JPH09210848A - Method and apparatus for measurement of transmission and scattering capability - Google Patents

Method and apparatus for measurement of transmission and scattering capability

Info

Publication number
JPH09210848A
JPH09210848A JP3896796A JP3896796A JPH09210848A JP H09210848 A JPH09210848 A JP H09210848A JP 3896796 A JP3896796 A JP 3896796A JP 3896796 A JP3896796 A JP 3896796A JP H09210848 A JPH09210848 A JP H09210848A
Authority
JP
Japan
Prior art keywords
sample
integrating sphere
light
transmission
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3896796A
Other languages
Japanese (ja)
Inventor
Tomoko Kondo
知子 近藤
Yoshinori Takema
吉則 武馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP3896796A priority Critical patent/JPH09210848A/en
Publication of JPH09210848A publication Critical patent/JPH09210848A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the transmission and scattering characteristic of a sample as separate information separated from an absorption characteristic while a simple apparatus is used. SOLUTION: The transmission and scattering capability of a sample 1 is found in such a way that parallel light L0 at a constant intensity is made incident on the sample 1 and that the quanitity of light of transmitted and scattered light L1 by the sample 1 is detected by using an integrating sphere 2 having a hole 2h on an optical axis L and by using a detector 4 which is connected to the integrating sphere. In this case, the ratio I1 /I2 of the quantity of detected light I1 of the transmitted and scattered light, at a time when the distance between the sample 1 and the integrating sphere 2 is d1 , to the quantity of detected light I2 of the transmitted and scattered light, at a time when the distance between the sample 1 and the integrating sphere 2 is d2 , is found as a straight advance ratio, and the straight advance ratio I1 /I2 is evaluated as the transmission and scattering capability of the sample 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、試料の透過散乱特
性を簡便に評価できるようにする透過散乱能測定方法及
び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring transmission / scattering ability, which enables easy evaluation of transmission / scattering characteristics of a sample.

【0002】[0002]

【従来の技術】一般に、試料の光の透過特性を評価する
場合、その試料が表面平滑な板ガラスのように、散乱が
問題とならないときには、試料に平行光を入射させると
試料の透過光も平行光となるため、試料の透過光を検出
器に導入することにより光の透過率が測定される。この
場合、試料の透過光を検出器に導入するに際しては、必
要に応じてレンズや鏡が使用される。
2. Description of the Related Art Generally, when the light transmission characteristics of a sample are evaluated, when the sample does not have a problem of scattering like plate glass having a smooth surface, parallel light is incident on the sample so that the transmitted light of the sample is also parallel. Since it becomes light, the light transmittance is measured by introducing the transmitted light of the sample into the detector. In this case, when introducing the transmitted light of the sample into the detector, a lens or a mirror is used if necessary.

【0003】これに対して、懸濁液、半透明フィルム、
曇ガラス板等を試料とする場合、平行光を入射させて
も、試料への入射時点で光は散乱してしまうため、試料
の透過散乱光は積分球を用いて強度を平均化した後、検
出器に導入される。例えば、図5に示したように、試料
1を積分球2に密着させて光源3から平行光L0 を試料
1に入射させ、試料1の透過散乱光L1 を検出器4で検
出することがなされている。
On the other hand, suspensions, translucent films,
When a clouded glass plate or the like is used as the sample, even if parallel light is incident, the light is scattered at the time of incidence on the sample, so the intensity of the transmitted scattered light of the sample is averaged using an integrating sphere. Introduced into the detector. For example, as shown in FIG. 5, the sample 1 is closely attached to the integrating sphere 2, the parallel light L 0 is made incident on the sample 1 from the light source 3, and the transmitted scattered light L 1 of the sample 1 is detected by the detector 4. Has been done.

【0004】また、試料の透過散乱光がどの方向にどの
強さの強度を有するかという散乱角度分布を調べる場合
には、図6に示したように、試料1に対して一定距離を
離して設置され、かつ、光軸Lに対する角度θを可変に
することのできる検出器4を用いて、光源3から試料1
に平行光L0 を入射させたときの試料1からの透過散乱
光L1 を、検出器4を光軸Lに対する角度θを変えて検
出することがなされている。
In order to examine the scattering angle distribution of the intensity of the transmitted scattered light of the sample in which direction and which intensity, as shown in FIG. Using the detector 4 installed and capable of varying the angle θ with respect to the optical axis L, the light source 3 to the sample 1 is used.
It has been made to detect a different angle θ with respect to the optical axis L of the transmitted scattered light L 1, the detector 4 from the sample 1 when is incident parallel light L 0 in.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図5に
示したように積分球2を用いて透過散乱光L1 を検出す
る場合、その検出値からは、試料1により吸収された光
量と前方散乱された光量との合計値に関する情報しか得
られず、試料1の透過散乱特性を光吸収特性とは別個の
分離した情報として得ることはできないという問題があ
る。
However, when the transmitted scattered light L 1 is detected using the integrating sphere 2 as shown in FIG. 5, from the detected value, the amount of light absorbed by the sample 1 and the forward scattered light are detected. There is a problem in that only the information regarding the total value of the amount of light that has been obtained can be obtained, and the transmission and scattering characteristics of the sample 1 cannot be obtained as separate information that is separate from the light absorption characteristics.

【0006】また、図6に示した、検出器角度可変型の
装置では、検出器4の角度θを変えるために、それに付
随する光学素子群も動かさなくてはならず、そのために
測定誤差や光量損失が生じるという問題があり、さらに
装置が複雑で高価なものとなるという問題もあった。
Further, in the detector angle variable type device shown in FIG. 6, in order to change the angle θ of the detector 4, the optical element group associated therewith must be moved, which causes a measurement error or an error. There is a problem that light amount loss occurs, and there is also a problem that the device becomes complicated and expensive.

【0007】本発明は以上のような従来技術の問題点を
解決しようとするものであり、試料の透過散乱特性を、
吸収特性とは別個の分離した情報として、簡便な装置を
使用して得られるようにすることを目的としている。
The present invention is intended to solve the above-mentioned problems of the prior art, and the transmission and scattering characteristics of the sample are
The purpose is to be able to obtain it as separate information separate from the absorption characteristics using a simple device.

【0008】[0008]

【課題を解決するための手段】本発明者は、積分球を用
いて試料の透過散乱特性を求める場合に、試料を積分球
から離したときに得られる検出光量I1 と、試料を積分
球に近づけたとき、好ましくは試料と積分球とを密着さ
せたときに得られる検出光量I2 との比率I1/I2
とることにより、試料の吸収特性に依存しない透過散乱
特性の指標を得られること、しかもこの指標を簡便な測
定操作で得られること、したがって、この比率I1 /I
2 を透過散乱能として評価することにより本発明の目的
が達成できることを見出し、本発明を完成させるに至っ
た。
The present inventor, when obtaining the transmission and scattering characteristics of a sample using an integrating sphere, detects the amount of detected light I 1 obtained when the sample is separated from the integrating sphere and the integrating sphere. By taking the ratio I 1 / I 2 of the detected light amount I 2 obtained when the sample and the integrating sphere are brought into close contact with each other, it is possible to obtain an index of the transmission / scattering characteristic independent of the absorption characteristic of the sample. It is possible to obtain this index by a simple measurement operation, and therefore, the ratio I 1 / I
The inventors have found that the object of the present invention can be achieved by evaluating 2 as the transmission and scattering ability, and have completed the present invention.

【0009】即ち、試料に一定強度の平行光を入射さ
せ、そのときの試料の透過散乱光の光量を、光軸上に孔
を有する積分球及びその積分球に接続した検出器を用い
て検出する透過散乱能測定方法であって、試料と積分球
との距離がd1 であるときの透過散乱光の検出光量I1
と、試料と積分球との距離がd2 (但し、d1 >d2
であるときの透過散乱光の検出光量I2 との比率I1
2 を直進率として求め、この直進率に基づいて試料の
透過散乱能を評価することを特徴とする透過散乱能測定
方法を提供する。
That is, parallel light having a constant intensity is incident on the sample, and the amount of transmitted scattered light of the sample at that time is detected using an integrating sphere having a hole on the optical axis and a detector connected to the integrating sphere. a transmissive scattering power measurement method, detecting the light quantity I 1 of transmitted scattered light when the distance between the sample and an integrating sphere is d 1
And the distance between the sample and the integrating sphere is d 2 (however, d 1 > d 2 ).
Ratio of the transmitted scattered light to the detected light amount I 2 I 1 /
A method for measuring transmission / scattering ability is provided, wherein I 2 is calculated as a rectilinear movement rate, and the transmission / scattering ability of a sample is evaluated based on the rectilinear movement rate.

【0010】また、本発明は、上記本発明の透過散乱能
測定方法を実施することのできる装置として、試料に一
定強度の平行光を入射させることのできる光源、光軸上
に孔を有する積分球、この積分球に接続して試料からの
透過散乱光の光量を検出する検出器、及び光源と積分球
との間の光軸上に位置可変に試料を保持する試料台を有
することを特徴とする透過散乱能測定装置を提供する。
Further, the present invention is an apparatus capable of carrying out the method for measuring transmission and scattering power of the present invention, which is a light source capable of making parallel light of a constant intensity incident on a sample, and an integral having a hole on the optical axis. It has a sphere, a detector connected to the integrating sphere to detect the amount of transmitted scattered light from the sample, and a sample stand that holds the sample in a variable position on the optical axis between the light source and the integrating sphere. The present invention provides a device for measuring transmission and scattering power.

【0011】本発明の方法によれば、試料の透過散乱能
として、試料と積分球との距離が異なる場合の検出光量
の比率I1 /I2 を求める。この比率は、本発明者が透
過散乱特性の指標として新たに見出したものであり、試
料の吸収特性に依存しない値を示す。即ち、試料に一定
強度の平行光を入射させ、試料からの透過散乱光を積分
球を用いて検出する際に、試料と積分球との距離を異な
らせた2つの場合において、試料への入射光量は双方の
場合に同一と考えられ、また、試料表面での反射光量も
双方の場合に同一と考えることができる。よって、双方
の場合の検出光量の比率I1 /I2 は、試料と積分球と
の距離と、積分球の孔の大きさとに応じて変化するが、
試料中に含まれる吸収物質の量や吸収波長といった試料
の吸収特性には依存しない透過散乱特性値を表すと考え
ることができる。
According to the method of the present invention, the ratio I 1 / I 2 of the detected light amounts when the distance between the sample and the integrating sphere is different is determined as the transmission and scattering ability of the sample. This ratio was newly found by the present inventor as an index of transmission and scattering characteristics, and shows a value that does not depend on the absorption characteristics of the sample. That is, when parallel light with a constant intensity is incident on the sample and the transmitted scattered light from the sample is detected using the integrating sphere, the incident light on the sample is detected in two cases where the distance between the sample and the integrating sphere is different. The amount of light is considered to be the same in both cases, and the amount of light reflected on the sample surface can also be considered to be the same in both cases. Therefore, although the ratio I 1 / I 2 of the detected light amounts in both cases changes depending on the distance between the sample and the integrating sphere and the size of the hole of the integrating sphere,
It can be considered to represent a transmission / scattering characteristic value that does not depend on the absorption characteristic of the sample such as the amount of the absorbing substance contained in the sample or the absorption wavelength.

【0012】例えば、試料の透過光がほとんど散乱され
ずに入射光と同様の平行性を有している場合には、試料
と積分球との距離によらず、検出光量の比率I1 /I2
は1に近い数値をとると考えられるが、試料の散乱能が
大きい場合には、試料と積分球との距離が大きくなるほ
ど検出光量は小さくなる。即ち、試料と積分球との距離
がd1 のときの検出光量をI1 とし、試料と積分球との
距離がd2 のときの検出光量をI2 (但し、d1
2 )とすると、試料の散乱能が大きい場合には、試料
と積分球との距離d1 が大きくなるほど検出光量I1
小さくなり、検出光量の比率I1 /I2 が小さくなると
考えられる。そこで、本発明では、この比率I1 /I2
を直進率と称し、この直進率によって、試料の透過散乱
特性を評価する。特に、この直進率I1 /I2 を、試料
と積分球とが特定の距離d1 であるときの検出光量I1
と、試料と積分球とを密着させたときの検出光量I2
比率として求めることにより、種々の試料の透過散乱特
性を容易に比較評価することが可能となるので、本発明
はこの意味での直進率を試料の透過散乱特性の好ましい
指標として提供する。
For example, when the transmitted light of the sample is scarcely scattered and has the same parallelism as the incident light, the ratio I 1 / I of the detected light amounts is irrespective of the distance between the sample and the integrating sphere. 2
Is considered to be a value close to 1, but when the scattering power of the sample is large, the detected light amount decreases as the distance between the sample and the integrating sphere increases. That is, the amount of light detected when the distance between the sample and the integrating sphere is d 1 is I 1, and the amount of light detected when the distance between the sample and the integrating sphere is d 2 is I 2 (where d 1 >
When d 2) that, when the scattering power of the sample is large is considered as detected light intensity I 1 a distance d 1 between the sample and an integrating sphere is large becomes small and the ratio I 1 / I 2 of detected light is reduced . Therefore, in the present invention, this ratio I 1 / I 2
Is referred to as a straight traveling rate, and the transmission / scattering characteristic of the sample is evaluated by this straight traveling rate. In particular, the detection light quantity I 1 of the straight ratio I 1 / I 2, when the the sample and an integrating sphere which is a certain distance d 1
By calculating as the ratio of the detected light amount I 2 when the sample and the integrating sphere are brought into close contact with each other, the transmission and scattering characteristics of various samples can be easily compared and evaluated. Provides the straightness rate as a preferable indicator of the transmission and scattering characteristics of the sample.

【0013】また、このような方法を実施する装置とし
ては、試料に一定強度の平行光を入射させることのでき
る光源と、試料を保持する試料台と、光軸上に孔を有す
る積分球と、積分球に接続して試料からの透過散乱光の
光量を検出する検出器があれば足りるが、本発明の装置
においては、試料と積分球との距離を変えるにあたり、
試料台が光軸上を位置可変に移動するものとする。これ
により、積分球及び検出器の設置位置を移動させる場合
に比して、積分球や検出器に付随する光学系を移動させ
ないので、移動に伴なう誤差が生じず、また、移動手段
自体も簡便に構成することができる。
As an apparatus for carrying out such a method, a light source capable of making parallel light of a constant intensity incident on a sample, a sample stage for holding the sample, and an integrating sphere having a hole on the optical axis. , It is sufficient if there is a detector connected to an integrating sphere to detect the amount of transmitted scattered light from the sample, but in the apparatus of the present invention, when changing the distance between the sample and the integrating sphere,
It is assumed that the sample stage moves on the optical axis in a variable position. As a result, compared with the case where the installation positions of the integrating sphere and the detector are moved, the optical system associated with the integrating sphere and the detector is not moved, so that an error accompanying the movement does not occur, and the moving means itself. Can be easily configured.

【0014】[0014]

【発明の実施の形態】以下、本発明を図面に基づいて詳
細に説明する。なお、前述の従来例も含めて、各図中、
同一符号は同一又は同等の構成要素を表している。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail with reference to the drawings. In addition, in each figure, including the above-mentioned conventional example,
The same reference numerals represent the same or equivalent components.

【0015】図1は、本発明の装置の概略構成図であ
る。この装置は、試料1に平行光を入射させる光源3
と、光軸L上に孔2hを有する積分球2、この積分球2
に接続して試料1からの透過散乱光L1 の光量を検出す
る検出器4、及び光源3と積分球2との間の光軸上Lに
おいて位置可変に試料1を保持する試料台5及び試料台
5を可動的に保持する基台部6からなっている。
FIG. 1 is a schematic configuration diagram of the apparatus of the present invention. This device comprises a light source 3 for making parallel light incident on a sample 1.
And an integrating sphere 2 having a hole 2h on the optical axis L.
Connected to the detector 1 to detect the amount of transmitted scattered light L 1 from the sample 1, and a sample table 5 that holds the sample 1 positionally on the optical axis L between the light source 3 and the integrating sphere 2, It is composed of a base portion 6 that movably holds the sample table 5.

【0016】この装置において、光源3としては、試料
1に平行光を入射させることのできるものである限り特
に制限はなく、通常の透過率測定装置等に使用されてい
るものを使用することができるが、特に、所定波長の光
を発することのできる分光能を備えたものが好ましい。
これにより当該入射波長における試料の透過散乱能を調
べることができ、入射波長との透過散乱能との関係を調
べることが可能となるので好ましい。
In this apparatus, the light source 3 is not particularly limited as long as it is capable of allowing parallel light to enter the sample 1, and a light source used in a normal transmittance measuring device or the like can be used. However, it is particularly preferable that the light source has a spectral power capable of emitting light of a predetermined wavelength.
This is preferable because it is possible to investigate the transmission / scattering ability of the sample at the incident wavelength and the relationship between the incident wavelength and the transmission / scattering ability.

【0017】積分球2としては、試料1からの透過散乱
光を内部に導入する孔2hを光軸L上に有するものを使
用するが、この場合、特に孔2hは光軸Lを中心とする
真円が好ましい。また、その径は小さ過ぎると精度が低
くなり、大き過ぎると感度が低くなるので、通常5mm
〜20mm程度とすることが好ましい。
As the integrating sphere 2, one having a hole 2h on the optical axis L for introducing the transmitted scattered light from the sample 1 is used. In this case, the hole 2h is centered on the optical axis L in particular. A perfect circle is preferred. Also, if the diameter is too small, the accuracy becomes low, and if it is too large, the sensitivity becomes low.
It is preferably about 20 mm.

【0018】試料台5は、試料1を光軸L上において移
動可能に保持するものであればよく、例えば、レールな
どの基台部6に可動的に取り付けられたアングルと試料
を固定するグリップ又は枠材から構成することができ
る。特に試料台5は、図中破線で示したように、試料1
を積分球2に密接させられる位置をとり得るようにし、
そこからの可動範囲が、通常0〜300mm程度あるも
のが好ましい。
The sample table 5 may be any one that holds the sample 1 movably on the optical axis L. For example, an angle movably attached to a base 6 such as a rail and a grip for fixing the sample. Alternatively, it can be composed of a frame material. In particular, the sample table 5 is the sample 1 as shown by the broken line in the figure.
So that the position can be brought into close contact with the integrating sphere 2,
It is preferable that the movable range from there is usually about 0 to 300 mm.

【0019】本発明においては、このような装置を用い
て本発明の方法を実施する場合に、まず、試料1を積分
球2と距離d1 の位置に設置し、光源3から試料1に平
行光を入射させ、そのときの検出器4における検出光量
1 を求める。また、試料1と積分球2との距離を異な
らせ、両者の距離がd2 (但し、d1 >d2 )であると
きの検出光量I2 を求め、さらにこれらの比率I1 /I
2 を直進率として求め、この直進率の値を試料1の透過
散乱能として評価する。
In the present invention, when carrying out the method of the present invention using such an apparatus, first, the sample 1 is installed at a position at a distance d 1 from the integrating sphere 2 and the light source 3 is parallel to the sample 1. Light is made incident and the amount of detected light I 1 in the detector 4 at that time is obtained. Further, the distance between the sample 1 and the integrating sphere 2 is made different, and the detected light amount I 2 when the distance between them is d 2 (however, d 1 > d 2 ), and these ratios I 1 / I
2 is obtained as the straight traveling rate, and the value of this straight traveling rate is evaluated as the transmission and scattering ability of the sample 1.

【0020】この場合、試料1と積分球2との距離d2
を0とすることにより、即ち、試料1を積分球2に密着
させることにより、積分球2は、試料1の透過散乱光L
1 を全角度に渡って回収することができる。これに対し
て、試料1を積分球2から一定距離(d1 )離した場合
には、その距離での仮想球上の孔2hに相当する角度α
の透過散乱光を積分球2は回収することになる。したが
って、上述のように透過散乱能として直進率I1 /I2
を求める場合に、I2 として、試料1と積分球2とを密
着させたとき(d2 =0)の値を用いることにより、試
料の散乱特性に対する本発明の透過散乱能(即ち、直進
率I1 /I2 )の感度を大きくすることができる。
In this case, the distance d 2 between the sample 1 and the integrating sphere 2
Is set to 0, that is, by bringing the sample 1 into close contact with the integrating sphere 2, the integrating sphere 2 causes the transmitted scattered light L of the sample 1 to pass.
1 can be collected over all angles. On the other hand, when the sample 1 is separated from the integrating sphere 2 by a constant distance (d 1 ), the angle α corresponding to the hole 2h on the phantom sphere at that distance
The integrating sphere 2 collects the transmitted scattered light of. Therefore, as described above, the straight-forward rate I 1 / I 2 is calculated as the transmission / scattering ability.
When seeking, as I 2, by using a value when brought into close contact with the sample 1 and the integrating sphere 2 (d 2 = 0), transmission scattering power of the present invention with respect to the scattering properties of the sample (i.e., straight ahead ratio The sensitivity of I 1 / I 2 ) can be increased.

【0021】なお、本発明の装置としては、検出器4に
おける検出光量を記憶し、試料1と積分球2との距離が
異なる場合の直進率I1 /I2 (但し、d1 >d2 )を
算出する演算手段及びこの算出結果を出力する出力手段
として、パーソナルコンピュータやディスプレイ等を組
み込んでもよい。
As the apparatus of the present invention, the amount of light detected by the detector 4 is stored, and when the distance between the sample 1 and the integrating sphere 2 is different, the straight traveling rate I 1 / I 2 (however, d 1 > d 2 ), A personal computer, a display or the like may be incorporated as the calculation means and the output means for outputting the calculation result.

【0022】本発明により得られる透過散乱能は、種々
の光散乱性物質の評価指標として使用することができ
る。例えば、懸濁液、塗膜、遮光フィルム、曇ガラス板
などの透過散乱特性の評価に使用することができる。
The transmission and scattering ability obtained by the present invention can be used as an evaluation index for various light scattering substances. For example, it can be used to evaluate the transmission and scattering characteristics of suspensions, coating films, light-shielding films, frosted glass plates, and the like.

【0023】[0023]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments.

【0024】実施例1 図1に示した装置構成において、光源として重水素ラン
プを使用し、積分球2として直径5cm、孔2hの直径
10mmのものを使用し、この積分球2に接続する検出
器4として光電子増倍管を使用した。
Example 1 In the apparatus configuration shown in FIG. 1, a deuterium lamp was used as a light source, an integrating sphere 2 having a diameter of 5 cm and a hole 2h having a diameter of 10 mm was used. A photomultiplier tube was used as the container 4.

【0025】一方、試料1として無色曇ガラス又は褐色
曇ガラスを試料台5に取り付け、試料台5を動かして試
料1を積分球2に密着させ、光源3から試料1に光を入
射させ、検出器4で光量I2 を測定した。この場合、光
源3から試料1への光は波長350〜700nmで変化
させ、各波長で光量I2 を測定した。次いで試料1と積
分球との距離を50mmとし、同様に入射光の波長を変
えて検出器4で光量I1 を測定した。そして、両者の比
率I1 /I2 を直進率として求めた。この結果を図3に
示す。また、試料1と積分球2とを密着させた場合に検
出器4で測定された光量を、試料1を光路から外した場
合に検出器4で測定された光量を100とする、積分球
密着時透過率(%)として求めた。この結果を図2に示
す。
On the other hand, as sample 1, colorless cloudy glass or brown cloudy glass was attached to the sample table 5, the sample table 5 was moved to bring the sample 1 into close contact with the integrating sphere 2, and light was made incident on the sample 1 from the light source 3 for detection. The light intensity I 2 was measured by the instrument 4. In this case, the light from the light source 3 to the sample 1 was changed at a wavelength of 350 to 700 nm, and the light amount I 2 was measured at each wavelength. Next, the distance between the sample 1 and the integrating sphere was set to 50 mm, the wavelength of the incident light was changed in the same manner, and the light amount I 1 was measured by the detector 4. Then, the ratio I 1 / I 2 of the two was determined as the straight traveling rate. The result is shown in FIG. Further, the amount of light measured by the detector 4 when the sample 1 and the integrating sphere 2 are brought into close contact with each other is 100, and the amount of light measured by the detector 4 when the sample 1 is removed from the optical path is taken as 100. It was calculated as the hourly transmittance (%). The result is shown in FIG.

【0026】図2から、褐色曇ガラスと無色曇ガラスと
の透過率は大きく異なり、無色曇ガラスが350〜70
0nmの波長域で大きな吸収をもたないのに対し、褐色
曇ガラスは短波長側に強い吸収を有していることがわか
る。しかし、図3から、褐色曇ガラスと無色曇ガラスと
の直進率は、吸収の有無によらず、略一定値となってい
ることがわかる。したがって、本発明の直進率は、試料
の光吸収特性とは別個の分離した情報として得られる特
性値であり、透過散乱能の指標となることがわかる。
From FIG. 2, the transmittances of the brown frosted glass and the colorless frosted glass are greatly different, and the colorless frosted glass has a transmittance of 350 to 70.
It can be seen that the brown frosted glass has strong absorption on the short wavelength side, while it has no large absorption in the wavelength range of 0 nm. However, it can be seen from FIG. 3 that the straight traveling rates of the brown frosted glass and the colorless frosted glass are substantially constant regardless of the presence or absence of absorption. Therefore, it can be seen that the straightness rate of the present invention is a characteristic value obtained as separate information that is separate from the light absorption characteristics of the sample, and is an index of transmission and scattering ability.

【0027】実施例2 市販の窓ガラス用透明フィルム、窓ガラス用目隠しフィ
ルム及び障子紙を試料として、これらの直進率を実施例
1と同様にして求めた。この結果を図4に示す。
Example 2 Using a commercially available transparent film for window glass, a blinding film for window glass, and shoji paper as samples, their straightness rates were determined in the same manner as in Example 1. The result is shown in FIG.

【0028】一方、これら窓ガラス用フィルム及び障子
紙の透過散乱能を、透明、半透明、及び不透明の3段階
に目視評価したところ、次のように評価された。
On the other hand, the transmission / scattering ability of the window glass film and the shoji paper was visually evaluated in three grades of transparent, semi-transparent and opaque.

【0029】[目視評価結果] 窓ガラス用透明フィルム :透明 窓ガラス用目隠しフィルム:半透明 障子紙 :不透明[Visual Evaluation Results] Transparent film for window glass: transparent Blinding film for window glass: translucent Shoji paper: opaque

【0030】この目視評価結果と図4に示した直進率の
結果から、直進率の高い試料ほど目視による透明性も高
く評価されており、直進率が透過散乱能の指標として有
効であることがわかる。
From the results of the visual evaluation and the results of the straight running rate shown in FIG. 4, the higher the straight running rate of the sample, the higher the transparency evaluated by visual observation, and the straight running rate is effective as an index of the transmission and scattering ability. Recognize.

【0031】[0031]

【発明の効果】本発明の方法により得られる直進率によ
れば、試料の透過散乱特性を、吸収特性とは別個の分離
した情報として得ることができ、しかもこの直進率は簡
便な装置を使用して得ることができる。
According to the straightness rate obtained by the method of the present invention, the transmission / scattering characteristic of the sample can be obtained as separated information separate from the absorption characteristic, and the straightness rate can be obtained by using a simple device. You can get it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an apparatus of the present invention.

【図2】無色曇ガラス及び褐色曇ガラスについての入射
波長と透過率との関係図である。
FIG. 2 is a relationship diagram of incident wavelength and transmittance for colorless frosted glass and brown frosted glass.

【図3】無色曇ガラス及び褐色曇ガラスについての入射
波長と直進率との関係図である。
FIG. 3 is a relationship diagram between an incident wavelength and a straight traveling rate for colorless frosted glass and brown frosted glass.

【図4】窓ガラス用透明フィルム、窓ガラス用目隠しフ
ィルム及び障子紙についての入射波長と直進率との関係
図である。
FIG. 4 is a diagram showing the relationship between the incident wavelength and the straight advance rate for a transparent film for window glass, a blinding film for window glass, and shoji paper.

【図5】従来の透過散乱特性の測定装置の概略構成図で
ある。
FIG. 5 is a schematic configuration diagram of a conventional measuring apparatus for transmission / scattering characteristics.

【図6】従来の検出器角度可変型の装置の概略構成図で
ある。
FIG. 6 is a schematic configuration diagram of a conventional detector angle variable type device.

【符号の説明】[Explanation of symbols]

1 試料 2 積分球 ,2h 積分球の孔 3 光源 4 検出器 5 試料台 6 基台部 1 sample 2 integrating sphere, 2h hole of integrating sphere 3 light source 4 detector 5 sample stage 6 base part

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 試料に一定強度の平行光を入射させ、そ
のときの試料の透過散乱光の光量を、光軸上に孔を有す
る積分球及びその積分球に接続した検出器を用いて検出
する透過散乱能測定方法であって、試料と積分球との距
離がd1 であるときの透過散乱光の検出光量I1 と、試
料と積分球との距離がd2 (但し、d1 >d2 )である
ときの透過散乱光の検出光量I2 との比率I1 /I2
直進率として求め、この直進率に基づいて試料の透過散
乱能を評価することを特徴とする透過散乱能測定方法。
1. A parallel light beam having a constant intensity is incident on a sample, and the amount of transmitted scattered light of the sample at that time is detected using an integrating sphere having a hole on the optical axis and a detector connected to the integrating sphere. In the method for measuring transmission and scattering power, the detected light amount I 1 of transmitted and scattered light when the distance between the sample and the integrating sphere is d 1 and the distance between the sample and the integrating sphere is d 2 (however, d 1 > d 2 ), the ratio I 1 / I 2 of the transmitted scattered light to the detected light amount I 2 is obtained as a straight traveling rate, and the transmission scattering ability of the sample is evaluated based on this straight traveling rate. Noh measurement method.
【請求項2】 直進率I1 /I2 を、試料と積分球との
距離がd1 であるときの検出光量I1 と、試料と積分球
とを密着させたときの検出光量I2 の比率として求める
請求項1記載の透過散乱能測定方法。
2. The straightness ratio I 1 / I 2 is defined as the detected light amount I 1 when the distance between the sample and the integrating sphere is d 1 and the detected light amount I 2 when the sample and the integrating sphere are in close contact with each other. The method for measuring transmission and scattering power according to claim 1, which is obtained as a ratio.
【請求項3】 試料に所定波長の平行光を入射させ、入
射波長ごとに検出光量の直進率I1 /I2 を求める請求
項1又は2記載の透過散乱能測定方法。
3. The transmission / scattering power measuring method according to claim 1, wherein parallel light having a predetermined wavelength is incident on the sample, and the rectilinear rate I 1 / I 2 of the detected light amount is obtained for each incident wavelength.
【請求項4】 積分球の孔が光軸を中心とする真円であ
る請求項1又は2記載の透過散乱能測定方法。
4. The method for measuring transmission and scattering power according to claim 1, wherein the hole of the integrating sphere is a perfect circle centered on the optical axis.
【請求項5】 試料に一定強度の平行光を入射させるこ
とのできる光源、光軸上に孔を有する積分球、この積分
球に接続して試料からの透過散乱光の光量を検出する検
出器、及び光源と積分球との間の光軸上に位置可変に試
料を保持する試料台を有することを特徴とする透過散乱
能測定装置。
5. A light source capable of making parallel light of a constant intensity incident on a sample, an integrating sphere having a hole on the optical axis, and a detector connected to this integrating sphere to detect the amount of transmitted scattered light from the sample. And a sample holder for holding the sample in a variable position on the optical axis between the light source and the integrating sphere.
【請求項6】 光源が所定波長の光を発する請求項5記
載の透過散乱能測定装置。
6. The transmission / scattering power measuring device according to claim 5, wherein the light source emits light of a predetermined wavelength.
【請求項7】 積分球の孔が光軸を中心とする真円であ
る請求項5記載の透過散乱能測定装置。
7. The transmission / scattering power measuring device according to claim 5, wherein the hole of the integrating sphere is a perfect circle centered on the optical axis.
【請求項8】 試料と積分球との距離がd1 となるとき
の検出器における検出光量I1 と、試料と積分球との距
離がd2 (但し、d1 >d2 )となるときの検出器にお
ける検出光量I2 との比率I1 /I2 を算出する演算手
段、及びこの算出結果を出力する出力手段を有する請求
項5記載の透過散乱能測定装置。
8. The amount of light I 1 detected by the detector when the distance between the sample and the integrating sphere is d 1 and the distance between the sample and the integrating sphere is d 2 (where d 1 > d 2 ). 6. The transmission / scattering power measuring device according to claim 5, further comprising a calculating means for calculating a ratio I 1 / I 2 of the detector to the detected light amount I 2 and an output means for outputting the calculation result.
【請求項9】 試料と積分球との距離がd1 となるとき
の検出器における検出光量I1 と、試料と積分球とを密
着させたときの検出器における検出光量I2との比率I
1 /I2 を直進率として算出する請求項8記載の透過散
乱能測定装置。
9. A ratio I between the amount of light I 1 detected by the detector when the distance between the sample and the integrating sphere is d 1 and the amount of light I 2 detected by the detector when the sample and the integrating sphere are brought into close contact with each other.
The transmission / scatterability measuring device according to claim 8, wherein 1 / I 2 is calculated as a straight traveling rate.
JP3896796A 1996-01-31 1996-01-31 Method and apparatus for measurement of transmission and scattering capability Pending JPH09210848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3896796A JPH09210848A (en) 1996-01-31 1996-01-31 Method and apparatus for measurement of transmission and scattering capability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3896796A JPH09210848A (en) 1996-01-31 1996-01-31 Method and apparatus for measurement of transmission and scattering capability

Publications (1)

Publication Number Publication Date
JPH09210848A true JPH09210848A (en) 1997-08-15

Family

ID=12539940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3896796A Pending JPH09210848A (en) 1996-01-31 1996-01-31 Method and apparatus for measurement of transmission and scattering capability

Country Status (1)

Country Link
JP (1) JPH09210848A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055866A (en) * 2012-09-13 2014-03-27 Suga Test Instr Co Ltd Diffusion haze value measuring method and measuring device
JP2015515008A (en) * 2012-04-27 2015-05-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Device for determining photoprotective materials
WO2019221191A1 (en) * 2018-05-17 2019-11-21 株式会社Sumco Method and device for measuring transmittance of quartz crucible
US10983045B2 (en) 2016-10-11 2021-04-20 Victoria Link Limited Spectrometer apparatus for measuring spectra of a liquid sample using an integrating cavity

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515008A (en) * 2012-04-27 2015-05-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Device for determining photoprotective materials
JP2014055866A (en) * 2012-09-13 2014-03-27 Suga Test Instr Co Ltd Diffusion haze value measuring method and measuring device
US10983045B2 (en) 2016-10-11 2021-04-20 Victoria Link Limited Spectrometer apparatus for measuring spectra of a liquid sample using an integrating cavity
WO2019221191A1 (en) * 2018-05-17 2019-11-21 株式会社Sumco Method and device for measuring transmittance of quartz crucible
CN112243493A (en) * 2018-05-17 2021-01-19 胜高股份有限公司 Method and apparatus for measuring transmittance of quartz crucible
JPWO2019221191A1 (en) * 2018-05-17 2021-05-20 株式会社Sumco Permeability measurement method and equipment for quartz crucible
TWI736890B (en) * 2018-05-17 2021-08-21 日商Sumco股份有限公司 Method and device for measuring transmittance of quartz crucible
US11703452B2 (en) 2018-05-17 2023-07-18 Sumco Corporation Method and apparatus for measuring transmittance of quartz crucible

Similar Documents

Publication Publication Date Title
US2873644A (en) Optical system for the measurement of turbidity
US3588496A (en) Radiation analysis apparatus having an absorption chamber with partially reflective mirror surfaces
JP4594206B2 (en) Improved differential refractometer and measurement method for measuring refractive index differential
AU2020104424A4 (en) A method and equipment for measuring absorption coefficient of liquid
US20130016348A1 (en) Optical Spectrometer with Underfilled Fiber Optic Sample Interface
JPH01253634A (en) Reflection density measuring apparatus
US3843268A (en) Sample container for laser light scattering photometers
KR950014849A (en) Photometric detectors scattered by thin films of colloidal media
JPH09210848A (en) Method and apparatus for measurement of transmission and scattering capability
US3049047A (en) Method for analyzing microscopic particles and the like
CN108759690B (en) Coating thickness gauge based on double-light-path infrared reflection method with good working effect
CN107192679A (en) A kind of photometric analyzer and its detection method based on light-conducting capillaries
EP1102059B1 (en) Method and apparatus for measuring a scattered light
FI127243B (en) Method and measuring device for continuous measurement of Abbe number
JP3637393B2 (en) Optical system for measuring absolute reflectance and transmittance with variable incident angle
JP2000146533A (en) Instrument and method for measuring thickness of light- transmission body
US6819419B2 (en) Method for illuminating particles contained in a medium for optical analysis, and optical particle analyser
JP3702340B2 (en) Refractive index measurement method
JPS6010132A (en) Optical measuring instrument
JP3669686B2 (en) Scattered light measurement method, urine test method, and scattered light measurement device
US2923198A (en) Method and apparatus for examining sheet materials
JPS642888B2 (en)
SU842496A1 (en) Device for counting and determination of particle sizes in optically dense media
JPH06138045A (en) Defect inspecting device for glass substrate
JPH05203568A (en) Method of analyzing various material, especially liquid