JP2004335138A - Silver oxide particle and its manufacturing method, and conductive composition and its manufacturing method - Google Patents

Silver oxide particle and its manufacturing method, and conductive composition and its manufacturing method Download PDF

Info

Publication number
JP2004335138A
JP2004335138A JP2003125351A JP2003125351A JP2004335138A JP 2004335138 A JP2004335138 A JP 2004335138A JP 2003125351 A JP2003125351 A JP 2003125351A JP 2003125351 A JP2003125351 A JP 2003125351A JP 2004335138 A JP2004335138 A JP 2004335138A
Authority
JP
Japan
Prior art keywords
conductive composition
silver oxide
oxide particles
conductive
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003125351A
Other languages
Japanese (ja)
Inventor
Akinobu Ono
朗伸 小野
Hiroyuki Miyata
裕之 宮田
Naoko Kondo
奈穂子 近藤
Yukihiko Kurosawa
幸彦 黒沢
Kikuko Mizutani
貴久子 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003125351A priority Critical patent/JP2004335138A/en
Publication of JP2004335138A publication Critical patent/JP2004335138A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide silver oxide particle easy to be handled with excellent preservation stability and a low calcination temperature which can be formed into a conductive film with high conductivity, and to provide a manufacturing method of the same, and a conductive composition and a manufacturing method of the conductive composition. <P>SOLUTION: The average particle size of the silver oxide particle for forming a conductive composition is 0.5μm or less. The manufacturing method of the sliver oxide particle has a means of making the average particle size not larger than 0.5 μm. The conductive composition contains the silver oxide particle with an average particle size of 0.5 μm or less used for forming a conductive composition and protective colloid. In the conductive composition of the structure, the protective colloid is a derivative of cellulose. The manufacturing method of the conductive composition obtains a conductive composition by dispersing the silver oxide particles with an average particle size of 0.5 μm or less used for forming the conductive composition into the protective colloid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、導電性ペースト、導電性塗料、導電性接着剤などとして用いられる導電性組成物に関し、得られる導電性被膜の導電性を十分に高めるようにした酸化銀粒子およびその製造方法、導電性組成物およびその製造方法に関する。
【0002】
【従来の技術】
従来、粒子状の銀を、アクリル樹脂、酢酸ビニル樹脂などの熱可塑性樹脂、エポキシ樹脂、ポリエステル樹脂などの熱硬化性樹脂などバインダに分散させ、有機溶剤、硬化剤、触媒などを添加して混合した銀ペーストなどの導電性ペーストがある。
【0003】
この導電性ペーストは、各種電子機器、電子部品、電子回路などに対して導電性接着剤、導電性塗料などとして広く使用されている。また、この銀ペーストをポリエチレンテレフタレートフィルムなどのプラスチックフィルム上にスクリーン印刷などにより印刷して導電性被膜を形成したフレキシブル回路板もキーボード、各種スイッチなどのプリント回路板として用いられている。
【0004】
導電性ペーストには、高温焼成型(導電性被膜形成時の焼成温度500℃以上、比抵抗10μΩcm以下)と、ポリマー型(導電性被膜形成時の焼成温度200℃以下、比抵抗20μΩcm以上)との2種類がある。
【0005】
高温焼成型の導電性ペーストは、導電性被膜形成時の焼成によって、粒子状の銀が相互に融着するため、信頼性が高く、形成後の導電性被膜の導電性も高いが、これを適用できる基板には、セラミックス系の材料しか使用できないという欠点がある。
一方、ポリマー型の導電性ペーストは、導電性被膜形成時の焼成温度が低く、樹脂フィルムからなる基板に焼付けが可能であるため、メンブレンスイッチなどに広く利用されている。しかし、この導電性ペーストを焼成しても、粒子状の銀が相互に融着しないため、銀粒子間に接触抵抗を生じ、形成後の導電性被膜の導電性が高温焼成型よりも一桁劣ってしまうという欠点がある。
【0006】
そこで、本発明者らは、粒子状の酸化銀を還元剤の存在下で150℃以上に加熱すると、還元粒子が生成するのと同時に、粒子間融着が生じることを見出し、この機構を導電性ペーストに応用してきた。
【0007】
【発明が解決しようとする課題】
しかしながら、酸化銀と還元剤を共存させると、室温でも少しずつ還元された銀粒子が生成してしまうため、保存期間が短く、その安定性の確保に課題が残っている。これを回避するために、導電性ペーストを2液硬化型としているが、取扱い易さの点から1液硬化型が望まれている。
【0008】
また、還元剤を還元作用の弱いものに変更することで、保存期間を長くすることは可能であるが、このような導電性ペーストでは、焼成温度が高温となり、ポリエステルフィルムなどの樹脂フィルムを基板として使用できなくなるという問題がある。
【0009】
本発明は、前記事情に鑑みてなされたもので、保存安定性および取扱い性に優れ、焼成温度が低く、導電性の高い導電性被膜を形成可能な酸化銀粒子およびその製造方法、導電性組成物およびその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、上記課題を解決するために、導電性組成物を形成するために用いられ、平均粒子径が0.5μm以下である酸化銀粒子を提供する。
【0011】
本発明は、酸化銀粒子の平均粒子径を0.5μm以下とする手段を具備している酸化銀粒子の製造方法を提供する。
【0012】
本発明は、導電性組成物を形成するために用いられ、平均粒子径が0.5μm以下である酸化銀粒子と、保護コロイドとを含む導電性組成物を提供する。
上記構成の導電性組成物において、前記保護コロイドがセルロース誘導体であることが好ましい。
【0013】
本発明は、導電性組成物を形成するために用いられ、平均粒子径が0.5μm以下である酸化銀粒子を、前記保護コロイドに分散して導電性組成物を得る導電性組成物の製造方法を提供する。
【0014】
【発明の実施の形態】
以下、本発明を詳しく説明する。
本発明の酸化銀粒子は、還元剤の存在下での加熱によって還元されて金属銀となる性質を有する固体粒子状の化合物であり、平均粒子径が0.5μm以下であり、導電性組成物を形成するために用いられものである。
【0015】
この酸化銀粒子としては、具体的には、酸化銀(I)、酸化銀(II)、酢酸銀、炭酸銀などが挙げられる。これらは2種以上を混合して使用することもできる。この酸化銀粒子は、後述する製造方法によって得られたものを用いることができる。
【0016】
本発明では、酸化銀粒子の平均粒子径が0.5μm以下であるが、加熱温度、還元剤の還元力などの還元反応条件に応じて、0.01μm〜0.5μmの範囲で適宜選択することができる。
酸化銀粒子の平均粒子径が0.5μm以下であれば、この酸化銀粒子を導電性ペーストに用いた場合、バインダなどへの分散性が向上する上に、還元反応の速度が速くなる。バインダへの分散性をより向上させ、還元剤との反応性を向上させるためには、酸化銀粒子の平均粒子径は0.25μm以下が好ましく、0.15以下がより好ましい。
【0017】
次に、本発明の酸化銀粒子の製造方法について説明する。
本発明の酸化銀粒子の製造方法は、例えば、硝酸銀水溶液に水酸化ナトリウムなどのアルカリ水溶液を撹拌下に滴下して反応させて、平均粒子径が0.5μm以下の酸化銀を得る方法によって製造することができる。この場合、溶液中に分散安定剤を添加して、析出した酸化銀粒子の凝集を防止することが望ましい。
【0018】
この酸化銀粒子の製造方法によれば、市販品では達成されていない平均粒子径0.5μm以下の酸化銀粒子を容易かつ安定に製造することができる。
【0019】
次に、本発明の導電性組成物について説明する。
本発明の導電性組成物は、平均粒子径が0.5μm以下であり、導電性組成物を形成するために用いられる酸化銀粒子と、保護コロイドとを含むペースト状のものであり、この保護コロイドが還元性を有するものである。
【0020】
本発明で用いられる保護コロイドは、導電性組成物の保存安定性を確保するために用いられ、酸化銀粒子を均一に分散する分散安定剤(分散媒)としての機能と、室温では酸化銀粒子を還元することなく、所定温度に加熱した際に還元作用を示す還元剤としての機能とを有するものである。
【0021】
上記保護コロイドは、セルロース誘導体が好ましく用いられる。
本発明で用いられるセルロース誘導体としては、セルロース(C10を変性したヒドロキシプロピルセルロース(以下、「HPC」と略す。)、セルロースを変性したエチルヒドロキシエチルセルロース(以下、「EHEC」と略す。)、セルロースの水酸基の水素が部分的にエチル基によって置換された、一種のエーテルであるエチルセルロース(以下、「EC」と略す。)などが用いられる。
例えば、日本曹達社製のHPC、アクゾノーベル社製のEHEC、ハーキュレス社製のECなどを用いることができる。
【0022】
これらのセルロース誘導体は、上記酸化銀粒子を還元し、還元反応後の副生成物が気体や揮発性の高い液体となり、生成した導電性被膜内に残留しないものである。
【0023】
また、セルロース誘導体は、分散安定剤(分散媒)として機能し、導電性組成物内に酸化銀粒子をほぼ均一に分散するため、生成した導電性被膜の導電性にばらつきを生じないものである。
【0024】
このセルロース誘導体の使用量は、酸化銀粒子1モルに対して、等モルより多めに添加することが望ましい。
【0025】
このセルロース誘導体の種類の選択とその使用量は、酸化銀粒子や導電性被膜の製膜条件、例えばスクリーン印刷では刷版のメッシュ粗さや印刷パターンの精細度などによって異なり、最適な製膜ができるように適宜調整される。
【0026】
また、本発明の導電性組成物の粘度は、製膜条件によって異なるが、例えばスクリーン印刷の場合には50〜300ポイズ程度が好ましい。
【0027】
また、本発明の導電性組成物には、必要に応じて、水、テルピネオール、テトラヒドロフラン(以下、「THF」と略す。)、エタノール、メタノール、ビトールアセテート、ブチルセロソルブアセテートなどの分散媒、アクリル樹脂、シリコーン油、セルロース誘導体などの分散剤が添加されていてもよい。
【0028】
本発明の導電性組成物は、上記のように、還元作用の弱いセルロース誘導体からなる保護コロイドに、少なくとも平均粒子径0.5μm以下の酸化銀粒子を分散した構成であるから、室温(0〜40℃)で放置しても、導電性組成物を調製してから、セルロース誘導体によって酸化銀粒子が還元されて、金属銀粒子が生成するまでの期間が90日〜180日程度と長く、保存安定性に優れたものとなる。
【0029】
本発明の導電性組成物は、上記酸化銀粒子を、セルロース誘導体からなる保護コロイドに分散して得られる。また、導電性組成物を調製する際に、必要に応じて、上記分散媒、分散剤を添加してもよい。
【0030】
この導電性組成物の使用方法は、対象物(ポリエステルフィルムなどの樹脂フィルム)に、導電性組成物を適宜の手段で塗布した後、単に加熱するだけでよい。加熱温度はセルロース誘導体からなる保護コロイドの還元作用により、140〜180℃、加熱時間は10分〜180分程度とされる。
なお、対象物の表面(塗布面)を清浄にしておくことは当然である。
【0031】
このような導電性組成物の塗布、加熱により導電性被膜を得ることができる。
このようにして得られた導電性被膜では、酸化銀粒子がセルロース誘導体により還元されて金属銀粒子となり、しかも、還元された金属銀粒子が互いに融着して、連続した金属銀の薄い被膜となる。
【0032】
また、このようにして得られた導電性被膜の体積抵抗率は、3〜8×10−6Ω・cmに至る値を示し、金属銀の体積抵抗率と同オーダーになる。
また、酸化銀粒子の平均粒子径が0.5μm以下であるので、この導電性組成物を基材に印刷して形成した電気回路の線幅を10μm以下とすることができ、しかも回路自体の導電性が極めて高いので、回路の厚みを厚くする必要もない。このため、回路の形成が容易であり、回路自体の可撓性も高いものとなる。
【0033】
さらに、導電性被膜形成のための加熱温度は、140〜180℃で十分であるので、耐熱性の低いプラスチックフィルムなどの対象物にも適用でき、高導電性被膜を形成することができるとともに対象物の熱劣化を招くこともない。
【0034】
また、得られる導電性被膜の基材側の面は、金属銀の光沢にとむ鏡面を呈するので、ガラス、プラスチックフィルムなどの透明基材の裏面あるいは基材から剥離した導電性被膜の基材側表面は、反射率の高い鏡として、家庭用、工業用などの用途に使用でき、例えばレーザー装置の共振器の反射鏡などに使用することができる。
【0035】
【実施例】
以下に実験例および実施例により、本発明をさらに具体的に説明するが、本発明は以下の実験例および実施例に限定されるものではない。
(実験例)
市販の酸化銀粒子(A)、市販の酸化銀粒子と保護コロイドとからなる導電性組成物(B)、本発明の酸化銀粒子の製造方法により合成した酸化銀粒子(C)、本発明の酸化銀粒子の製造方法により合成した酸化銀粒子と保護コロイドとからなる導電性組成物(本発明の導電性組成物)(D)、本発明の酸化銀粒子の製造方法により合成した酸化銀粒子と、保護コロイドと、還元剤とからなる導電性組成物(E)を調製し、これらの試料をTG−DTA(型式;TG/DTA6300、セイコーインスツルメンツ社製)およびDSC(型式;DSC220、セイコーインスツルメンツ社製)による熱分析を実施し、酸化銀粒子の還元温度を調査した。
熱分析の条件は、昇温速度20℃/minとした。
結果を表1、表2に示す。
なお、表2中、エチレングリコールを「EG」と略記した。
【0036】
【表1】

Figure 2004335138
【0037】
【表2】
Figure 2004335138
【0038】
DSCによる熱分析の結果から、表1、表2に示したように、試料No.1、3、5、7より、20℃/minの昇温条件下では、酸化銀粒子は約400℃で還元し、その際の反応は、吸熱反応であることが分かった。
また、試料No.1とNo.2、および、試料No.3とNo.4の比較から、保護コロイドとして利用しているHPCに還元性があることが確認された。HPCが還元剤として機能している理由は、HPCの酸化熱粒子と考えられる発熱が、試料No.2およびNo.4において観察されていることによる。
また、酸化銀粒子が還元した根拠は、例えば、図1に示すようなTG−DTAの重量減少データから判断した。
【0039】
試料No.4、6、8、10、12の比較から、酸化銀粒子の平均粒子径を小さくしていくと、酸化銀粒子の還元に伴う発熱ピークが低温側にシフトすることが分かった。
これらの試料は、試料No.14の還元剤としてEGを利用したものよりも、発熱ピークの温度は高いが、酸化銀粒子の平均粒子径を制御することにより、酸化銀粒子の還元温度のピークをシフトさせることができることが判明した。すなわち、酸化銀粒子の平均粒子径を小さくすれば、酸化銀粒子の還元温度のピークを低温側にシフトさせることができる。
【0040】
さらに、試料No.8〜13より、HPC以外のEHEC、ECなどの保護コロイドを用いても、HPCを用いた場合と同様の効果が得られることが確認された。
【0041】
(実施例1)
硝酸銀1gと、HPC0.1〜1gを、適温に調整した硝酸銀と等モルの水酸化ナトリウムを含む水溶液100mlに添加して、3日間強攪拌し、1週間放置した後、洗浄、乾燥し、再び水を加えて、平均粒子径が0.5μmの酸化銀粒子を含むペースト状の導電性組成物を調製した。
この導電性組成物を室温で放置して、保存安定性を調査した。保存安定性は、導電性組成物を調製してから、酸化銀粒子が還元されて、金属銀粒子が生成するまでの期間で評価した。
結果を表3に示す。
【0042】
また、この導電性組成物を厚さ100μmのポリエチレンテレフタレートフィルムにスクリーン印刷して、厚さ5μm〜7μmの導電性被膜を得た。
得られた導電性被膜の比抵抗を、三菱化学製ロレスターGPを用いた測定法により測定した。結果を表3に示す。
【0043】
(実施例2)
平均粒子径が0.25μmの酸化銀粒子を含むペースト状の導電性組成物を調製した以外は実施例1と同様にして、導電性組成物の保存安定性の調査および導電性被膜の比抵抗の測定をした。結果を表3に示す。
【0044】
(実施例3)
平均粒子径が0.15μmの酸化銀粒子を含むペースト状の導電性組成物を調製した以外は実施例1と同様にして、導電性組成物の保存安定性の調査および導電性被膜の比抵抗の測定をした。結果を表3に示す。
【0045】
(実施例4)
分散媒としてテルピネオールを用い、保護コロイドとしてECを用い、平均粒子径が0.15μmの酸化銀粒子を含むペースト状の導電性組成物を調製した以外は実施例1と同様にして、導電性組成物の保存安定性の調査および導電性被膜の比抵抗の測定をした。結果を表3に示す。
【0046】
(実施例5)
分散媒としてTHFを用い、保護コロイドとしてEHECを用い、平均粒子径が0.15μmの酸化銀粒子を含むペースト状の導電性組成物を調製した以外は実施例1と同様にして、導電性組成物の保存安定性の調査および導電性被膜の比抵抗の測定をした。結果を表3に示す。
【0047】
【表3】
Figure 2004335138
【0048】
(比較例1)
硝酸銀1gと、HPC0.1〜1gと、還元剤のEGを、適温に調整した硝酸銀と等モルの水酸化ナトリウムを含む水溶液100mlに添加して、3日間強攪拌し、1週間放置した後、洗浄、乾燥し、再び水を加えて、平均粒子径が0.25μmの酸化銀粒子を含むペースト状の導電性組成物を調製した。
この導電性組成物を室温で放置して、保存安定性を調査した。保存安定性は、導電性組成物を調製してから、酸化銀粒子が還元されて、金属銀粒子が生成するまでの期間で評価した。
結果を表4に示す。
【0049】
また、この導電性組成物を厚さ100μmのポリエチレンテレフタレートフィルムにスクリーン印刷して、これをオーブン中で、150℃で60加熱して、厚さ5μm〜7μmの導電性被膜を得た。
得られた導電性被膜の比抵抗を、実施例1と同様にして測定した。結果を表4に示す。
【0050】
(比較例2)
還元剤としてトリエチレングリコール(TEG)を用い、これを用いて導電性組成物を調製した以外は比較例1と同様にして、導電性組成物の保存安定性の調査および導電性被膜の比抵抗の測定をした。結果を表4に示す。
【0051】
(比較例3)
平均粒子径が0.8μmの酸化銀粒子を含むペースト状の導電性組成物を調製した以外は比較例1と同様にして、導電性組成物の保存安定性の調査および導電性被膜の比抵抗の測定をした。結果を表4に示す。
【0052】
(比較例4)
平均粒子径が0.8μmの酸化銀粒子を含むペースト状の導電性組成物を調製した以外は実施例1と同様にして、導電性組成物の保存安定性の調査および導電性被膜の比抵抗の測定をした。結果を表4に示す。
【0053】
【表4】
Figure 2004335138
【0054】
表3、表4の結果から、実施例1〜3と比較例4とを比較すると、酸化銀粒子の平均粒子径を小さくすることにより、導電性被膜の比抵抗が下がることが分かった。これは、酸化銀粒子を小さくすることで、還元温度が低温側にシフトしたことによる考えられる。
また、実施例3〜5により、保護コロイドとして、HPC、EC、EHECのいずれを用いても、効果に差異はほとんどなかった。
また、比較例1、2より、還元作用の弱い還元剤を導電性組成物の保存安定性は向上するが、比抵抗が下がることが分かった。
さらに、比較例1および2と、比較例3とを比較すると、酸化銀粒子の平均粒子径が大きいと、還元剤の有無で比抵抗は大きく変化することが分かった。
【0055】
【発明の効果】
以上説明したように、本発明によれば、導電性組成物は保存安定性が長くなり、取扱い性に優れたものとなる。また、この導電性組成物を焼成して得られる導電性被膜は、金属銀と同等に導電性の高いものとなる。さらに、この導電性組成物を焼成して導電性被膜を形成する際の焼成温度を大幅に低下することができるから、この導電性組成物は耐熱性の低いプラスチックフィルムなどの基材にも適用することができる。
【図面の簡単な説明】
【図1】実験例におけるTG−DTAの重量減少データの一例を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive composition used as a conductive paste, a conductive paint, a conductive adhesive, and the like, silver oxide particles capable of sufficiently increasing the conductivity of a conductive film obtained, a method for producing the same, The present invention relates to a hydrophilic composition and a method for producing the same.
[0002]
[Prior art]
Conventionally, particulate silver is dispersed in a binder such as a thermoplastic resin such as acrylic resin or vinyl acetate resin, or a thermosetting resin such as epoxy resin or polyester resin, and mixed by adding an organic solvent, a curing agent, a catalyst, etc. There is a conductive paste such as a silver paste.
[0003]
This conductive paste is widely used as a conductive adhesive, a conductive paint, and the like for various electronic devices, electronic components, electronic circuits, and the like. A flexible circuit board formed by printing this silver paste on a plastic film such as a polyethylene terephthalate film by screen printing or the like to form a conductive film is also used as a printed circuit board such as a keyboard and various switches.
[0004]
The conductive paste includes a high-temperature firing type (a firing temperature of 500 ° C. or more for forming a conductive film and a specific resistance of 10 μΩcm or less) and a polymer type (a firing temperature of 200 ° C. or less for forming a conductive film and a specific resistance of 20 μΩcm or more). There are two types.
[0005]
The high temperature firing type conductive paste is highly reliable because the particulate silver is fused to each other by firing during the formation of the conductive film, and the conductive film after formation has high conductivity. Applicable substrates have the disadvantage that only ceramic-based materials can be used.
On the other hand, polymer-type conductive pastes are widely used for membrane switches and the like because the firing temperature at the time of forming a conductive film is low and can be baked on a substrate made of a resin film. However, even if this conductive paste is fired, the particulate silver does not fuse with each other, causing contact resistance between the silver particles, and the conductivity of the formed conductive film is one order of magnitude higher than that of the high temperature firing type. There is a disadvantage that it is inferior.
[0006]
Thus, the present inventors have found that when particulate silver oxide is heated to 150 ° C. or higher in the presence of a reducing agent, reduced particles are generated and, at the same time, interparticle fusion occurs. Has been applied to conductive pastes.
[0007]
[Problems to be solved by the invention]
However, when silver oxide and a reducing agent coexist, silver particles which are reduced little by little even at room temperature are generated, so that the storage period is short and there remains a problem in securing the stability. In order to avoid this, the conductive paste is of a two-component curing type, but a one-component curing type is desired from the viewpoint of easy handling.
[0008]
In addition, it is possible to extend the storage period by changing the reducing agent to one having a weak reducing action.However, in such a conductive paste, the sintering temperature becomes high, and a resin film such as a polyester film is used as a substrate. There is a problem that can not be used as.
[0009]
The present invention has been made in view of the above circumstances, and has excellent storage stability and handleability, a low firing temperature, a silver oxide particle capable of forming a conductive film having high conductivity, a method for producing the same, and a conductive composition. It is an object of the present invention to provide a product and a method for manufacturing the same.
[0010]
[Means for Solving the Problems]
The present invention provides silver oxide particles that are used for forming a conductive composition and have an average particle diameter of 0.5 μm or less in order to solve the above problems.
[0011]
The present invention provides a method for producing silver oxide particles, comprising means for reducing the average particle size of silver oxide particles to 0.5 μm or less.
[0012]
The present invention provides a conductive composition that is used for forming a conductive composition and includes silver oxide particles having an average particle size of 0.5 μm or less and a protective colloid.
In the conductive composition having the above configuration, the protective colloid is preferably a cellulose derivative.
[0013]
The present invention provides a method for producing a conductive composition, which is used to form a conductive composition, wherein silver oxide particles having an average particle size of 0.5 μm or less are dispersed in the protective colloid to obtain a conductive composition. Provide a method.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The silver oxide particles of the present invention are compounds in the form of solid particles having the property of being reduced to metal silver by heating in the presence of a reducing agent, having an average particle diameter of 0.5 μm or less, and a conductive composition. Is used to form
[0015]
Specific examples of the silver oxide particles include silver oxide (I), silver oxide (II), silver acetate, and silver carbonate. These can be used in combination of two or more. As the silver oxide particles, those obtained by a production method described later can be used.
[0016]
In the present invention, the average particle diameter of the silver oxide particles is 0.5 μm or less, but is appropriately selected in the range of 0.01 μm to 0.5 μm according to the reduction reaction conditions such as the heating temperature and the reducing power of the reducing agent. be able to.
When the average particle diameter of the silver oxide particles is 0.5 μm or less, when the silver oxide particles are used for a conductive paste, the dispersibility in a binder or the like is improved, and the speed of the reduction reaction is increased. In order to further improve the dispersibility in the binder and the reactivity with the reducing agent, the average particle diameter of the silver oxide particles is preferably 0.25 μm or less, more preferably 0.15 or less.
[0017]
Next, the method for producing silver oxide particles of the present invention will be described.
The method for producing silver oxide particles of the present invention is, for example, a method in which an aqueous solution of an alkali such as sodium hydroxide is dropped and reacted with an aqueous solution of silver nitrate under stirring to obtain silver oxide having an average particle diameter of 0.5 μm or less. can do. In this case, it is desirable to add a dispersion stabilizer to the solution to prevent aggregation of the precipitated silver oxide particles.
[0018]
According to the method for producing silver oxide particles, silver oxide particles having an average particle diameter of 0.5 μm or less, which have not been achieved by commercial products, can be easily and stably produced.
[0019]
Next, the conductive composition of the present invention will be described.
The conductive composition of the present invention has a mean particle size of 0.5 μm or less, and is a paste containing silver oxide particles used for forming the conductive composition and a protective colloid. The colloid has a reducing property.
[0020]
The protective colloid used in the present invention is used to secure the storage stability of the conductive composition, and functions as a dispersion stabilizer (dispersion medium) for uniformly dispersing the silver oxide particles, and at room temperature, the silver oxide particles Has a function as a reducing agent that exhibits a reducing action when heated to a predetermined temperature without being reduced.
[0021]
As the protective colloid, a cellulose derivative is preferably used.
Examples of the cellulose derivative used in the present invention include cellulose (C 6 H 10 O 5 ) n- modified hydroxypropylcellulose (hereinafter abbreviated as “HPC”), and cellulose-modified ethylhydroxyethyl cellulose (hereinafter “EHEC”). Ethyl cellulose (hereinafter, abbreviated as “EC”), which is a kind of ether in which hydrogen of a hydroxyl group of cellulose is partially substituted with an ethyl group, is used.
For example, HPC manufactured by Nippon Soda, EHEC manufactured by Akzo Nobel, EC manufactured by Hercules, and the like can be used.
[0022]
These cellulose derivatives reduce the silver oxide particles, and by-products after the reduction reaction become gas or highly volatile liquid, and do not remain in the generated conductive coating.
[0023]
Further, the cellulose derivative functions as a dispersion stabilizer (dispersion medium) and disperses silver oxide particles almost uniformly in the conductive composition, so that the conductivity of the formed conductive film does not vary. .
[0024]
The amount of the cellulose derivative to be used is desirably added more than equimolar to 1 mol of silver oxide particles.
[0025]
The selection of the type of the cellulose derivative and the amount of use thereof depend on the film forming conditions of the silver oxide particles and the conductive film, for example, in screen printing, the mesh roughness of the printing plate and the fineness of the printed pattern, etc., and an optimum film can be formed. It is adjusted appropriately as described above.
[0026]
The viscosity of the conductive composition of the present invention varies depending on the film forming conditions. For example, in the case of screen printing, the viscosity is preferably about 50 to 300 poise.
[0027]
Further, the conductive composition of the present invention may contain, as necessary, a dispersion medium such as water, terpineol, tetrahydrofuran (hereinafter abbreviated as “THF”), ethanol, methanol, bitol acetate, butyl cellosolve acetate, an acrylic resin, Dispersants such as silicone oil and cellulose derivatives may be added.
[0028]
As described above, the conductive composition of the present invention has a structure in which silver oxide particles having an average particle diameter of at most 0.5 μm or less are dispersed in a protective colloid made of a cellulose derivative having a weak reducing action. Even if left at 40 ° C.), the period from the preparation of the conductive composition to the reduction of silver oxide particles by the cellulose derivative to the production of metallic silver particles is as long as about 90 to 180 days, and is preserved. It is excellent in stability.
[0029]
The conductive composition of the present invention is obtained by dispersing the silver oxide particles in a protective colloid comprising a cellulose derivative. When preparing the conductive composition, the above-described dispersion medium and dispersant may be added as necessary.
[0030]
The method of using the conductive composition is to simply apply the conductive composition to an object (a resin film such as a polyester film) by an appropriate means, and then simply heat the object. The heating temperature is set to 140 to 180 ° C. by the reducing action of the protective colloid made of the cellulose derivative, and the heating time is set to about 10 to 180 minutes.
It is natural that the surface (application surface) of the object is kept clean.
[0031]
A conductive coating can be obtained by applying and heating such a conductive composition.
In the conductive film thus obtained, the silver oxide particles are reduced by the cellulose derivative into metal silver particles, and the reduced metal silver particles are fused together to form a continuous thin film of metal silver. Become.
[0032]
Further, the volume resistivity of the conductive film thus obtained shows a value ranging from 3 to 8 × 10 −6 Ω · cm, which is in the same order as the volume resistivity of metallic silver.
Further, since the average particle diameter of the silver oxide particles is 0.5 μm or less, the line width of an electric circuit formed by printing this conductive composition on a substrate can be 10 μm or less, and the circuit itself can be formed. Since the conductivity is extremely high, it is not necessary to increase the thickness of the circuit. Therefore, the circuit can be easily formed, and the flexibility of the circuit itself is high.
[0033]
Furthermore, since a heating temperature of 140 to 180 ° C. is sufficient for forming a conductive film, it can be applied to an object such as a plastic film having low heat resistance, and a high conductive film can be formed and an object can be formed. There is no thermal degradation of the product.
[0034]
In addition, since the surface of the obtained conductive coating on the substrate side exhibits a mirror surface with a luster of metallic silver, the back surface of a transparent substrate such as glass or a plastic film or the substrate side of the conductive coating peeled off from the substrate. The surface can be used as a mirror having high reflectivity for home use, industrial use, and the like, and can be used as, for example, a reflector for a resonator of a laser device.
[0035]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Experimental Examples and Examples, but the present invention is not limited to the following Experimental Examples and Examples.
(Experimental example)
Commercially available silver oxide particles (A), conductive compositions (B) comprising commercially available silver oxide particles and protective colloids, silver oxide particles (C) synthesized by the method for producing silver oxide particles of the present invention, Conductive composition (conductive composition of the present invention) (D) comprising silver oxide particles synthesized by the method for producing silver oxide particles and protective colloid, and silver oxide particles synthesized by the method for producing silver oxide particles of the present invention And a conductive composition (E) comprising a protective colloid and a reducing agent, and these samples were subjected to TG-DTA (model; TG / DTA6300, manufactured by Seiko Instruments Inc.) and DSC (model; DSC220, Seiko Instruments) Was carried out to investigate the reduction temperature of the silver oxide particles.
The conditions for the thermal analysis were a temperature rising rate of 20 ° C./min.
The results are shown in Tables 1 and 2.
In Table 2, ethylene glycol is abbreviated as “EG”.
[0036]
[Table 1]
Figure 2004335138
[0037]
[Table 2]
Figure 2004335138
[0038]
From the results of the thermal analysis by DSC, as shown in Tables 1 and 2, Sample No. From 1, 3, 5, and 7, it was found that the silver oxide particles were reduced at about 400 ° C. under the heating condition of 20 ° C./min, and the reaction at that time was an endothermic reaction.
Further, the sample No. 1 and No. 2 and sample no. 3 and No. From the comparison of No. 4, it was confirmed that the HPC used as the protective colloid had a reducing property. The reason why the HPC functions as the reducing agent is that the heat generation considered as the oxidized heat particles of the HPC is caused by the heat generation in the sample No. 2 and No. 4 due to what has been observed.
The reason why the silver oxide particles were reduced was determined, for example, from TG-DTA weight reduction data as shown in FIG.
[0039]
Sample No. From the comparison of 4, 6, 8, 10, and 12, it was found that as the average particle diameter of the silver oxide particles was reduced, the exothermic peak accompanying the reduction of the silver oxide particles was shifted to a lower temperature side.
These samples are referred to as Sample Nos. Although the temperature of the exothermic peak is higher than that using EG as the reducing agent of No. 14, it was found that the peak of the reduction temperature of the silver oxide particles can be shifted by controlling the average particle size of the silver oxide particles. did. That is, if the average particle size of the silver oxide particles is reduced, the peak of the reduction temperature of the silver oxide particles can be shifted to a lower temperature side.
[0040]
Further, the sample No. From 8 to 13, it was confirmed that the same effect as in the case of using HPC was obtained even when a protective colloid such as EHEC and EC other than HPC was used.
[0041]
(Example 1)
1 g of silver nitrate and 0.1 to 1 g of HPC are added to 100 ml of an aqueous solution containing an equimolar amount of sodium hydroxide and silver nitrate adjusted to an appropriate temperature, vigorously stirred for 3 days, left for one week, washed, dried, and dried again. Water was added to prepare a paste-like conductive composition containing silver oxide particles having an average particle size of 0.5 μm.
This conductive composition was allowed to stand at room temperature, and the storage stability was examined. The storage stability was evaluated in a period from the preparation of the conductive composition to the reduction of silver oxide particles to the production of metallic silver particles.
Table 3 shows the results.
[0042]
This conductive composition was screen-printed on a 100 μm-thick polyethylene terephthalate film to obtain a conductive film having a thickness of 5 μm to 7 μm.
The specific resistance of the obtained conductive film was measured by a measuring method using Loresta GP manufactured by Mitsubishi Chemical Corporation. Table 3 shows the results.
[0043]
(Example 2)
Investigation of the storage stability of the conductive composition and specific resistance of the conductive film were performed in the same manner as in Example 1 except that a paste-like conductive composition containing silver oxide particles having an average particle diameter of 0.25 μm was prepared. Was measured. Table 3 shows the results.
[0044]
(Example 3)
Investigation of the storage stability of the conductive composition and specific resistance of the conductive film were performed in the same manner as in Example 1 except that a paste-like conductive composition containing silver oxide particles having an average particle diameter of 0.15 μm was prepared. Was measured. Table 3 shows the results.
[0045]
(Example 4)
A conductive composition was prepared in the same manner as in Example 1 except that terpineol was used as a dispersion medium, EC was used as a protective colloid, and a paste-like conductive composition containing silver oxide particles having an average particle diameter of 0.15 μm was prepared. The storage stability of the material was investigated and the specific resistance of the conductive film was measured. Table 3 shows the results.
[0046]
(Example 5)
A conductive composition was prepared in the same manner as in Example 1 except that THF was used as a dispersion medium, EHEC was used as a protective colloid, and a paste-like conductive composition containing silver oxide particles having an average particle diameter of 0.15 μm was prepared. The storage stability of the material was investigated and the specific resistance of the conductive film was measured. Table 3 shows the results.
[0047]
[Table 3]
Figure 2004335138
[0048]
(Comparative Example 1)
1 g of silver nitrate, 0.1 to 1 g of HPC, and EG as a reducing agent were added to 100 ml of an aqueous solution containing silver nitrate and equimolar sodium hydroxide adjusted to an appropriate temperature, and vigorously stirred for 3 days. After washing, drying and adding water again, a paste-like conductive composition containing silver oxide particles having an average particle diameter of 0.25 μm was prepared.
This conductive composition was allowed to stand at room temperature, and the storage stability was examined. The storage stability was evaluated in a period from the preparation of the conductive composition to the reduction of silver oxide particles to the production of metallic silver particles.
Table 4 shows the results.
[0049]
The conductive composition was screen-printed on a 100 μm-thick polyethylene terephthalate film, and heated in an oven at 150 ° C. for 60 to obtain a conductive film having a thickness of 5 μm to 7 μm.
The specific resistance of the obtained conductive film was measured in the same manner as in Example 1. Table 4 shows the results.
[0050]
(Comparative Example 2)
Investigation of the storage stability of the conductive composition and specific resistance of the conductive film were performed in the same manner as in Comparative Example 1 except that triethylene glycol (TEG) was used as a reducing agent, and a conductive composition was prepared using the same. Was measured. Table 4 shows the results.
[0051]
(Comparative Example 3)
Investigation of the storage stability of the conductive composition and specific resistance of the conductive film were conducted in the same manner as in Comparative Example 1 except that a paste-like conductive composition containing silver oxide particles having an average particle diameter of 0.8 μm was prepared. Was measured. Table 4 shows the results.
[0052]
(Comparative Example 4)
Investigation of the storage stability of the conductive composition and the specific resistance of the conductive film were performed in the same manner as in Example 1 except that a paste-like conductive composition containing silver oxide particles having an average particle diameter of 0.8 μm was prepared. Was measured. Table 4 shows the results.
[0053]
[Table 4]
Figure 2004335138
[0054]
From the results of Tables 3 and 4, when Examples 1 to 3 and Comparative Example 4 were compared, it was found that the specific resistance of the conductive film was reduced by reducing the average particle diameter of the silver oxide particles. This is considered because the reduction temperature was shifted to a lower temperature side by reducing the size of the silver oxide particles.
Further, according to Examples 3 to 5, there was almost no difference in effect when any of HPC, EC and EHEC was used as the protective colloid.
From Comparative Examples 1 and 2, it was found that a reducing agent having a weak reducing action improved the storage stability of the conductive composition, but lowered the specific resistance.
Furthermore, a comparison between Comparative Examples 1 and 2 and Comparative Example 3 revealed that when the average particle diameter of the silver oxide particles was large, the specific resistance significantly changed depending on the presence or absence of the reducing agent.
[0055]
【The invention's effect】
As described above, according to the present invention, the conductive composition has a long storage stability and is excellent in handleability. In addition, the conductive film obtained by firing this conductive composition has a conductivity as high as that of metallic silver. Furthermore, since the firing temperature when forming the conductive film by firing the conductive composition can be significantly reduced, the conductive composition can be applied to substrates such as plastic films having low heat resistance. can do.
[Brief description of the drawings]
FIG. 1 is a graph showing an example of TG-DTA weight loss data in an experimental example.

Claims (5)

導電性組成物を形成するために用いられ、平均粒子径が0.5μm以下であることを特徴とする酸化銀粒子。Silver oxide particles used for forming a conductive composition and having an average particle diameter of 0.5 μm or less. 酸化銀粒子の平均粒子径を0.5μm以下とする手段を具備していることを特徴とする酸化銀粒子の製造方法。A method for producing silver oxide particles, comprising means for reducing the average particle diameter of silver oxide particles to 0.5 μm or less. 導電性組成物を形成するために用いられ、平均粒子径が0.5μm以下である酸化銀粒子と、保護コロイドとを含むことを特徴とする導電性組成物。A conductive composition comprising silver oxide particles having an average particle diameter of 0.5 μm or less and a protective colloid, used for forming a conductive composition. 前記保護コロイドがセルロース誘導体であることを特徴とする請求項3記載の導電性組成物。The conductive composition according to claim 3, wherein the protective colloid is a cellulose derivative. 導電性組成物を形成するために用いられ、平均粒子径が0.5μm以下である酸化銀粒子を、前記保護コロイドに分散して導電性組成物を得ることを特徴とする導電性組成物の製造方法。A silver oxide particle having an average particle size of 0.5 μm or less, which is used to form a conductive composition, is dispersed in the protective colloid to obtain a conductive composition. Production method.
JP2003125351A 2003-04-30 2003-04-30 Silver oxide particle and its manufacturing method, and conductive composition and its manufacturing method Pending JP2004335138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125351A JP2004335138A (en) 2003-04-30 2003-04-30 Silver oxide particle and its manufacturing method, and conductive composition and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125351A JP2004335138A (en) 2003-04-30 2003-04-30 Silver oxide particle and its manufacturing method, and conductive composition and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004335138A true JP2004335138A (en) 2004-11-25

Family

ID=33502643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125351A Pending JP2004335138A (en) 2003-04-30 2003-04-30 Silver oxide particle and its manufacturing method, and conductive composition and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004335138A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015289A (en) * 2003-06-27 2005-01-20 Mitsui Mining & Smelting Co Ltd Superfine silver oxide powder suspension and method of producing the same
JP2005104825A (en) * 2003-09-10 2005-04-21 Dowa Mining Co Ltd Fine silver oxide powder and its manufacturing method
JP2012067001A (en) * 2010-08-25 2012-04-05 Toyo Ink Sc Holdings Co Ltd Silver oxide composition, conductive composition containing silver oxide, laminate equipped with conductive film and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015289A (en) * 2003-06-27 2005-01-20 Mitsui Mining & Smelting Co Ltd Superfine silver oxide powder suspension and method of producing the same
JP2005104825A (en) * 2003-09-10 2005-04-21 Dowa Mining Co Ltd Fine silver oxide powder and its manufacturing method
JP4686771B2 (en) * 2003-09-10 2011-05-25 Dowaエレクトロニクス株式会社 Method for producing fine silver oxide powder and method for producing dispersion
JP2012067001A (en) * 2010-08-25 2012-04-05 Toyo Ink Sc Holdings Co Ltd Silver oxide composition, conductive composition containing silver oxide, laminate equipped with conductive film and method for manufacturing the same
JP2012067000A (en) * 2010-08-25 2012-04-05 Toyo Ink Sc Holdings Co Ltd Silver oxide composition, conductive composition containing silver oxide, laminate equipped with conductive film and method for manufacturing the same

Similar Documents

Publication Publication Date Title
TW588101B (en) Electro-conductive composition, electro-conductive coating and method for producing the coating
JP3949658B2 (en) Conductive composition, conductive film and method for forming conductive film
JP4973830B2 (en) Conductive composition, conductive paste and conductive film
CN104021842B (en) A kind of Graphene complex copper thick film conductor paste and preparation method thereof
JP2009191354A (en) Method for synthesizing metal nanoparticle
JP4090778B2 (en) Silver oxide fine particle composition and method for producing the same, conductive composition, conductive film and method for forming the same
JP5326647B2 (en) Method for producing composition for forming electrode of solar cell
JPH04198271A (en) Conductive paste composition
JP2009181946A (en) Electrically conductive board, and manufacturing method thereof
JP2008106145A (en) Sintering electroconductive paste
JPS5893107A (en) Paste for forming transparent conductive film
JP2004335138A (en) Silver oxide particle and its manufacturing method, and conductive composition and its manufacturing method
JP2005200604A (en) Particulate silver compound and use of the same
JP4090779B2 (en) Conductive composition, method for forming conductive film, conductive film
JP2016216824A (en) Silver powder and manufacturing method therefor
JP2003308731A (en) Conductive composition, conductive coating and method for forming the same
CN106575537A (en) Solar cells with copper electrodes
JP5151229B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method
JP2020193241A (en) Composition for gravure off-set printing, conductor and method for producing the same, and structure
JP2004253251A (en) Conductive composition
JP6901227B1 (en) Copper ink and conductive film forming method
JP2012214870A (en) Method for forming metallic coating and metallic ultrafine particle-containing composition
JP2008208285A (en) Conductive ink composition
KR20120137323A (en) Method for preparing gravure ink composition comprising graphite nanoparticle
JP2020193240A (en) Composition for gravure off-set printing, conductor and method for producing the same, and structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401