JP4085574B2 - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
JP4085574B2
JP4085574B2 JP2000397144A JP2000397144A JP4085574B2 JP 4085574 B2 JP4085574 B2 JP 4085574B2 JP 2000397144 A JP2000397144 A JP 2000397144A JP 2000397144 A JP2000397144 A JP 2000397144A JP 4085574 B2 JP4085574 B2 JP 4085574B2
Authority
JP
Japan
Prior art keywords
group
light emitting
light
emitting element
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000397144A
Other languages
Japanese (ja)
Other versions
JP2001257077A5 (en
JP2001257077A (en
Inventor
剛 富永
大輔 北澤
明子 高野
清一郎 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000397144A priority Critical patent/JP4085574B2/en
Publication of JP2001257077A publication Critical patent/JP2001257077A/en
Publication of JP2001257077A5 publication Critical patent/JP2001257077A5/ja
Application granted granted Critical
Publication of JP4085574B2 publication Critical patent/JP4085574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/04Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups one >CH- group, e.g. cyanines, isocyanines, pseudocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/004Diketopyrrolopyrrole dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気エネルギーを光に変換できる素子であって、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機、光信号発生器などの分野に利用可能な発光素子に関する。
【0002】
【従来の技術】
陰極から注入された電子と陽極から注入された正孔が両極に挟まれた有機蛍光体内で再結合する際に発光するという有機積層薄膜発光素子の研究が近年活発に行われている。この素子は、薄型、低駆動電圧下での高輝度発光、蛍光材料を選ぶことによる多色発光が特徴であり注目を集めている。
【0003】
この研究は、コダック社のC.W.Tangらが有機積層薄膜素子が高輝度に発光することを示して以来(Appl.Phys.Lett.51(12)21,p.913,1987)、多くの研究機関が検討を行っている。コダック社の研究グループが提示した有機積層薄膜発光素子の代表的な構成は、ITOガラス基板上に正孔輸送性のジアミン化合物、発光層であるトリス(8−キノリノラト)アルミニウム錯体、そして陰極としてMg:Agを順次設けたものであり、10V程度の駆動電圧で1000cd/mの緑色発光が可能であった。現在の有機積層薄膜発光素子は、上記の素子構成要素の他に電子輸送層を設けているものなど構成を変えているものもあるが、基本的にはコダック社の構成を踏襲している。
【0004】
多色発光の中では緑色発光材料の研究が最も進んでおり、現在は赤色発光材料と青色発光材料において、耐久性に優れ十分な輝度と色純度特性を示すものが望まれ、特性向上を目指して鋭意研究がなされている。
【0005】
赤色発光材料としては、ビス(ジイソプロピルフェニル)ペリレンなどのペリレン系、ペリノン系、ポルフィリン系、Eu錯体(Chem.Lett.,1267(1991))などが挙げられる。
【0006】
また、赤色発光を得る手法として、ホスト材料の中に微量の赤色蛍光材料をドーパントとして混入させる方法も検討されている。ホスト材料としては、トリス(8−キノリノラト)アルミニウム錯体を始めとするキノリノール誘導体の金属錯体、ビス(10−ベンゾキノリノラト)ベリリウム錯体、ジアリールブタジエン誘導体、スチルベン誘導体、ベンズオキサゾール誘導体、ベンゾチアゾール誘導体などがあげられ、その中にドーパントとして4−(ジシアノメチレン)−2−メチル−6−(p−ジメチルアミノスチリル)−4H−ピラン、金属フタロシアニン(MgPc、AlPcClなど)化合物、スクアリリウム化合物、ビオラントロン化合物を存在させることによって赤色発光を取り出していた。
【0007】
【発明が解決しようとする課題】
しかし、従来技術に用いられる発光材料(ホスト材料、ドーパント材料)には、発光効率が低く消費電力が高いものや、耐久性が低く素子寿命の短いものが多く、また、溶液状態では強い蛍光強度を有していても薄膜状態では濃度消光やエキサイプレックスあるいはエキサイマー形成により蛍光強度が著しく減少し、発光素子に適用した際に高輝度発光が得られないものが多かった。
【0008】
特に赤色発光材料(ホスト材料およびドーパント材料)に関しては、色純度と輝度が両立したものが極めて少ないことが大きな問題であった。
【0009】
本発明は、かかる問題を解決し、電気エネルギーの利用効率が高く、高輝度かつ高色純度の発光素子を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明は陽極と陰極の間に発光物質が存在し、電気エネルギーにより発光する素子であって、該素子は発光ピーク波長が580nm以上720nm以下で発光し、少なくとも下記一般式(1)に示す化合物と下記一般式(6)で表されるピロメテン骨格を有する化合物を含むことを特徴とする発光素子である。
【0011】
【化

Figure 0004085574
【0012】
(ここで、Aは下記一般式(4)に示すジケトピロロ[3,4−c]ピロール誘導体、Bは下記一般式()に示す骨格、nは2である。)
【0013】
【化
Figure 0004085574
【0014】
(ここで、R13およびR14は同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アリール基、シリル基の中から選ばれる。βは前記Bとの連結部位を示す。)
【0015】
【化
Figure 0004085574
【0016】
(ここで、R 〜R 12 は同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アリール基、複素環基、ハロゲン、アミノ基、隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。αは前記Aとの連結部位を示す。)
【0017】
【化
Figure 0004085574
【0018】
(ここで、R22〜R28のうち少なくとも一つは芳香環を含むかあるいは隣接置換基との間に縮合芳香環を形成し、残りは水素である。R29およびR30はフッ素であり、Xは炭素である。)
【0019】
【発明の実施の形態】
本発明において陽極は、光を取り出すために透明であれば酸化錫、酸化インジウム、酸化錫インジウム(ITO)などの導電性金属酸化物、あるいは金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマなど特に限定されるものでないが、ITOガラスやネサガラスを用いることが特に望ましい。透明電極の抵抗は素子の発光に十分な電流が供給できればよいので限定されないが、素子の消費電力の観点からは低抵抗であることが望ましい。例えば300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常100〜300nmの間で用いられることが多い。また、ガラス基板はソーダライムガラス、無アルカリガラスなどが用いられ、また厚みも機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用できる。ITO膜形成方法は、電子線ビーム法、スパッタリング法、化学反応法など特に制限を受けるものではない。
【0020】
陰極は、電子を本有機物層に効率良く注入できる物質であれば特に限定されないが、一般に白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどがあげられるが、電子注入効率をあげて素子特性を向上させるためにはリチウム、ナトリウム、カリウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかし、これらの低仕事関数金属は、一般に大気中で不安定であることが多く、例えば、有機層に微量のリチウムやマグネシウム(真空蒸着の膜厚計表示で1nm以下)をドーピングして安定性の高い電極を使用する方法が好ましい例として挙げることができるが、フッ化リチウムのような無機塩の使用も可能であることから特にこれらに限定されるものではない。更に電極保護のために白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニア、窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子などを積層することが好ましい例として挙げられる。これらの電極の作製法も抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティング、コーティングなど導通を取ることができれば特に制限されない。
【0021】
本発明における発光物質とは、1)正孔輸送層/発光層、2)正孔輸送層/発光層/電子輸送層、3)発光層/電子輸送層、4)正孔輸送層/発光層/正孔阻止層、5)正孔輸送層/発光層/正孔阻止層/電子輸送層、6)発光層/正孔阻止層/電子輸送層そして、7)以上の組合わせ物質を一層に混合した形態のいずれであってもよい。即ち、素子構成としては、上記1)〜6)の多層積層構造の他に7)のように発光材料単独または発光材料と正孔輸送材料や電子輸送材料を含む層を一層設けるだけでもよい。さらに、本発明における発光物質は自ら発光するもの、その発光を助けるもののいずれにも該当し、発光に関与している化合物、層などを指すものである。
【0022】
正孔輸送層は正孔輸送性物質単独または二種類以上の物質を積層、混合するか正孔輸送性物質と高分子結着剤の混合物により形成され、正孔輸送性物質としてはN,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミン、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミンなどのトリフェニルアミン類、ビス(N−アリルカルバゾール)またはビス(N−アルキルカルバゾール)類、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、オキサジアゾール誘導体やフタロシアニン誘導体、ポルフィリン誘導体に代表される複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾール、ポリシランなどが好ましいが、素子作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されるものではない。
【0023】
発光層とは実際に発光物質が形成される層であり、本発明の発光素子は電気エネルギーによりピーク波長が580nm以上720nm以下で発光する。580nmより小さいと、ピーク幅が狭くても色純度の良好な赤色発光を得ることが出来ず、720nmより大きいと、視感度が悪くなるので、効率良い高輝度赤色発光を得ることができない。また、本発明の発光材料は下記一般式(1)に示す化合物と蛍光ピーク波長が580nm以上720nm以下の有機蛍光物質を含み、いずれもドーパント材料としてもホスト材料としても使用することができるが、下記一般式(1)に示す化合物をホスト材料とし、有機蛍光物質をドーパント材料として用いるドーピング法を好ましい方法として挙げることができる。
【0024】
【化
Figure 0004085574
【0025】
ここで、Aは有機蛍光性骨格、BはAに対する等方回転がA−B間および/またはB−B間の立体反発により制限されている置換基、nは1〜4のいずれかの自然数である。
【0026】
一般式(1)のAは所望の発光色に応じて選択することができる。高輝度発光を得るためには、特に限定されるものではないが、例えばナフタレン、アントラセン、フェナンスレン、ピレン、トリフェニレン、ペリレン、トラキセン、フルオレン、インデン、9,9’−スピロビフルオレン、ジスチリルベンゼン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、などの芳香族炭化水素化合物や、フラン、ピロール、チオフェン、シロール、9−シラフルオレン、9,9’−スピロビシラフルオレン、トリアゾール、オキサジアゾール、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、カルバゾール、ベンズオキサゾール、ベンズイミダゾール、ベンズチアゾール、ベンズジオキサゾール、ベンズジイミダゾール、ベンズジチアゾール、フェナンスロイミダゾール、フェナンスロオキサゾール、イミダゾピリジン、フェナントロリン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、ピリミジン、チオキサンテン、アルダジン、クマリン、フタルイミド、ナフタルイミド、ペリノン、ピリミドピリミジンなどの芳香族複素環化合物が、蛍光量子収率が高いため好適に用いることができる。さらに、キノリノールやベンズキノリノール、ベンズオキサゾール、ベンズイミダゾール、トリアゾール、アゾメチンなどを配位子とした各種の金属錯体も一般式(1)のAとして用いてもかまわない。
【0027】
一般式(1)のBは、一般式(1)のAの優れた蛍光特性を薄膜状態において保持し、発光素子において高輝度発光させる役割を担う置換基である。すなわちBは、Aに対する等方回転がA−B間またはB−B間の立体反発により制限されてしまう置換基を形成しているため、薄膜状態において励起エネルギーを置換基の回転により熱失活させてしまう確率を減少させ、蛍光量子収率が低下するのを防ぐ。また、BはAに対してねじれるために発光材料分子どうしのスタッキングを防ぎ、濃度消光やエキサイプレックスあるいはエキサイマー形成を抑制することができる。これらの結果、発光素子において高輝度かつ高色純度の発光を得ることができる。この等方回転が制限されていることは、分子模型や分子計算で容易に確認することができる。
【0028】
上記等方回転はA−B間またはB−B間いずれの立体反発によって制限されていても良いが、より高輝度な発光を得るためにはA−B間の立体反発により制限されている方が好ましい。このような効果を有するBとして、下記一般式(2)に示す骨格を有している置換基が好適に用いられる。
【0029】
【化10
Figure 0004085574
【0030】
ここで、R〜Rは同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカプト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、ハロアルカン、ハロアルケン、ハロアルキン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。但し、RおよびRの少なくとも一つは水素以外の置換基であるか、隣接置換基との間に縮合環または脂肪族環を形成する。αは前記Aとの連結部位を示す。
【0031】
これらの置換基の内、アルキル基とは例えばメチル基、エチル基、プロピル基、ブチル基などの飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、シクロアルキル基とは例えばシクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、アラルキル基とは例えばベンジル基、フェニルエチル基などの脂肪族炭化水素を介した芳香族炭化水素基を示し、脂肪族炭化水素と芳香族炭化水素はいずれも無置換でも置換されていてもかまわない。また、アルケニル基とは例えばビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、シクロアルケニル基とは例えばシクロペンテニル基、シクロペンタジエニル基、シクロヘキセン基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、アルキニル基とは例えばアセチレニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、アルコキシ基とは例えばメトキシ基などのエーテル結合を介した脂肪族炭化水素基を示し、脂肪族炭化水素基は無置換でも置換されていてもかまわない。また、アルキルチオ基とはアルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。また、アリールエーテル基とは例えばフェノキシ基などのエーテル結合を介した芳香族炭化水素基を示し、芳香族炭化水素基は無置換でも置換されていてもかまわない。また、アリールチオエーテル基とはアリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。また、アリール基とは例えばフェニル基、ナフチル基、ビフェニル基、フェナントリル基、ターフェニル基、ピレニル基などの芳香族炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、複素環基とは例えばフリル基、チエニル基、オキサゾリル基、ピリジル基、キノリル基、カルバゾリル基などの炭素以外の原子を有する環状構造基を示し、これは無置換でも置換されていてもかまわない。ハロゲンとはフッ素、塩素、臭素、ヨウ素を示す。ハロアルカン、ハロアルケン、ハロアルキンとは例えばトリフルオロメチル基などの、前述のアルキル基、アルケニル基、アルキニル基の一部あるいは全部が、前述のハロゲンで置換されたものを示し、残りの部分は無置換でも置換されていてもかまわない。アルデヒド基、カルボニル基、エステル基、カルバモイル基、アミノ基には脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環などで置換されたものも含み、さらに脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環は無置換でも置換されていてもかまわない。シリル基とは例えばトリメチルシリル基などのケイ素化合物基を示し、これは無置換でも置換されていてもかまわない。シロキサニル基とは例えばトリメチルシロキサニル基などのエーテル結合を介したケイ素化合物基を示し、これは無置換でも置換されていてもかまわない。隣接置換基との間に形成される縮合環または脂肪族環は無置換でも置換されていてもかまわない。
【0032】
一般式(1)のRおよびRの少なくとも一つは水素以外の置換基であるか、隣接置換基との間に縮合環または脂肪族環を形成するため、上記Aとの間に立体反発が生じ、BのAに対する等方回転が制限される。
【0033】
さらに、安定して高輝度発光を得るためには、上記RおよびRの少なくとも一つが隣接置換基との間に縮合環を形成した方が耐久性に優れるためより好ましい。したがって前記Bとして、下記一般式(3)に示す骨格を有している置換基がより好適に用いられる。
【0034】
【化1
Figure 0004085574
【0035】
ここで、R〜R12は同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカプト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、ハロアルカン、ハロアルケン、ハロアルキン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。αは前記Aとの連結部位を示す。これらの置換基の説明は上述したものと同じである。
【0036】
上記Bの好適な例として、特に限定されるものではないが、具体的には下記のような構造が挙げられる。
【0037】
【化1
Figure 0004085574
【0038】
【化1
Figure 0004085574
【0039】
また、本発明では赤色発光を得るために蛍光ピーク波長が580nm以上720nm以下の有機蛍光物質が用いられるが、具体的には従来から知られている、テリレンなどの芳香族炭化水素の縮合環誘導体、ピリジノチアジアゾールやピラゾロピリジン、ジケトピロロピロールなどの縮合複素環誘導体、ビス(ジイソプロピルフェニル)ペリレンテトラカルボン酸イミドなどのナフタルイミド誘導体、ペリノン誘導体、アセチルアセトンやベンゾイルアセトンとフェナントロリンなどを配位子とするEu錯体などの希土類錯体、4−(ジシアノメチレン)−2−メチル−6−(p−ジメチルアミノスチリル)−4H−ピランやその類縁体、マグネシウムフタロシアニン、アルミニウムクロロフタロシアニンなどの金属フタロシアニン誘導体、亜鉛ポルフィリンなどの金属ポルフィリン誘導体、チオフェン誘導体、ピロール誘導体、ローダミン化合物、デアザフラビン誘導体、クマリン誘導体、オキサジン化合物、フェノキサジン誘導体、フェノキサゾン誘導体、キナクリドン誘導体、ベンゾチオキサンテンやその類縁体、ジシアノエテニルアレーン誘導体などを用いることが出来るが特にこれらに限定されるものではない。
【0040】
さらに、高輝度かつ高色純度の赤色発光を得るために発光材料として前記一般式(1)のAが下記一般式(4)に示すジケトピロロ[3,4−c]ピロール骨格を挙げることができる。
【0041】
【化1
Figure 0004085574
【0042】
ここで、R13およびR14は同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカプト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、ハロアルカン、ハロアルケン、ハロアルキン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基の中から選ばれる。βは前記Bとの連結部位を示す。これらの置換基の説明は上述したものと同じである。
【0043】
上記化合物の好適な例として、特に限定されるものではないが、以下のような化合物が挙げられる。
【0044】
【化1
Figure 0004085574
【0045】
【化1
Figure 0004085574
【0046】
【化1
Figure 0004085574
【0047】
優れた色純度特性を持つ赤色発光を得るために、前記有機蛍光物質として下記一般式(5)に示すピロメテン骨格を有する化合物もしくはその金属錯体を好適に用いることができる。
【0048】
【化1
Figure 0004085574
【0049】
ここで、R15〜R21のうち少なくとも一つは芳香環を含むかあるいは隣接置換基との間に縮合環を形成し、残りは水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカプト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、ハロアルカン、ハロアルケン、ハロアルキン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。Xは炭素または窒素であるが、窒素の場合には上記R21は存在しない。金属錯体の金属は、ホウ素、ベリリウム、マグネシウム、クロム、鉄、コバルト、ニッケル、銅、亜鉛、白金から選ばれる少なくとも一種である。これらの置換基の説明は上述したものと同じである。
【0050】
さらに、高輝度特性を得るためには、蛍光量子収率が高いものがより好ましい。そこで、前記ピロメテン骨格を有する化合物の金属錯体として、下記一般式(6)で表される化合物をより好適に用いることができる。
【0051】
【化19
Figure 0004085574
【0052】
ここで、R22〜R28のうち少なくとも一つは芳香環を含むかあるいは隣接置換基との間に縮合芳香環を形成し、残りは水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカプト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、ハロアルカン、ハロアルケン、ハロアルキン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。R29およびR30は同じでも異なっていてもよく、ハロゲン、水素、アルキル、アリール、複素環基から選ばれる。Xは炭素または窒素であるが、窒素の場合には上記R28は存在しない。これらの置換基の説明は上述したものと同じである。
【0053】
上記のピロメテン骨格を有する化合物の金属錯体の好適な例として、特に限定されるものではないが、具体的には下記のような構造が挙げられる。
【0054】
【化20
Figure 0004085574
【0055】
【化2
Figure 0004085574
【0056】
【化2
Figure 0004085574
【0057】
ホスト材料からドーパント材料へのエネルギー移動には、ホスト材料の蛍光スペクトルとドーパント材料の吸収スペクトル(励起スペクトル)の重なりが必要である。また前記ピロメテン骨格を有する化合物もしくはその金属錯体のように色純度に優れたドーパント材料のストークスシフト(励起スペクトルのピークと蛍光スペクトルのピークの差)は数〜数十nmと狭く、580nm以上720nm以下のドーパント材料からの高色純度赤色発光を得ようとすると、ドーパント材料の吸収スペクトル(励起スペクトル)は黄色、黄橙色、橙色、赤橙色、赤色領域(540nm以上720nm以下)になる。ホスト材料の蛍光スペクトルが、黄色よりも短波長側の黄緑色、緑色、青緑色、青色、青紫色、紫色領域にありスペクトルの重なりが小さいと、エネルギー移動が速やかに行われず、ドーパント材料からの発光が得られなかったり、得られたとしてもホスト材料からの発光が残り、白色化するなど、高色純度の赤色発光が得られない。
【0058】
上記の理由により、580nm以上720nm以下でドーパント材料が高輝度、高色純度で発光するには、ホスト材料は蛍光ピーク波長が540nm以上720nm以下であることがより好ましい。目安としては、黄色、黄橙色、橙色、赤橙色、赤色などの蛍光を有するものが該当する。したがって、一般式(1)をホスト材料として用いる場合、一般式(1)の黄色、黄橙色、橙色、赤橙色、赤色の蛍光を有することが好ましい。この場合、一般式(1)のA自体が黄色〜赤色の蛍光を有していてもよいし、Bの置換基の効果により一般式(1)が黄色〜赤色の蛍光を有するようになっていてもよい。
【0059】
ドーピング量は、通常多すぎると濃度消光現象が起きるため、通常ホスト材料に対して10重量%以下で用いることが好ましく、更に好ましくは2%以下である。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着しても良い。また、前記ピロメテン骨格を有する化合物もしくはその金属錯体は、極めて微量でも発光することから、ホスト材料に分散されているのみならず、微量の前記ピロメテン骨格を有する化合物もしくはその金属錯体をホスト材料にサンドイッチ状に挟んで使用することも可能である。この場合、一層でも二層以上ホスト材料と積層しても良い。さらに、ホストおよびドーパント材料は2種類以上の化合物から構成されていても良い。
【0060】
また、発光材料に添加するドーパント材料は、前記ピロメテン骨格を有する化合物もしくはその金属錯体一種のみに限る必要はなく、本発明の化合物を複数混合して用いたり、既知のドーパント材料の一種類以上を本発明の化合物と混合して用いてもよい。
【0061】
本発明における電子輸送性材料としては、電界を与えられた電極間において負極からの電子を効率良く輸送することが必要で、電子注入効率が高く、注入された電子を効率良く輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。このような条件を満たす物質として、トリス(8−キノリノラト)アルミニウム錯体に代表されるキノリノール誘導体金属錯体、トロポロン金属錯体、フラボノール金属錯体、ペリレン誘導体、ペリノン誘導体、ナフタレン、クマリン誘導体、オキサジアゾール誘導体、アルダジン誘導体、ビススチリル誘導体、ピラジン誘導体、フェナントロリン誘導体、シロール誘導体、キノキサリン誘導体、ホウ素化合物などが挙げられるが特に限定されるものではない。これらの電子輸送材料は単独でも用いられるが、異なる電子輸送材料と積層または混合して使用しても構わない。
【0062】
正孔阻止層とは、電界を与えられた電極間において陽極からの正孔が陰極からの電子と再結合することなく移動するのを防止するための層であり、各層を構成する材料の種類によっては、この層を挿入することにより正孔と電子の再結合確率が増加し、発光効率の向上が望める場合がある。具体的にはフェナントロリン誘導体やトリアゾール誘導体、キノリノール金属錯体などが挙げられるが、素子作製に必要な薄膜を形成し、陽極からの正孔の移動を効率よく阻止できる化合物であれば特に限定されるものではない。これらの正孔阻止材料は単独でも用いられるが、異なる電子輸送材料と積層または混合して使用しても構わない。
【0063】
以上の正孔輸送層、発光層、電子輸送層、正孔阻止層に用いられる材料は単独で各層を形成することができるが、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N−ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルフォン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリサルフォン、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。
【0064】
発光物質の形成方法は、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法など特に限定されるものではないが、通常は、抵抗加熱蒸着、電子ビーム蒸着が特性面で好ましい。層の厚みは、発光物質の抵抗値にもよるので限定することはできないが、1〜1000nmの間から選ばれる。
【0065】
綺麗な赤色表示を行わせるためには、発光スペクトルのピーク波長が580nm以上720nm以下、より好ましくは600nm以上700nm以下の範囲内であり、半値幅が100nm以下であることが重要である。発光スペクトルは、できるだけ単一ピークであることが好ましいが、場合によっては他のピークとの重なりによって複数の極大点を有したり、ピークの裾に肩が現れることもある。本発明において、ピーク波長とは発光中心波長に値する主ピークの波長であり、半値幅とはこれらピーク全体において発光中心波長の高さの半分のところのピーク幅であると定義している。
【0066】
電気エネルギーとは主に直流電流を指すが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はないが、素子の消費電力、寿命を考慮するとできるだけ低いエネルギーで最大の輝度が得られるようにするべきである。
【0067】
本発明におけるマトリクスとは、表示のための画素が格子状に配置されたものをいい、画素の集合で文字や画像を表示する。画素の形状、サイズは用途によって決まる。例えばパソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられるし、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
【0068】
本発明におけるセグメントタイプとは、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示、自動車のパネル表示などがあげられる。そして、前記マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
【0069】
また本発明の発光素子はバックライトとしても好適に用いることができる。バックライトとは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ機器、自動車パネル、表示板、標識などに使用される。特に液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式のものが蛍光灯や導光板からなっているため薄型化が困難であることを考えると本発明におけるバックライトは、薄型、軽量が特徴になる。
【0070】
【実施例】
以下、実施例および比較例をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。
【0071】
実施例1
ITO透明導電膜を150nm堆積させたガラス基板(旭硝子社製、15Ω/□、電子ビーム蒸着品)を30×40mmに切断、エッチングを行った。得られた基板をアセトン、セミコクリン56で各々15分間超音波洗浄してから、超純水で洗浄した。続いてイソプロピルアルコールで15分間超音波洗浄してから熱メタノールに15分間浸漬させて乾燥させた。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が1×10−5Pa以下になるまで排気した。抵抗加熱法によって、まず正孔輸送材料としてN,N’−ジフェニル−N,N’−(3−メチルフェニル)−1,1’−ジフェニル−4,4’−ジアミン(TPD)を50nmの厚さに蒸着し、正孔輸送層を形成した。次にホスト材料として下記に示すHを、ドーパント材料として9−ジメチルアミノ−5H−ベンゾ(a)フェノキサジン−5−オン(ジクロロメタン溶液中の蛍光ピーク波長は612nm)を用いて、ドーパント材料の濃度が1wt%になるように25nmの厚さに共蒸着して発光層を形成し、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリンを25nmの厚さに蒸着して電子輸送層を形成した。次にリチウムを0.5nmドーピングした後、銀を150nm蒸着して陰極を形成し、5×5mm角の素子を作製した。この発光素子からは、600nmに発光ピーク波長を有する発光が得られた
【0072】
化2
Figure 0004085574
【0073】
実施例
ドーパント材料として下記に示すD2(ジクロロメタン溶液中の蛍光ピーク波長は629nm)を用い、ドーパント濃度を0.3wt%とした以外は実施例と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が636nm、最高輝度が3440cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0074】
【化2
Figure 0004085574
【0075】
実施例
ホスト材料として下記に示すH3を用い、ドーパント濃度を0.85wt%とした以外は実施例と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が638nm、最高輝度が3130cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0076】
【化2
Figure 0004085574
【0077】
実施例
ホスト材料として下記に示すH4を用い、ドーパント材料の濃度を0.14wt%とした以外は実施例と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が634nm、最高輝度が3470cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0078】
【化2
Figure 0004085574
【0079】
実施例
ホスト材料として下記に示すH5を、ドーパント材料として前記D2を用いて、ドーパント材料の濃度が0.3wt%になるように15nmの厚さに共蒸着し、次にホスト材料を35nmの厚さに蒸着して発光層を形成した以外は実施例と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が638nm、最高輝度が3480cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0080】
【化27
Figure 0004085574
【0081】
実施例
正孔輸送材料として下記に示すHTM1を、ホスト材料として下記に示すH6を用い、ドーパント材料の濃度を0.37wt%、発光層と電子輸送層の厚さをそれぞれ15nmと35nmとした以外は実施例と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が635nm、最高輝度が4610cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0082】
【化28
Figure 0004085574
【0083】
実施例
ホスト材料として前記H2を、ドーパント材料として下記に示すD3(ジクロロメタン溶液中の蛍光ピーク波長は605nm)を用い、ドーパント材料の濃度を0.55wt%、発光層と電子輸送層の厚さをそれぞれ15nmと40nmとした以外は実施例と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が612nm、最高輝度が7040cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0084】
【化29
Figure 0004085574
【0085】
実施例
ドーパント材料として下記に示すD4(ジクロロメタン溶液中の蛍光ピーク波長は623nm)を用いた以外は実施例と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が628nm、最高輝度が4890cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0086】
【化3
Figure 0004085574
【0087】
実施例
ドーパント材料として下記に示すD5(ジクロロメタン溶液中の蛍光ピーク波長は606nm)を用い、ドーパント材料の濃度を0.5wt%とした以外は実施例と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が613nm、最高輝度が7480cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0088】
【化3
Figure 0004085574
【0089】
実施例1
ホスト材料として前記H3を用い、ドーパント材料の濃度を0.3wt%とした以外は実施例と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が613nm、最高輝度が5280cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0090】
実施例1
正孔輸送材料として前記HTM1を、ホスト材料として前記H2を、ドーパント材料として前記D5を用い、ドーパント材料の濃度を0.34wt%とした以外は実施例と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が612nm、最高輝度が11240cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0091】
実施例1
ホスト材料として前記H4を用いた以外は実施例と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が606nm、最高輝度が4600cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0092】
実施例1
ホスト材料として前記H6を用い、ドーパント材料の濃度を0.65wt%とした以外は実施例1と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が613nm、最高輝度が7060cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0093】
実施例1
ホスト材料として前記H2を、ドーパント材料として下記に示すD6(ジクロロメタン溶液中の蛍光ピーク波長は621nm)を用いて、ドーパント材料の濃度が0.3wt%になるように15nmの厚さに共蒸着し、ホスト材料を30nm蒸着して発光層を形成し、電子輸送層の厚さを5nmとし、銀の代わりにアルミニウムを用いた以外は実施例1と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が624nm、最高輝度が2220cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0094】
【化3
Figure 0004085574
【0095】
実施例1
ドーパント材料として下記に示すD7(ジクロロメタン溶液中の蛍光ピーク波長は615nm)を用い、ドーパント材料の濃度を0.26wt%とした以外は実施例1と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が621nm、最高輝度が2770cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0096】
【化3
Figure 0004085574
【0097】
実施例1
ドーパント材料として下記に示すD8(ジクロロメタン溶液中の蛍光ピーク波長は620nm)を用い、ドーパント材料の濃度を0.34wt%とした以外は実施例1と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が627nm、最高輝度が3470cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0098】
【化3
Figure 0004085574
【0099】
実施例1
ドーパント材料として下記に示すD9(ジクロロメタン溶液中の蛍光ピーク波長は640nm)を用い、ドーパント材料の濃度を0.43wt%とした以外は実施例1と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が647nm、最高輝度が1502cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0100】
【化3
Figure 0004085574
【0101】
実施例18
ホスト材料として下記に示すH7を用い、ドーパント材料として下記に示すD10(ジクロロメタン溶液中の蛍光ピーク波長は617nm)を用い、ドーパント材料の濃度が0.5wt%になるように25nmの厚さに共蒸着して発光層を形成し、トリス(8−キノリノラト)アルミニウム錯体を25nm蒸着して電子輸送層を形成し、銀の代わりにアルミニウムを用いた以外は実施例1と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が629nm、最高輝度が3230cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0102】
【化3
Figure 0004085574
【0103】
実施例19
ドーパント材料として前記D6を用いた以外は実施例18と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が629nm、最高輝度が1500cd/mの高輝度かつ高色純度の赤色発光が得られた。
【0104】
比較例
ホスト材料として下記に示すH8を用いた以外は実施例と同様にして発光素子を作製した。この発光素子からは、発光ピーク波長が638nm、最高輝度が150cd/mの低輝度な赤色発光しか得られなかった。
【0105】
【化37
Figure 0004085574
【0106】
実施例2
ITO透明導電膜を150nm堆積させたガラス基板(旭硝子社製、15Ω/□、電子ビーム蒸着品)を30×40mmに切断、フォトリソグラフィ法によって300μmピッチ(残り幅270μm)×32本のストライプ状にパターン加工した。ITOストライプの長辺方向片側は外部との電気的接続を容易にするために1.27mmピッチ(開口部幅800μm)まで広げてある。得られた基板をアセトン、セミコクリン56で各々15分間超音波洗浄してから、超純水で洗浄した。続いてイソプロピルアルコールで15分間超音波洗浄してから熱メタノールに15分間浸漬させて乾燥させた。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10−4Pa以下になるまで排気した。抵抗加熱法によって、まずN,N’−ジフェニル−N,N’−(3−メチルフェニル)−1,1’−ジフェニル−4,4’−ジアミン(TPD)を100nm蒸着した。次にホスト材料として前記H2を、ドーパント材料として前記D5を用いて、ドーパントが1wt%になるように50nmの厚さに共蒸着し、ホスト材料を50nmの厚さに積層した。次に厚さ50μmのコバール板にウエットエッチングによって16本の250μmの開口部(残り幅50μm、300μmピッチに相当)を設けたマスクを、真空中でITOストライプに直交するようにマスク交換し、マスクとITO基板が密着するように裏面から磁石で固定した。そしてマグネシウムを50nm、アルミニウムを150nm蒸着して32×16ドットマトリクス素子を作製した。本素子をマトリクス駆動させたところ、クロストークなく文字表示できた。
【0107】
【発明の効果】
本発明は、電気エネルギーの利用効率が高く、高輝度かつ高色純度の発光素子を提供できるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention is an element that can convert electrical energy into light, and can be used in the fields of display elements, flat panel displays, backlights, lighting, interiors, signs, signboards, electrophotographic machines, optical signal generators, and the like. It relates to an element.
[0002]
[Prior art]
  In recent years, research on an organic laminated thin film light emitting device in which light is emitted when electrons injected from a cathode and holes injected from an anode are recombined in an organic phosphor sandwiched between both electrodes has been actively conducted. This element is attracting attention because it is thin, has high luminance emission under a low driving voltage, and multicolor emission by selecting a fluorescent material.
[0003]
  This study was conducted by C.D. W. Since Tang et al. Have shown that organic laminated thin-film elements emit light with high brightness (Appl. Phys. Lett. 51 (12) 21, p. 913, 1987), many research institutions have studied. A typical structure of an organic laminated thin film light emitting device presented by a research group of Kodak Company is a hole transporting diamine compound on an ITO glass substrate, a tris (8-quinolinolato) aluminum complex as a light emitting layer, and Mg as a cathode. : Ag is sequentially provided, and is 1000 cd / m with a driving voltage of about 10V.2Green light emission was possible. Some organic multilayer thin film light emitting elements have different configurations such as those provided with an electron transport layer in addition to the above-described element constituent elements, but basically follow the configuration of Kodak Company.
[0004]
  Research on green light emitting materials is the most advanced among multicolor light emitting materials. Currently, red light emitting materials and blue light emitting materials that have excellent durability and sufficient luminance and color purity characteristics are desired. Have been intensively studied.
[0005]
  Examples of the red light emitting material include perylene-based materials such as bis (diisopropylphenyl) perylene, perinone-based materials, porphyrin-based materials, and Eu complexes (Chem. Lett., 1267 (1991)).
[0006]
  In addition, as a technique for obtaining red light emission, a method of mixing a small amount of a red fluorescent material as a dopant in a host material has been studied. Host materials include metal complexes of quinolinol derivatives such as tris (8-quinolinolato) aluminum complexes, bis (10-benzoquinolinolato) beryllium complexes, diarylbutadiene derivatives, stilbene derivatives, benzoxazole derivatives, benzothiazole derivatives, etc. Among them, 4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran, metal phthalocyanine (MgPc, AlPcCl, etc.) compounds, squarylium compounds, violanthrone compounds are used as dopants. The red light emission was taken out by making it exist.
[0007]
[Problems to be solved by the invention]
  However, many of the light-emitting materials (host materials and dopant materials) used in the prior art have low luminous efficiency and high power consumption, low durability and short device lifetime, and strong fluorescence intensity in the solution state. Even in the thin film state, the fluorescence intensity is remarkably reduced due to concentration quenching, exciplex formation, or excimer formation, and when applied to a light emitting device, there are many cases in which high luminance emission cannot be obtained.
[0008]
  In particular, regarding red light-emitting materials (host materials and dopant materials), it was a big problem that there were very few materials having both color purity and luminance.
[0009]
  An object of the present invention is to solve such problems and to provide a light-emitting element having high luminance and high color purity with high use efficiency of electric energy.
[0010]
[Means for Solving the Problems]
The present invention is an element in which a luminescent substance is present between an anode and a cathode and emits light by electric energy. The element emits light at an emission peak wavelength of 580 nm or more and 720 nm or less, and at least a compound represented by the following general formula (1) And a compound having a pyromethene skeleton represented by the following general formula (6).
[0011]
[Chemical5]
Figure 0004085574
[0012]
  (Here, A is a diketopyrrolo [3,4-c] pyrrole derivative represented by the following general formula (4), and B is the following general formula (3), And n is 2. )
[0013]
[Chemical6]
Figure 0004085574
[0014]
  (Where R13And R14May be the same or different and are selected from hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group, an aryl group, and a silyl group. β represents the site of connection with B. )
[0015]
[Chemical7]
Figure 0004085574
[0016]
  (Where R 6 ~ R 12 May be the same or different, and may be a hydrogen atom, an alkyl group, a cycloalkyl group, an aralkyl group, an aryl group, a heterocyclic group, a halogen, an amino group, or a condensed ring or an aliphatic ring formed between adjacent substituents. Chosen from the inside. α represents a linking site with A. )
[0017]
[Chemical8]
Figure 0004085574
[0018]
  (Where R22~ R28At least one of them contains an aromatic ring or forms a condensed aromatic ring with an adjacent substituent, and the rest is hydrogen. R29And R30Is fluorine and X is carbon. )
[0019]
DETAILED DESCRIPTION OF THE INVENTION
  In the present invention, if the anode is transparent for extracting light, a conductive metal oxide such as tin oxide, indium oxide and indium tin oxide (ITO), or a metal such as gold, silver and chromium, copper iodide, sulfide Inorganic conductive materials such as copper and conductive polymers such as polythiophene, polypyrrole, and polyaniline are not particularly limited, but it is particularly desirable to use ITO glass or Nesa glass. The resistance of the transparent electrode is not limited as long as a current sufficient for light emission of the element can be supplied, but it is desirable that the resistance be low from the viewpoint of power consumption of the element. For example, an ITO substrate of 300 Ω / □ or less functions as an element electrode. However, since it is now possible to supply a substrate of about 10 Ω / □, it is particularly desirable to use a low resistance product. The thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 100 to 300 nm. Further, soda lime glass, non-alkali glass or the like is used for the glass substrate, and the thickness of the glass substrate only needs to be sufficient to maintain the mechanical strength, so 0.5 mm or more is sufficient. As for the glass material, it is better to use alkali-free glass because it is better to have less ions eluted from the glass.2Since soda lime glass with a barrier coating such as is commercially available, it can be used. The ITO film forming method is not particularly limited, such as an electron beam method, a sputtering method, or a chemical reaction method.
[0020]
  The cathode is not particularly limited as long as it can efficiently inject electrons into the organic layer, but is generally platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium, calcium. Magnesium and the like can be mentioned, but lithium, sodium, potassium, calcium, magnesium or alloys containing these low work function metals are effective for improving the device characteristics by increasing the electron injection efficiency. However, these low work function metals are generally unstable in the atmosphere. For example, the organic layer is doped with a small amount of lithium or magnesium (1 nm or less in the vacuum vapor deposition thickness gauge display) to be stable. Although a method using a high electrode can be cited as a preferred example, it is not particularly limited to these because an inorganic salt such as lithium fluoride can be used. Furthermore, for electrode protection, metals such as platinum, gold, silver, copper, iron, tin, aluminum, indium, or alloys using these metals, and inorganic substances such as silica, titania, silicon nitride, polyvinyl alcohol, vinyl chloride, Preferred examples include laminating hydrocarbon polymers. The method for producing these electrodes is not particularly limited as long as electrical conduction such as resistance heating, electron beam, sputtering, ion plating, and coating can be achieved.
[0021]
  The light emitting material in the present invention is 1) hole transport layer / light emitting layer, 2) hole transport layer / light emitting layer / electron transport layer, 3) light emitting layer / electron transport layer, 4) hole transport layer / light emitting layer. / Hole blocking layer, 5) hole transport layer / light emitting layer / hole blocking layer / electron transport layer, 6) light emitting layer / hole blocking layer / electron transport layer, and 7) a combination of the above materials in one layer Any of the mixed form may be sufficient. That is, as the element structure, in addition to the multilayer laminated structure of 1) to 6) above, only a single layer including a light emitting material alone or a layer containing a light emitting material and a hole transport material or an electron transport material may be provided. Furthermore, the luminescent substance in the present invention corresponds to both a substance that emits light by itself and a substance that assists the light emission, and refers to a compound, a layer, or the like that is involved in light emission.
[0022]
  The hole transport layer is formed by laminating and mixing a hole transport material alone or two or more kinds of materials, or a mixture of a hole transport material and a polymer binder. '-Diphenyl-N, N'-di (3-methylphenyl) -4,4'-diphenyl-1,1'-diamine, N, N'-dinaphthyl-N, N'-diphenyl-4,4'- Triphenylamines such as diphenyl-1,1′-diamine, bis (N-allylcarbazole) or bis (N-alkylcarbazole) s, pyrazoline derivatives, stilbene compounds, hydrazone compounds, oxadiazole derivatives and phthalocyanine derivatives , Heterocyclic compounds typified by porphyrin derivatives, in the case of polymer systems, polycarbonates and styrene derivatives having the above monomers in the side chain, polyvinylcarbazo Le, is preferred such as polysilane, forming a thin film required for device fabrication, and can inject holes from the anode, and is not particularly limited as long as it is a further compound capable of transporting holes.
[0023]
  A light-emitting layer is a layer in which a light-emitting substance is actually formed. The light-emitting element of the present invention emits light with a peak wavelength of 580 nm or more and 720 nm or less by electric energy. If it is smaller than 580 nm, red light emission with good color purity cannot be obtained even if the peak width is narrow, and if it is larger than 720 nm, visibility is deteriorated, so that efficient high luminance red light emission cannot be obtained. In addition, the light emitting material of the present invention includes a compound represented by the following general formula (1) and an organic fluorescent material having a fluorescence peak wavelength of 580 nm to 720 nm, both of which can be used as a dopant material and a host material. A preferable method is a doping method in which a compound represented by the following general formula (1) is used as a host material and an organic fluorescent material is used as a dopant material.
[0024]
[Chemical9]
Figure 0004085574
[0025]
  Here, A is an organic fluorescent skeleton, B is a substituent whose isotropic rotation with respect to A is restricted by steric repulsion between AB and / or BB, and n is a natural number of 1 to 4 It is.
[0026]
  A in the general formula (1) can be selected according to a desired emission color. In order to obtain high-intensity light emission, although not particularly limited, for example, naphthalene, anthracene, phenanthrene, pyrene, triphenylene, perylene, traxene, fluorene, indene, 9,9'-spirobifluorene, distyrylbenzene derivatives Aromatic hydrocarbon compounds such as tetraphenylbutadiene derivatives and stilbene derivatives, furan, pyrrole, thiophene, silole, 9-silafluorene, 9,9′-spirobisilafluorene, triazole, oxadiazole, benzothiophene, Benzofuran, indole, dibenzothiophene, dibenzofuran, carbazole, benzoxazole, benzimidazole, benzthiazole, benzdioxazole, benzdiimidazole, benzdithiazole, phenanthroimi Aromatic heterocyclic compounds such as sol, phenanthroxazole, imidazopyridine, phenanthroline, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, pyrimidine, thioxanthene, aldazine, coumarin, phthalimide, naphthalimide, perinone, pyrimidopyrimidine are fluorescent. Since the quantum yield is high, it can be suitably used. Furthermore, various metal complexes having quinolinol, benzquinolinol, benzoxazole, benzimidazole, triazole, azomethine, or the like as a ligand may be used as A in the general formula (1).
[0027]
  B in the general formula (1) is a substituent that retains the excellent fluorescence characteristics of A in the general formula (1) in a thin film state and plays a role of causing high-intensity light emission in the light emitting element. That is, since B forms a substituent in which isotropic rotation with respect to A is restricted by steric repulsion between AB or BB, the excitation energy is thermally deactivated by rotation of the substituent in a thin film state. This reduces the probability that the fluorescence quantum yield is reduced. Further, since B is twisted with respect to A, stacking of light emitting material molecules can be prevented, and concentration quenching, exciplex or excimer formation can be suppressed. As a result, light emission with high luminance and high color purity can be obtained in the light-emitting element. The restriction of this isotropic rotation can be easily confirmed by a molecular model or molecular calculation.
[0028]
  The isotropic rotation may be limited by the solid repulsion between A and B or B and B, but in order to obtain higher luminance light emission, it is limited by the solid repulsion between A and B. Is preferred. As B having such an effect, a substituent having a skeleton represented by the following general formula (2) is preferably used.
[0029]
[Chemical10]
Figure 0004085574
[0030]
  Where R1~ R5May be the same or different, hydrogen, alkyl group, cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, Aryl group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkyne, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, adjacent substituent It is selected from fused rings and aliphatic rings formed between them. However, R1And R5At least one of these is a substituent other than hydrogen, or forms a condensed ring or an aliphatic ring with an adjacent substituent. α represents a linking site with A.
[0031]
  Among these substituents, the alkyl group represents, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, a propyl group, or a butyl group, which may be unsubstituted or substituted. The cycloalkyl group represents a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, adamantyl, and the like, which may be unsubstituted or substituted. The aralkyl group is an aromatic hydrocarbon group via an aliphatic hydrocarbon such as a benzyl group or a phenylethyl group, and both the aliphatic hydrocarbon and the aromatic hydrocarbon may be unsubstituted or substituted. It doesn't matter. The alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group or a butadienyl group, which may be unsubstituted or substituted. The cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexene group, which may be unsubstituted or substituted. . The alkynyl group refers to an unsaturated aliphatic hydrocarbon group containing a triple bond such as an acetylenyl group, which may be unsubstituted or substituted. The alkoxy group refers to an aliphatic hydrocarbon group via an ether bond such as a methoxy group, and the aliphatic hydrocarbon group may be unsubstituted or substituted. The alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom. The aryl ether group refers to an aromatic hydrocarbon group via an ether bond such as a phenoxy group, and the aromatic hydrocarbon group may be unsubstituted or substituted. The arylthioether group is a group in which the oxygen atom of the ether bond of the arylether group is substituted with a sulfur atom. The aryl group represents an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terphenyl group, or a pyrenyl group, which may be unsubstituted or substituted. The heterocyclic group is a cyclic structural group having an atom other than carbon, such as a furyl group, a thienyl group, an oxazolyl group, a pyridyl group, a quinolyl group, or a carbazolyl group, which may be unsubstituted or substituted. Absent. Halogen is fluorine, chlorine, bromine or iodine. Haloalkane, haloalkene, haloalkyne means, for example, a part or all of the above-mentioned alkyl group, alkenyl group, alkynyl group such as trifluoromethyl group substituted with the above-mentioned halogen, and the remaining part may be unsubstituted It may be replaced. Aldehyde groups, carbonyl groups, ester groups, carbamoyl groups, amino groups include those substituted with aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, heterocyclic rings, etc. The cyclic hydrocarbon, aromatic hydrocarbon and heterocyclic ring may be unsubstituted or substituted. A silyl group refers to a silicon compound group such as a trimethylsilyl group, which may be unsubstituted or substituted. The siloxanyl group refers to a silicon compound group via an ether bond such as a trimethylsiloxanyl group, which may be unsubstituted or substituted. The condensed ring or aliphatic ring formed between adjacent substituents may be unsubstituted or substituted.
[0032]
  R in the general formula (1)1And R5At least one of them is a substituent other than hydrogen, or forms a condensed ring or an aliphatic ring with an adjacent substituent, so that a steric repulsion occurs with A, and B isotropically rotates with respect to A. Is limited.
[0033]
  Further, in order to stably obtain high luminance light emission, the above R1And R5It is more preferable that a condensed ring is formed between at least one of the above and adjacent substituents because of excellent durability. Therefore, as B, a substituent having a skeleton represented by the following general formula (3) is more preferably used.
[0034]
[Chemical 1]1]
Figure 0004085574
[0035]
  Where R6~ R12May be the same or different, hydrogen, alkyl group, cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, Aryl group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkyne, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, adjacent substituent It is selected from fused rings and aliphatic rings formed between them. α represents a linking site with A. The explanation of these substituents is the same as described above.
[0036]
  A preferred example of B is not particularly limited, but specific examples thereof include the following structures.
[0037]
[Chemical 1]2]
Figure 0004085574
[0038]
[Chemical 1]3]
Figure 0004085574
[0039]
  In the present invention, an organic fluorescent material having a fluorescence peak wavelength of 580 nm or more and 720 nm or less is used to obtain red light emission. Specifically, conventionally known condensed ring derivatives of aromatic hydrocarbons such as terylene are known. Ligands such as fused heterocyclic derivatives such as pyridinothiadiazole, pyrazolopyridine, diketopyrrolopyrrole, naphthalimide derivatives such as bis (diisopropylphenyl) perylenetetracarboxylic imide, perinone derivatives, acetylacetone, benzoylacetone and phenanthroline Rare earth complexes such as Eu complex, 4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran and its analogs, metal phthalocyanine derivatives such as magnesium phthalocyanine, aluminum chlorophthalocyanine, Metalloporphyrin derivatives such as lead porphyrin, thiophene derivatives, pyrrole derivatives, rhodamine compounds, deazaflavin derivatives, coumarin derivatives, oxazine compounds, phenoxazine derivatives, phenoxazone derivatives, quinacridone derivatives, benzothioxanthene and its analogs, dicyanoethenylarene derivatives, etc. However, it is not particularly limited to these.
[0040]
  Furthermore, in order to obtain red light emission having high luminance and high color purity, a diketopyrrolo [3,4-c] pyrrole skeleton in which A in the general formula (1) is represented by the following general formula (4) can be exemplified as a light emitting material. .
[0041]
[Chemical 1]4]
Figure 0004085574
[0042]
  Where R13And R14May be the same or different, hydrogen, alkyl group, cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, The aryl group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkyne, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, and siloxanyl group are selected. β represents the site of connection with B. The explanation of these substituents is the same as described above.
[0043]
  Although it does not specifically limit as a suitable example of the said compound, The following compounds are mentioned.
[0044]
[Chemical 1]5]
Figure 0004085574
[0045]
[Chemical 1]6]
Figure 0004085574
[0046]
[Chemical 1]7]
Figure 0004085574
[0047]
  In order to obtain red light emission having excellent color purity characteristics, a compound having a pyromethene skeleton represented by the following general formula (5) or a metal complex thereof can be suitably used as the organic fluorescent substance.
[0048]
[Chemical 1]8]
Figure 0004085574
[0049]
  Where R15~ R21At least one of them contains an aromatic ring or forms a condensed ring with an adjacent substituent, and the rest are hydrogen, alkyl group, cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group , Mercapto group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkyne, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group , An amino group, a nitro group, a silyl group, a siloxanyl group, a condensed ring formed between adjacent substituents and an aliphatic ring. X is carbon or nitrogen, but in the case of nitrogen, the above R21Does not exist. The metal of the metal complex is at least one selected from boron, beryllium, magnesium, chromium, iron, cobalt, nickel, copper, zinc, and platinum. The explanation of these substituents is the same as described above.
[0050]
  Furthermore, in order to obtain a high luminance characteristic, a thing with a high fluorescence quantum yield is more preferable. Therefore, as the metal complex of the compound having the pyromethene skeleton, a compound represented by the following general formula (6) can be more suitably used.
[0051]
[Chemical19]
Figure 0004085574
[0052]
  Where R22~ R28At least one of them contains an aromatic ring or forms a condensed aromatic ring with an adjacent substituent, and the rest are hydrogen, alkyl group, cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, Hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, aryl group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkyne, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl A group, an amino group, a nitro group, a silyl group, a siloxanyl group, a condensed ring formed between adjacent substituents and an aliphatic ring. R29And R30May be the same or different and are selected from halogen, hydrogen, alkyl, aryl, and heterocyclic groups. X is carbon or nitrogen, but in the case of nitrogen, the above R28Does not exist. The explanation of these substituents is the same as described above.
[0053]
  Although it does not specifically limit as a suitable example of the metal complex of the compound which has said pyromethene frame | skeleton, Specifically, the following structures are mentioned.
[0054]
[Chemical20]
Figure 0004085574
[0055]
[Chemical 2]1]
Figure 0004085574
[0056]
[Chemical 2]2]
Figure 0004085574
[0057]
  Energy transfer from the host material to the dopant material requires an overlap between the fluorescence spectrum of the host material and the absorption spectrum (excitation spectrum) of the dopant material. Further, the Stokes shift (difference between the peak of the excitation spectrum and the peak of the fluorescence spectrum) of the dopant material having excellent color purity such as the compound having the pyromethene skeleton or the metal complex thereof is as narrow as several to several tens nm, and is 580 nm to 720 nm. When an attempt is made to obtain high-purity red light emission from the dopant material, the absorption spectrum (excitation spectrum) of the dopant material becomes yellow, yellow-orange, orange, red-orange, and red regions (540 nm to 720 nm). If the fluorescence spectrum of the host material is in the yellow-green, green, blue-green, blue, blue-violet, or purple region on the shorter wavelength side than yellow and the spectrum overlap is small, energy transfer is not performed quickly, and Even if light emission cannot be obtained, or even if it is obtained, light emission from the host material remains and whitening occurs, so that red light emission with high color purity cannot be obtained.
[0058]
  For the above reasons, in order for the dopant material to emit light with high brightness and high color purity at 580 nm or more and 720 nm or less, the host material preferably has a fluorescence peak wavelength of 540 nm or more and 720 nm or less. As a guideline, those having fluorescence such as yellow, yellow-orange, orange, red-orange, and red are applicable. Therefore, when using General formula (1) as a host material, it is preferable to have yellow, yellow-orange, orange, red-orange, and red fluorescence of General formula (1). In this case, A in the general formula (1) may have yellow to red fluorescence, or the general formula (1) has yellow to red fluorescence due to the effect of the substituent of B. May be.
[0059]
  Since the concentration quenching phenomenon usually occurs when the doping amount is too large, the doping amount is preferably 10% by weight or less, more preferably 2% or less, based on the host material. The dopant material may be included in the host material as a whole, or may be included partially. As a doping method, it can be formed by a co-evaporation method with a host material, but it may be pre-mixed with the host material and then simultaneously deposited. In addition, since the compound having a pyromethene skeleton or a metal complex thereof emits light even in a very small amount, it is not only dispersed in the host material but also sandwiched between the compound having the pyromethene skeleton or the metal complex thereof in the host material. It is also possible to use it sandwiched between shapes. In this case, one or more layers may be laminated with the host material. Furthermore, the host and dopant material may be composed of two or more kinds of compounds.
[0060]
  Further, the dopant material added to the light emitting material is not necessarily limited to the compound having the pyromethene skeleton or a single metal complex thereof, and a mixture of a plurality of the compounds of the present invention may be used, or one or more kinds of known dopant materials may be used. You may mix and use the compound of this invention.
[0061]
  As the electron transporting material in the present invention, it is necessary to efficiently transport electrons from the negative electrode between electrodes to which an electric field is applied, and it is desirable that the electron injection efficiency is high and the injected electrons are transported efficiently. . For this purpose, it is required that the material has a high electron affinity, a high electron mobility, excellent stability, and a substance that does not easily generate trapping impurities during manufacturing and use. As substances satisfying such conditions, quinolinol derivative metal complexes represented by tris (8-quinolinolato) aluminum complexes, tropolone metal complexes, flavonol metal complexes, perylene derivatives, perinone derivatives, naphthalene, coumarin derivatives, oxadiazole derivatives, Examples thereof include, but are not limited to, aldazine derivatives, bisstyryl derivatives, pyrazine derivatives, phenanthroline derivatives, silole derivatives, quinoxaline derivatives, boron compounds and the like. These electron transport materials are used alone, but may be laminated or mixed with different electron transport materials.
[0062]
  The hole blocking layer is a layer for preventing the holes from the anode from moving between the electrodes to which an electric field is applied without recombining with the electrons from the cathode, and the kind of material constituting each layer. Depending on the case, insertion of this layer may increase the probability of recombination of holes and electrons, and may improve the light emission efficiency. Specific examples include phenanthroline derivatives, triazole derivatives, quinolinol metal complexes, and the like, but any compound that can form a thin film necessary for device fabrication and efficiently block the movement of holes from the anode is particularly limited. is not. These hole blocking materials are used alone, but may be laminated or mixed with different electron transport materials.
[0063]
  The materials used for the hole transport layer, the light emitting layer, the electron transport layer, and the hole blocking layer can form each layer alone, but as a polymer binder, polyvinyl chloride, polycarbonate, polystyrene, poly ( N-vinylcarbazole), polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polysulfone, polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyurethane resin, etc. It can also be used by being dispersed in a solvent-soluble resin, a curable resin such as a phenol resin, a xylene resin, a petroleum resin, a urea resin, a melamine resin, an unsaturated polyester resin, an alkyd resin, an epoxy resin, or a silicone resin.
[0064]
  The method for forming the luminescent material is not particularly limited, such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, and coating method, but resistance heating vapor deposition and electron beam vapor deposition are usually preferred in terms of characteristics. The thickness of the layer depends on the resistance value of the luminescent material and cannot be limited, but is selected from 1 to 1000 nm.
[0065]
  In order to achieve a beautiful red display, it is important that the peak wavelength of the emission spectrum is in the range of 580 nm to 720 nm, more preferably 600 nm to 700 nm, and the half width is 100 nm or less. The emission spectrum is preferably a single peak as much as possible, but in some cases, it may have a plurality of maximum points due to overlapping with other peaks, or a shoulder may appear at the bottom of the peak. In the present invention, the peak wavelength is the wavelength of the main peak worth the emission center wavelength, and the half width is defined as the peak width at half the height of the emission center wavelength in the entire peak.
[0066]
  Electrical energy mainly refers to direct current, but pulsed current or alternating current can also be used. The current value and the voltage value are not particularly limited, but the maximum luminance should be obtained with the lowest possible energy in consideration of the power consumption and lifetime of the element.
[0067]
  The matrix in the present invention refers to a matrix in which pixels for display are arranged in a lattice pattern, and displays characters and images by a set of pixels. The shape and size of the pixel are determined by the application. For example, a rectangular pixel with a side of 300 μm or less is normally used for displaying images and characters on a personal computer, monitor, television, etc. In a large display such as a display panel, a pixel with a side of mm order is used. . In monochrome display, pixels of the same color may be arranged. However, in color display, red, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type. The matrix driving method may be either a line sequential driving method or an active matrix. The line-sequential driving has an advantage that the structure is simple. However, the active matrix may be superior in consideration of the operation characteristics, so that it is necessary to properly use it depending on the application.
[0068]
  The segment type in the present invention means that a pattern is formed so as to display predetermined information, and a predetermined region is caused to emit light. For example, the time and temperature display in a digital clock or a thermometer, the operation status display of an audio device or an electromagnetic cooker, the panel display of an automobile, etc. The matrix display and the segment display may coexist in the same panel.
[0069]
  The light emitting device of the present invention can also be suitably used as a backlight. The backlight is used mainly for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display board, a sign, and the like. In particular, as a backlight for a liquid crystal display device, in particular, a personal computer application for which thinning is an issue, it is difficult to reduce the thickness of the conventional method because it is made of a fluorescent lamp or a light guide plate. The backlight is thin and lightweight.
[0070]
【Example】
  EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated, this invention is not limited by these examples.
[0071]
  Example 1
  A glass substrate (manufactured by Asahi Glass Co., Ltd., 15Ω / □, electron beam evaporated product) on which an ITO transparent conductive film was deposited to 150 nm was cut into 30 × 40 mm and etched. The obtained substrate was ultrasonically washed with acetone and semicocrine 56 for 15 minutes, respectively, and then washed with ultrapure water. Subsequently, it was ultrasonically cleaned with isopropyl alcohol for 15 minutes and then immersed in hot methanol for 15 minutes to dry. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, and placed in a vacuum deposition apparatus, so that the degree of vacuum in the apparatus was 1 × 10.-5It exhausted until it became Pa or less. First, N, N′-diphenyl-N, N ′-(3-methylphenyl) -1,1′-diphenyl-4,4′-diamine (TPD) as a hole transport material is formed to a thickness of 50 nm by a resistance heating method. The hole transport layer was formed by vapor deposition. Next, H shown below as a host material2As dopant material9-Dimethylamino-5H-benzo (a) phenoxazin-5-one(The fluorescence peak wavelength in dichloromethane solution is612nm) to form a light-emitting layer by co-evaporation to a thickness of 25 nm so that the concentration of the dopant material is 1 wt%, and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline is formed. An electron transport layer was formed by vapor deposition to a thickness of 25 nm. Next, after doping with 0.5 nm of lithium, 150 nm of silver was deposited to form a cathode, and a 5 × 5 mm square device was produced. From this light emitting element,600Light emission having an emission peak wavelength at nm was obtained..
[0072]
[23]
Figure 0004085574
[0073]
  Example2
Example 2 except that D2 shown below (fluorescence peak wavelength in dichloromethane solution is 629 nm) was used as the dopant material, and the dopant concentration was 0.3 wt%1A light emitting element was manufactured in the same manner as described above. From this light emitting element, the emission peak wavelength is 636 nm, and the maximum luminance is 3440 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0074]
[Chemical 2]4]
Figure 0004085574
[0075]
  Example3
Example except that H3 shown below was used as a host material and the dopant concentration was 0.85 wt%2A light emitting element was manufactured in the same manner as described above. From this light emitting element, the emission peak wavelength is 638 nm, and the maximum luminance is 3130 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0076]
[Chemical 2]5]
Figure 0004085574
[0077]
  Example4
Example except that H4 shown below is used as the host material and the concentration of the dopant material is 0.14 wt%2A light emitting element was manufactured in the same manner as described above. From this light-emitting element, the emission peak wavelength is 634 nm and the maximum luminance is 3470 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0078]
[Chemical 2]6]
Figure 0004085574
[0079]
  Example5
  H5 shown below as a host material and D2 as a dopant material are co-evaporated to a thickness of 15 nm so that the concentration of the dopant material is 0.3 wt%, and then the host material is made to a thickness of 35 nm. Example except that the light emitting layer was formed by vapor deposition3A light emitting element was manufactured in the same manner as described above. From this light-emitting element, the emission peak wavelength is 638 nm, and the maximum luminance is 3480 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0080]
[Chemical27]
Figure 0004085574
[0081]
  Example6
  Implemented except that HTM1 shown below is used as the hole transport material, H6 shown below is used as the host material, the concentration of the dopant material is 0.37 wt%, and the thickness of the light emitting layer and the electron transport layer is 15 nm and 35 nm, respectively. Example2A light emitting element was manufactured in the same manner as described above. From this light emitting element, the emission peak wavelength was 635 nm, and the maximum luminance was 4610 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0082]
[Chemical28]
Figure 0004085574
[0083]
  Example7
  Using H2 as a host material, D3 shown below as a dopant material (fluorescence peak wavelength in dichloromethane solution is 605 nm), the concentration of the dopant material is 0.55 wt%, and the thickness of the light emitting layer and the electron transport layer is 15 nm, respectively. Example except for 40nm6A light emitting element was manufactured in the same manner as described above. From this light emitting element, the emission peak wavelength is 612 nm, and the maximum luminance is 7040 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0084]
[Chemical29]
Figure 0004085574
[0085]
  Example8
  Example except that D4 shown below (fluorescence peak wavelength in dichloromethane solution is 623 nm) was used as the dopant material7A light emitting element was manufactured in the same manner as described above. From this light emitting element, the emission peak wavelength is 628 nm, and the maximum luminance is 4890 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0086]
[Chemical 3]0]
Figure 0004085574
[0087]
  Example9
  Example 5 except that D5 shown below (fluorescence peak wavelength in dichloromethane solution is 606 nm) is used as the dopant material and the concentration of the dopant material is 0.5 wt%1A light emitting element was manufactured in the same manner as described above. From this light-emitting element, the emission peak wavelength is 613 nm and the maximum luminance is 7480 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0088]
[Chemical 3]1]
Figure 0004085574
[0089]
  Example 10
  Example except that H3 is used as a host material and the dopant material concentration is 0.3 wt%9A light emitting element was manufactured in the same manner as described above. From this light emitting element, the emission peak wavelength is 613 nm, and the maximum luminance is 5280 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0090]
  Example 11
  Example except that the HTM1 is used as a hole transport material, the H2 is used as a host material, the D5 is used as a dopant material, and the concentration of the dopant material is 0.34 wt%.5A light emitting element was manufactured in the same manner as described above. From this light emitting element, the emission peak wavelength is 612 nm, and the maximum luminance is 11240 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0091]
  Example 12
  Example except for using H4 as host material9A light emitting element was manufactured in the same manner as described above. From this light emitting element, the emission peak wavelength is 606 nm, and the maximum luminance is 4600 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0092]
  Example 13
  Example 1 except that H6 was used as the host material and the dopant material concentration was 0.65 wt%.2A light emitting element was manufactured in the same manner as described above. From this light-emitting element, the emission peak wavelength is 613 nm and the maximum luminance is 7060 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0093]
  Example 14
  Using H2 as a host material and D6 shown below as a dopant material (fluorescence peak wavelength in a dichloromethane solution is 621 nm), it is co-evaporated to a thickness of 15 nm so that the concentration of the dopant material is 0.3 wt%. A light-emitting element was fabricated in the same manner as in Example 1 except that a light-emitting layer was formed by vapor-depositing a host material at 30 nm, the thickness of the electron transport layer was 5 nm, and aluminum was used instead of silver. From this light-emitting element, the emission peak wavelength is 624 nm and the maximum luminance is 2220 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0094]
[Chemical 3]2]
Figure 0004085574
[0095]
  Example 15
  Example 1 except that D7 shown below (fluorescence peak wavelength in dichloromethane solution is 615 nm) was used as the dopant material, and the concentration of the dopant material was 0.26 wt%.4A light emitting element was manufactured in the same manner as described above. From this light emitting element, the emission peak wavelength is 621 nm, and the maximum luminance is 2770 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0096]
[Chemical 3]3]
Figure 0004085574
[0097]
  Example 16
  Example 1 except that D8 shown below (fluorescence peak wavelength in dichloromethane solution is 620 nm) was used as the dopant material, and the concentration of the dopant material was 0.34 wt%.4A light emitting element was manufactured in the same manner as described above. From this light emitting element, the emission peak wavelength is 627 nm, and the maximum luminance is 3470 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0098]
[Chemical 3]4]
Figure 0004085574
[0099]
  Example 17
  Example 1 except that D9 shown below (fluorescence peak wavelength in dichloromethane solution is 640 nm) was used as the dopant material, and the concentration of the dopant material was 0.43 wt%.4A light emitting element was manufactured in the same manner as described above. From this light emitting element, the emission peak wavelength is 647 nm and the maximum luminance is 1502 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0100]
[Chemical 3]5]
Figure 0004085574
[0101]
  Example18
  H7 shown below is used as the host material, D10 shown below as the dopant material (fluorescence peak wavelength in the dichloromethane solution is 617 nm), and the thickness of the dopant material is set to 25 nm so that the concentration of the dopant material is 0.5 wt%. A light-emitting layer is formed by vapor deposition, and a 25-nm tris (8-quinolinolato) aluminum complex is vapor-deposited to form an electron transport layer. A light-emitting element is fabricated in the same manner as in Example 1 except that aluminum is used instead of silver. did. From this light emitting element, the emission peak wavelength was 629 nm, and the maximum luminance was 3230 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0102]
[Chemical 3]6]
Figure 0004085574
[0103]
  Example19
  Example except that D6 was used as dopant material18A light emitting element was manufactured in the same manner as described above. From this light emitting element, the emission peak wavelength is 629 nm, and the maximum luminance is 1500 cd / m.2The red light emission with high brightness and high color purity was obtained.
[0104]
  Comparative example
  Examples except that H8 shown below was used as a host material2A light emitting element was manufactured in the same manner as described above. From this light emitting device, the emission peak wavelength is 638 nm, and the maximum luminance is 150 cd / m.2Only low-intensity red light emission was obtained.
[0105]
[Chemical37]
Figure 0004085574
[0106]
  Example 20
  A glass substrate (manufactured by Asahi Glass Co., Ltd., 15Ω / □, electron beam evaporation product) on which an ITO transparent conductive film is deposited to 150 nm is cut into 30 × 40 mm, and 300 μm pitch (remaining width 270 μm) × 32 stripes by photolithography. Pattern processed. One side of the ITO stripe in the long side direction is expanded to a pitch of 1.27 mm (opening width 800 μm) in order to facilitate electrical connection with the outside. The obtained substrate was ultrasonically washed with acetone and semicocrine 56 for 15 minutes, respectively, and then washed with ultrapure water. Subsequently, it was ultrasonically cleaned with isopropyl alcohol for 15 minutes and then immersed in hot methanol for 15 minutes to dry. This substrate was treated with UV-ozone for 1 hour immediately before producing the device, and placed in a vacuum vapor deposition apparatus. The degree of vacuum in the apparatus was 5 × 10.-4It exhausted until it became Pa or less. First, N, N′-diphenyl-N, N ′-(3-methylphenyl) -1,1′-diphenyl-4,4′-diamine (TPD) was deposited by 100 nm by a resistance heating method. Next, H2 was used as the host material and D5 was used as the dopant material, so that the host material was co-evaporated to a thickness of 50 nm so that the dopant was 1 wt%, and the host material was laminated to a thickness of 50 nm. Next, a mask having 16 μm openings (corresponding to the remaining width of 50 μm and 300 μm pitch) formed by wet etching on a 50 μm thick Kovar plate was replaced by a mask so as to be orthogonal to the ITO stripe in a vacuum. And it fixed with the magnet from the back so that an ITO board | substrate might closely_contact | adhere. Magnesium was deposited with a thickness of 50 nm and aluminum was deposited with a thickness of 150 nm to produce a 32 × 16 dot matrix element. When this element was driven in matrix, characters could be displayed without crosstalk.
[0107]
【The invention's effect】
  The present invention can provide a light-emitting element with high utilization efficiency of electric energy, high luminance, and high color purity.

Claims (6)

陽極と陰極の間に発光物質が存在し、電気エネルギーにより発光する素子であって、該素子は発光ピーク波長が580nm以上720nm以下で発光し、少なくとも下記一般式(1)に示す化合物と下記一般式(6)で表されるピロメテン骨格を有する化合物を含むことを特徴とする発光素子。
Figure 0004085574
(ここで、Aは下記一般式(4)に示すジケトピロロ[3,4−c]ピロール誘導体、Bは下記一般式()に示す骨格、nは2である。)
Figure 0004085574
(ここで、R13およびR14は同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アリール基、シリル基の中から選ばれる。βは前記Bとの連結部位を示す。)
Figure 0004085574
(ここで、R 〜R 12 は同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アリール基、複素環基、ハロゲン、アミノ基、隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。αは前記Aとの連結部位を示す。)
Figure 0004085574
(ここで、R22〜R28のうち少なくとも一つは芳香環を含むかあるいは隣接置換基との間に縮合芳香環を形成し、残りは水素である。R29およびR30はフッ素であり、Xは炭素である。
A device in which a luminescent substance is present between an anode and a cathode and emits light by electric energy. The device emits light at an emission peak wavelength of 580 nm to 720 nm, and at least the compound represented by the following general formula (1) and the following general formula A light-emitting element comprising a compound having a pyromethene skeleton represented by formula (6).
Figure 0004085574
(Here, A is a diketopyrrolo [3,4-c] pyrrole derivative represented by the following general formula (4), B is a skeleton represented by the following general formula ( 3 ), and n is 2.)
Figure 0004085574
(Here, R 13 and R 14 may be the same or different, and are selected from hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group, an aryl group, and a silyl group. Β represents a connecting site with B. Show.)
Figure 0004085574
(Wherein R 6 to R 12 may be the same or different and are formed between hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group, an aryl group, a heterocyclic group, a halogen, an amino group, and an adjacent substituent. A selected from a condensed ring and an aliphatic ring, wherein α represents a linking site with A.)
Figure 0004085574
(Here, at least one of R 22 to R 28 contains an aromatic ring or forms a condensed aromatic ring with an adjacent substituent, and the remainder is hydrogen. R 29 and R 30 are fluorine. , X is carbon. )
前記ピロメテン骨格を有する化合物がドーパント材料であることを特徴とする請求項1記載の発光素子。The light-emitting element according to claim 1, wherein the compound having a pyromethene skeleton is a dopant material. 発光物質が少なくとも発光材料と正孔輸送材料および/または電子輸送材料とからなることを特徴とする請求項1記載の発光素子。The light emitting device according to claim 1, wherein the light emitting material comprises at least a light emitting material and a hole transport material and / or an electron transport material. 発光物質が少なくとも正孔輸送層と発光層との積層構造を有することを特徴とする請求項1記載の発光素子。The light emitting device according to claim 1, wherein the light emitting substance has a laminated structure of at least a hole transport layer and a light emitting layer. 陽極、正孔輸送層、発光層、電子輸送層、陰極を順次積層することを特徴とする請求項記載の発光素子。The light emitting device according to claim 4 , wherein an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are sequentially laminated. マトリクスおよび/またはセグメント方式によって表示するディスプレイであることを特徴とする請求項1記載の発光素子。The light emitting device according to claim 1, wherein the light emitting device is a display that displays in a matrix and / or segment system.
JP2000397144A 2000-01-06 2000-12-27 Light emitting element Expired - Fee Related JP4085574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000397144A JP4085574B2 (en) 2000-01-06 2000-12-27 Light emitting element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-711 2000-01-06
JP2000000711 2000-01-06
JP2000397144A JP4085574B2 (en) 2000-01-06 2000-12-27 Light emitting element

Publications (3)

Publication Number Publication Date
JP2001257077A JP2001257077A (en) 2001-09-21
JP2001257077A5 JP2001257077A5 (en) 2007-09-06
JP4085574B2 true JP4085574B2 (en) 2008-05-14

Family

ID=26583188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000397144A Expired - Fee Related JP4085574B2 (en) 2000-01-06 2000-12-27 Light emitting element

Country Status (1)

Country Link
JP (1) JP4085574B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257078A (en) * 2000-01-06 2001-09-21 Toray Ind Inc Luminous element

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE541011T1 (en) 2001-06-29 2012-01-15 Basf Se FLUORESCENT DIKETOPYRROLOPYRROLES
TWI295684B (en) * 2001-12-03 2008-04-11 Toyo Ink Mfg Co Composition for organic electroluminescence elements and the organic electroluminescence elements using the said composition
JP3969300B2 (en) * 2002-12-24 2007-09-05 東洋インキ製造株式会社 Composition for organic electroluminescence device and organic electroluminescence device using the same
MXPA05010866A (en) * 2003-04-10 2006-06-05 Ciba Sc Holding Ag Fluorescent diketopyrrolopyrroles.
SI1644363T1 (en) 2003-05-30 2012-07-31 Gemin X Pharmaceuticals Canada Inc Triheterocyclic compounds, compositions, and methods for treating cancer
KR20070097494A (en) 2004-12-09 2007-10-04 시바 스페셜티 케미칼스 홀딩 인크. Fluorescent diketopyrolopyroles
JP5224818B2 (en) 2004-12-28 2013-07-03 ジェミン エックス ファーマシューティカルズ カナダ インコーポレイテッド Dipyrrole compound and pharmaceutical composition containing the same
JP2008252063A (en) * 2007-03-07 2008-10-16 Toray Ind Inc Light-emitting material and light-emitting element
US8278819B2 (en) 2007-03-09 2012-10-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and display
KR102118142B1 (en) * 2017-09-27 2020-06-02 삼성에스디아이 주식회사 Compound for organic optoelectronic device, and organic optoelectronic device and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257078A (en) * 2000-01-06 2001-09-21 Toray Ind Inc Luminous element

Also Published As

Publication number Publication date
JP2001257077A (en) 2001-09-21

Similar Documents

Publication Publication Date Title
JP3389888B2 (en) Light emitting element
JP4876333B2 (en) Light emitting element
JP4876311B2 (en) Light emitting element
JP4725056B2 (en) Light emitting device material and light emitting device
JP2004200162A (en) Light emitting element
JP4052010B2 (en) Light emitting device material and light emitting device using the same
JP2006073581A5 (en)
JP4432313B2 (en) Tetraphenylmethane derivative and light emitting device including the same
JP4085574B2 (en) Light emitting element
JP4058881B2 (en) Light emitting element
JP4729776B2 (en) Light emitting element
JP2001307884A (en) Electoluminiscent element
JP2001291590A (en) Light emitting element
JP2004203828A (en) Phosphine oxide compound, material for light-emitting element obtained by using the same, and light-emitting element
JP4613411B2 (en) Light emitting element
JP4524901B2 (en) Light emitting element
JP2005154534A (en) Light emitting device material and light emitting device using the same
JP2001223082A (en) Light emitting element
JP4061969B2 (en) Light emitting element
JP4734717B2 (en) Light emitting element
JP2001223081A (en) Light emitting element
JP2001338763A (en) Luminescent element
JP2000208273A (en) Light emitting element
JP3743217B2 (en) Light emitting element
JP2001338764A (en) Luminescent element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees