JP4090779B2 - Conductive composition, method for forming conductive film, conductive film - Google Patents

Conductive composition, method for forming conductive film, conductive film Download PDF

Info

Publication number
JP4090779B2
JP4090779B2 JP2002115441A JP2002115441A JP4090779B2 JP 4090779 B2 JP4090779 B2 JP 4090779B2 JP 2002115441 A JP2002115441 A JP 2002115441A JP 2002115441 A JP2002115441 A JP 2002115441A JP 4090779 B2 JP4090779 B2 JP 4090779B2
Authority
JP
Japan
Prior art keywords
silver
conductive
conductive film
film
particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002115441A
Other languages
Japanese (ja)
Other versions
JP2003308732A (en
Inventor
幸彦 黒沢
朗伸 小野
俊之 本多
航司 岡本
雅史 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Kasei Co Ltd
Fujikura Ltd
Original Assignee
Fujikura Kasei Co Ltd
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Kasei Co Ltd, Fujikura Ltd filed Critical Fujikura Kasei Co Ltd
Priority to JP2002115441A priority Critical patent/JP4090779B2/en
Publication of JP2003308732A publication Critical patent/JP2003308732A/en
Application granted granted Critical
Publication of JP4090779B2 publication Critical patent/JP4090779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、導電性ペースト、導電性塗料、導電性接着剤などとして用いられる導電性組成物、並びに、この導電性組成物で形成された導電性被膜およびその形成方法に関し、得られる導電性被膜の導電性を十分に高めるようにしたものである。
【0002】
【従来の技術】
従来の導電ペーストとしては、フレーク状の銀粒子にアクリル樹脂、酢酸ビニル樹脂などの熱可塑性樹脂、エポキシ樹脂、ポリエステル樹脂などの熱硬化性樹脂などからなるバインダ、有機溶剤、硬化剤、触媒などを添加し混合して得られる銀ペーストが代表的なものである。
【0003】
この銀ペーストは、各種電子機器、電子部品、電子回路などに対して導電性接着剤、導電性塗料などとして広く使用されている。また、この銀ペーストをポリエチレンテレフタレートフィルムなどのプラスチックフィルム上にスクリーン印刷などにより印刷して電気回路を形成したフレキシブル回路板もキーボード、各種スイッチなどのプリント回路板として用いられている。
【0004】
この銀ペーストの使用方法は、対象物に各種塗布手段により塗布し、常温で乾燥するかあるいは150℃程度に加熱して、導電性被膜とすることで行われている。
そして、このようにして得られた導電性被膜の体積抵抗率は、製膜条件にもよるが、10-4〜10-5Ω・cmの範囲であり、金属銀の体積抵抗率1.6×10-6Ω・cmに比べて、10〜100倍の値となっており、金属銀の導電性にはとうてい及ばない値となっている。
【0005】
このような従来の銀ペーストからなる導電性被膜の導電性が低い理由は、銀ペーストから得られた導電性被膜内では、銀粒子の一部のみが物理的に接触しており、接触点が少ないこと、また接触点での接触抵抗があること、一部銀粒子の間にバインダが残存しており、このバインダが銀粒子の直接的な接触を阻害していることなどによるものである。
【0006】
このような銀ペーストの導電性の低さを改善するものとして、銀ペーストを対象物に塗布し、800℃程度に加熱し、バインダを焼却して除去するとともに銀粒子を溶融して、銀粒子が融着して一様に連続した金属銀の被膜とする方法がある。このようにして得られた導電性被膜の体積抵抗率は、10-6Ω・cm程度になり、金属銀のそれに近い導電性を持つものとなる。
【0007】
しかし、このものでは、対象物が高温加熱に耐えるガラス、セラミックス、ホウロウなどの耐熱性材料に限られる欠点がある。
【0008】
また、上述のフレキシブル回路板にあっては、そこに形成される電気回路の線幅を可能な限り細くすることが要求されているが、従来の銀ペーストでは、銀粒子が粒径1〜100μmのフレーク状であるため、原理的にフレーク状銀粒子の粒径以下の線幅の回路を印刷することは不可能である。
【0009】
しかも、電気回路の線幅を細くするにもかかわらず、十分な導電性を持たせることが同時に要求されており、この要求に応えるには電気回路の厚みをかなり厚くする必要がある。しかし、電気回路の厚みを厚くすると製膜が困難になり、回路自体の可撓性も大きく低下する不都合が生じる。
【0010】
【発明が解決しようとする課題】
よって、本発明における課題は、高温の製膜条件に依らずとも、金属銀に匹敵する低体積抵抗率、高導電性の導電性被膜が得られ、かつフレキシブル回路板などの電気回路を形成した場合にその電気回路の線幅を十分細くでき、その厚みを厚くする必要のない導電性組成物、並びに、この導電性組成物で形成された導電性被膜およびその形成方法を得ることにある。
【0011】
【課題を解決するための手段】
かかる課題を解決するため、
請求項1にかかる発明は、酸化銀、炭酸銀、酢酸銀、アセチルアセトン銀錯体の1種または2種以上である粒子状銀化合物と、分散媒と、分散剤を含み、前記分散剤がヒドロキシプロピルセルロースの導電性組成物である。
【0012】
請求項にかかる発明は、前記粒子状銀化合物の平均粒径が、0.01〜1μmである請求項1記載の導電性組成物である。
請求項にかかる発明は、請求項1または2に記載の導電性組成物を塗布し、加熱する導電性被膜の形成方法である。
請求項にかかる発明は、請求項記載の導電性被膜の形成方法で得られ、銀粒子が互いに融着している導電性被膜である。
【0013】
【作用】
粒子状銀化合物は、単なる加熱により、容易に金属銀粒子に還元され、この還元反応時の反応熱で析出した金属銀粒子が溶融し、互いに融着して高導電性の金属銀の被膜を形成する。このため、得られる導電性被膜は金属銀に匹敵する導電性を発揮する。
【0014】
【発明の実施の形態】
以下、実施の形態に基づいて、本発明を詳しく説明する。
本発明の導電性組成物に用いられる粒子状銀化合物とは、単なる加熱によって還元されて金属銀となる性質を有する固体粒子状の化合物である。
【0015】
この粒子状銀化合物の具体的なものとしては、酸化第1銀、酸化第2銀、炭酸銀、酢酸銀、アセチルアセトン銀錯体などが挙げられる。これらは2種以上を混合して使用することもできる。この粒子状銀化合物は、工業生産されたものを用いることができるほか、後述する水溶液からの反応によって得られたものを用いてもよい。
【0016】
この粒子状銀化合物の平均粒径は、0.01〜1μm、好ましくは0.01〜0.5μmの範囲とされ、還元反応条件;加熱温度などに応じて適宜選択することができる。特に、平均粒径が0.5μm以下の粒子状銀化合物を用いると還元反応の速度が速くなり好ましい。また、平均粒径が0.5μm以下のものは銀化合物と他の化合物との反応によって生成したもの、例えば硝酸銀水溶液に水酸化ナトリウムなどのアルカリ水溶液を撹拌下に滴下して反応させて酸化銀を得る方法によって製造することができる。この場合、溶液中に分散安定剤を添加して、析出した粒子状銀化合物の凝集を防止することが望ましい。
【0017】
また、粒子状銀化合物を分散し、液状の導電性組成物を得るために分散媒が使用される。この分散媒には、水、エタノール、エタノール、プロパノールなどのアルコール類、イソホロン、テルピネオール、トリエチレングリコールモノブチルエーテル、ブチルセロソルブアセテートなどの有機溶剤が使用される。
【0018】
この分散媒の種類の選択とその使用量は、粒子状銀化合物や製膜条件、例えばスクリーン印刷では刷版のメッシュ粗さや印刷パターンの精細度等によって異なり、最適な製膜ができるように適宜調整される。
【0019】
また、分散剤を添加して平均粒子径が1μm以下の粒子状銀化合物を良好に分散させて、粒子状銀化合物の二次凝集を防止することが好ましい。この分散剤には、ヒドロキシプロピルセルロース、ポリビニルピロリドン、ポリビニルアルコールなどが用いられ、その使用量は粒子状銀化合物100重量部に対して0〜300重量部とされる。
【0020】
本発明の導電性組成物は、上述の粒子状銀化合物を分散媒に分散したものである。また、必要に応じて分散剤が添加されていてもよい。ここで用いられる粒子状銀化合物は、その平均粒径が1μm以下の粒径の小さいものが還元反応速度が速くなって好ましい。
【0021】
また、この導電性組成物の粘度は、製膜条件によって異なるが、例えばスクリーン印刷の場合には30〜300ポイズ程度が好ましい。
また、この導電性組成物の使用方法は、対象物にこれを適宜の手段で塗布したのち、これを単に加熱するだけでよい。加熱温度は180〜200℃、加熱時間は10秒〜120分程度とされる。なお、対象物の表面を清浄にしておくことは当然である。
【0022】
このようにして得られた本発明の導電性被膜では、粒子状銀化合物が還元され、還元された金属銀粒子が互いに融着して、連続した金属銀の薄い被膜となる。このため、本発明の導電性被膜の体積抵抗率は、3〜8×10-6Ω・cmに至る値を示し、金属銀の体積抵抗率と同オーダーになる。
【0023】
また、粒子状銀化合物の平均粒径が0.01〜1μmであるので、この導電性組成物を基材の印刷して形成した電気回路の線幅を1μm以下とすることができ、しかも回路自体の導電性が極めて高いので、回路の厚みを厚くする必要もない。このため、回路の形成が容易であり、回路自体の可撓性も高いものとなる。
【0024】
さらに、導電性被膜形成のための加熱温度は、180〜200℃で十分であるので、耐熱性の低いプラスチックフィルムなどの対象物にも適用でき、高導電性被膜を形成することができるとともに対象物の熱劣化を招くこともない。
【0025】
さらに、得られる導電性被膜の体積抵抗率が極めて低いので、被膜の厚みを極めて薄くしても問題のない導電性を得ることができる。被膜厚みは、従来の導電性ペーストに対して体積抵抗率の低下に見合った分だけ薄くすることができる。例えば、5×10-5Ω・cmの銀ペーストを使用した場合、50μmの厚さの回路を要求される仕様の場合、本発明により3×10-6Ω・cmの体積抵抗率を実現することで、3μmの厚さにすることができる。
【0026】
また、得られる導電性被膜の基材側の面は、金属銀の光沢にとむ鏡面を呈するので、ガラス、プラスチックフィルムなどの透明基材の裏面あるいは基材から剥離した導電性被膜の基材側表面は、反射率の高い鏡として、家庭用、工業用等の用途に使用でき、例えばレーザー装置の共振器の反射鏡などに使用することができる。
【0027】
以下、具体例を示す。
イオン交換水50mlに硝酸銀0.17gを溶解し、これにヒドロキシプロピルセルロース(分散剤)0.05〜0.5gを溶解した水溶液を用意し、この水溶液に、撹拌下1M水酸化ナトリウム水溶液を0.9〜5ml滴下し、撹拌を10〜30分続け、酸化銀懸濁液とした。
【0028】
ついで、メタノールにより酸化銀を2〜5回洗浄し、余分なイオン類を除去した。ついで、これにエタノール(分散媒)を加えてペースト状の本発明の導電性組成物を製造した。この導電性組成物をなす酸化銀の平均粒径は200〜500nmであった。
【0029】
この導電性組成物を厚さ0.1mmのポリイミドフィルムにスクリーン印刷で厚さ5〜10μmのパターンを形成したのち、これをオーブン中で、180℃で30分〜3時間加熱した。
【0030】
得られたパターンの体積抵抗率は、3〜6×10-6Ω・cmであり、表面を走査型電子顕微鏡で観察したところ、酸化銀から還元析出した銀粒子同士が融着接合していた。
【0031】
比較のため、銀ペースト(アサヒ化学研究所製)を用いて同様にしてパターンを形成したところ、その体積抵抗率は、3×10-5Ω・cmであり、表面を走査型電子顕微鏡で観察したところ、銀フレーク同士が単に接触している状態であった。
【0032】
【発明の効果】
以上説明したように、本発明の導電性組成物によれば、極めて導電性の高い導電性被膜を得ることができる。また、その導電性被膜の形成は、比較的低い温度での加熱でなされるので、基材として耐熱性の低いプラスチック等を用いることができる。さらに、この導電性組成物で、電気回路を形成した際に、電気回路の線幅を十分狭くすることができ、その厚みを厚くする必要がない。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive composition used as a conductive paste, a conductive paint, a conductive adhesive, and the like, and a conductive film formed from the conductive composition and a method for forming the same. The conductivity is sufficiently increased.
[0002]
[Prior art]
Conventional conductive pastes include flaky silver particles, binders made of thermoplastic resins such as acrylic resins and vinyl acetate resins, thermosetting resins such as epoxy resins and polyester resins, organic solvents, curing agents, and catalysts. A silver paste obtained by adding and mixing is representative.
[0003]
This silver paste is widely used as a conductive adhesive, a conductive paint, and the like for various electronic devices, electronic components, electronic circuits, and the like. A flexible circuit board in which an electric circuit is formed by printing this silver paste on a plastic film such as a polyethylene terephthalate film by screen printing or the like is also used as a printed circuit board for keyboards and various switches.
[0004]
This silver paste is used by applying it to an object by various application means and drying at room temperature or heating to about 150 ° C. to form a conductive film.
The volume resistivity of the conductive film thus obtained is in the range of 10 −4 to 10 −5 Ω · cm depending on the film forming conditions, and the volume resistivity of metallic silver is 1.6. Compared to × 10 −6 Ω · cm, the value is 10 to 100 times larger than the conductivity of metallic silver.
[0005]
The reason why the conductive film made of such a conventional silver paste has low conductivity is that only a part of the silver particles are in physical contact within the conductive film obtained from the silver paste, and the contact point is This is because there are few, there is contact resistance at the contact point, a binder remains between some silver particles, and this binder inhibits direct contact of the silver particles.
[0006]
In order to improve the low conductivity of such silver paste, the silver paste is applied to an object, heated to about 800 ° C., the binder is incinerated and removed, and the silver particles are melted. There is a method of forming a metal silver film that is uniformly and continuously fused. The volume resistivity of the conductive film thus obtained is about 10 −6 Ω · cm, and has a conductivity close to that of metallic silver.
[0007]
However, this has a drawback that the object is limited to heat-resistant materials such as glass, ceramics, and enamel that can withstand high-temperature heating.
[0008]
Moreover, in the above-mentioned flexible circuit board, it is required to make the line width of the electric circuit formed thereon as thin as possible, but in the conventional silver paste, the silver particles have a particle size of 1 to 100 μm. In principle, it is impossible to print a circuit having a line width less than the particle size of the flaky silver particles.
[0009]
Moreover, despite the fact that the line width of the electric circuit is reduced, it is simultaneously required to have sufficient conductivity. To meet this requirement, the thickness of the electric circuit needs to be considerably increased. However, when the thickness of the electric circuit is increased, film formation becomes difficult and the flexibility of the circuit itself is greatly reduced.
[0010]
[Problems to be solved by the invention]
Therefore, the problem in the present invention is that a conductive film having a low volume resistivity and high conductivity comparable to metallic silver can be obtained and an electric circuit such as a flexible circuit board is formed without depending on the high temperature film forming conditions. In some cases, the line width of the electric circuit can be sufficiently narrowed, and a conductive composition that does not need to be thickened, a conductive film formed from the conductive composition, and a method for forming the same are obtained.
[0011]
[Means for Solving the Problems]
To solve this problem,
Such invention in claim 1, silver oxide, silver carbonate, silver acetate, and the particulate silver compound is one or more of acetylacetone silver complex, seen containing a dispersion medium, a dispersing agent, said dispersing agent is hydroxy It is a conductive composition of propylcellulose .
[0012]
The invention according to claim 2, the average particle diameter of the particulate silver compound is a conductive composition of claim 1 Symbol placement is 0.01 to 1 [mu] m.
The invention according to claim 3 is a method for forming a conductive film, in which the conductive composition according to claim 1 or 2 is applied and heated.
The invention according to claim 4 is a conductive film obtained by the method for forming a conductive film according to claim 3 , wherein silver particles are fused to each other.
[0013]
[Action]
The particulate silver compound is easily reduced to metallic silver particles simply by heating, and the metallic silver particles deposited by the reaction heat at the time of this reduction reaction melt and fuse together to form a highly conductive metallic silver coating. Form. For this reason, the conductive film obtained exhibits conductivity comparable to metallic silver.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments.
The particulate silver compound used in the conductive composition of the present invention is a solid particulate compound having the property of being reduced by simple heating to become metallic silver.
[0015]
Specific examples of the particulate silver compound include first silver oxide, second silver oxide, silver carbonate, silver acetate, and acetylacetone silver complex. These may be used in combination of two or more. As this particulate silver compound, those produced industrially can be used, and those obtained by reaction from an aqueous solution described later may be used.
[0016]
The average particle size of the particulate silver compound is in the range of 0.01 to 1 μm, preferably 0.01 to 0.5 μm, and can be appropriately selected according to the reduction reaction conditions; heating temperature and the like. In particular, it is preferable to use a particulate silver compound having an average particle size of 0.5 μm or less because the speed of the reduction reaction is increased. In addition, those having an average particle size of 0.5 μm or less are those produced by the reaction of a silver compound and other compounds, for example, an aqueous silver nitrate solution is reacted dropwise with an aqueous alkali solution such as sodium hydroxide while stirring to produce silver oxide. Can be produced by a method of obtaining In this case, it is desirable to add a dispersion stabilizer to the solution to prevent aggregation of the precipitated particulate silver compound.
[0017]
Further, a dispersion medium is used to disperse the particulate silver compound and obtain a liquid conductive composition. As the dispersion medium, water, alcohols such as ethanol, ethanol and propanol, and organic solvents such as isophorone, terpineol, triethylene glycol monobutyl ether and butyl cellosolve acetate are used.
[0018]
The selection of the type of dispersion medium and the amount used vary depending on the particulate silver compound and the film forming conditions, for example, screen printing, the mesh roughness of the printing plate, the fineness of the printing pattern, etc. Adjusted.
[0019]
Moreover, it is preferable to add a dispersing agent to disperse the particulate silver compound having an average particle diameter of 1 μm or less well to prevent secondary aggregation of the particulate silver compound. Hydroxypropyl cellulose, polyvinyl pyrrolidone, polyvinyl alcohol, etc. are used for this dispersing agent, and the usage-amount is 0-300 weight part with respect to 100 weight part of particulate silver compounds.
[0020]
The conductive composition of the present invention is obtained by dispersing the above-mentioned particulate silver compound in a dispersion medium. Moreover, the dispersing agent may be added as needed. The particulate silver compound used here is preferably one having an average particle size of 1 μm or less and a small particle size because the reduction reaction rate is increased.
[0021]
Moreover, although the viscosity of this electroconductive composition changes with film forming conditions, about 30-300 poise is preferable, for example in the case of screen printing.
In addition, the conductive composition may be used by simply heating it after applying it to an object by an appropriate means. The heating temperature is 180 to 200 ° C., and the heating time is about 10 seconds to 120 minutes. Naturally, the surface of the object is kept clean.
[0022]
In the conductive film of the present invention thus obtained, the particulate silver compound is reduced, and the reduced metal silver particles are fused together to form a continuous thin film of metal silver. For this reason, the volume resistivity of the conductive film of the present invention shows a value ranging from 3 to 8 × 10 −6 Ω · cm, which is in the same order as the volume resistivity of metallic silver.
[0023]
Moreover, since the average particle diameter of the particulate silver compound is 0.01 to 1 μm, the line width of the electric circuit formed by printing the conductive composition on the base material can be 1 μm or less, and the circuit Since its own conductivity is extremely high, there is no need to increase the thickness of the circuit. For this reason, it is easy to form a circuit, and the flexibility of the circuit itself is high.
[0024]
Furthermore, since the heating temperature for forming the conductive film is sufficient at 180 to 200 ° C., it can be applied to objects such as plastic films with low heat resistance, and can form a highly conductive film and target. There will be no thermal degradation of the product.
[0025]
Furthermore, since the volume resistivity of the obtained conductive film is very low, there is no problem even if the film thickness is very thin. The film thickness can be reduced by an amount corresponding to the decrease in volume resistivity with respect to the conventional conductive paste. For example, when a silver paste of 5 × 10 −5 Ω · cm is used and the specification requires a circuit with a thickness of 50 μm, the present invention realizes a volume resistivity of 3 × 10 −6 Ω · cm. Thus, the thickness can be 3 μm.
[0026]
In addition, since the surface of the conductive film obtained on the substrate side exhibits a mirror surface that is glossy of metallic silver, the back surface of a transparent substrate such as glass or plastic film or the substrate side of the conductive film peeled off from the substrate The surface can be used as a mirror having high reflectivity for home use, industrial use, and the like.
[0027]
Specific examples are shown below.
An aqueous solution in which 0.17 g of silver nitrate is dissolved in 50 ml of ion-exchanged water and 0.05 to 0.5 g of hydroxypropylcellulose (dispersing agent) is dissolved in this solution is prepared. .9-5 ml was dropped and stirring was continued for 10-30 minutes to obtain a silver oxide suspension.
[0028]
Subsequently, the silver oxide was washed 2-5 times with methanol to remove excess ions. Subsequently, ethanol (dispersion medium) was added thereto to produce a paste-like conductive composition of the present invention. The average particle diameter of silver oxide constituting this conductive composition was 200 to 500 nm.
[0029]
A pattern having a thickness of 5 to 10 μm was formed by screen printing on a polyimide film having a thickness of 0.1 mm from this conductive composition, and then this was heated in an oven at 180 ° C. for 30 minutes to 3 hours.
[0030]
The volume resistivity of the obtained pattern was 3-6 × 10 −6 Ω · cm, and when the surface was observed with a scanning electron microscope, the silver particles reduced and precipitated from the silver oxide were fusion bonded. .
[0031]
For comparison, a pattern was formed in the same manner using silver paste (manufactured by Asahi Chemical Research Laboratories). The volume resistivity was 3 × 10 −5 Ω · cm, and the surface was observed with a scanning electron microscope. As a result, the silver flakes were simply in contact with each other.
[0032]
【The invention's effect】
As described above, according to the conductive composition of the present invention, a highly conductive film can be obtained. Further, since the conductive film is formed by heating at a relatively low temperature, a plastic having low heat resistance or the like can be used as the base material. Furthermore, when an electric circuit is formed with this conductive composition, the line width of the electric circuit can be sufficiently narrowed, and it is not necessary to increase the thickness.

Claims (4)

酸化銀、炭酸銀、酢酸銀、アセチルアセトン銀錯体の1種または2種以上である粒子状銀化合物と、分散媒と、分散剤を含み、前記分散剤がヒドロキシプロピルセルロースであることを特徴とする導電性組成物。 Silver oxide, silver carbonate, silver acetate, and the particulate silver compound is one or more of acetylacetone silver complex, and a dispersion medium, seen containing a dispersing agent, and characterized in that the dispersing agent is hydroxypropyl cellulose conductive composition. 前記粒子状銀化合物の平均粒径が、0.01〜1μmであることを特徴とする請求項1記載の導電性組成物。The average particle diameter of the particulate silver compound, according to claim 1 Symbol placement of the electrically conductive composition characterized in that it is a 0.01 to 1 [mu] m. 請求項1または2に記載の導電性組成物を塗布し、加熱することを特徴とする導電性被膜の形成方法。A method for forming a conductive film, comprising applying the conductive composition according to claim 1 or 2 and heating. 請求項記載の導電性被膜の形成方法で得られ、銀粒子が互いに融着していることを特徴とする導電性被膜。Obtained by forming method according to claim 3, wherein the conductive coating, conductive coating, characterized in that the silver particles are fused together.
JP2002115441A 2002-04-17 2002-04-17 Conductive composition, method for forming conductive film, conductive film Expired - Lifetime JP4090779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002115441A JP4090779B2 (en) 2002-04-17 2002-04-17 Conductive composition, method for forming conductive film, conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002115441A JP4090779B2 (en) 2002-04-17 2002-04-17 Conductive composition, method for forming conductive film, conductive film

Publications (2)

Publication Number Publication Date
JP2003308732A JP2003308732A (en) 2003-10-31
JP4090779B2 true JP4090779B2 (en) 2008-05-28

Family

ID=29396767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002115441A Expired - Lifetime JP4090779B2 (en) 2002-04-17 2002-04-17 Conductive composition, method for forming conductive film, conductive film

Country Status (1)

Country Link
JP (1) JP4090779B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4657664B2 (en) * 2004-09-22 2011-03-23 株式会社フジクラ Method for manufacturing photoelectric conversion element
JP4530789B2 (en) * 2004-09-30 2010-08-25 帝国通信工業株式会社 Circuit board manufacturing method and circuit board
JP4293181B2 (en) 2005-03-18 2009-07-08 セイコーエプソン株式会社 Metal particle dispersion, method for producing metal particle dispersion, method for producing conductive film-formed substrate, electronic device and electronic apparatus
JP4983150B2 (en) 2006-04-28 2012-07-25 東洋インキScホールディングス株式会社 Method for producing conductive coating
CN107112073B (en) * 2014-12-26 2020-09-01 国立研究开发法人产业技术综合研究所 Flexible conductive film and method for manufacturing same

Also Published As

Publication number Publication date
JP2003308732A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
JP3949658B2 (en) Conductive composition, conductive film and method for forming conductive film
JP2008177172A (en) Electroconductive coating, its manufacturing method, and substrate provided with electroconductive coating
CN105247953B (en) heating element and its manufacturing method
JP4301763B2 (en) Silver compound paste
KR100768650B1 (en) Electroconductive Paste Composition
JP2006335995A (en) Electrically-conductive ink for inkjet, electrically-conductive pattern, and electrically-conductive material
JP4090778B2 (en) Silver oxide fine particle composition and method for producing the same, conductive composition, conductive film and method for forming the same
JP4090779B2 (en) Conductive composition, method for forming conductive film, conductive film
JP2005200604A (en) Particulate silver compound and use of the same
JP2003308731A (en) Conductive composition, conductive coating and method for forming the same
JP4066700B2 (en) Conductive composition, conductive film and method for forming the same
JP2004335138A (en) Silver oxide particle and its manufacturing method, and conductive composition and its manufacturing method
JP4662751B2 (en) Transparent sheet heating element and manufacturing method thereof
JP4530789B2 (en) Circuit board manufacturing method and circuit board
JP2005103754A (en) Blanket for offset printing
WO2024110743A1 (en) Conductive ink
JP2014099294A (en) Method for manufacturing a substrate, substrate, and molding using the substrate
CN102016725A (en) Thick film recycling method
JP2010123457A (en) Conductive paste, and conductor pattern
JPS60130495A (en) Conductive paste
JP3571771B2 (en) Thick film paste composition
JPH0465802A (en) Formation of thin film
JPS6131960B2 (en)
JPS58225503A (en) Method of producing conductive composite powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080227

R150 Certificate of patent or registration of utility model

Ref document number: 4090779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term