JP4089961B2 - Acceleration sensor - Google Patents

Acceleration sensor Download PDF

Info

Publication number
JP4089961B2
JP4089961B2 JP2003000393A JP2003000393A JP4089961B2 JP 4089961 B2 JP4089961 B2 JP 4089961B2 JP 2003000393 A JP2003000393 A JP 2003000393A JP 2003000393 A JP2003000393 A JP 2003000393A JP 4089961 B2 JP4089961 B2 JP 4089961B2
Authority
JP
Japan
Prior art keywords
acceleration sensor
protective case
sensor chip
resin
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003000393A
Other languages
Japanese (ja)
Other versions
JP2004212246A (en
Inventor
正勝 斎藤
勇夫 坂口
由夫 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003000393A priority Critical patent/JP4089961B2/en
Publication of JP2004212246A publication Critical patent/JP2004212246A/en
Application granted granted Critical
Publication of JP4089961B2 publication Critical patent/JP4089961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車、航空機、携帯端末機器、玩具等に用いられる加速度検出用の半導体加速度センサに関するものである。
【0002】
【従来の技術】
加速度センサは、自動車のエアーバッグ作動用の大きな衝撃力を検出する用途やブレーキ制御システムなどの車両制御用途向けの小さな加速度の検出に使用されてきた。これらの自動車用途ではX軸、Y軸の加速度を測定するため1軸もしくは2軸機能で充分であった。最近は、携帯端末機器、ロボットや人体動作の検出による各種制御等の新しい用途向けに開発、実用化が進んできている。このような新用途では空間の動きを検出することが多いためX、Y、Z軸の加速度を測定できる3軸加速度センサが要求されてきている。また、微小な加速度を検出するために高分解能で、小型・薄型であることも要求されている。
【0003】
加速度センサは可撓部の動きを電気信号に変換する方法で、ピエゾ抵抗型、静電容量型、圧電型に大別される。用途によって使い分けられるが、静止加速度の検出用途ではピエゾ抵抗型と静電容量型に絞られ、これら2つのタイプはシリコン基板に半導体技術やマイクロマシン技術により立体的な構造を形成することにより小型で高感度の加速度センサを一度に大量に製造できる。特に、ピエゾ抵抗型は構造および製造プロセスが単純であり小型・薄型で低価格化に向いた加速度センサである。
【0004】
従来の加速度センサ素子構造として特開平5−41148号に記載されているものがある。その構造を図7示す。加速度センサ素子50は、センサチップ中央に錘部59、周辺に支持部52があり、錘部59は可撓部58に接続され、可撓部58は支持枠52に接続され、可撓部58には複数個のピエゾ抵抗素子60が設けられている。ピエゾ抵抗素子60は電極端子に配線パターン(図示せず)で接続されている。加速度に比例した外力が加速度センサ素子に加わると錘部59が動き、それに伴って可撓部58が変形しピエゾ抵抗素子に加わる応力が変化し、抵抗値が変わる。ピエゾ抵抗素子の抵抗変化は微小であるため、可撓部58上に4個のピエゾ素子を配してフルブリッジ回路を構成し、この抵抗変化を電圧変化として検出するものである。
【0005】
この構造において、加速度センサ素子の感度は、可撓部の長さを長く、幅を狭く、厚みを薄くするほど向上するものである。例えば、高感度品では可撓部の長さは500〜700μm、幅は80〜120μm、厚みは5〜10μmと非常に薄くなっている。このため、シリコンで形成された可撓部58は強度的に弱く、大きな衝撃力が加わると簡単に破損してしまう。そこで、高感度で高耐衝撃性を確保するために、錘部59の動きを規制する構造が採用されている。すなわち、図7に示したように、上部規制板51、下部規制板53を接着剤57などにより加速度センサ支持部52に固着することによって錘部59の動きを規制し可撓部58の破損を防止するものである。
【0006】
このような機能を果たす規制板の設置にあたっては、陽極接合、ガラス接着あるいは樹脂接着などの方法により固く接着する方法が一般に取られていた。具体的には、1個1個のセンサチップに規制板51、53の個辺を接着する方法と加速度センサおよび規制板それぞれをウエハの状態で固着した後でダイシングすることで個々の加速度センサ素子50を製造する方法とがある。前者は組立工程でのハンドリング方法の工夫、自動化などにより可撓部58の破損防止を図るとともに高い生産性を確保するという考え方であり、後者は加速度センサ個片になる前に規制板を設置し強度を上げ、組立工程を容易にするという考え方である。いずれにしても従来は、図7に示した規制板51、53の周辺の4辺全面が接着剤57によって加速度センサの支持部52全面と硬く固着されていた。
【0007】
【発明の解決しようとする課題】
ところが、このように上下の規制板51、53と加速度センサチップとを硬く固着する従来の製造技術においては、固着時の残留応力による感度低下、オフセット電圧の増加や構成部材の線膨張係数差による温度ドリフトの悪化などを抑えるために、線膨張係数のほぼ一致する構成部材を選定していた。そのため、構成部材の価格が高く低価格の加速度センサの供給ができなかった。逆に低価格の材料を選定した場合には、線膨張係数の不整合により可撓部58に発生するわずかの応力のために感度が低下したり、残留応力のわずかな不均一により可撓部58の変形が生ずるためにオフセット電圧が増加したり、さらには膨張係数の不整合のために温度ドリフトが悪化するなど、特性面での犠牲を避けられなかった。
【0008】
従来加速度センサの構成部材として用いられている材料例とその線膨張係数(熱膨張係数 deg−1)を表1に示す。上下規制板51、53として、表1にあるシリコン基板あるいはシリコン基板とほぼ同じ3.2x10−6の線膨張係数の高価なガラス基板を用いて特殊、高価な接合装置で固着すれば上述した技術課題は解決できるが設備が高価なことも加わって完成した加速度センサも高価なものになる。また、薄型化を狙ってセラミックス材からなる保護ケース底面を下部規制板53と兼ねる構造とする場合にはこのような接合技術は使えず、簡便な方法としてエポキシ系樹脂などにより固着する方法によるしかない。この場合には、保護ケースの線膨張係数は約7x10−6でシリコン基板(線膨張係数約2.4x10−6)とは異なることは言うまでもなく、接着樹脂の線膨張係数も大きく異なり、室温硬化の樹脂であっても硬化時の収縮応力が残留応力として残ることは避けられない。したがって、感度の低下やオフセット電圧の増加などを生じる。また、温度が変わった場合には、当然この線膨張係数差により特性のドリフトが生じてしまう。このように、加速度センサチップの支持部4辺の表裏全面において、上下規制板と、あるいは、上部規制板と保護ケースとに固着する従来方法では、高性能で小型・薄型、低価格を同時に満足することはできない。
表1 従来の加速度センサに用いられてきた構成部材とその線膨張係数

Figure 0004089961
【0009】
本発明は上記問題点を解決するためになされたものであり、線膨張係数の異なる安価な材料を規制板などに使用しても特性への影響を最小限に抑え、小型・薄型で高性能、低価格の加速度センサを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の加速度センサは、チップ中央に錘部、周辺に支持部があり両者を薄肉の可撓部で接続し、可撓部上に複数個のピエゾ抵抗素子から成る加速度検出部を配した加速度センサチップを上下の規制板に、あるいは、下部規制板を兼ねる保護ケースと上部規制板とに固着してなる加速度センサであって、加速度センサチップを可撓部に対して線対称となる支持部の表面および裏面の偶数箇所において、シリコンゴム系接着剤を用いて上下の規制板あるいは上部規制板と保護ケースとに固着したものである。
以 上
【0011】
本発明では、規制板設置の本来の目的に戻り加速度センサ全体の製造方法を見直すことで解決策を見出したものである。規制板設置の本来の目的は、検出範囲外の大きな衝撃力が加わった時に錘部や可撓部の動きを抑制して可撓部の破損を防止することであるから、加速度センサチップの支持部の表裏全面に渡って、上下の規制板あるいは上部規制板と保護ケース底面とに固着されている必要はない。すなわち、組立後に大きな耐衝撃力が加わっても上下の規制板が剥れなければよい、またはセンサチップ自体が保護ケースから剥れることがなければよい。この考え方に基づいて、接着樹脂を分割し、最低限必要な接着強度を得られる接着面積まで縮小して、かつ、樹脂による接着位置を可撓部から見て均一な配置となる支持部表面及び裏面において、加速度センサチップを上下規制板にあるいは上部規制板と保護ケースとに固着したものである。
本発明では、上述したウエハ状態で加速度センサウエハと規制板ウエハとを固着する従来の製造方法の適用は難しく、組立工程などで可撓部が破損しないように安定化するためラインを自動化するなどの方策をとった。接着樹脂の応力の影響を最小限にするには、全体の応力バランスも考慮し、できるだけ応力が均一に分散、最小になるように配慮した。その時に、自動化設備においては画像認識により樹脂の塗布位置を決定しやすいことも考慮する必要がある。本発明では、このような観点から樹脂の塗布、接着位置として、支持部の4つの角部、あるいは可撓部が接続される支持部の中央部4箇所とすることによって、残留応力の均一化や応力の影響を最小限に押えるものである。この結果、シリコンゴム系接着樹脂を用いた時に、線膨張係数の異なる規制板や保護ケースを固着した場合に可撓部に掛かる残留応力を最も極小にでき、特性への悪影響を許容範囲内に押えることができるものである。
【0012】
本発明の加速度センサは、シリコンゴム系接着材としてヤング率が10−2GPaより小さく、上下規制板あるいは保護ケースの線膨張係数は2x10−6より大きく、8x10−6より小さい材料としたことを特徴とする。
【0013】
接着樹脂としてのシリコンゴム系樹脂は一般的にヤング率が非常に小さいために硬化後でも柔らかく、線膨張係数差による応力などを軽減できるという特長がある。本発明においては、特にヤング率が10−2GPaより小さい場合にはその効果が大きく、規制板や保護ケースとして線膨張係数が大きく異なる材料を接着した場合でも加速度センサの特性への影響を非常に小さいものにすることができるものである。
【0014】
本発明の加速度センサは、シリコンゴム系接着樹脂の合計接着面積が支持部面積の5%〜50%であり、球形のプラスティックスペーサを介して加速度センサチップを上下の規制板あるいは上部規制板と保護ケースとに固着したことを特徴とする。
【0015】
加速度センサの用途として携帯端末機器などへの応用研究が盛んになりつつあるが、携帯端末機器などを落下させた場合には、容易に1000Gを超えるような大きな衝撃力が加わる場合があり、規制板が剥れたり、加速度センサチップそのものが剥れたりすることがある。樹脂の接着面積と規制板や加速度センサチップの接着強度との関係を調査したところ、支持部面積の5%以上の接着面積があれば、1000G以上の大きなの衝撃力が加わっても、規制板が剥れたり、加速度センサチップが剥れたりすることがなかった。また、特性への接着樹脂の応力の影響を最小に抑えるには、できるだけ接着面積は小さいことが好ましいが、支持部面積の約50%までの接着面積であれば、感度低下なども許容範囲であった。更に、この範囲の接着面積に安定して再現性良く制御することが必要になるが、シリコンゴム系の接着剤は水のように流れ易く、接着剤だけで接着面積を一定に制御することは難しい。本発明では、球形のプラスティックスペーサを重量比で約10%を樹脂に混合することで解決したものである。
【0016】
【発明の実施の形態】
本発明の加速度センサの実施例について図1、2および3を用いて説明する。図1は、本発明の加速度センサの展開図、図2はB−B’断面図、図3は加速度センサチップ表面(同図a)と裏面(同図b)の樹脂接着位置を示す平面図、である。本実施例は上部規制板21を有し、下部規制板は保護ケース2の内底面で代用することで薄型化を図った構造の例である。図1において加速度センサチップ100の端子14はワイヤー4で保護ケース2の端子5に接続され外部端子6に接続される。規制板21を加速度センサチップ100上面に硬質プラスチック球(図示せず)を混練した接着剤71を用いて固着、更にこの規制板21付きの加速度センサチップを同じく硬質プラスチック球を混練した樹脂7により保護ケース2に固着、最後に蓋3を保護ケース2に低融点ガラスで固着密封して加速度センサを形成した。また、ピエゾ抵抗素子15(図3参照)は図1、2では図示は省略している。本実施例で用いた構成部材を以下に示す。保護ケース2および蓋3は従来同様の線膨張係数のアルミナ系セラミックス、上部規制板21は線膨張係数が約7x10−6の低価格の硼珪酸ガラス板、また、接着樹脂7、71には線膨張係数は300x10−6と非常に大きいがヤング率が8.8x10−4GPaと逆に非常に小さいという特徴のあるシリコンゴム系樹脂(例えば、東レ・ ダウコーニング・シリコーン製の型式DA6501)を用いた。また、スペーサーには線膨張率98x10−6の球状硬質プラスチックを重量比でシリコンゴム系樹脂にあらかじめ混合して用いた。
表2 実験に用いた構成部材とその線膨張係数
Figure 0004089961
【0017】
ピエゾ抵抗素子の製造方法と加速度センサの寸法関係を簡単に説明する。約600μm厚のシリコン板に1μmのシリコン酸化層と10μm程度のシリコン層を有するSOIウェファーを使用した。フォトレジストでパターニング行いシリコン層にボロンを1〜3x1018原子/cm打ち込みピエゾ抵抗素子を作製、ピエゾ抵抗素子に接続する配線を、金属スパッタ−、ドライエッチング装置を用いて形成した。シリコン層に可撓部13と錘部11、支持部12をフォトリソ技術とドライエッチング装置を用いて形成した。シリコン酸化層がエッチングストッパーとなるため、エッチングされるのはシリコン層のみである。ピエゾ素子面を下にしてSOIウェファーをダミー基板に接着し、SFと酸素を導入したプラズマ内でシリコン板の約600μmをエッチングした。可撓部13と錘部11、支持部12が形成された基板を切断機でチップに分離したのち、溶剤を用い接着樹脂を溶かし加速度センサチップ100をダミー基板から取り外した。高感度な加速度センサを得るため、可撓部13の寸法は長さ500μm、幅110μm、厚み約10μmと非常に薄く平板なものとなっている。錘部11は、一辺の長さを1000μm、支持部12の幅は400μmとし、加速度センサチップ100外観形状は3mm角厚み約0.6mmとしている。
【0018】
図1に示した展開図よりセンサの実装の手順は概略以下の通りである。図3a)に示したように、加速度センサチップ100の支持部12の4つの角部表面に硬質プラスチック球を混練した接着剤71を塗布し、上部規制板21を間隔15μmで固着した後、図3b)に示した加速度センサチップ支持部の4隅に相当する位置の保護ケース2の内底面4箇所に同じく硬質プラスチック球を混練した接着剤7を塗布し、上部規制板21付きの加速度センサチップ100を組み込み、固着した。次に加速度センサチップ100の端子14と保護ケース2の端子5をワイヤー4で接続した。ワイヤーはφ25μmの裸金線を用い超音波ボンダーで溶接した。最後に蓋3を低融点ガラスなどで接着して加速度センサが完成する。
【0019】
このようにして製造された本発明においては、加速度センサチップ100は支持部の四角の表面および裏面にて、硬質プラスチック球を混合したシリコンゴム系接着剤71、7により、それぞれ上部規制板21および保護ケース2に固着されている。すなわち、シリコンゴム系樹脂による接着の様子は、図1のB−B’断面でのみ見え、図2に示した断面図のようになっている。このように可撓部13からみた場合に線対称、点対称な位置にて固着することでわずかに残留する応力を均等に分散した。また、このときの樹脂の接着面積に関しては、特性への大きな影響が生じない程度の応力しか残らない接着面積で、かつ大きな衝撃力が加わっても加速度センサチップ100や上部規制板21が剥れることのない接着強度を得られる接着面積となるように樹脂の塗布量を制御した。図4に樹脂の接着面積と感度との関係を示す。本図には、シリコンゴム系樹脂の他に参考までにエポキシ系樹脂による実験結果も一緒に示した。
【0020】
図4は、支持部12の4箇所の樹脂接着面積をほぼ同一に変えて、加速度センサチップ100を実装し感度を測定した結果と、加速度センサチップ100を未接着のまま実装(金ワイヤーで吊り下げられた状態)して感度測定した結果と一緒にグラフに示したものである。硬質プラスチック球を10wt%混合した樹脂を用いて実験した。樹脂接着面積が支持部12面積の20%になると感度は約20%低下したが、まだ許容範囲内の低下であった。一方、エポキシ系樹脂を用いた場合には、シリコンゴム系樹脂の場合より更に20%ほど感度は下がり、高感度を得るには応力の影響が大き過ぎることがわかった。このように、接着樹脂の面積によって感度が低下する理由は、樹脂が硬化するときの収縮応力によって、可撓部13に引張り応力がかかり、錘部11が動きにくくなるためと考えられる。また、支持部12の4箇所の樹脂接着面積が支持部面積の5%以上あれば、1000G以上の大きな衝撃力を加えた場合でも加速度センサチップ100や上部規制板21が剥れることはなく、耐衝撃性も問題なかった。樹脂の接着面積を大きくすれば、比例的に耐衝撃性は上がるので、必要な耐衝撃力によって、接着面積を決定すれば良いが、感度低下の観点から最小の接着面積を選ぶことが望ましい。
【0021】
以上の、実験では硬質プラスチック球の混合割合を10wt%としたが、このプラスチック球の目的は、上部規制板21や保護ケース2の内底面と加速度センサチップ100とのギャップを精度良く制御することであるから、接着樹脂1箇所当り一個以上のプラスチック球が混合されていれば実際上は問題なく、1wt%の混合比でも約10個プラスチック球が接着樹脂内に含まれ十分機能した。また、混合比の上限は上部規制板21や保護ケース2との接着強度が十分得られれば良く、40wt%の混合比でも問題なかった。
【0022】
更に温度ドリフトについて、上述の表2に示した線膨張係数が3.2x10−6と7.2x10−6の規制板ガラス(前者の価格は後者の価格の30倍以上)とについて、シリコンゴム系樹脂接着面積を20%として温度ドリフトを測定した。温度範囲−40〜85℃において、両ガラスとも、感度の温度ドリフトは約0.1%/℃(室温感度比)、オフセット電圧の温度ドリフトは約0.6%/℃(室温の感度比)と同等であった。このように本発明によれば、規制板ガラスの線膨張係数差の影響をほとんどなくすことができ、安価な材料を使うことができる。
【0023】
次に本発明になる他の実施例を図5、図6に示す。両図は図3に相当するシリコンゴム系樹脂7、71の塗布位置を示す加速度センサチップ表面および裏面の平面図、である。同一部にはわかりやすいように同一の符合を付した。図5a)および図6a)は、上部規制板21の接着位置、および加速度センサチップ100の保護ケース2への接着位置を可撓部13が接続される支持部12の4辺の中央部としたものである。図5b)および図6b)は接着可所を可撓部13の支持部12との接続部2箇所とした場合、更に図5c)および図6c)は、第1の実施例と図5a)、図6a)とを合わせた8箇所において樹脂接着した場合を示したものである。これらいずれの場合にも、図1と同様に安価で、線膨張係数が約7x10−6と大きなガラス板を規制板21にする場合、あるいは保護ケース2を下部規制板とする場合でも、感度などへの影響は小さく、小型で高性能な加速度センサを得られた。接着剤の形状については、全て楕円形状で説明したが、ほぼ一定の形に安定して制御できれば良いのであって形は円形、三角形、四角形や不定形状など、どんな形でも良い。
以 上
【0024】
上述の説明は全てピエゾ抵抗型の加速度センサを用いて説明したが、加速度の検出方式として静電容量型もあり、この場合でも本発明の効果は同様である。静電容量型の場合には、可撓部側の稼動電極と相対しコンデンサを形成する対向電極を形成した平行板側が上部規制板の機能を合わせ持っている。この対向電極側は陽極接合などの方法でセンサチップに硬く固着される必要がある。しかし、下部規制板はピエゾ抵抗型の場合と同じであり、専用の下部規制板を設置するか、保護ケースの内底面を下部規制板として使うかである。すなわち、静電容量型の場合にも、加速度センサチップと下部規制板あるいは保護ケースとの固着に本発明を適用することで、感度の低下やオフセット電圧の増加、温度特性の劣化、などを最小限に押えられる。
【0025】
【発明の効果】
以上説明したように本発明によれば、線膨張係数の異なる安価な材料を規制板に使用し、線膨張係数の大きく異なる接着樹脂、などを使用しても特性への影響を最小限に抑え、小型・薄型で高性能、低価格な加速度センサを提供することできる。
【図面の簡単な説明】
【図1】本発明の加速度センサの展開図である。
【図2】図1の加速度センサのB−B'断面図である。
【図3】図1の加速度センサチップにシリコンゴム系樹脂を塗布した状態を示す平面図である。
【図4】接着樹脂面積と感度との関係を示すグラフである。
【図5】本発明の他の実施例を示す加速度センサチップ表面の樹脂塗布位置を示す正面図である。
【図6】本発明の他の実施例を示す加速度センサチップ裏面の樹脂塗布位置を示す正面図である。
【図7】従来の加速度センサの断面図である。
【符号の説明】
1 保護ケースの蓋の接着剤、2 保護ケース、3 保護ケース蓋、
4 ワイヤー、5 電極端子、6 外部端子、7,71 接着剤、
11 錘部、12 支持部、13 可撓部、14 電極パッド、
15 ピエゾ抵抗素子、21 上部規制板、50 加速度センサ、
51 上部規制板、52 支持部、53 下部規制板、54 電極パッド、
57 接着材、58 可撓部、59 錘部、60 ピエゾ抵抗素子、
100 加速度センサチップ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor acceleration sensor for detecting acceleration used in automobiles, aircraft, portable terminal devices, toys and the like.
[0002]
[Prior art]
Acceleration sensors have been used to detect small accelerations for vehicle control applications such as applications that detect large impact forces for automotive airbag actuation and brake control systems. In these automotive applications, a 1-axis or 2-axis function was sufficient to measure the X-axis and Y-axis accelerations. Recently, development and practical use are progressing for new applications such as mobile terminal devices, robots, and various controls based on detection of human body motion. In such new applications, space motion is often detected, and therefore a three-axis acceleration sensor capable of measuring X, Y, and Z axis accelerations has been required. In addition, in order to detect minute acceleration, high resolution, small size, and thinness are also required.
[0003]
The acceleration sensor is a method for converting the movement of the flexible portion into an electric signal, and is roughly classified into a piezoresistive type, a capacitance type, and a piezoelectric type. Depending on the application, static acceleration detection applications are limited to piezoresistive type and electrostatic capacitance type. These two types are small and high by forming a three-dimensional structure on a silicon substrate using semiconductor technology or micromachine technology. Sensitive acceleration sensors can be manufactured in large quantities at once. In particular, the piezoresistive type is an acceleration sensor that has a simple structure and manufacturing process, is small and thin, and is suitable for cost reduction.
[0004]
A conventional acceleration sensor element structure is described in JP-A-5-41148. The structure is shown in FIG. The acceleration sensor element 50 has a weight part 59 at the center of the sensor chip and a support part 52 at the periphery. The weight part 59 is connected to the flexible part 58, the flexible part 58 is connected to the support frame 52, and the flexible part 58. Are provided with a plurality of piezoresistive elements 60. The piezoresistive element 60 is connected to the electrode terminal by a wiring pattern (not shown). When an external force proportional to the acceleration is applied to the acceleration sensor element, the weight part 59 moves, and accordingly, the flexible part 58 is deformed to change the stress applied to the piezoresistive element, thereby changing the resistance value. Since the resistance change of the piezoresistive element is very small, four piezo elements are arranged on the flexible portion 58 to form a full bridge circuit, and this resistance change is detected as a voltage change.
[0005]
In this structure, the sensitivity of the acceleration sensor element increases as the length of the flexible portion is increased, the width is decreased, and the thickness is decreased. For example, in the high sensitivity product, the length of the flexible portion is 500 to 700 μm, the width is 80 to 120 μm, and the thickness is 5 to 10 μm. For this reason, the flexible part 58 formed of silicon is weak in strength, and is easily damaged when a large impact force is applied. Therefore, in order to ensure high sensitivity and high impact resistance, a structure that restricts the movement of the weight portion 59 is employed. That is, as shown in FIG. 7, the upper regulating plate 51 and the lower regulating plate 53 are fixed to the acceleration sensor support portion 52 with an adhesive 57 or the like, thereby restricting the movement of the weight portion 59 and damaging the flexible portion 58. It is to prevent.
[0006]
In order to install a regulating plate that performs such a function, generally, a method of firmly bonding by a method such as anodic bonding, glass bonding, or resin bonding has been taken. Specifically, each acceleration sensor element is formed by bonding a single side of each of the regulation plates 51 and 53 to each sensor chip and dicing after the acceleration sensor and the regulation plate are fixed in a wafer state. And 50 manufacturing method. The former is based on the idea that the flexible part 58 is prevented from being damaged by devising and automating the handling method in the assembly process, and high productivity is ensured. The latter has a restriction plate installed before it becomes an acceleration sensor piece. The idea is to increase the strength and facilitate the assembly process. In any case, conventionally, the entire four sides around the regulating plates 51 and 53 shown in FIG. 7 are firmly fixed to the entire support portion 52 of the acceleration sensor by the adhesive 57.
[0007]
[Problem to be Solved by the Invention]
However, in the conventional manufacturing technique in which the upper and lower regulation plates 51 and 53 and the acceleration sensor chip are firmly fixed in this way, the sensitivity decreases due to the residual stress at the time of fixation, the offset voltage increases, and the linear expansion coefficient difference between the constituent members. In order to suppress deterioration of temperature drift and the like, constituent members having substantially the same linear expansion coefficient have been selected. For this reason, the price of the constituent members is high, and a low-priced acceleration sensor cannot be supplied. On the other hand, when a low-priced material is selected, the sensitivity decreases due to slight stress generated in the flexible portion 58 due to mismatch of the linear expansion coefficients, or the flexible portion due to slight non-uniformity of residual stress. As a result, the offset voltage increases due to the deformation of 58, and the temperature drift deteriorates due to the mismatch of the expansion coefficients.
[0008]
Table 1 shows examples of materials conventionally used as components of acceleration sensors and their linear expansion coefficients (thermal expansion coefficients deg −1 ). As the upper and lower regulating plates 51 and 53, the above-described technique is achieved by using a silicon substrate in Table 1 or an expensive glass substrate having a linear expansion coefficient of 3.2 × 10 −6 which is almost the same as the silicon substrate and fixing it with a special and expensive joining device. Although the problem can be solved, the completed acceleration sensor becomes expensive because the equipment is expensive. In addition, when the bottom surface of the protective case made of a ceramic material is also used as the lower regulating plate 53 in order to reduce the thickness, such a joining technique cannot be used, and as a simple method, only a method of fixing with an epoxy resin or the like can be used. Absent. In this case, the linear expansion coefficient of the protective case is about 7 × 10 −6 , which is different from the silicon substrate (linear expansion coefficient about 2.4 × 10 −6 ). Even in this resin, it is inevitable that the shrinkage stress at the time of curing remains as a residual stress. Therefore, a decrease in sensitivity and an increase in offset voltage occur. In addition, when the temperature changes, the drift in characteristics naturally occurs due to this difference in linear expansion coefficient. As described above, the conventional method of fixing the acceleration sensor chip to the upper and lower regulating plates or the upper regulating plate and the protective case on the entire front and back surfaces of the four sides of the acceleration sensor chip satisfies both high performance, small size, thin shape and low price at the same time. I can't do it.
Table 1 Constituent members used in conventional acceleration sensors and their linear expansion coefficients
Figure 0004089961
[0009]
The present invention has been made to solve the above-mentioned problems. Even if an inexpensive material having a different linear expansion coefficient is used for a regulating plate or the like, the influence on the characteristics is minimized, and it is small, thin and high performance. An object is to provide a low-cost acceleration sensor.
[0010]
[Means for Solving the Problems]
The acceleration sensor of the present invention has a weight part in the center of the chip, a support part in the periphery, and both are connected by a thin flexible part, and an acceleration detection part comprising a plurality of piezoresistive elements is arranged on the flexible part. An acceleration sensor formed by adhering a sensor chip to upper and lower restricting plates , or a protective case that also serves as a lower restricting plate and an upper restricting plate , wherein the acceleration sensor chip is line symmetrical with respect to the flexible portion The upper and lower restricting plates or the upper restricting plate and the protective case are fixed to each other using silicon rubber adhesive at even positions on the front surface and the back surface.
[0011]
In the present invention, the solution is found by returning to the original purpose of installing the regulation plate and reviewing the manufacturing method of the entire acceleration sensor. The original purpose of installing the restriction plate is to prevent damage to the flexible part by suppressing the movement of the weight part and flexible part when a large impact force outside the detection range is applied. There is no need to be fixed to the upper and lower restricting plates or the upper restricting plate and the bottom surface of the protective case over the entire front and back of the part. That is, even if a large impact resistance is applied after assembly, the upper and lower regulation plates need not be peeled off, or the sensor chip itself may not peel off from the protective case. Based on this idea, the adhesive resin is divided, the support surface is reduced to a bonding area that can obtain the minimum required bonding strength, and the bonding position by the resin is uniform when viewed from the flexible part, and On the back surface, the acceleration sensor chip is fixed to the upper / lower restricting plate or to the upper restricting plate and the protective case.
In the present invention, it is difficult to apply the conventional manufacturing method in which the acceleration sensor wafer and the regulation plate wafer are fixed in the above-described wafer state, and the line is automated in order to stabilize the flexible portion so as not to be damaged in the assembly process. Measures were taken. In order to minimize the influence of the stress of the adhesive resin, the overall stress balance was also taken into consideration so that the stress was evenly distributed and minimized as much as possible. At that time, it is necessary to consider that the automatic application facility can easily determine the resin application position by image recognition. In the present invention, from this point of view, the resin application and adhesion positions are set to four corners of the support part, or four central parts of the support part to which the flexible part is connected, thereby making the residual stress uniform. And the effect of stress is minimized. As a result, when silicon rubber adhesive resin is used, the residual stress applied to the flexible part can be minimized when a regulation plate or protective case with a different linear expansion coefficient is fixed, and the adverse effect on the characteristics is within the allowable range. It can be pressed.
[0012]
The acceleration sensor of the present invention is made of a material having a Young's modulus smaller than 10 −2 GPa as a silicon rubber-based adhesive, and a linear expansion coefficient of the upper / lower regulating plate or protective case larger than 2 × 10 −6 and smaller than 8 × 10 −6. Features.
[0013]
Silicon rubber-based resin as an adhesive resin generally has a very small Young's modulus, so that it is soft even after curing, and can reduce stress due to a difference in linear expansion coefficient. In the present invention, the effect is particularly great when the Young's modulus is smaller than 10 −2 GPa, and even when a material having a large coefficient of linear expansion is bonded as a regulating plate or a protective case, the effect on the characteristics of the acceleration sensor is greatly reduced. It can be made small.
[0014]
In the acceleration sensor of the present invention, the total adhesion area of the silicon rubber-based adhesive resin is 5% to 50% of the support area, and the acceleration sensor chip is protected from the upper and lower regulating plates or the upper regulating plate via a spherical plastic spacer. It is characterized by being fixed to the case.
[0015]
Although application research to mobile terminal devices, etc., is becoming popular as an application of acceleration sensors, if a mobile terminal device is dropped, a large impact force exceeding 1000G may be easily applied, and regulations The plate may peel off or the acceleration sensor chip itself may peel off. As a result of investigating the relationship between the adhesive area of the resin and the adhesive strength of the regulation plate and the acceleration sensor chip, if there is an adhesion area of 5% or more of the support area, even if a large impact force of 1000 G or more is applied, the regulation plate And the acceleration sensor chip did not peel off. Further, in order to minimize the influence of the stress of the adhesive resin on the characteristics, it is preferable that the adhesive area is as small as possible. However, if the adhesive area is up to about 50% of the support area, the sensitivity reduction is within an allowable range. there were. Furthermore, it is necessary to control the adhesive area in this range stably and with good reproducibility, but the silicone rubber adhesive is easy to flow like water, and it is possible to control the adhesive area to be constant only with the adhesive. difficult. In the present invention, a spherical plastic spacer is solved by mixing about 10% by weight with resin.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the acceleration sensor of the present invention will be described with reference to FIGS. FIG. 1 is a development view of the acceleration sensor of the present invention, FIG. 2 is a cross-sectional view taken along the line BB ′, and FIG. 3 is a plan view showing resin bonding positions on the front surface (a) and the back surface (b). . The present embodiment has an upper restricting plate 21, and the lower restricting plate is an example of a structure that is thinned by substituting the inner bottom surface of the protective case 2. In FIG. 1, the terminal 14 of the acceleration sensor chip 100 is connected to the terminal 5 of the protective case 2 by the wire 4 and to the external terminal 6. The restricting plate 21 is fixed to the upper surface of the acceleration sensor chip 100 with an adhesive 71 kneaded with hard plastic spheres (not shown), and the acceleration sensor chip with the restricting plate 21 is fixed with the resin 7 kneaded with hard plastic spheres. The acceleration sensor was formed by adhering to the protective case 2 and finally adhering the lid 3 to the protective case 2 with low melting point glass and sealing. The piezoresistive element 15 (see FIG. 3) is not shown in FIGS. The structural members used in this example are shown below. The protective case 2 and the lid 3 are alumina ceramics having the same linear expansion coefficient as the conventional one, the upper regulating plate 21 is a low-cost borosilicate glass plate having a linear expansion coefficient of about 7 × 10 −6 , and the adhesive resins 7 and 71 are linear. use the expansion coefficient 300X10 -6 very large but silicone rubber resin having a feature that Young's modulus is too small 8.8 × 10 -4 GPa opposite (e.g., Dow Corning Toray silicone Co. types DA6501) It was. As the spacer, spherical hard plastic having a linear expansion coefficient of 98 × 10 −6 was previously mixed with silicon rubber resin at a weight ratio.
Table 2 Components used in the experiment and their linear expansion coefficients
Figure 0004089961
[0017]
The manufacturing method of the piezoresistive element and the dimensional relationship between the acceleration sensors will be briefly described. An SOI wafer having a silicon oxide layer of 1 μm and a silicon layer of about 10 μm on a silicon plate having a thickness of about 600 μm was used. A piezoresistive element was manufactured by patterning with a photoresist and implanting boron into the silicon layer at 1 to 3 × 10 18 atoms / cm 3 , and wiring connected to the piezoresistive element was formed using a metal sputtering and dry etching apparatus. The flexible portion 13, the weight portion 11, and the support portion 12 were formed on the silicon layer by using a photolithography technique and a dry etching apparatus. Since the silicon oxide layer serves as an etching stopper, only the silicon layer is etched. The SOI wafer was bonded to the dummy substrate with the piezo element face down, and about 600 μm of the silicon plate was etched in plasma into which SF 6 and oxygen were introduced. After the substrate on which the flexible portion 13, the weight portion 11, and the support portion 12 were formed was separated into chips by a cutting machine, the adhesive resin was dissolved using a solvent, and the acceleration sensor chip 100 was removed from the dummy substrate. In order to obtain a highly sensitive acceleration sensor, the dimensions of the flexible portion 13 are very thin and flat with a length of 500 μm, a width of 110 μm, and a thickness of about 10 μm. The weight part 11 has a side length of 1000 μm, the support part 12 has a width of 400 μm, and the external shape of the acceleration sensor chip 100 is 3 mm square and about 0.6 mm thick.
[0018]
From the development shown in FIG. 1, the procedure for mounting the sensor is roughly as follows. As shown in FIG. 3a), adhesive 71 mixed with hard plastic spheres is applied to the surfaces of the four corners of the support portion 12 of the acceleration sensor chip 100, and the upper regulating plate 21 is fixed at an interval of 15 μm. The acceleration sensor chip with the upper regulating plate 21 is applied to the four inner bottom surfaces of the protective case 2 at the positions corresponding to the four corners of the acceleration sensor chip support portion shown in 3b) by applying an adhesive 7 kneaded with hard plastic balls. 100 was installed and secured. Next, the terminal 14 of the acceleration sensor chip 100 and the terminal 5 of the protective case 2 were connected by a wire 4. The wire was welded with an ultrasonic bonder using a bare gold wire of φ25 μm. Finally, the lid 3 is bonded with low melting point glass or the like to complete the acceleration sensor.
[0019]
In the present invention manufactured as described above, the acceleration sensor chip 100 is formed on the front surface and the back surface of the support portion by the silicon rubber adhesives 71 and 7 mixed with hard plastic balls, respectively, and the upper regulating plate 21 and It is fixed to the protective case 2. That is, the state of adhesion by the silicone rubber-based resin can be seen only in the BB ′ cross section of FIG. 1 and is as shown in the cross sectional view of FIG. Thus, when it sees from the flexible part 13, the slightly remaining stress was disperse | distributed uniformly by adhering in a line symmetrical and point symmetrical position. In addition, regarding the adhesion area of the resin at this time, the acceleration sensor chip 100 and the upper regulating plate 21 are peeled off even when a large impact force is applied, and an adhesion area that leaves only a stress that does not significantly affect the characteristics. The application amount of the resin was controlled so as to obtain a bonding area where an adhesive strength without a problem could be obtained. FIG. 4 shows the relationship between the adhesive area of the resin and the sensitivity. This figure also shows the experimental results using epoxy resin for reference in addition to silicon rubber resin.
[0020]
FIG. 4 shows the result of mounting the acceleration sensor chip 100 and measuring the sensitivity while changing the resin bonding areas at the four positions of the support portion 12 to be substantially the same, and mounting the acceleration sensor chip 100 unbonded (suspended by a gold wire). It is shown in the graph together with the result of sensitivity measurement in the lowered state. Experiments were performed using a resin mixed with 10 wt% of hard plastic balls. When the resin adhesion area became 20% of the area of the support 12, the sensitivity decreased by about 20%, but it was still within the allowable range. On the other hand, when an epoxy resin was used, the sensitivity was further lowered by about 20% compared to the case of a silicon rubber resin, and it was found that the influence of stress was too great to obtain high sensitivity. As described above, the reason that the sensitivity is lowered depending on the area of the adhesive resin is considered to be that the tensile stress is applied to the flexible portion 13 due to the contraction stress when the resin is cured, and the weight portion 11 becomes difficult to move. Further, if the resin bonding areas at the four locations of the support portion 12 are 5% or more of the support portion area, the acceleration sensor chip 100 and the upper regulating plate 21 will not be peeled even when a large impact force of 1000 G or more is applied. There was no problem with impact resistance. If the resin adhesion area is increased, the impact resistance is proportionally increased. Therefore, the adhesion area may be determined based on the required impact resistance, but it is desirable to select the minimum adhesion area from the viewpoint of lowering the sensitivity.
[0021]
In the above experiment, the mixing ratio of the hard plastic spheres was 10 wt%. The purpose of the plastic spheres is to accurately control the gap between the upper regulating plate 21 and the inner bottom surface of the protective case 2 and the acceleration sensor chip 100. Therefore, if one or more plastic spheres are mixed per one part of the adhesive resin, there is no problem in practice, and even with a mixing ratio of 1 wt%, about 10 plastic spheres are included in the adhesive resin and function sufficiently. Moreover, the upper limit of the mixing ratio is sufficient if sufficient adhesive strength with the upper regulating plate 21 and the protective case 2 is obtained, and there was no problem even with a mixing ratio of 40 wt%.
[0022]
Furthermore the temperature drift, for the above-mentioned linear expansion coefficient shown in Table 2 is 3.2 × 10 -6 and 7.2X10 -6 regulating plate glass (former price over 30 times the latter price), silicone rubber resin The temperature drift was measured with an adhesion area of 20%. In the temperature range of −40 to 85 ° C., both glasses have a sensitivity temperature drift of about 0.1% / ° C. (room temperature sensitivity ratio) and an offset voltage temperature drift of about 0.6% / ° C. (room temperature sensitivity ratio). It was equivalent. Thus, according to the present invention, the influence of the difference in the linear expansion coefficient of the regulating plate glass can be almost eliminated, and an inexpensive material can be used.
[0023]
Next, another embodiment according to the present invention is shown in FIGS. Both figures are plan views of the front surface and the back surface of the acceleration sensor chip showing the application positions of the silicon rubber resins 7 and 71 corresponding to FIG. The same parts are given the same reference for easy understanding. 5a) and 6a), the bonding position of the upper regulating plate 21 and the bonding position of the acceleration sensor chip 100 to the protective case 2 are the central parts of the four sides of the support part 12 to which the flexible part 13 is connected. Is. 5b) and FIG. 6b), in the case where the adherable portion is two connecting portions with the support portion 12 of the flexible portion 13, FIG. 5c) and FIG. 6c) are the same as those in the first embodiment and FIG. FIG. 6 shows a case where resin bonding is performed at eight locations including FIG. In any of these cases, even when the glass plate is inexpensive and has a large linear expansion coefficient of about 7 × 10 −6 as the restricting plate 21 as in FIG. 1, or when the protective case 2 is the lower restricting plate, the sensitivity, etc. A small and high-performance acceleration sensor was obtained. The shape of the adhesive has been described as an elliptical shape, but it may be any shape such as a circle, a triangle, a quadrangle, or an indefinite shape as long as it can be stably controlled to a substantially constant shape.
[0024]
Although the above description has been described using a piezoresistive acceleration sensor, there is a capacitive type as an acceleration detection method, and the effect of the present invention is the same in this case. In the case of the capacitance type, the parallel plate side on which the counter electrode that forms the capacitor is opposed to the working electrode on the flexible portion side has the function of the upper regulating plate. The counter electrode side needs to be firmly fixed to the sensor chip by a method such as anodic bonding. However, the lower restricting plate is the same as that of the piezoresistive type, and either a dedicated lower restricting plate is installed or the inner bottom surface of the protective case is used as the lower restricting plate. That is, even in the case of the capacitance type, by applying the present invention to the adhesion between the acceleration sensor chip and the lower regulating plate or the protective case, it is possible to minimize a decrease in sensitivity, an increase in offset voltage, a deterioration in temperature characteristics, and the like. It can be pushed to the limit.
[0025]
【The invention's effect】
As described above, according to the present invention, even if an inexpensive material having a different linear expansion coefficient is used for the regulation plate and an adhesive resin having a significantly different linear expansion coefficient is used, the influence on the characteristics is minimized. It is possible to provide a small, thin, high-performance, low-cost acceleration sensor.
[Brief description of the drawings]
FIG. 1 is a development view of an acceleration sensor of the present invention.
FIG. 2 is a cross-sectional view taken along the line BB ′ of the acceleration sensor of FIG.
3 is a plan view showing a state in which a silicon rubber-based resin is applied to the acceleration sensor chip in FIG. 1. FIG.
FIG. 4 is a graph showing the relationship between adhesive resin area and sensitivity.
FIG. 5 is a front view showing a resin application position on the surface of an acceleration sensor chip according to another embodiment of the present invention.
FIG. 6 is a front view showing a resin application position on the back surface of an acceleration sensor chip according to another embodiment of the present invention.
FIG. 7 is a cross-sectional view of a conventional acceleration sensor.
[Explanation of symbols]
1 Adhesive for protective case lid, 2 protective case, 3 protective case lid,
4 wires, 5 electrode terminals, 6 external terminals, 7, 71 adhesives,
11 weight part, 12 support part, 13 flexible part, 14 electrode pad,
15 piezoresistive elements, 21 upper regulating plate, 50 acceleration sensor,
51 Upper restriction plate, 52 support part, 53 lower restriction plate, 54 electrode pad,
57 adhesive material, 58 flexible part, 59 weight part, 60 piezoresistive element,
100 Acceleration sensor chip.

Claims (1)

チップ中央に錘部、周辺に支持部があり両者を薄肉の可撓部で接続し、可撓部上に複数個のピエゾ抵抗素子から成る加速度検出部を配した加速度センサチップを上下の規制板に、あるいは、下部規制板を兼ねる保護ケースと上部規制板とに固着してなる加速度センサであって、加速度センサチップを可撓部に対して線対称となる支持部の表面および裏面の偶数箇所において、ヤング率が10−2GPaより小さいシリコンゴム系接着材を用い、接着面積と接着厚みを制御するためシリコンゴム系接着材の重量比で1%以上40%以下の球形プラスティックスペーサを含み、球形のプラスティックスペーサを介して、線膨張係数が2x10−6より大きく8x10−6より小さい上下の規制板に、あるいは、下部規制板を兼ねる保護ケースと上部規制板とに、支持部の表面と裏面は略同一の接着部位、略同一の接着面積で、シリコンゴム系接着樹脂の合計接着面積が支持部面積の5%〜50%になるように固着し、加速度センサ構成材料の線熱膨張係数の差で発生する応力による加速度センサ特性ばらつきを最小限にしたことを特徴とする加速度センサ。Upper and lower restricting plates with an acceleration sensor chip having a weight part at the center of the chip and a support part at the periphery, connected by a thin flexible part, and an acceleration detection part composed of a plurality of piezoresistive elements arranged on the flexible part. Or an acceleration sensor formed by adhering to a protective case that also serves as a lower restricting plate and an upper restricting plate, and the acceleration sensor chip is an even number on the front and back surfaces of the support portion that is axisymmetric with respect to the flexible portion. In place, using a silicone rubber adhesive with a Young's modulus smaller than 10 −2 GPa, including a spherical plastic spacer with a weight ratio of silicon rubber adhesive of 1% to 40% in order to control the bonding area and thickness Protective case serving as upper and lower regulating plates having a linear expansion coefficient larger than 2 × 10 −6 and smaller than 8 × 10 −6 or also serving as a lower regulating plate via a spherical plastic spacer And the upper regulating plate so that the front and back surfaces of the support portion have substantially the same adhesion site and substantially the same adhesion area, and the total adhesion area of the silicon rubber-based adhesive resin is 5% to 50% of the support portion area. An acceleration sensor characterized in that variation in acceleration sensor characteristics due to stress generated by a difference in linear thermal expansion coefficient of the material constituting the acceleration sensor is minimized.
JP2003000393A 2003-01-06 2003-01-06 Acceleration sensor Expired - Fee Related JP4089961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003000393A JP4089961B2 (en) 2003-01-06 2003-01-06 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003000393A JP4089961B2 (en) 2003-01-06 2003-01-06 Acceleration sensor

Publications (2)

Publication Number Publication Date
JP2004212246A JP2004212246A (en) 2004-07-29
JP4089961B2 true JP4089961B2 (en) 2008-05-28

Family

ID=32818716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003000393A Expired - Fee Related JP4089961B2 (en) 2003-01-06 2003-01-06 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP4089961B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121560A (en) * 2009-11-19 2015-07-02 大日本印刷株式会社 Sensor device and manufacturing method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153519A (en) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd Acceleration sensor
JP2007035965A (en) * 2005-07-27 2007-02-08 Oki Electric Ind Co Ltd Semiconductor device, adhesive material and their manufacturing methods
JP2009222687A (en) * 2008-03-19 2009-10-01 Kyocera Corp Acceleration sensor device and manufacturing method thereof
JP5147491B2 (en) * 2008-03-28 2013-02-20 ラピスセミコンダクタ株式会社 Acceleration sensor device
JP2011128140A (en) 2009-11-19 2011-06-30 Dainippon Printing Co Ltd Sensor device and method of manufacturing the same
CN112938888B (en) * 2021-02-01 2023-06-16 南京理工大学 MEMS sensor chip packaging structure and method with stress adjustment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212663U (en) * 1988-07-06 1990-01-26
JPH05333056A (en) * 1992-05-27 1993-12-17 Hitachi Ltd Acceleration sensor
JP3517428B2 (en) * 1993-03-31 2004-04-12 株式会社日立製作所 Capacitive acceleration sensor
JP3117581B2 (en) * 1993-06-30 2000-12-18 三洋電機株式会社 Manufacturing method of semiconductor acceleration sensor
JPH0727786A (en) * 1993-07-14 1995-01-31 Kansei Corp Semiconductor-type acceleration sensor
JPH0823563B2 (en) * 1993-09-07 1996-03-06 日本電気株式会社 Method of manufacturing semiconductor acceleration sensor
JP2658949B2 (en) * 1995-02-23 1997-09-30 日本電気株式会社 Semiconductor acceleration sensor
JP3223849B2 (en) * 1996-08-09 2001-10-29 株式会社デンソー Semiconductor acceleration sensor
JP2001337106A (en) * 2000-05-26 2001-12-07 Matsushita Electric Works Ltd Semiconductor acceleration sensor
JP2002267684A (en) * 2001-03-14 2002-09-18 Denso Corp Semiconductor-type dynamic quantity sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121560A (en) * 2009-11-19 2015-07-02 大日本印刷株式会社 Sensor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004212246A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
US6060336A (en) Micro-electro mechanical device made from mono-crystalline silicon and method of manufacture therefore
KR100879959B1 (en) Acceleration sensor
US7541214B2 (en) Micro-electro mechanical device made from mono-crystalline silicon and method of manufacture therefore
US4882933A (en) Accelerometer with integral bidirectional shock protection and controllable viscous damping
US20170176186A1 (en) Angular velocity sensor having support substrates
KR101174680B1 (en) Acceleration sensor and method of producing the same
US7469590B2 (en) Package structure of pressure sensor
US7100448B2 (en) Accelerometer
JP4335545B2 (en) Sensor for detecting both pressure and acceleration and manufacturing method thereof
KR100817736B1 (en) Acceleration sensor
WO2016185813A1 (en) Multi-axis tactile sensor and method for manufacturing multi-axis tactile sensor
JP4089961B2 (en) Acceleration sensor
JP6258977B2 (en) Sensor and manufacturing method thereof
JP4379858B2 (en) Acceleration sensor
JP4812000B2 (en) Mechanical quantity sensor
EP3095755A1 (en) Monolithic fabrication of thermally isolated microelectromechanical system (mems) devices
US11111132B2 (en) Micro electromechanical systems (MEMS)inertial sensor
JP2006250760A (en) Sensor
JP4269292B2 (en) 3-axis acceleration sensor
KR101753087B1 (en) A microelectromechanical device and a method of manufacturing
US20170101307A1 (en) Semiconductor package
JP2010139313A (en) Method of manufacturing sensor device
JP2002267684A (en) Semiconductor-type dynamic quantity sensor
JP2010197286A (en) Acceleration sensor and method of manufacturing acceleration sensor
JP2009229450A (en) Acceleration sensor device and method for manufacturing acceleration sensor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060130

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees