状態を表す複数の第2のパラメータを出力することで、車両運動モデルとして機能し、
前記第1のリカレントニューラルネットワークおよび前記複数の第2のリカレントニューラルネットワークは、前記第1のリカレントニューラルネットワークから出力される、前記第1のパラメータと相関を有する状態変数が前記複数の第2のリカレントニューラルネットワークに入力されるように互いに接続されることを特徴とする車両運動モデルの生成装置。 - 前記第1のリカレントニューラルネットワークは、一つ以上のノードで構成される入力層と、一つ以上のノードで構成される出力層とを少なくとも含む階層型の構造を有し、
前記最適化部は、隣接する層間の各ノードの接続を処理対象として前記結合重み係数の最適解を決定することを特徴とする請求項1に記載された車両運動モデルの生成装置。 - 前記第1のリカレントニューラルネットワークは、一のノードの出力が自己のノードを含む前記複数のノードのすべてへ入力され、かつ、前記複数のノードのそれぞれの出力が前記一のノードへ入力されるように前記ノードのそれぞれが相互に接続されており、
前記最適化部は、前記ノードのそれぞれにおける相互の接続を処理対象として前記結合重み係数の最適解を決定することを特徴とする請求項1に記載された車両運動モデルの生成装置。 - 前記ノードのそれぞれは、シグモイド関数、または、シグモイド関数以外の非シグモイド関数を伝達関数として用いることを特徴とする請求項1から3のいずれかに記載された車両運動モデルの生成装置。
- 前記状態変数は、路面状態または車両の運動状態を表すことを特徴とする請求項1に記載された車両運動モデルの生成装置。
- 請求項1から5のいずれかに記載された生成装置によって生成された車両運動モデルに基づいて路面摩擦係数を推定する路面摩擦係数推定装置。
- 請求項1から5のいずれかに記載された生成装置によって生成された車両運動モデルに基づいて車両の挙動を推定する車両挙動推定装置。
- 車両の運動状態を表す車両運動モデルの生成方法において、
複数のノードを接続することによりネットワークが形成され、一のノードからの出力が所定の結合重み係数に応じて他のノードへ入力されるとともに、少なくとも一つのノードからの出力が自己のノードまたは他のノードへフィードバックされるループを有する第1のリカレントニューラルネットワークであり、コンピュータが、前記第1のニューラルネットワークにおける前記結合重み係数を遺伝子型として、遺伝的アルゴリズムを用いた学習則に基づき、前記遺伝子型の最適解を決定する第1のステップと、
前記コンピュータが、前記決定された遺伝子型の最適解に基づき、前記結合重み係数の最適解を前記第1のリカレントニューラルネットワークに対して出力する第2のステップとを有し、
前記第1のリカレントニューラルネットワークは、所定の入力情報に基づき、車両の運動状態を表す第1のパラメータを出力することにより、車両運動モデルとして機能し、
前記第1のステップは、前記第1のリカレントニューラルネットワークとは異なるネットワークを構成し、互いにかつ前記第1のパラメータとは異なる車両の運動状態を表す複数の第2のパラメータをそれぞれ出力することで、車両運動モデルとして機能する複数の第2のリカレントニューラルネットワークにおける結合重み係数を遺伝子型として、当該遺伝子型の最適解を決定するステップを含み、
前記第2のステップは、前記決定された遺伝子型の最適解に基づき、前記結合重み係数の最適解を前記複数の第2のリカレントニューラルネットワークに対して出力するステップを含み、
前記第1のリカレントニューラルネットワークおよび前記複数の第2のリカレントニューラルネットワークは、前記第1のリカレントニューラルネットワークから出力される、前記第1のパラメータと相関を有する状態変数が前記複数の第2のニューラルネットワークに入力されるように互いに接続されることを特徴とする車両運動モデルの生成方法。 - 前記第1のリカレントニューラルネットワークは、一つ以上のノードで構成される入力層と、一つ以上のノードで構成される出力層とを少なくとも含む階層型の構造を有しており、
前記第1のステップは、隣接する層間の各ノードの接続を処理対象として前記遺伝子型の最適解を決定することを特徴とする請求項8に記載された車両運動モデルの生成方法。 - 前記第1のリカレントニューラルネットワークは、一のノードの出力が自己のノードを含む前記複数のノードのすべてへ入力され、かつ、前記複数のノードのそれぞれの出力が前記一のノードへ入力されるように前記ノードのそれぞれが相互に接続されており、
前記第1のステップは、前記ノードのそれぞれにおける相互の接続を処理対象として前記結合重み係数の最適解を決定することを特徴とする請求項8に記載された車両運動モデルの生成方法。 - 前記状態変数は、路面状態または車両の運動状態を表すことを特徴とする請求項10に記載された車両運動モデルの生成方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003041507A JP4093076B2 (ja) | 2003-02-19 | 2003-02-19 | 車両運動モデルの生成装置および車両運動モデルの生成方法 |
EP04003553.7A EP1449743B1 (en) | 2003-02-19 | 2004-02-17 | Vehicle motion model generating device and method for generating vehicle motion model |
US10/779,717 US7308432B2 (en) | 2003-02-19 | 2004-02-18 | Vehicle motion model generating device and method for generating vehicle motion model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003041507A JP4093076B2 (ja) | 2003-02-19 | 2003-02-19 | 車両運動モデルの生成装置および車両運動モデルの生成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004249812A JP2004249812A (ja) | 2004-09-09 |
JP4093076B2 true JP4093076B2 (ja) | 2008-05-28 |
Family
ID=32732948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003041507A Expired - Fee Related JP4093076B2 (ja) | 2003-02-19 | 2003-02-19 | 車両運動モデルの生成装置および車両運動モデルの生成方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US7308432B2 (ja) |
EP (1) | EP1449743B1 (ja) |
JP (1) | JP4093076B2 (ja) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7177743B2 (en) * | 2003-06-02 | 2007-02-13 | Toyota Engineering & Manufacturing North America, Inc. | Vehicle control system having an adaptive controller |
US7551620B1 (en) * | 2004-12-15 | 2009-06-23 | Orbital Data Corporation | Protecting data integrity in an enhanced network connection |
FR2888165B1 (fr) * | 2005-07-05 | 2007-08-31 | Renault Sas | Procede et systeme anti-roulis d'un vehicule et vehicule correspondant |
JP2007099178A (ja) * | 2005-10-07 | 2007-04-19 | Fuji Heavy Ind Ltd | 近似推定装置 |
WO2007060134A1 (de) * | 2005-11-22 | 2007-05-31 | Continental Teves Ag & Co. Ohg | Verfahren und vorrichtung zum ermitteln eines modellparameters eines referenzfahrzeugmodells |
JP4773830B2 (ja) * | 2006-01-17 | 2011-09-14 | 富士重工業株式会社 | コーナリングパワー推定装置 |
JP4875906B2 (ja) * | 2006-02-24 | 2012-02-15 | 富士重工業株式会社 | 車両挙動推定予測装置および車両安定化制御システム |
JP4638370B2 (ja) | 2006-03-29 | 2011-02-23 | 富士重工業株式会社 | 車線逸脱防止装置 |
JP5478023B2 (ja) * | 2008-03-10 | 2014-04-23 | 本田技研工業株式会社 | 車両の後輪トー角制御装置 |
DE102009003181B4 (de) | 2008-06-06 | 2024-07-04 | Robert Bosch Gmbh | Ortungsverfahren und Ortungsvorrichtung |
JP5516192B2 (ja) * | 2010-07-28 | 2014-06-11 | 富士通株式会社 | モデル作成装置、モデル作成プログラムおよびモデル作成方法 |
US9015093B1 (en) | 2010-10-26 | 2015-04-21 | Michael Lamport Commons | Intelligent control with hierarchical stacked neural networks |
US8775341B1 (en) | 2010-10-26 | 2014-07-08 | Michael Lamport Commons | Intelligent control with hierarchical stacked neural networks |
JP5888013B2 (ja) * | 2012-01-25 | 2016-03-16 | 富士通株式会社 | ニューラルネットワーク設計方法、プログラム及びデジタルアナログフィッティング方法 |
CN103303237B (zh) * | 2013-06-21 | 2015-06-17 | 湖南大学 | 一种基于遗传神经网络的安全气囊起爆控制方法 |
US20150228277A1 (en) * | 2014-02-11 | 2015-08-13 | Malaspina Labs (Barbados), Inc. | Voiced Sound Pattern Detection |
JP6299289B2 (ja) * | 2014-03-06 | 2018-03-28 | 株式会社豊田中央研究所 | パラメータ学習装置、運転支援装置、及びプログラム |
US9702115B1 (en) * | 2016-01-08 | 2017-07-11 | Caterpillar Inc. | Autonomous method for detecting a pile |
CN105912806B (zh) * | 2016-04-28 | 2018-12-18 | 湖南大学 | 一种基于自适应神经模糊推理的小重叠碰撞安全气囊控制方法 |
JP2018060268A (ja) * | 2016-10-03 | 2018-04-12 | 株式会社日立製作所 | 認識装置および学習システム |
KR101876063B1 (ko) | 2016-10-04 | 2018-07-06 | 현대자동차주식회사 | 차량 데이터 기반의 노면 판단 방법 |
KR101827152B1 (ko) * | 2016-10-04 | 2018-03-22 | 현대자동차주식회사 | 차량 데이터 기반의 노면 판단 방법 |
IT201700019122A1 (it) * | 2017-02-21 | 2018-08-21 | Automobili Lamborghini Spa | Metodo di stima di un parametro di assetto di un veicolo. |
WO2019024083A1 (en) * | 2017-08-04 | 2019-02-07 | Nokia Technologies Oy | ARTIFICIAL NEURONAL NETWORK |
US10571923B2 (en) * | 2017-09-20 | 2020-02-25 | Tata Consultancy Services Limited | System and method for steering control during autonomous vehicle driving |
EP3502976A1 (en) * | 2017-12-19 | 2019-06-26 | Veoneer Sweden AB | A state estimator |
EP3502977A1 (en) * | 2017-12-19 | 2019-06-26 | Veoneer Sweden AB | A state estimator |
KR102035121B1 (ko) * | 2017-12-22 | 2019-10-23 | 서울올림픽기념국민체육진흥공단 | 이종 에르고메타의 측정값 비교 방법 |
CN108715166B (zh) * | 2018-04-28 | 2023-05-12 | 南京航空航天大学 | 基于深度学习的车辆稳定性指标估计方法 |
US11493927B2 (en) | 2018-06-01 | 2022-11-08 | Thales Canada, Inc. | Self learning vehicle control system |
CN109398363B (zh) * | 2018-10-24 | 2020-11-06 | 珠海格力电器股份有限公司 | 一种路面等级确定方法、装置、存储介质及汽车 |
US10853670B2 (en) * | 2018-11-21 | 2020-12-01 | Ford Global Technologies, Llc | Road surface characterization using pose observations of adjacent vehicles |
US11458972B2 (en) * | 2019-05-29 | 2022-10-04 | Lg Electronics Inc. | Vehicle control apparatus |
US20220244354A1 (en) * | 2019-05-31 | 2022-08-04 | Nolimits Enterprises, Inc. | Artificial intelligence for the classification of signals for radar detectors |
DE102019119739A1 (de) | 2019-07-22 | 2021-01-28 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Verfahren und System zur Erzeugung von sicherheitskritischen Ausgabewerten einer Entität |
KR20210060779A (ko) | 2019-11-19 | 2021-05-27 | 현대자동차주식회사 | 차량센서의 이상 진단 장치 및 그 방법 |
CN110843746B (zh) * | 2019-11-28 | 2022-06-14 | 的卢技术有限公司 | 一种基于强化学习的防抱死刹车控制方法及系统 |
DE102020106591A1 (de) * | 2020-03-11 | 2021-09-16 | Ford Global Technologies, Llc | Verfahren zum Erstellen eines trainierten künstlichen neuronalen Netzes, Verfahren zum Vorhersagen von Emissionsdaten eines Fahrzeugs sowie Verfahren zum Ermitteln von Kalibrierwerten |
JP2022191913A (ja) * | 2021-06-16 | 2022-12-28 | 日立Astemo株式会社 | サスペンション制御装置、サスペンション制御方法、およびサスペンション制御システム |
EP4335670A1 (en) * | 2022-09-07 | 2024-03-13 | Volvo Truck Corporation | A method for controlling a flow from a source of pressurized air |
CN116039636B (zh) * | 2022-12-15 | 2024-01-30 | 南通大学 | 考虑车轮打滑的轮式移动机器人自适应神经网络控制方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2895198B2 (ja) * | 1990-09-29 | 1999-05-24 | カヤバ工業株式会社 | 後輪舵角制御方法 |
JP3067453B2 (ja) * | 1993-03-31 | 2000-07-17 | 日産自動車株式会社 | 路面摩擦係数推定装置 |
JPH06314103A (ja) * | 1993-04-30 | 1994-11-08 | Fujitsu Ltd | 制御装置と能動的センシング装置 |
JP3268124B2 (ja) | 1994-06-27 | 2002-03-25 | 富士重工業株式会社 | 車両のトルク配分制御装置 |
JPH08318765A (ja) * | 1995-05-25 | 1996-12-03 | Hitachi Ltd | 情報化自動車制御装置及び方法 |
US6092018A (en) * | 1996-02-05 | 2000-07-18 | Ford Global Technologies, Inc. | Trained neural network engine idle speed control system |
KR20000052725A (ko) * | 1996-10-23 | 2000-08-25 | 제이. 알. 드로우일래드 | 비트-시리얼에 근거한 회귀성 뉴로프로세서를 포함하는 차량용 엔진 불발 감지 장치 |
JP3022798B2 (ja) | 1997-02-27 | 2000-03-21 | 山形日本電気株式会社 | 半導体製造用回転塗布装置 |
US6042548A (en) * | 1997-11-14 | 2000-03-28 | Hypervigilant Technologies | Virtual neurological monitor and method |
CA2273441C (en) * | 1998-06-02 | 2006-04-18 | Honda Giken Kogyo Kabushiki Kaisha | Method for controlling automotive sliding doors |
KR20020008848A (ko) * | 2000-03-31 | 2002-01-31 | 이데이 노부유끼 | 로봇 장치, 로봇 장치의 행동 제어 방법, 외력 검출 장치및 외력 검출 방법 |
JP2001306137A (ja) * | 2000-04-24 | 2001-11-02 | Yamaha Motor Co Ltd | 制御対象の特性制御装置 |
-
2003
- 2003-02-19 JP JP2003041507A patent/JP4093076B2/ja not_active Expired - Fee Related
-
2004
- 2004-02-17 EP EP04003553.7A patent/EP1449743B1/en not_active Expired - Lifetime
- 2004-02-18 US US10/779,717 patent/US7308432B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20040162644A1 (en) | 2004-08-19 |
EP1449743A2 (en) | 2004-08-25 |
EP1449743A3 (en) | 2009-04-08 |
JP2004249812A (ja) | 2004-09-09 |
US7308432B2 (en) | 2007-12-11 |
EP1449743B1 (en) | 2013-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4093076B2 (ja) | 車両運動モデルの生成装置および車両運動モデルの生成方法 | |
JP4875906B2 (ja) | 車両挙動推定予測装置および車両安定化制御システム | |
JP4510739B2 (ja) | 車両挙動推定予測装置および車両安定化制御システム | |
CN109839824A (zh) | 一种基于预测控制的网络控制系统时延补偿方法 | |
CN113911172A (zh) | 一种基于自适应动态规划的高速列车优化运行控制方法 | |
Kubota et al. | Learning of mobile robots using perception-based genetic algorithm | |
Qazani et al. | A new prepositioning technique of a motion simulator platform using nonlinear model predictive control and recurrent neural network | |
Qazani et al. | An optimal nonlinear model predictive control-based motion cueing algorithm using cascade optimization and human interaction | |
JP2009289199A (ja) | 制御器、制御方法および制御プログラム | |
CN110456790B (zh) | 基于自适应权重的智能网联电动汽车队列优化控制方法 | |
Hamid et al. | Solving local minima problem in back propagation algorithm using adaptive gain, adaptive momentum and adaptive learning rate on classification problems | |
Singh et al. | A study of various training algorithms on neural network for angle based triangular problem | |
WO2022239619A1 (ja) | サスペンション制御装置、およびサスペンション制御方法 | |
Fang et al. | Modeling of driver’s steering behavior in large-curvature path following with back propagation neural network | |
JP3130326B2 (ja) | 階層ネットワーク構成演算素子 | |
JP4185383B2 (ja) | 免疫ネットワークを用いた制御システムおよび制御方法 | |
JP2007137113A (ja) | 車両運動状態判定システム | |
Rajini et al. | Performance evaluation of neural networks for shape identification in image processing | |
Dadios et al. | Application of neural networks to the flexible pole-cart balancing problem | |
JP2021012600A (ja) | 診断方法、学習方法、学習装置およびプログラム | |
Pérez et al. | A traction control system based on co-evolutionary learning in spiking neural network (SNN) | |
Kelly III | Neuro-fuzzy control of a robotic arm | |
CN110231820B (zh) | 一种基于物联网的车辆行驶控制方法 | |
JPH0736505A (ja) | 制御対象の同定・制御方法 | |
Tan et al. | Research on the solution of BP neural network training problem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080225 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120314 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120314 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130314 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130314 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140314 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |