JP4085213B2 - Thickness measurement system - Google Patents

Thickness measurement system Download PDF

Info

Publication number
JP4085213B2
JP4085213B2 JP26911998A JP26911998A JP4085213B2 JP 4085213 B2 JP4085213 B2 JP 4085213B2 JP 26911998 A JP26911998 A JP 26911998A JP 26911998 A JP26911998 A JP 26911998A JP 4085213 B2 JP4085213 B2 JP 4085213B2
Authority
JP
Japan
Prior art keywords
thickness
sheet
measured
measurement
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26911998A
Other languages
Japanese (ja)
Other versions
JP2000097645A (en
Inventor
政利 伊藤
幸義 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP26911998A priority Critical patent/JP4085213B2/en
Publication of JP2000097645A publication Critical patent/JP2000097645A/en
Application granted granted Critical
Publication of JP4085213B2 publication Critical patent/JP4085213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は厚み測定システムに関し、詳しくは、走行中の紙、パルプ、フィルム等のシート状物の厚みを赤外線を用いて測定する技術に関する。
【0002】
【従来の技術】
紙、パルプ、フィルム等、一般にシート状物(以下、シートと略称する)の品質を決める条件の1つとして、その厚みやシート上に塗布された塗工量などが挙げられる。特に、シート製造ラインの延伸前工程では、シートのエッジ部分の厚み管理が重要となる。シートのエッジ部分の厚みが不揃いであると、延伸工程で弛みが生じたり、亀裂あるいは切断したりするおそれがあるからである。
【0003】
従来、赤外線の吸収波長を利用した透過型厚み測定技術として、図2に示すような測定技術がある。この測定技術は、赤外線用光源1より発する赤外線を光学フィルター2に透過させることにより、赤外線の中から被測定シートに吸収される特定波長のみの赤外線を選定し、その特定波長の赤外線を、光学レンズ等からなる投光部4中を透過させることにより走行するシート上に集光させる。この集光され測定スポットに絞られた特定波長の赤外線を、走行するシートSに向けて投射し透過させることにより、透過中に減衰される光量を厚みに変換して厚みデータを出力する厚み変換器7を用いて厚みを求めるという測定技術である。この測定技術では、シートSの種類に応じて、このシートSが吸収する特定波長を選定可能な光学フィルター2を交換することが一般的で、1つの厚み変換器7により材質や厚さの異なるシートの厚みを測定できる。
【0004】
【発明が解決しようとする課題】
しかし、上記従来の透過型測定装置を用いる測定方法では、測定システム全体が赤外線用光源1と投受光部4,5が一体型である等、測定装置全体が大きなスペースを要していた。つまり、赤外線用光源1と光学フィルター2と投光部4からなる投光側測定器本体Aと、受光部5と厚み変換器7とからなる受光側測定器本体Cとを測定空間Bに配置させる必要があり、個々の測定機器を小型化する等してシステム全体を小型化することは到底困難であった。生産工程上、測定装置を設置する必要のある場所が非常に狭い場合は、測定装置全体の大きさが障害となり容易に設置できない。そこで、これまでは測定装置を設置できるスペースを確保するために、製造ラインを大きく改造する必要があった。特に、延伸前の工程は各種装置が複雑に混み入っており、既に生産工程が完成したラインであるため、後に厚み測定装置を設置しようとすれば、生産ラインの改変に長時間の労力とコストを要する。それだけに、測定装置の小型化は重要な課題であり、その要請は極めて強いものがあった。
【0005】
更に、生産工程上シート製造ラインにおいて人が立ち入ることが困難な場所に測定装置を設置している場合には、シートの材質が変わったからといって、一度装着したフィルターを再び交換することは容易でない。その場合、被測定シートが限定されたり、被測定シートに応じて測定器を新たに増設する必要が生じ、その設置コスト(装置の購入費と設備工事費)は多大となる。このため、生産シートの種類が多種類になる製造ラインの延伸前工程でのオンライン厚み測定は、極めて困難であった。
【0006】
そこで本発明の目的は、上記従来技術の有する問題点を解消し、多種類にわたるシートの厚みを精度良く測定でき、しかも実質的に測定に係る装置部分を小型化でき、被測定シートの材質変化に応じたフィルターの交換が容易な厚み測定システムを提供することにある。
【0007】
【課題を解決するための手段】
上記目的は請求項記載の発明により達成される。すなわち、本発明に係る厚み測定システムの特徴構成は、赤外線を照射する赤外線用光源と、
この赤外線用光源より発する赤外線から被測定シートが吸収する特定波長を選定可能な光学フィルターと、
この光学フィルターにより選定された赤外線を前記被測定シートに投射する集光レンズと、
前記光学フィルターからの赤外線を前記集光レンズに導く第1光ファイバーと、
前記被測定シートを透過してきた光を受光するフォトダイオードと、
このフォトダイオードからの信号を受けて前記被測定シートの厚みデータを演算し出力可能な厚みデータ演算手段と
前記フォトダイオードからの信号を前記厚みデータ演算手段に導く第2光ファイバーと、を備えており、
前記厚みデータ演算手段は赤外線が前記被測定シートを透過中に減衰される光量を厚みに変換するものであって、前記集光レンズ前記フォトダイオードとが前記被測定シートに近接して配置されていることにある。
【0008】
このように構成されていると、投光部と受光部とが、夫々光源が収納されている投光側測定器本体と受光側測定器本体から分難されるため、実質的に厚み測定に係る装置部分を小型化することが可能となる。従って、設置場所が狭い場合には、投受光部だけを生産ラインに設置し、投受光側測定器本体を投受光部と離れた別の広い場所に設置することが可能となるため、製造ライン中を走行するシートの種類が変わった場合でもフィルターの交換が容易となり、1つの測定器を用いるだけで多種類のシートのオンライン厚み測定が実現できる。又、光ファイバーによる信号伝搬は、媒質中での減衰率が小さいので、長い伝搬距離を経たしても、データの信頼性にほとんど影響を与えることがなく、測定精度を高く維持できる。
【0009】
前記集光レンズ前記フォトダイオードとが、前記被測定シートの長さ方向または幅方向にわたって移動可能になっていることが好ましい。このように構成されていると、被測定シートの長さ方向のみならず幅方向にわたる厚み変動を的確に把握することができ、特に重要な測定箇所であるエッジ部分の厚み測定が容易となって都合がよい。
【0010】
前記厚みデータ演算手段は厚み換算器であって、この厚み換算器に、厚みデータを表示する表示部が接続されていることが好ましい。このように構成されていると、フォトダイオードからの信号を直接厚みデータとして識別できるので便利であると共に、表示部として厚みデータをグラフ化する等、使用目的に応じた種々の表示を実現できて都合がよい。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照して詳細に説明する。図1に、本実施形態の厚み測定システムである光ファイバーを用いた赤外線透過型厚み測定システムの概略構成を示す。この厚み測定システムは、赤外線を照射する赤外線用光源1とこの赤外線の内からシートSに吸収される特定波長のみを選定する、波長選定手段である光学フィルター2とを備えた投光側測定器本体Aと、この光学フィルター2と光ファイバー3により接続された集光レンズ等からなる投光部4と、走行するシートSを挟んで投光部4と対向する位置に配置されフォトダイオード等からなる受光部5と、更に、この受光部5と光ファイバー6を介して接続されている厚みデータ演算手段である厚み変換器7と、この厚み変換器7から出力された厚みデータをグラフ等にして表示する表示部8とを備えて構成されている。このように、本実施形態の厚み測定システムは、投光側測定器本体Aが赤外線を照射する赤外線用光源1と光学フィルター2とから構成されていて、受光側測定器本体Cが厚み変換器7から構成されていると共に、投光部4と受光部5のみが走行するシートに近接しつつ測定空間B内に配置される。従って、測定空間Bに占める実質的に測定に係る装置部分を、従来技術の場合に比べて大幅に小さくでき、既存の製造ラインに新たに設置する場合であっても、小スペースを確保するだけでよいため、製造ラインを大きく改造する必要がない。
【0012】
更に、前記光学フィルター2は、走行するシートSの材質によって種々変更可能になっている。その場合、シートSの厚みと光吸収量との関係が可能な限り高い勾配を有する直線関係を維持するような、つまり測定感度が高くなるような波長の赤外線を選定できるようなフィルターを選ぶことが好ましい。又、光学フィルター2と前記投光部4とは光ファイバー3により接続されているので、両者の位置が相当離れている場合であっても媒質中を伝搬する光の減衰率が低いため、実質的に測定には支障がない。その結果、光学フィルター2の交換が、測定空間Bとは離れた、交換作業の容易な場所でできるので、製造ラインとしてシートの材質が種々変更されるような場合でも、なんら支障なくフィルター交換作業を容易、迅速に実施でき、結果的に常に精度の高い厚みデータを得ることができる。
【0013】
もっとも、シート製造ラインを走行するシートの幅方向の厚さは均一ではない上に、製品によっては幅方向あるいは長さ方向によって構成成分が変わるため、同じシートでも測定箇所によっては赤外線吸収量が異なる場合がある。このような場合であっても、生産中のシートを製品規格内に納めるためには、シートの厚みを工程管理範囲内に保たせる必要がある。場合によっては生産工程上、人が立ち入れない場所や既設設備の影響を受けた、測定空間が制約された場所での工程管理を迫られる場合もある。
【0014】
本実施形態に係る厚み測定システムは、投受光部4,5のみを測定空間Bに設置し、これら投光部4と受光部5との組み合わせを共にシートSの幅方向あるいは長さ方向にわたって移動させ、測定位置を連続的に変えながらソフト処理を施す手法を採用する等によって高精度の厚み測定が可能となり、場合によってはフィルターを交換して測定箇所に対応した吸収波長に切替えることができ、任意の位置における精度のよい厚み測定が可能となる。つまり、これら投受光部4,5間を走行するシートSの幅方向にわたって連続的あるいは不連続的に移動させることにより、シートの厚み変動による変化(吸収値の変化が緩やかで連続的である)か、材質上の変化(例えば、局部的に結晶化が進んでいる、あるいは構成成分の偏析などによる変化であるため、一般に吸収値の変化が急激である)かを識別し得るデータを予め厚み演算手段7に記憶させておき、測定値が変動した場合にはその都度いずれの原因であるかを判断しながら厚みデータを出力させるようにすることができる。その際、測定値の大きな変化に対しては、フィルターを交換することにより吸収波長を変えることもできる。尚、投受光部4,5の移動は、図示はしないが、走行するシートに対して、その直上をX−Y方向に差し渡されたレールに沿って投光部4と受光部5が同期して移動可能なように駆動させる等により行わせることができる。
【0015】
更に、得られた測定値を連続的にグラフ化して表示するようにすると、現在生産されているシートの厚みを直ちに理解することができるので、品質管理を強化する手段として有用性は大きいものとなり好ましい。一対の投受光部を、シートの長さ方向あるいは幅方向に移動させて、その測定結果をグラフ化すると、厚みの変動、あるいは変動原因などが直ちに判明して、以後の工程処理に有用な情報が得られシートの品質向上に寄与できる。もとより表示手段としては、グラフ化するだけでなく、単なるデジタル表示でもよいし、所定範囲を越える測定値に対しては警告表示が発せられるような構成のものでもよい。
【0016】
〔別実施の形態〕
(1)厚みデータ演算手段は厚み変換器に限定されるものではなく、吸収値をデジタル信号で出力し、所定範囲を越える信号に対しては、音声あるいは光、あるいはこれら双方による警告表示が発せられるような構成のものでもよく、更にはシートの走行速度を減ずる、あるいは走行中止するようになっていてもよい。この場合、厚みデータ演算手段は表示部の機能を兼ね備えた構成になる。
【0017】
(2)上記した実施形態では、一対の投光部および受光部を測定空間に配置するようにしたが、これらの一対の投受光部の組み合わせを複数個、測定空間内に左右あるいは前後して配置するようにしてもよい。特に、エッジ部分を専用に測定する一対の投受光部の組み合わせを別に配置することにより、エッジ部分の厚み管理を強化し、より利便性の高い厚み測定システムを構成することもできる。
【0018】
(3)厚みデータ演算手段から出力される信号を次工程あるいは前工程に送信し、それらの送信データに応じて自動的に走行するシートに対して延伸力あるいは圧下する両ロール間の圧下力を作用させる制御システムと直結するように本発明を利用してもよい。
【0019】
【発明の効果】
以上、本発明によれば、従来技術の有する問題点が解消され、多種類にわたるシートの厚みをオンラインで精度良く測定でき、しかも実質的に測定に係る装置部分を小型化でき、かつ被測定シートの材質変化に応じたフィルター交換が容易な厚み測定システムを提供することができた。その結果、製造工程中のシートの破断が低減され、歩留りの大幅な向上を達成すると共に、操業性が向上した。
【図面の簡単な説明】
【図1】本発明に係る厚み測定システムの概略構成図
【図2】従来の厚み測定システムの概略構成図
【符号の説明】
1 赤外線用光源
2 波長選定手段(光学フィルター)
3,6 光ファイバー
4 投光部
7 厚みデータ演算手段(厚み換算器)
8 表示部
S 被測定シート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thickness measurement system, and more particularly, to a technique for measuring the thickness of a sheet-like material such as paper, pulp, or film while traveling using infrared rays.
[0002]
[Prior art]
One of the conditions for determining the quality of a sheet-like material (hereinafter abbreviated as a sheet) such as paper, pulp, film, etc. includes the thickness and the coating amount applied on the sheet. In particular, in the pre-stretching process of the sheet production line, the thickness management of the edge portion of the sheet is important. This is because if the thickness of the edge portion of the sheet is not uniform, there is a risk of loosening, cracking or cutting in the stretching process.
[0003]
Conventionally, there is a measurement technique as shown in FIG. 2 as a transmission type thickness measurement technique using an infrared absorption wavelength. In this measurement technique, infrared light emitted from the infrared light source 1 is transmitted through the optical filter 2 to select infrared light having a specific wavelength absorbed by the sheet to be measured from the infrared light. The light is condensed on the traveling sheet by being transmitted through the light projecting unit 4 including a lens or the like. Thickness conversion that converts the amount of light attenuated during transmission into thickness and outputs thickness data by projecting and transmitting infrared light of a specific wavelength focused and focused on the measurement spot toward the traveling sheet S This is a measurement technique in which the thickness is obtained using the vessel 7. In this measurement technique, it is common to replace the optical filter 2 capable of selecting a specific wavelength absorbed by the sheet S according to the type of the sheet S, and the thickness and thickness of the single thickness converter 7 are different. The thickness of the sheet can be measured.
[0004]
[Problems to be solved by the invention]
However, in the measurement method using the conventional transmission type measurement apparatus, the entire measurement apparatus requires a large space, for example, the infrared light source 1 and the light projecting / receiving units 4 and 5 are integrated. In other words, the light projecting side measuring device main body A composed of the infrared light source 1, the optical filter 2 and the light projecting unit 4 and the light receiving side measuring device main body C composed of the light receiving unit 5 and the thickness converter 7 are arranged in the measurement space B. It has been difficult to downsize the entire system by downsizing individual measuring devices. In the production process, when the place where the measuring device needs to be installed is very small, the size of the measuring device as a whole becomes an obstacle and cannot be easily installed. So far, it has been necessary to greatly modify the production line in order to secure a space in which the measuring device can be installed. In particular, the process before stretching is a complicated line of various devices, and the production process has already been completed. If you intend to install a thickness measurement device later, it will take a lot of labor and cost to modify the production line. Cost. For that reason, downsizing of the measuring device is an important issue, and there has been a strong demand for it.
[0005]
In addition, if the measuring device is installed in a place where it is difficult for people on the sheet production line to enter the production process, it is easy to replace the filter once installed just because the material of the sheet has changed. Not. In that case, the sheet to be measured is limited, or it is necessary to newly add a measuring device according to the sheet to be measured, and the installation cost (device purchase cost and facility construction cost) becomes large. For this reason, online thickness measurement in the pre-stretching process of a production line with many types of production sheets has been extremely difficult.
[0006]
Therefore, the object of the present invention is to eliminate the above-mentioned problems of the prior art, accurately measure the thickness of a wide variety of sheets, and substantially reduce the size of the apparatus related to the measurement, and change the material of the sheet to be measured. Another object of the present invention is to provide a thickness measurement system in which the filter can be easily replaced according to the conditions.
[0007]
[Means for Solving the Problems]
The above object can be achieved by the invention described in the claims. That is, the characteristic configuration of the thickness measurement system according to the present invention includes an infrared light source that emits infrared light,
An optical filter capable of selecting a specific wavelength to be measured sheet absorbs infrared emitting from the infrared light source,
A condensing lens that projects the infrared rays selected by the optical filter onto the sheet to be measured;
A first optical fiber for guiding infrared rays from the optical filter to the condenser lens;
A photodiode that receives light transmitted through the measurement sheet ;
A thickness data calculation means capable of calculating and outputting the thickness data of the measured sheet in response to a signal from the photodiode ;
A second optical fiber for guiding a signal from the photodiode to the thickness data calculation means,
The thickness data calculating means converts the amount of infrared light attenuated during transmission through the sheet to be measured into a thickness, and the condenser lens and the photodiode are disposed in proximity to the sheet to be measured. There is in being.
[0008]
When configured in this way, the light projecting unit and the light receiving unit are separated from the light projecting side measuring device main body and the light receiving side measuring device main body in which the light sources are housed, respectively. Such a device portion can be reduced in size. Therefore, when the installation location is small, it is possible to install only the light emitting / receiving unit on the production line and install the light emitting / receiving side measuring instrument body in another wide place away from the light emitting / receiving unit. Even when the type of sheet traveling inside changes, the filter can be easily replaced, and online thickness measurement of many types of sheets can be realized by using only one measuring instrument. In addition, since the signal propagation by the optical fiber has a small attenuation rate in the medium, the reliability of data is hardly affected even after a long propagation distance, and the measurement accuracy can be maintained high.
[0009]
It is preferable that the condensing lens and the photodiode are movable in the length direction or the width direction of the measurement target sheet. When configured in this way, thickness variations not only in the length direction but also in the width direction of the sheet to be measured can be accurately grasped, and it becomes easy to measure the thickness of the edge portion, which is a particularly important measurement location. convenient.
[0010]
The thickness data calculating means is a thickness converter, and it is preferable that a display unit for displaying the thickness data is connected to the thickness converter. Constituting in this way is convenient because the signal from the photodiode can be directly identified as thickness data, and various displays according to the purpose of use, such as graphing the thickness data as a display unit, can be realized. convenient.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic configuration of an infrared transmission type thickness measuring system using an optical fiber which is a thickness measuring system of the present embodiment. This thickness measuring system includes a light source 1 for irradiating infrared light and a light-projecting side measuring device including an optical filter 2 as a wavelength selecting means for selecting only a specific wavelength absorbed by the sheet S from the infrared light. The main body A, a light projecting unit 4 composed of a condensing lens connected by the optical filter 2 and the optical fiber 3, and a photodiode disposed at a position facing the light projecting unit 4 across the traveling sheet S. The light receiving unit 5, the thickness converter 7 which is a thickness data calculating means connected to the light receiving unit 5 via the optical fiber 6, and the thickness data output from the thickness converter 7 are displayed as a graph or the like. The display unit 8 is configured to be provided. Thus, the thickness measuring system of this embodiment is composed of the light source 1 for infrared rays and the optical filter 2 on which the light projecting side measuring device main body A emits infrared light, and the light receiving side measuring device main body C is a thickness converter. 7, and only the light projecting unit 4 and the light receiving unit 5 are disposed in the measurement space B in close proximity to the traveling sheet. Therefore, the apparatus part substantially related to the measurement occupying the measurement space B can be greatly reduced compared to the case of the prior art, and only a small space is ensured even when newly installed in an existing production line. Therefore, it is not necessary to greatly modify the production line.
[0012]
Further, the optical filter 2 can be variously changed depending on the material of the traveling sheet S. In that case, select a filter that can select an infrared ray having a wavelength that maintains a linear relationship having a gradient as high as possible between the thickness of the sheet S and the light absorption amount, that is, the measurement sensitivity is high. Is preferred. In addition, since the optical filter 2 and the light projecting unit 4 are connected by the optical fiber 3, the attenuation rate of the light propagating through the medium is low even when the positions of both are considerably separated. There is no problem in measurement. As a result, the optical filter 2 can be replaced at a place where the replacement work is easy, away from the measurement space B. Therefore, even if the material of the sheet is changed as a production line, the filter replacement work can be performed without any problem. Can be carried out easily and quickly, and as a result, highly accurate thickness data can always be obtained.
[0013]
However, the thickness in the width direction of the sheet traveling on the sheet production line is not uniform, and depending on the product, the constituent components vary depending on the width direction or the length direction. There is a case. Even in such a case, it is necessary to keep the thickness of the sheet within the process control range in order to keep the sheet being produced within the product specification. In some cases, in the production process, it may be necessary to manage the process in a place where the measurement space is constrained by a place where a person cannot enter or an existing facility.
[0014]
In the thickness measurement system according to the present embodiment, only the light projecting / receiving units 4 and 5 are installed in the measurement space B, and the combination of the light projecting unit 4 and the light receiving unit 5 is moved along the width direction or length direction of the sheet S. By adopting a method that performs software processing while continuously changing the measurement position, it becomes possible to measure the thickness with high accuracy, and in some cases, the filter can be replaced to switch to the absorption wavelength corresponding to the measurement location, Accurate thickness measurement at an arbitrary position is possible. That is, by changing continuously or discontinuously across the width direction of the sheet S traveling between the light projecting and receiving parts 4 and 5, changes due to sheet thickness fluctuations (changes in absorption values are gentle and continuous). The thickness of the data that can be used to identify whether or not the material has changed (for example, the crystallization is progressing locally, or the change is due to segregation of components, and thus the change in absorption value is generally rapid). It is possible to store the data in the calculation means 7 and output the thickness data while determining which is the cause each time the measured value fluctuates. At this time, the absorption wavelength can be changed by exchanging the filter for a large change in the measured value. The movement of the light projecting / receiving units 4 and 5 is not shown, but the light projecting unit 4 and the light receiving unit 5 are synchronized with each other along the rail passed in the XY direction immediately above the traveling sheet. Then, it can be performed by driving so as to be movable.
[0015]
Furthermore, if the measured values obtained are continuously graphed and displayed, it is possible to immediately understand the thickness of the currently produced sheet, which is very useful as a means to enhance quality control. preferable. By moving the pair of light emitting and receiving parts in the length or width direction of the sheet and graphing the measurement results, the thickness variation or the cause of the variation can be immediately identified, and useful information for subsequent processing. Can contribute to improving the quality of the sheet. Of course, as the display means, not only a graph but also a simple digital display may be used, or a warning display may be issued for a measured value exceeding a predetermined range.
[0016]
[Another embodiment]
(1) The thickness data calculation means is not limited to the thickness converter, and the absorption value is output as a digital signal. When the signal exceeds the predetermined range, a warning display by sound or light or both is issued. Further, the seat may be configured to reduce the traveling speed of the seat or to stop traveling. In this case, the thickness data calculation means has a function of a display unit.
[0017]
(2) In the above-described embodiment, the pair of light projecting units and the light receiving unit are arranged in the measurement space. However, a plurality of combinations of the pair of light projecting / receiving units are arranged in the measurement space. It may be arranged. In particular, by separately arranging a combination of a pair of light projecting and receiving units that measure the edge portion exclusively, the thickness management of the edge portion can be strengthened, and a more convenient thickness measurement system can be configured.
[0018]
(3) A signal output from the thickness data calculation means is transmitted to the next process or the previous process, and the drawing force or the reduction force between the two rolls is automatically applied to the sheet that travels in accordance with the transmission data. You may utilize this invention so that it may be directly connected with the control system to act.
[0019]
【The invention's effect】
As described above, according to the present invention, the problems of the prior art are solved, the thickness of a wide variety of sheets can be accurately measured online, and the apparatus portion for measurement can be substantially downsized, and the sheet to be measured It was possible to provide a thickness measurement system in which the filter can be easily exchanged according to the material change. As a result, the breakage of the sheet during the manufacturing process was reduced, the yield was significantly improved, and the operability was improved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a thickness measuring system according to the present invention. FIG. 2 is a schematic configuration diagram of a conventional thickness measuring system.
1 Infrared light source 2 Wavelength selection means (optical filter)
3, 6 Optical fiber 4 Projection unit 7 Thickness data calculation means (thickness converter)
8 Display S Sheet to be measured

Claims (3)

赤外線を照射する赤外線用光源と、
この赤外線用光源より発する赤外線から被測定シートが吸収する特定波長を選定可能な光学フィルターと、
この光学フィルターにより選定された赤外線を前記被測定シートに投射する集光レンズと、
前記光学フィルターからの赤外線を前記集光レンズに導く第1光ファイバーと、
前記被測定シートを透過してきた光を受光するフォトダイオードと、
このフォトダイオードからの信号を受けて前記被測定シートの厚みデータを演算し出力可能な厚みデータ演算手段と
前記フォトダイオードからの信号を前記厚みデータ演算手段に導く第2光ファイバーと、を備えており、
前記厚みデータ演算手段は赤外線が前記被測定シートを透過中に減衰される光量を厚みに変換するものであって、前記集光レンズ前記フォトダイオードとが前記被測定シートに近接して配置されていることを特徴とする厚み測定システム。
An infrared light source that emits infrared light;
An optical filter capable of selecting a specific wavelength to be measured sheet absorbs infrared emitting from the infrared light source,
A condensing lens that projects the infrared rays selected by the optical filter onto the sheet to be measured;
A first optical fiber for guiding infrared rays from the optical filter to the condenser lens;
A photodiode for receiving light transmitted through the measurement sheet ;
A thickness data calculation means capable of calculating and outputting the thickness data of the sheet to be measured in response to a signal from the photodiode ;
A second optical fiber for guiding the signal from the photodiode to the thickness data calculation means,
The thickness data calculating means converts the amount of infrared light attenuated during transmission through the sheet to be measured into a thickness, and the condenser lens and the photodiode are disposed in proximity to the sheet to be measured. A thickness measurement system characterized by that.
前記集光レンズ前記フォトダイオードとが、前記被測定シートの長さ方向または幅方向にわたって移動可能になっている請求項1の厚み測定システム。The thickness measurement system according to claim 1, wherein the condenser lens and the photodiode are movable in a length direction or a width direction of the measurement target sheet. 前記厚みデータ演算手段は厚み換算器であって、この厚み換算器に、厚みデータを表示する表示部が接続されている請求項1又は2の厚み測定システム。The thickness measurement system according to claim 1 or 2, wherein the thickness data calculation means is a thickness converter, and a display unit for displaying the thickness data is connected to the thickness converter.
JP26911998A 1998-09-24 1998-09-24 Thickness measurement system Expired - Fee Related JP4085213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26911998A JP4085213B2 (en) 1998-09-24 1998-09-24 Thickness measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26911998A JP4085213B2 (en) 1998-09-24 1998-09-24 Thickness measurement system

Publications (2)

Publication Number Publication Date
JP2000097645A JP2000097645A (en) 2000-04-07
JP4085213B2 true JP4085213B2 (en) 2008-05-14

Family

ID=17467954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26911998A Expired - Fee Related JP4085213B2 (en) 1998-09-24 1998-09-24 Thickness measurement system

Country Status (1)

Country Link
JP (1) JP4085213B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033531A (en) * 2020-09-05 2020-12-04 山西大学 Portable test paper counting device and method based on single photon detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5184842B2 (en) * 2007-08-20 2013-04-17 大塚電子株式会社 Colored film thickness measuring method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033531A (en) * 2020-09-05 2020-12-04 山西大学 Portable test paper counting device and method based on single photon detector
CN112033531B (en) * 2020-09-05 2021-08-24 山西大学 Portable test paper counting device and method based on single photon detector

Also Published As

Publication number Publication date
JP2000097645A (en) 2000-04-07

Similar Documents

Publication Publication Date Title
CN101294795B (en) Apparatus and method for measuring film thickness
US5251010A (en) Optical roller wave gauge
JPS61270632A (en) Optical fiber type measuring instrument for temperature distribution
JPH0628612U (en) Multi-axis measuring instrument
US5657116A (en) Ocular lens measuring apparatus
JPS62138708A (en) Method and device for measuring change of thickness and/or orientation in optical active material
EP0762079A2 (en) Method and apparatus for measuring the thickness of a film
JPH0318121B2 (en)
JP4104924B2 (en) Optical measuring method and apparatus
JP4085213B2 (en) Thickness measurement system
JP2003294609A (en) Apparatus and method for multipoint measurement
US4183666A (en) Method of measuring light transmission losses of optical materials
JPH07234109A (en) Device and method for measuring high-speed film
JP2000074634A (en) Method and instrument for measuring thickness of macromolecular film
JPH07260680A (en) Infrared ray sensor
US5078488A (en) Method and apparatus for determining refractive index distribution
JPS62156544A (en) Measuring device for moisture quantity of paper
JP3160103B2 (en) Optical glass thickness measurement method
KR100231106B1 (en) Apparatus for measuring birefringence
JPH09210848A (en) Method and apparatus for measurement of transmission and scattering capability
JPH08219729A (en) Apparatus for measuring film thickness
JPH0652237B2 (en) Fluid refractometer and fluid density meter using the same
JPH08285725A (en) Method and equipment for measuring refractive index of wafercomprising glass substance
JPH11326190A (en) Retardation measurement apparatus, double refraction measurement apparatus and production for plastic film with the apparatus
JP2853472B2 (en) Optical fiber centering position detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees