JPS6131960B2 - - Google Patents

Info

Publication number
JPS6131960B2
JPS6131960B2 JP56199555A JP19955581A JPS6131960B2 JP S6131960 B2 JPS6131960 B2 JP S6131960B2 JP 56199555 A JP56199555 A JP 56199555A JP 19955581 A JP19955581 A JP 19955581A JP S6131960 B2 JPS6131960 B2 JP S6131960B2
Authority
JP
Japan
Prior art keywords
powder
ruo
tio
particle size
composite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56199555A
Other languages
Japanese (ja)
Other versions
JPS58104024A (en
Inventor
Motohiko Yoshizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP56199555A priority Critical patent/JPS58104024A/en
Publication of JPS58104024A publication Critical patent/JPS58104024A/en
Publication of JPS6131960B2 publication Critical patent/JPS6131960B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Non-Adjustable Resistors (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、均一微細な粒径を有し、かつ導電
性にもすぐれた複合粉末に関するものである。 一般に、例えば厚膜集積回路の製造に際して
は、抵抗体ペーストをアルミナ基板上に塗布した
後、600〜800℃の温度で焼成を行なつて厚膜抵抗
体とする工程がとられ、これらの抵抗体ペースト
としては、主成分がAg粉末と、ガラス粉末と、
少量の有機樹脂溶媒からなるものや、酸化ルテニ
ウム(以下RuO2で示す)粉末と、ガラス粉末
と、少量の有機樹脂溶媒とからなるものなどが使
用されている。しかし、前者の抵抗体ペーストを
用いた場合には抵抗体の温度変化が300ppm/℃
以上と大きくなるのに対して、後者のRuO2粉末
含有の抵抗体ペーストを用いた場合には、抵抗体
の温度変化が100ppm/℃以下と少ないばかりで
なく、ノイズの発生も少なく、かつその配合割合
を調整することによつて表面抵抗を1Ω/□/
1M/□まで変化させることができることから、
前者に比して後者の抵抗体ペーストの方が広く実
用に供されているのが現状である。 また、このようにRuO2粉末は厚膜抵抗体の製
造に用いられているほか、芳香族化合物の水素化
や、ケトンおよびアルデヒドのカルボニル基の水
素化などに触媒としても使用されている。 従来、上記のような分野で使用されている
RuO2粉末は、通常、 (a) 金属Ruを粉砕し、これを酸化する方法。 (b) 塩化ルテニウムを加熱分解する方法。 (c) 塩化ルテニウムにアルカリを加え、この結果
生成した水酸化ルテニウムを加熱分解せしめる
方法。 などの方法によつて製造されているが、上記(a)お
よび(b)方法によつて製造されたRuO2粉末は、相
対的にその粒径が大きく、このため例えば上記の
抵抗体ペーストに用いた場合、分散性が悪く、均
質なペーストとすることは難しく、一方上記(c)方
法によつて製造されたRuO2粉末は、その粒径が
微細なものとなるが、粒径が不揃いであるなどの
問題点があり、さらにいずれの方法によつて製造
されたRuO2粉末もきわめてコストの高いものと
なるなどの欠点を有するものであつた。 そこで、本発明者等は、上述のような観点か
ら、微細にして均一な粒径を有し、かつ従来
RuO2粉末と同等にきわめてすぐれた導電性を有
する粉末をコスト安く製造すべく研究を行なつた
結果、微細化並びに整粒化が容易な酸化チタン
(以下TiO2で示す)粉末を担体として用い、この
TiO2粉末の表面に、RuO2を、RuO2/(RuO2
TiO2)の重量割合で15〜50%の量被覆せしめる
と、この結果の複合粉末は、前記TiO2粉末によ
つて微細にして粒径な均一なものとなり、かつ被
覆層を形成するRuO2によつてすぐれた導電性を
もつようになり、しかもコストの高いRuO2の量
が相対的に少ないのでコストの安いものとなると
いう知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、RuO2の重量割合を15〜50%と限定
したのは、その割合が15重量%未満では所望の導
電性を確保することができず、複合粉末の比抵抗
が10-1Ω・cm以上となり(はお、比抵抗は、複合
粉末を1ton/cm2の圧力で成形してペレツト状とな
し、このペレツト状成形体を四端子法で測定して
求めた)、この結果低抵抗の厚膜抵抗体を形成す
ることが困難になり、一方その割合を50重量%を
越えて多くしてもより一層の導電性向上効果は得
られず、コスト高ともなるという理由によるもの
である。 また、この発明の複合粉末は、一般に顔料とし
て用いられているTiO2粉末と同等の平均粒径、
すなわち0.1〜1.0μmの平均粒径、あるいはこれ
以下の平均粒径を有するTiO2粉末を、温度:90
〜100℃の加熱水中に懸濁させた状態で、これに
塩化ルテニウムをゆつくり滴下して加水分解を行
なわしめ、この場合加水分解を完全に行なわしめ
るために、必要に応じてアルカリを滴下して、前
記TiO2粉末の表面にRuO2を被覆析出せしめるこ
とによつて製造されるが、そのRuO2被覆層中に
は少量の水酸化ルテニウムを含有するので、約
600℃の温度で焼成して、これをRuO2にする必要
がある。また、この結果得られた複合粉末におい
ては、TiO2粉末とRuO2被覆層とは化学結合して
いるので、通常の粉末処理作業で前記RuO2被覆
層が剥れることはない。 つぎに、この発明の複合粉末を実施例により具
体的に説明する。 実施例 平均粒径:0.2μmを有するTiO2粉末:10gを
水:100g中に懸濁させ、これを90〜100℃の温度
に加熱し、これに撹拌を加えながら、それぞれ第
1表に示される量の塩化ルテニウム(Ru:34重
量%含有)を水:200ccに溶解したものからなる
塩化ルテニウム水溶液を、1時間かけてゆつくり
と滴下し、この場合前記反応液のPHを約2に保つ
ようにカ性ソーダ水溶液を同時に滴下し、反応終
了時に同PHが5となる条件で反応を行なわしめ、
ついでこの結果の反応生成物を別し、洗浄し、
乾燥した後、温度:600℃で焼成することによつ
て、それぞれ第1表に示される量のRuO2で被覆
された本発明複合粉末1〜4および比較複合粉末
を製造した。この結果得られた複合粉末の比抵抗
を第1表に示した。 第1表に示される結果から、本発明複合粉末1
〜4は、いずれもRuO2粉末のもつ比抵抗:2×
10-2Ω・cmとほぼ同等の比抵抗、すなわちRuO2
粉末と同等のすぐれた導電性を有するのに対し
て、比較複合粉末に見られるように、RuO2の被
覆量がこの発明の範囲から外れると急激な比抵抗
の増大をもたらすことが明らかである。
The present invention relates to a composite powder that has a uniform and fine particle size and has excellent electrical conductivity. Generally, when manufacturing thick film integrated circuits, for example, a process is used in which a resistor paste is applied onto an alumina substrate and then fired at a temperature of 600 to 800°C to form a thick film resistor. The main components of the body paste are Ag powder, glass powder,
Those that are made of a small amount of an organic resin solvent, or those that are made of ruthenium oxide (hereinafter referred to as RuO 2 ) powder, glass powder, and a small amount of an organic resin solvent are used. However, when using the former resistor paste, the temperature change of the resistor is 300ppm/℃.
On the other hand, when using the latter resistor paste containing RuO 2 powder, not only the temperature change of the resistor is less than 100 ppm/℃, but also the generation of noise is small and By adjusting the blending ratio, the surface resistance can be reduced to 1Ω/□/
Since it can be changed up to 1M/□,
At present, the latter resistor paste is more widely used in practical use than the former. In addition to being used in the production of thick-film resistors, RuO 2 powder is also used as a catalyst for the hydrogenation of aromatic compounds and the hydrogenation of carbonyl groups in ketones and aldehydes. Traditionally used in the fields mentioned above
RuO 2 powder is usually produced by: (a) grinding metal Ru and oxidizing it; (b) A method of thermally decomposing ruthenium chloride. (c) A method in which an alkali is added to ruthenium chloride and the resulting ruthenium hydroxide is thermally decomposed. However, the RuO 2 powder produced by the above methods (a) and (b) has a relatively large particle size, so it cannot be used, for example, in the above resistor paste. RuO 2 powder produced by method (c) has fine particle size, but the particle size is irregular. In addition, the RuO 2 powder produced by either method also had drawbacks such as extremely high costs. Therefore, from the above-mentioned viewpoint, the present inventors have developed a method that has a fine and uniform particle size and a conventional method.
As a result of our research to produce a powder with excellent conductivity equivalent to RuO 2 powder at a low cost, we decided to use titanium oxide (hereinafter referred to as TiO 2 ) powder as a carrier, which is easy to refine and size. ,this
RuO 2 is added to the surface of TiO 2 powder in the form of RuO 2 / (RuO 2 +
When coated with TiO 2 ) in an amount of 15 to 50% by weight, the resulting composite powder is made fine and uniform in particle size by the TiO 2 powder, and the RuO 2 forming the coating layer is They found that the material has excellent electrical conductivity, and since the amount of expensive RuO 2 is relatively small, it can be made at a low cost. This invention was made based on the above knowledge, and the reason why the weight proportion of RuO 2 is limited to 15 to 50% is because if the proportion is less than 15 weight%, the desired conductivity cannot be achieved. First, the specific resistance of the composite powder is 10 -1 Ω・cm or more . As a result, it becomes difficult to form a thick film resistor with low resistance, and on the other hand, even if the proportion is increased beyond 50% by weight, no further improvement in conductivity can be obtained. This is because of the high cost. In addition, the composite powder of this invention has an average particle size equivalent to that of TiO 2 powder, which is generally used as a pigment.
That is, TiO 2 powder having an average particle size of 0.1 to 1.0 μm or less is heated at a temperature of 90
Ruthenium chloride is suspended in heated water at ~100°C, and hydrolysis is carried out by slowly dropping ruthenium chloride into it. In this case, in order to complete the hydrolysis, alkali is added dropwise as needed. It is produced by depositing RuO 2 on the surface of the TiO 2 powder, but since the RuO 2 coating layer contains a small amount of ruthenium hydroxide, approximately
It is necessary to convert it into RuO 2 by firing at a temperature of 600°C. Furthermore, in the resulting composite powder, the TiO 2 powder and the RuO 2 coating layer are chemically bonded, so the RuO 2 coating layer will not peel off during normal powder processing operations. Next, the composite powder of the present invention will be specifically explained with reference to Examples. Example 10 g of TiO 2 powder having an average particle size of 0.2 μm was suspended in 100 g of water, heated to a temperature of 90 to 100°C, and while stirring, each of the powders shown in Table 1 was A ruthenium chloride aqueous solution consisting of ruthenium chloride (containing Ru: 34% by weight) dissolved in 200 cc of water was slowly added dropwise over 1 hour, and in this case, the pH of the reaction solution was maintained at about 2. Add a caustic soda aqueous solution dropwise at the same time, and carry out the reaction under conditions such that the pH becomes 5 at the end of the reaction,
The resulting reaction product is then separated and washed,
After drying, composite powders 1 to 4 of the present invention and a comparative composite powder each coated with RuO 2 in the amount shown in Table 1 were manufactured by firing at a temperature of 600°C. Table 1 shows the specific resistance of the composite powder obtained as a result. From the results shown in Table 1, the present invention composite powder 1
〜4 is the specific resistance of RuO 2 powder: 2×
Specific resistance approximately equal to 10 -2 Ω cm, i.e. RuO 2
Although it has excellent conductivity equivalent to powder, as seen in the comparative composite powder, it is clear that when the coating amount of RuO 2 is out of the range of this invention, a sudden increase in resistivity occurs. .

【表】 なお、試みにTiO2粉末に代つて、酸化けい素
粉末、酸化アルミニウム粉末、および酸化ジルコ
ニウム粉末をそれぞれ用い、上記の複合粉末製造
条件と同一の条件で複合粉末を製造すべく試験を
行なつたところ、前記のいずれの粉末の表面にも
RuO2被覆層を形成することができないものであ
つた。 上述のように、この発明の複合粉末は、担体で
あるTiO2粉末によつて微細にして均一な粒径を
有し、かつ被覆層を構成するRuO2によつてすぐ
れた導電性を有するものとなるので、これを例え
ば厚膜集積回路の厚膜抵抗体の製造に用いた場
合、さらに触媒として用いた場合には、RuO2
末と同等のすぐれた性能を発揮するのである。
[Table] In addition, instead of TiO 2 powder, we used silicon oxide powder, aluminum oxide powder, and zirconium oxide powder, and conducted tests to manufacture composite powder under the same conditions as the composite powder manufacturing conditions described above. As a result, the surface of any of the powders mentioned above
It was not possible to form a RuO 2 coating layer. As mentioned above, the composite powder of the present invention has a fine and uniform particle size due to the TiO 2 powder that is the carrier, and has excellent conductivity due to the RuO 2 that constitutes the coating layer. Therefore, when this is used, for example, in the production of thick film resistors for thick film integrated circuits, or when used as a catalyst, it exhibits excellent performance equivalent to that of RuO 2 powder.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化チタン粉末の表面に、酸化ルテニウム
を、酸化ルテニウム/(酸化チタン+酸化ルテニ
ウム)の重量割合で15〜50%の量被覆してなる均
一微細な粒径を有する導電性複合粉末。
1. A conductive composite powder having a uniform and fine particle size, which is obtained by coating the surface of titanium oxide powder with ruthenium oxide in a weight ratio of 15 to 50% of ruthenium oxide/(titanium oxide + ruthenium oxide).
JP56199555A 1981-12-11 1981-12-11 Electrically-conductive compound powder having uniform and fine particle diameter Granted JPS58104024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56199555A JPS58104024A (en) 1981-12-11 1981-12-11 Electrically-conductive compound powder having uniform and fine particle diameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56199555A JPS58104024A (en) 1981-12-11 1981-12-11 Electrically-conductive compound powder having uniform and fine particle diameter

Publications (2)

Publication Number Publication Date
JPS58104024A JPS58104024A (en) 1983-06-21
JPS6131960B2 true JPS6131960B2 (en) 1986-07-23

Family

ID=16409768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56199555A Granted JPS58104024A (en) 1981-12-11 1981-12-11 Electrically-conductive compound powder having uniform and fine particle diameter

Country Status (1)

Country Link
JP (1) JPS58104024A (en)

Also Published As

Publication number Publication date
JPS58104024A (en) 1983-06-21

Similar Documents

Publication Publication Date Title
US4624865A (en) Electrically conductive microballoons and compositions incorporating same
KR100234170B1 (en) Composition for transparent conductive layer, manufacturing method of transparent conductive layer using the same and surface conductive articles
US3252831A (en) Electrical resistor and method of producing the same
US3630969A (en) Resistor compositions containing pyrochlore-related oxides and platinum
US3876560A (en) Thick film resistor material of ruthenium or iridium, gold or platinum and rhodium
US3859128A (en) Composition for resistive material and method of making
JPH0688785B2 (en) Conductive barium sulfate and its manufacturing method
US2695275A (en) Silver paint
EP0921099A2 (en) ITO fine powder and method for preparing the same
JP4090778B2 (en) Silver oxide fine particle composition and method for producing the same, conductive composition, conductive film and method for forming the same
US3769382A (en) Method of preparing ruthenium- or iridium-containing components for resistors
JPS6131960B2 (en)
JPS6049136B2 (en) Manufacturing method of white conductive composite powder
JP4090779B2 (en) Conductive composition, method for forming conductive film, conductive film
JPS6052090B2 (en) white conductive coated powder
US3142814A (en) Titanate ester resistor
JPH1166956A (en) Conductive paste
JPS58209002A (en) Method of producing white conductive powder
JPS5926661B2 (en) Electroless plating active metal material paste and plating method using the same
JP2742068B2 (en) Method for producing transparent conductive fine particles and method for producing transparent conductive thin film thereby
JPS635881B2 (en)
JP3571771B2 (en) Thick film paste composition
JP2659541B2 (en) Transparent electrode for transparent tablet
GB1596493A (en) Additive method of manufacturing wiring patterns
JPS6116126B2 (en)