JP4083971B2 - Multilayer ceramic electronic component and manufacturing method thereof - Google Patents

Multilayer ceramic electronic component and manufacturing method thereof Download PDF

Info

Publication number
JP4083971B2
JP4083971B2 JP2000355511A JP2000355511A JP4083971B2 JP 4083971 B2 JP4083971 B2 JP 4083971B2 JP 2000355511 A JP2000355511 A JP 2000355511A JP 2000355511 A JP2000355511 A JP 2000355511A JP 4083971 B2 JP4083971 B2 JP 4083971B2
Authority
JP
Japan
Prior art keywords
electrode layer
multilayer ceramic
alloy
layer
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000355511A
Other languages
Japanese (ja)
Other versions
JP2002158137A (en
Inventor
彰敏 吉井
英樹 横山
哲司 丸野
利明 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2000355511A priority Critical patent/JP4083971B2/en
Publication of JP2002158137A publication Critical patent/JP2002158137A/en
Application granted granted Critical
Publication of JP4083971B2 publication Critical patent/JP4083971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば積層セラミックコンデンサ、積層バリスタ、積層誘電体共振器、積層圧電素子等の積層セラミック電子部品及びその製造方法に係り、特に鉛(Pb)フリーはんだでの回路基板に電気的通電固着する際に生じる亜硫酸ガスによる影響を防止できる耐ヒートサイクル性の高い外部接続端子電極を形成した積層セラミック電子部品及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、電子機器等の小型化が進み、ディスクリート部品は表面実装タイプの極小チップ部品になっており、高電圧又は低電圧の集積回路に用いられる、例えば積層セラミックコンデンサ等も極小化への要請が強くなっている。このため、電気回路との接合性も良好で、電気的特性、信頼性、機械的特性に優れる上に、焼結体の積層セラミック素体との接合強度が高く、且つ撓み強度及び耐ヒートサイクル性の高い外部接続端子電極の要請が一段と強くなっている。
【0003】
例えば、図2に示す如く、従来の積層セラミック電子部品としての積層セラミックコンデンサ1は、Ni等の卑金属を用いた内部電極3を印刷した誘電体2のセラミックグリーンシートを、順次積層し焼成し、複数に切断して形成された積層セラミック素体4の両端に、外部接続端子電極5として前記内部電極3とのなじみを良くして、その接続部分に接続不良が生じないようにAg−Pd又はCu等の金属粉末にガラスフリットを加えた導電ペーストを塗布し、700〜800℃で焼き付けて下地電極層の第1電極層5aを形成して前記内部電極3の貴金属又は卑金属と融合させて前記第1電極層5aと前記内部電極3とを良好な結合状態にしている。
【0004】
そして、前記外部接続端子電極5は、前記第1電極層5a上に、搭載される基板上の電気回路との接続にあたり、濡れ性及び耐はんだ性の向上、特にはんだ耐熱性を保持するためにNi等のメッキ皮膜でなる第2電極層5bと外部電気接続として用いるはんだとの整合性を良くするためにSn又はSn−Pbを材料とした皮膜の第3電極層5cを更に重被覆して形成している。そして前記第2電極層5bの形成は、一般に厚さ1.0〜3.0μmのNiメッキ層の皮膜であり、皮膜部分が極めて小さいため、電流効率を確保するために基本組成のワット浴を用いたバレルメッキで処理されている。
【0005】
本来電着応力の少ない、即ち大きい残留応力を残す浴組成物のNiCl・6HO(塩化ニッケル)の少ないスルファミン酸浴で処理されるのが理想とされるが、Niイオン補充に臭化ニッケル(NiBr)を使用するので、安全衛生上及び経済コストを考慮してワット浴を使用しているのが一般的であるとされている。
【0006】
処が、この様にして形成した前記外部接続端子電極5にはんだ量を多くしたはんだ着けをする場合、−55〜125℃の耐ヒートサイクル性に対して劣化する傾向があるので、Niメッキ層の膜厚を上げることにより対処してきた。その反面、膜厚が厚くなるほどにメッキ膜の引っ張り応力や圧縮応力が発生し、耐ヒートサイクル性が劣化するという悪循環が生じていた。
【0007】
しかしながら、近年、鉛フリー実装を目的とした導電性接着材対応の電子部品の要請が高まり、上述のように、外部接続端子電極の最外電極層であるSn又はSn−Pbの電極層を形成したものは、接触抵抗が高温多湿環境下で大幅に上昇し信頼性が劣り、更にヒートサイクルで固着強度の劣化が見られるために最外電極層がAg若しくはAg−Pd合金で構成されるものが用いられてきた。
【0008】
しかし、内部電極を低廉化で卑金属のNi又はNi合金層で構成すると、この内部電極が、酸化性の高いメッキ浴雰囲気に相当する亜硫酸ガス(HSO)試験で酸化腐食をし、ここで生じた硫化ニッケル(NiS)又は硫酸ニッケルが電子部品表面に析出生成し、このために絶縁不良(IR不良)や容量低下を招く欠点を有している。
【0009】
【発明が解決しようとする課題】
本発明は、上述の欠点を解消し、鉛(Pb)フリーはんだによって回路基板に電気的通電固着する際に生じる特性影響を防止できる耐ヒートサイクル性の高い外部接続端子電極を形成した極小積層セラミックコンデンサ等にも適用できる積層セラミック電子部品及びその製造方法を提供することを目的としている。
【0010】
本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る積層セラミック電子部品は、Ni又はNi合金層の内部電極を内設した積層セラミック素体の両端に外部接続端子電極を形成する積層セラミック電子部品において、外部接続端子電極はCu又はCu合金を主成分とする下地電極層と、Ag−Pd合金を主成分とする最外部電極層との2層で形成され、下地電極層は、Cu又はCu合金を主成分とする導電金属材とガラスフリットとを含む導電塗料による焼付層で形成され、最外部電極層は、Ag−Pd合金を主成分とする導電金属材とガラスフリットとを含む導電塗料による焼付層で下地電極層と同時に形成され、積層セラミック素体の両端に露出されている内部電極のNi又はNi合金層と下地電極層との界面にCu−Ni合金が形成されており、下地電極層は、その厚さが1μm以上である。
【0012】
好ましくは、下地電極層は、その厚さが1μm以上である。
【0015】
本発明に係る積層セラミック電子部品の製造方法は、Ni又はNi合金層の内部電極を内設した積層セラミック素体の両端に外部接続端子電極を形成する積層セラミック電子部品の製造方法において、外部接続端子電極の製造工程が、Cu又はCu合金を主成分とする導電金属材とガラスフリットとを含む下地電極材の導電ペーストを積層セラミック素体の両端に設ける第1の導電ペースト塗布工程と、Ag−Pd合金を主成分とする導電金属材とガラスフリットとを含む最外部電極層の導電ペーストを第1の導電ペーストの上に重ねて設ける第2の導電ペースト塗布工程と、第1及び第2の導電ペーストを同時焼付処理して、下地電極層及び最外部電極層を形成する焼付工程と、を備え、下地電極層の厚さを1μm以上とする
【0016】
【発明の実施の形態】
以下、本発明に係る積層セラミック電子部品及びその製造方法の実施の形態を図面に従って説明する。
【0017】
図1で本発明に係る積層セラミック電子部品及びその製造方法の実施の形態を説明する。
【0018】
図1は本発明に係る積層セラミック電子部品の1例としての積層セラミックコンデンサ11の断面図であり、Ni又はNi合金を主成分とした卑金属を用いた内部電極13を印刷した誘電体12のセラミックグリーンシートを、順次積層し焼成し、複数に切断して形成された積層セラミック素体14の両端に、外部接続端子電極15を形成する。ここで、外部接続端子電極15として、前記内部電極13とのなじみを良くして、その接続部分に接続不良が生じないようにCu又はCu合金を主成分とする金属粉末にガラスフリットを加えた第1導電ペースト層を塗布し、更にその層上にAg又はAg−Pd合金を主成分とする金属粉末にガラスフリットを加えた第2導電ペースト層を塗布重層形成し、その後、前記第1導電ペースト層及び第2導電ペースト層を同時に700℃で焼付けて下地電極層15aと最外部電極層15bを重層して形成している。すなわち、下地電極層15aはCu又はCu合金を主成分とする導電金属材とガラスフリットとを含む導電塗料による厚さ1μm以上の焼付層で形成され、また最外部電極層15bはAg又はAg合金を主成分とする導電金属材とガラスフリットとを含む導電塗料による焼付層で形成される。なお、下地電極層15aは必要以上に厚くないことが好ましく、3μm以下であることが望ましい。
【0019】
焼き付けられた前記下地電極層15aは前記積層セラミック素体14の両端に露出されている前記内部電極13の卑金属と融合してNi−Cu合金層16を界面に形成し、前記下地電極層15aと前記内部電極13とを良好な結合状態にしている。
【0020】
以上のように、本実施の形態は、Ni又はNi合金層の内部電極を内設した積層セラミック素体の両端に外部接続端子電極を形成する積層セラミック電子部品において、前記外部接続端子電極はCu又はCu合金を主成分とする下地電極層とAg又はAg−Pdを主成分とする最外部電極層との2層構造で形成され、前記下地電極層はCu又はCu合金を主成分とする導電金属材とガラスフリットからなる導電塗料による厚さ1μm以上の焼付層で形成され、前記最外部電極層はAg又はAg−Pdを主成分とする導電金属材とガラスフリットからなる導電塗料による焼付層で形成され、更に、前記積層セラミック素体の両端に露出している前記内部電極のNi又はNi合金層と前記下地電極層との界面にCu−Ni合金を形成させ、且つ、前記外部接続端子電極は前記下地電極層と最外部電極層とを同時焼付処理で形成してなる積層セラミック電子部品であるから、鉛(Pb)フリーはんだで回路基板に電気的通電固着する際に生じる特性影響を防止でき耐ヒートサイクル性の高い外部接続端子電極を形成した極小積層セラミックコンデンサ等にも適用できる積層セラミック電子部品を従来品と同等な電気的特性を維持すると共に廉価に実現することが可能となる。
【0021】
以下、本発明を実施例にて詳述する。
【0022】
【実施例】
本発明の内部電極のNiと下地電極層のCuによるイオン化傾向の差に基づく、環境雰囲気での外観不良及びこれに伴う電気特性不良を検証するために以下の実験を行った。
【0023】
(実験1)
本発明の実施例に係る積層セラミックコンデンサと従来品(図2のように外部接続端子電極が3層構造のもの)の積層セラミックコンデンサを夫々20個選び、内部電極のNiと下地電極層のCuによるイオン化傾向の差に基づく、環境雰囲気での外観不良及びこれに伴う電気特性不良を、Cu焼付層厚0.90μm(実施例1)、1.00μm(実施例2)、1.10μm(実施例3)として従来の腐食ガス試験(SO:5ppm×240時間)で検証し、その結果を以下の表1に示した。
【0024】
【表1】

Figure 0004083971
表1中、Cp:静電容量、Tanδ:損失係数、IR:絶縁抵抗である。
【0025】
上記表1から下地電極層であるCu焼付層厚1.00μm以上であれば、Cp,Tanδ,IR共に良好でNi硫化物等の析出物も無く、従来品と同等であることが判る。特に実施例1の如く、層厚が薄いと内部電極のNiがイオン化し、Ni硫化物として内部電極層及び外部に析出し電気的特性を悪化させる要因になっている。これに対して実施例2、実施例3の如く、層厚が1.00μm以上になると、焼成温度で更にそのNi硫化物と反応して、即ち、層上に形成されているAg−Pdが媒体となって内部電極の露出するNi層とCuの下地電極層の界面にCu−Ni合金接合部を形成して交互の接触を強固にすると共に、導電を良好にしていると推察できる。
【0026】
従って、従来の場合は外部接続端子電極を形成するのにメッキ等の形成工程が必要であったのが、メッキ等の形成工程を省力化でき、煩雑な工程となるのを防ぐことができコスト的にも安価に製造することが可能となる。
【0027】
(実験2)
次に、実施例1、実施例2及び実施例3の積層セラミックコンデンサを各100個選び、ヒートサイクル試験後のクラック発生数及びPbフリーはんだ処理に対する耐熱性良否を検証し、その結果を以下の表2に示す。
【0028】
【表2】
Figure 0004083971
上記表2に示した如く、下地電極層であるCu層厚が1.00μm以上の範囲でクラック発生が無く、耐熱性も良く、同様に良好な結果が得られた。厚さ1.00μm未満であると薄すぎて耐熱性が劣り、即ち、硫化物の析出で、空洞化が生じ、冷却(室温25℃)時に収縮が起きヒートサイクル試験でクラックが発生する。このクラック発生数は少なく判断され易いが、大量生産においては大きな不良率を誘起し生産歩留の低下に繋がる。
【0029】
従って、耐熱性から下地電極層であるCu層膜を厚くすることは必要であるが、高張力や圧縮力を考慮すると、耐熱性が維持できる最低限の厚さに確保すればよく、その厚さの範囲は少なくとも1.00μmで充分であることが理解できる。なお、下地電極層は必要以上に厚くないことが好ましく、3μm以下であることが望ましい。
【0030】
以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0031】
【発明の効果】
以上説明したように、本発明によれば、Ni又はNi合金層の内部電極を内設した積層セラミック素体の両端に外部接続端子電極を形成する場合において、前記外部接続端子電極はCu又はCu合金を主成分とする下地電極層と、Ag又はAg合金を主成分とする最外部電極層との重層で形成されているので、鉛(Pb)フリーはんだで回路基板に電気的通電固着する際に生じる特性影響を防止でき、耐ヒートサイクル性の高い外部接続端子電極を形成できる。また、メッキ等の形成工程も省力化でき、煩雑な工程を防ぐことができコスト的にも安価に製造することが可能である。この結果、極小積層セラミックコンデンサ等にも適用できる積層セラミック電子部品を従来品と同等な電気的特性を維持すると共に廉価に実現することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る積層セラミック電子部品の実施の形態を示す正断面図である。
【図2】従来の積層セラミック電子部品の正断面図である。
【符号の説明】
1,11 積層セラミックコンデンサ
2,12 誘電体
3,13 内部電極
4,14 積層セラミック素体
5,15 外部接続端子電極
5a 第1電極層
5b 第2電極層
5c 第3電極層
15a 下地電極層
15b 最外部電極層
16 合金層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer ceramic electronic component such as a multilayer ceramic capacitor, a multilayer varistor, a multilayer dielectric resonator, a multilayer piezoelectric element, and a method for manufacturing the multilayer ceramic electronic component, and in particular, electrically conductively fixed to a circuit board with lead (Pb) -free solder. The present invention relates to a multilayer ceramic electronic component in which an external connection terminal electrode having high heat cycle resistance capable of preventing the influence of sulfurous acid gas generated during the process and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, electronic devices and the like have been miniaturized, and discrete components have become surface mount type miniature chip components. For example, multilayer ceramic capacitors used for high-voltage or low-voltage integrated circuits are also required to be miniaturized. It is getting stronger. For this reason, it has good bondability with electrical circuits, excellent electrical characteristics, reliability, and mechanical characteristics, and has high bonding strength with the multilayer ceramic body of the sintered body, as well as flexural strength and heat cycle resistance. The demand for highly external connection terminal electrodes is becoming stronger.
[0003]
For example, as shown in FIG. 2, a multilayer ceramic capacitor 1 as a conventional multilayer ceramic electronic component is formed by sequentially laminating and firing a ceramic green sheet of a dielectric 2 on which an internal electrode 3 using a base metal such as Ni is printed, At both ends of the multilayer ceramic body 4 formed by cutting into a plurality, the familiarity with the internal electrode 3 as the external connection terminal electrode 5 is improved, and Ag—Pd or A conductive paste obtained by adding glass frit to a metal powder such as Cu is applied and baked at 700 to 800 ° C. to form the first electrode layer 5a of the base electrode layer, which is fused with the noble metal or base metal of the internal electrode 3. The first electrode layer 5a and the internal electrode 3 are in a good coupled state.
[0004]
The external connection terminal electrode 5 is provided on the first electrode layer 5a in order to maintain wettability and solder resistance, particularly solder heat resistance, when connected to an electric circuit on a substrate to be mounted. In order to improve the consistency between the second electrode layer 5b made of a plating film of Ni or the like and the solder used for external electrical connection, the third electrode layer 5c made of Sn or Sn-Pb is further coated. Forming. The second electrode layer 5b is generally formed of a Ni plating layer having a thickness of 1.0 to 3.0 [mu] m. Since the coating is extremely small, a watt bath having a basic composition is used to ensure current efficiency. It is processed by the barrel plating used.
[0005]
Although it is ideally treated with a sulfamic acid bath having a low electrodeposition stress, that is, a NiCl 2 .6H 2 O (nickel chloride) bath composition that leaves a large residual stress, it is brominated by Ni ion supplementation. Since nickel (NiBr 2 ) is used, a watt bath is generally used in consideration of safety and health and economic costs.
[0006]
However, when soldering with a large amount of solder is applied to the external connection terminal electrode 5 formed in this manner, the Ni plating layer tends to deteriorate with respect to the heat cycle resistance of -55 to 125 ° C. Has been addressed by increasing the film thickness. On the other hand, as the film thickness increases, tensile stress and compressive stress of the plating film are generated, resulting in a vicious circle in which heat cycle resistance deteriorates.
[0007]
However, in recent years, there has been a growing demand for electronic parts that support conductive adhesives for lead-free mounting, and as described above, the outermost electrode layer of the external connection terminal electrode is formed as an Sn or Sn-Pb electrode layer. The outermost electrode layer is made of Ag or an Ag-Pd alloy because the contact resistance is greatly increased in a high temperature and humidity environment, the reliability is inferior, and the deterioration of the fixing strength is observed in the heat cycle. Has been used.
[0008]
However, if the internal electrode is made of a base metal Ni or Ni alloy layer at a low cost, the internal electrode undergoes oxidative corrosion in a sulfurous acid gas (H 2 SO 3 ) test corresponding to a highly oxidizing plating bath atmosphere. Nickel sulfide (NiS) or nickel sulfate generated in (1) is deposited on the surface of the electronic component, which has the disadvantage of causing insulation failure (IR failure) and capacity reduction.
[0009]
[Problems to be solved by the invention]
The present invention eliminates the above-mentioned drawbacks, and forms an external connection terminal electrode with high heat cycle resistance that can prevent the influence of characteristics that occur when electrical conduction is fixed to a circuit board with lead (Pb) -free solder. An object of the present invention is to provide a multilayer ceramic electronic component that can be applied to a capacitor and the like, and a method of manufacturing the same.
[0010]
Other objects and novel features of the present invention will be clarified in embodiments described later.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a multilayer ceramic electronic component according to the present invention is a multilayer ceramic electronic component in which external connection terminal electrodes are formed at both ends of a multilayer ceramic body in which an internal electrode of a Ni or Ni alloy layer is provided. The external connection terminal electrode is formed of two layers of a base electrode layer mainly composed of Cu or Cu alloy and an outermost electrode layer mainly composed of Ag—Pd alloy. The base electrode layer is made of Cu or Cu alloy. The outermost electrode layer is formed by a conductive paint containing a conductive metal material mainly composed of an Ag-Pd alloy and a glass frit, and is formed by a conductive paint containing a conductive metal material containing glass frit as a main component. It is formed simultaneously with the underlying electrode layer in the layer are Cu-Ni alloy is formed at the interface between the Ni or Ni alloy layer and the underlying electrode layer of the internal electrodes are exposed at both ends of the multilayer ceramic element assembly Underlying electrode layer has a thickness of at 1μm or more.
[0012]
Preferably, the base electrode layer has a thickness of 1 μm or more.
[0015]
The method for manufacturing a multilayer ceramic electronic component according to the present invention includes a method for manufacturing a multilayer ceramic electronic component in which external connection terminal electrodes are formed at both ends of a multilayer ceramic body having an internal electrode of a Ni or Ni alloy layer. The manufacturing process of the terminal electrode includes a first conductive paste application process in which a conductive paste of a base electrode material including a conductive metal material mainly composed of Cu or Cu alloy and glass frit is provided at both ends of the multilayer ceramic body, Ag A second conductive paste application step in which a conductive paste of an outermost electrode layer including a conductive metal material mainly composed of a -Pd alloy and glass frit is provided on the first conductive paste; And a baking step of forming a base electrode layer and an outermost electrode layer, and the thickness of the base electrode layer is set to 1 μm or more .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a multilayer ceramic electronic component and a method for manufacturing the same according to the present invention will be described below with reference to the drawings.
[0017]
An embodiment of a multilayer ceramic electronic component and a manufacturing method thereof according to the present invention will be described with reference to FIG.
[0018]
FIG. 1 is a cross-sectional view of a multilayer ceramic capacitor 11 as an example of a multilayer ceramic electronic component according to the present invention, and a dielectric 12 ceramic printed with an internal electrode 13 using a base metal mainly composed of Ni or Ni alloy. The external connection terminal electrodes 15 are formed on both ends of the multilayer ceramic body 14 formed by sequentially laminating and firing the green sheets and cutting them into a plurality. Here, as the external connection terminal electrode 15, the glass frit was added to the metal powder mainly composed of Cu or Cu alloy so as to improve the familiarity with the internal electrode 13 and prevent the connection failure at the connection portion. A first conductive paste layer is applied, and a second conductive paste layer obtained by adding glass frit to a metal powder mainly composed of Ag or an Ag—Pd alloy is applied on the layer, and then the first conductive paste layer is formed. The paste layer and the second conductive paste layer are simultaneously baked at 700 ° C., and the base electrode layer 15a and the outermost electrode layer 15b are overlaid. That is, the base electrode layer 15a is formed of a baking layer having a thickness of 1 μm or more made of a conductive paint containing a conductive metal material mainly composed of Cu or Cu alloy and glass frit, and the outermost electrode layer 15b is made of Ag or Ag alloy. It is formed by the baking layer by the electrically conductive coating material containing the electrically conductive metal material which has as a main component, and glass frit. The base electrode layer 15a is preferably not thicker than necessary, and is preferably 3 μm or less.
[0019]
The baked base electrode layer 15 a is fused with the base metal of the internal electrode 13 exposed at both ends of the multilayer ceramic body 14 to form a Ni—Cu alloy layer 16 at the interface, and the base electrode layer 15 a The internal electrode 13 is in a good coupled state.
[0020]
As described above, in the present embodiment, in the multilayer ceramic electronic component in which the external connection terminal electrodes are formed at both ends of the multilayer ceramic body in which the internal electrode of the Ni or Ni alloy layer is provided, the external connection terminal electrode is Cu Alternatively, it is formed in a two-layer structure of a base electrode layer mainly composed of Cu alloy and an outermost electrode layer mainly composed of Ag or Ag-Pd, and the base electrode layer is a conductive material mainly composed of Cu or Cu alloy. The outermost electrode layer is formed of a conductive layer composed of a metal material and glass frit, and the outermost electrode layer is composed of a conductive metal material mainly composed of Ag or Ag-Pd and a conductive layer composed of glass frit. And a Cu-Ni alloy is formed at the interface between the Ni or Ni alloy layer of the internal electrode and the base electrode layer exposed at both ends of the multilayer ceramic body, and Since the external connection terminal electrode is a multilayer ceramic electronic component formed by co-baking the base electrode layer and the outermost electrode layer, when electrically energizing and fixing to the circuit board with lead (Pb) -free solder Achieving low-cost multilayer ceramic electronic components that can be applied to ultra-thin multilayer ceramic capacitors with external connection terminal electrodes with high heat cycle resistance that can prevent the effects of the resulting characteristics while maintaining the same electrical characteristics as conventional products. Is possible.
[0021]
Hereinafter, the present invention will be described in detail with reference to examples.
[0022]
【Example】
The following experiment was conducted in order to verify the appearance defect in the environmental atmosphere and the accompanying electric characteristic defect based on the difference in ionization tendency due to Ni of the internal electrode of the present invention and Cu of the base electrode layer.
[0023]
(Experiment 1)
20 monolithic ceramic capacitors according to an embodiment of the present invention and 20 conventional monolithic ceramic capacitors (with external connection terminal electrodes having a three-layer structure as shown in FIG. 2) were selected, and Ni for the internal electrode and Cu for the base electrode layer were selected. Based on the difference in ionization tendency due to the above, the appearance defect in the environmental atmosphere and the accompanying electrical characteristic failure were reduced to 0.90 μm (Example 1), 1.00 μm (Example 2), 1.10 μm (Example). Example 3) was verified by a conventional corrosive gas test (SO 2 : 5 ppm × 240 hours), and the results are shown in Table 1 below.
[0024]
[Table 1]
Figure 0004083971
In Table 1, Cp: capacitance, Tan δ: loss factor, IR: insulation resistance.
[0025]
From Table 1 above, it can be seen that if the Cu baking layer thickness of the base electrode layer is 1.00 μm or more, Cp, Tan δ and IR are good and there is no precipitate such as Ni sulfide, which is equivalent to the conventional product. In particular, as in Example 1, when the layer thickness is thin, Ni of the internal electrode is ionized and deposited as Ni sulfide on the internal electrode layer and the outside, causing deterioration of electrical characteristics. On the other hand, as in Example 2 and Example 3, when the layer thickness is 1.00 μm or more, it reacts further with the Ni sulfide at the firing temperature, that is, Ag—Pd formed on the layer is reduced. It can be inferred that Cu—Ni alloy joints are formed at the interface between the Ni layer where the internal electrode is exposed and the underlying electrode layer of Cu serving as a medium to strengthen the alternating contact and improve the conductivity.
[0026]
Therefore, in the conventional case, a formation process such as plating was required to form the external connection terminal electrode. However, the formation process such as plating can be saved, and it can be prevented from being a complicated process. Therefore, it can be manufactured at a low cost.
[0027]
(Experiment 2)
Next, 100 multilayer ceramic capacitors of Example 1, Example 2 and Example 3 were selected, the number of cracks after heat cycle test and the heat resistance against Pb-free soldering were verified, and the results were as follows: It shows in Table 2.
[0028]
[Table 2]
Figure 0004083971
As shown in Table 2 above, no crack was generated and the heat resistance was good when the thickness of the Cu layer as the base electrode layer was 1.00 μm or more, and good results were obtained. If the thickness is less than 1.00 μm, the heat resistance is inferior, that is, the heat resistance is inferior, that is, cavitation occurs due to precipitation of sulfides, shrinkage occurs during cooling (room temperature 25 ° C.), and cracks occur in the heat cycle test. Although the number of cracks generated is small, it is easy to judge, but in mass production, a large defect rate is induced, leading to a decrease in production yield.
[0029]
Therefore, it is necessary to increase the thickness of the Cu layer film, which is the base electrode layer, from the viewpoint of heat resistance, but considering the high tension and compressive force, it is sufficient to ensure the minimum thickness that can maintain heat resistance. It can be seen that a range of at least 1.00 μm is sufficient. The base electrode layer is preferably not thicker than necessary, and is preferably 3 μm or less.
[0030]
Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.
[0031]
【The invention's effect】
As described above, according to the present invention, when external connection terminal electrodes are formed on both ends of a multilayer ceramic body having internal electrodes of Ni or Ni alloy layers, the external connection terminal electrodes are Cu or Cu. Since it is formed of a multilayer of an underlayer electrode layer mainly composed of an alloy and an outermost electrode layer mainly composed of Ag or an Ag alloy, when electrically energizing and fixing to a circuit board with lead (Pb) -free solder Thus, the external connection terminal electrode having high heat cycle resistance can be formed. In addition, it is possible to save labor in the formation process such as plating, prevent a complicated process, and manufacture at a low cost. As a result, it is possible to realize a multilayer ceramic electronic component that can be applied to an extremely small multilayer ceramic capacitor or the like while maintaining the same electrical characteristics as a conventional product and at a low cost.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing an embodiment of a multilayer ceramic electronic component according to the present invention.
FIG. 2 is a front sectional view of a conventional multilayer ceramic electronic component.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,11 Multilayer ceramic capacitor 2,12 Dielectric body 3,13 Internal electrode 4,14 Multilayer ceramic body 5,15 External connection terminal electrode 5a First electrode layer 5b Second electrode layer 5c Third electrode layer 15a Base electrode layer 15b Outermost electrode layer 16 Alloy layer

Claims (2)

Ni又はNi合金層の内部電極を内設した積層セラミック素体の両端に外部接続端子電極を形成する積層セラミック電子部品において、
前記外部接続端子電極はCu又はCu合金を主成分とする下地電極層と、Ag−Pd合金を主成分とする最外部電極層との2層で形成され、
前記下地電極層は、Cu又はCu合金を主成分とする導電金属材とガラスフリットとを含む導電塗料による焼付層で形成され、
前記最外部電極層は、Ag−Pd合金を主成分とする導電金属材とガラスフリットとを含む導電塗料による焼付層で前記下地電極層と同時に形成され、
前記積層セラミック素体の両端に露出されている前記内部電極のNi又はNi合金層と前記下地電極層との界面にCu−Ni合金が形成されており、
前記下地電極層は、その厚さが1μm以上であることを特徴とする積層セラミック電子部品。
In a multilayer ceramic electronic component in which external connection terminal electrodes are formed at both ends of a multilayer ceramic body in which internal electrodes of Ni or Ni alloy layers are provided,
The external connection terminal electrode is formed of two layers of a base electrode layer mainly composed of Cu or Cu alloy and an outermost electrode layer mainly composed of Ag—Pd alloy,
The base electrode layer is formed by a baking layer made of a conductive paint containing a conductive metal material mainly composed of Cu or Cu alloy and glass frit,
The outermost electrode layer is formed at the same time as the base electrode layer with a baking layer made of a conductive paint containing a conductive metal material mainly composed of an Ag—Pd alloy and glass frit,
Cu-Ni alloy is formed at the interface between the Ni or Ni alloy layer of the internal electrode and the base electrode layer exposed at both ends of the multilayer ceramic body ,
A multilayer ceramic electronic component , wherein the base electrode layer has a thickness of 1 μm or more .
Ni又はNi合金層の内部電極を内設した積層セラミック素体の両端に外部接続端子電極を形成する積層セラミック電子部品の製造方法において、
前記外部接続端子電極の製造工程が、
Cu又はCu合金を主成分とする導電金属材とガラスフリットとを含む下地電極材の導電ペーストを前記積層セラミック素体の両端に設ける第1の導電ペースト塗布工程と、
Ag−Pd合金を主成分とする導電金属材とガラスフリットとを含む最外部電極層の導電ペーストを前記第1の導電ペーストの上に重ねて設ける第2の導電ペースト塗布工程と、
前記第1及び第2の導電ペーストを同時焼付処理して、下地電極層及び最外部電極層を形成する焼付工程と、を備え
前記下地電極層の厚さを1μm以上とすることを特徴とする積層セラミック電子部品の製造方法。
In a method for manufacturing a multilayer ceramic electronic component in which external connection terminal electrodes are formed at both ends of a multilayer ceramic body in which internal electrodes of Ni or Ni alloy layers are provided,
The manufacturing process of the external connection terminal electrode comprises:
A first conductive paste application step of providing a conductive paste of a base electrode material including a conductive metal material mainly composed of Cu or Cu alloy and glass frit at both ends of the multilayer ceramic body;
A second conductive paste coating step in which a conductive paste of an outermost electrode layer containing a conductive metal material mainly composed of an Ag-Pd alloy and glass frit is provided on the first conductive paste;
A baking step of simultaneously baking the first and second conductive pastes to form a base electrode layer and an outermost electrode layer; and
A method for manufacturing a multilayer ceramic electronic component, wherein the thickness of the base electrode layer is 1 μm or more .
JP2000355511A 2000-11-22 2000-11-22 Multilayer ceramic electronic component and manufacturing method thereof Expired - Lifetime JP4083971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000355511A JP4083971B2 (en) 2000-11-22 2000-11-22 Multilayer ceramic electronic component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000355511A JP4083971B2 (en) 2000-11-22 2000-11-22 Multilayer ceramic electronic component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002158137A JP2002158137A (en) 2002-05-31
JP4083971B2 true JP4083971B2 (en) 2008-04-30

Family

ID=18827912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000355511A Expired - Lifetime JP4083971B2 (en) 2000-11-22 2000-11-22 Multilayer ceramic electronic component and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4083971B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104148A1 (en) 2004-04-23 2005-11-03 Murata Manufacturing Co., Ltd. Electronic component and manufacturing method thereof
JP4962536B2 (en) * 2009-07-01 2012-06-27 株式会社村田製作所 Electronic components
JP5332025B2 (en) * 2010-06-09 2013-11-06 アルプス・グリーンデバイス株式会社 Coil-enclosed dust core, device having coil-enclosed dust core, method for producing coil-enclosed dust core, and method for producing device
WO2013132965A1 (en) 2012-03-05 2013-09-12 株式会社村田製作所 Electronic component
EP2824681B1 (en) 2012-03-05 2019-04-10 Murata Manufacturing Co., Ltd. Electronic component and a junction structure between electronic component and object to be joined
KR20140046301A (en) * 2012-10-10 2014-04-18 삼성전기주식회사 Multi-layered ceramic electronic parts and method of manufacturing the same
JP5971236B2 (en) * 2013-03-26 2016-08-17 株式会社村田製作所 Ceramic electronic components and glass paste
JP6011574B2 (en) 2013-06-27 2016-10-19 株式会社村田製作所 Multilayer ceramic capacitor
KR101901708B1 (en) 2017-04-03 2018-09-28 삼성전기 주식회사 Multilayer ceramic capacitor and method for fabricating the same
KR102558658B1 (en) * 2019-03-28 2023-07-24 가부시키가이샤 무라타 세이사쿠쇼 Method for manufacturing chip-type ceramic electronic components
JP6904383B2 (en) * 2019-07-17 2021-07-14 Tdk株式会社 Laminated electronic components and their mounting structure
JP7338554B2 (en) 2020-05-20 2023-09-05 Tdk株式会社 ceramic electronic components

Also Published As

Publication number Publication date
JP2002158137A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
KR100812077B1 (en) Electronic component and manufacturing method thereof
JP4423707B2 (en) Manufacturing method of multilayer ceramic electronic component
KR101645625B1 (en) Electronic component and method for forming junction structure between electronic component and object to be joined
JP2001307947A (en) Laminated chip component and its manufacturing method
JP4083971B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
US20060193103A1 (en) Electronic component and electronic device
JP3760770B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JPH0837127A (en) Monolithic ceramic capacitor and its production
JP4720425B2 (en) Electronic components
JP3115713B2 (en) Ceramic electronic components
JPH08107039A (en) Ceramic electronic component
JP2002164257A (en) Laminated ceramic electronic component
JPS6342879B2 (en)
JP3544569B2 (en) Multilayer ceramic capacitors
JP2004047671A (en) Ceramic capacitor and its manufacturing method
JP4556337B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4710204B2 (en) Method for forming end face electrode of electronic component
JP2000299243A (en) Laminated chip type electronic component
JP2842711B2 (en) Circuit board
JP2000260654A (en) Ultra-small chip type electronic component
JPH09115772A (en) External electrode for chip electronic component
JP2000306763A (en) Laminated ceramic capacitor and manufacture thereof
JP2001291604A (en) Chip-type laminated thermistor and its manufacturing method
JP2996015B2 (en) External electrodes for chip-type electronic components
JP3458701B2 (en) Electronic component and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

RD15 Notification of revocation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7435

Effective date: 20051111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4083971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

EXPY Cancellation because of completion of term