JP4083560B2 - Method for producing inorganic oxide particles having improved insulating properties - Google Patents

Method for producing inorganic oxide particles having improved insulating properties Download PDF

Info

Publication number
JP4083560B2
JP4083560B2 JP2002362733A JP2002362733A JP4083560B2 JP 4083560 B2 JP4083560 B2 JP 4083560B2 JP 2002362733 A JP2002362733 A JP 2002362733A JP 2002362733 A JP2002362733 A JP 2002362733A JP 4083560 B2 JP4083560 B2 JP 4083560B2
Authority
JP
Japan
Prior art keywords
inorganic oxide
oxide particles
foreign matter
metal
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002362733A
Other languages
Japanese (ja)
Other versions
JP2004189577A (en
Inventor
孝雄 浦川
雅和 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2002362733A priority Critical patent/JP4083560B2/en
Publication of JP2004189577A publication Critical patent/JP2004189577A/en
Application granted granted Critical
Publication of JP4083560B2 publication Critical patent/JP4083560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Silicon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁特性が改善された無機酸化物粒子の新規な製造方法に関する。詳しくは、金属異物を含有する無機酸化物粒子を、含有される金属異物を除去することなく簡易な処理により低導電化することが可能な、絶縁特性が改善された無機酸化物粒子の製造方法を提供するものである。
【0002】
【従来の技術】
無機酸化物粒子は、半導体パッケージ等の製造において、半導体封止用の樹脂の充填材として一般に使用されている。例えば、シリカの場合は半導体封止用樹脂の温度変化に対する寸法安定性の向上、強度の向上等を目的として使用され、アルミナの場合は半導体封止用樹脂の熱伝導性の向上等を目的として使用される。
【0003】
通常、上記無機酸化物粒子の製造設備の配管及び容器はステンレス製等の金属からなり、該無機酸化物粒子を気相搬送する際、或いは該無機酸化物粒子を粉砕する際などに、無機酸化物粒子の有する研磨性により配管及び容器の表面が削られるため、該無機酸化物粒子は、その表面に数μm〜数百μm程度の微小なステンレス粉等の金属異物を付着した状態で含んでいる。
【0004】
一方、前記半導体封止用樹脂の充填材としての用途において、無機酸化物粒子に鉄、ステンレス等の金属異物が混入すると、半導体封止用樹脂で配線を封止した際、該樹脂が接触する配線間を跨いで金属異物が存在することによる短絡が発生し易くなり、これにより回路の誤作動が起こるという問題を引き起こす場合がある。そのため、上記金属異物の混入を低く抑え、絶縁特性を改善することが要求されている。
【0005】
特に、近年、半導体製品の小型・薄型化が進み、それに伴って、半導体の配線間隔も狭められてきており、従来問題にならなかった上記微小な金属異物の存在による、半導体製品の誤作動等の問題がより深刻化している。
【0006】
従来、上記問題を解決する方法としては、金属異物を含有する無機酸化物粒子を還元性雰囲気下で加熱して該金属異物を磁性化した後、磁力式除鉄器を使用して混入している金属異物を磁力により除去する方法が知られている(特許文献1参照)。
【特許文献1】
特開昭62−132722号公報 特許請求の範囲
【発明が解決しようとする課題】
しかしながら、金属異物を磁力により除去する方法においては、数μm〜数百μm程度の微小な金属異物は無機酸化物粒子の表面に強固に付着していること、また、除鉄器の磁力が有効な部分を通過した金属異物しか除去できないことから、該方法において、微小な金属異物を効果的に除去することは困難であった。
【0007】
そして、除去されずに残存する金属異物は、電気導電性が多少低下するものの、比較的高い電気伝導度を有するため、前記半導体封止用樹脂の充填材としての用途において、回路の誤作動を完全に防止することは困難である。
【0008】
上記磁力により金属異物を除去する方法において、金属異物の除去率を完全なものとするには、金属異物を含有する無機酸化物粒子を、適当な溶媒に分散して、金属異物の付着力を低下せしめた後、磁力による除去を実施することが考えられる。
【0009】
ところが、かかる方法においては、無機酸化物粒子が溶媒と接触する際、或いは金属異物を分離後の無機酸化物粒子を乾燥、解砕する際に、該無機酸化物粒子の物性が変化してしまうという問題が懸念される。また、溶媒への分散、乾燥等の煩雑な工程を必要とするため、大幅なコストアップに繋がり、実用的ではない。
【0010】
従って、本発明の目的は、金属異物を含む無機酸化物粒子中の該金属異物の悪影響を、無機酸化物粒子の物性を変化させることなく、効果的かつ安価に低減した、絶縁特性が改善された無機酸化物粒子を得る方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者は、上記課題を解決すべく鋭意研究を行ってきた。その結果、金属異物を含む無機酸化物粒子を酸化処理することによって、無機酸化物粒子の物性を変化させることなく、該金属異物による悪影響を効果的かつ安価に無害化出来ることを見出し、本発明を完成するに至った。
【0012】
即ち、本発明は金属異物を含有する無機酸化物粒子を酸化処理することによって、含有される金属異物を非導電性化することを特徴とする絶縁特性が改善された無機酸化物粒子の製造方法である。
【0013】
【発明の実施の形態】
本発明において、金属異物を含有する無機酸化物粒子は、特に制限されないが、一般には、無機酸化物粒子が金属配管或いは金属容器と接触することによってその表面を研磨した結果、金属異物が混入するに至った無機酸化物粒子が挙げられる。
【0014】
従って、上記無機酸化物粒子としては、研磨性の高い粒子が特に対象とされる。具体的には、乾式シリカ、湿式シリカ、溶融シリカ、アルミナ、チタニア等の粒子が挙げられる。
【0015】
上記粒子の平均粒子径は、一般に、数nm〜数百μm程度である。
【0016】
また、金属異物としては、前記金属配管或いは金属容器の材質に起因するものであり、鉄、ステンレス等が一般的である。該金属異物は、数μm〜数百μm程度の微小な粒径を有するものである。
【0017】
即ち、上記無機酸化物粒子の製造設備は、通常、鉄、ステンレス製等の金属配管及び容器からなり、該無機酸化物粒子を気相搬送する際、或いは該無機酸化物粒子を粉砕する際などに、無機酸化物粒子の有する研磨性により配管及び容器の表面が削られることにより生成した微小な金属異物が、無機酸化物粒子の表面に付着された形で含有される。
【0018】
また、上記無機酸化物粒子中への金属異物の混入量は、金属配管等との接触時間によって多少異なるが、通常、無機酸化物粒子100g中に約10〜100個の割合で存在する。
【0019】
本発明の特徴は、前記金属異物を含有する無機酸化物粒子を酸化処理することによって、該金属異物を金属酸化物へ酸化せしめることによって、非導電性化することにある。
【0020】
即ち、本発明にあっては、無機酸化物粒子に含有される金属異物を除去するという従来の思想とは異なり、該金属異物が粒子中に存在する状態で無害化するという極めて斬新な思想に基づくものである。
【0021】
上記酸化処理の方法は、含有される金属異物を非導電性の酸化物とし、且つ、無機酸化物粒子の物性に悪影響を与えない方法であれば、特に制限されない。例えば、酸化雰囲気下での加熱により酸化処理する方法、オゾン等の強酸化剤との接触により酸化処理する方法等の乾式法によって実施することが好ましい。
【0022】
上記酸化雰囲気下での加熱により酸化処理する場合、加熱温度は、無機酸化物粒子の物性に悪影響を与えず、且つ酸化処理の程度を上げるために、200℃以上、無機酸化物粒子の軟化点未満の温度を選択することが好ましい。特に、シリカの場合、500〜1100℃で加熱処理することが好ましい。
【0023】
また、酸化雰囲気は、酸化に必要な酸素を含有するガスによって形成される。該ガスとしては、例えば、純酸素下、酸素含有気体下、大気下等が挙げられる。そのうち、設備、簡便性、コストを考慮すると大気下がより好適である。
【0024】
また、オゾンを使用する酸化処理においては、オゾンの濃度が10〜30容量%のガスを使用することが好ましい。
【0025】
また、酸化処理に際して、無機酸化物粒子は、静置状態で処理することが好ましい。即ち、容器中に無機酸化物粒子を充填し、かかる充填層に酸素を含有するガス或いは強酸化剤を含有するガスを通過せしめ、必要に応じて該ガス及び/又は充填層を加熱する方法が好適である。
【0026】
また、無機酸化物粒子を上記ガスと流動状態で接触せしめることも可能であるが、この場合は、反応容器として、金属表面を持たないものを使用することが好ましい。具体的には、セラミックス、ガラス等の非金属よりなる容器、非金属をコートした金属容器などが好適である。また、上記反応容器内の無機酸化物粒子の加熱は、反応容器及び/又はガスを加熱する方法によるのが一般的である。
【0027】
上述した酸化処理に要する処理時間は、酸化処理方法によって多少異なり、一概に限定することはできないが、酸化処理によって酸化された無機酸化物粒子中の金属異物が、金属の状態で残存する個数が、無機酸化物粒子100g中に10個以下、好ましくは、5個以下、更に好ましくは皆無となるように、その処理時間を設定することが好ましい。
【0028】
本発明の方法によって得られる無機酸化物粒子中には、金属異物が酸化され、導電性が著しく低下された状態で存在する。因みに、金属が鉄の場合、9.7×10−6Ω・cmの電気抵抗が、酸化後には酸化第二鉄となり、10Ω・cm程度にまで上昇し、極めて低導電性の異物を含む無機酸化物粒子とすることができる。
【0029】
【発明の効果】
以上の説明より理解されるように、本発明の方法によれば、金属異物を含有する無機酸化物粒子を酸化処理という極めて簡単な操作により、含有される金属異物を非導電性化することができる。
【0030】
そして、該処理後の絶縁特性が改善された無機酸化物粒子を、例えば、封止材用樹脂の充填材として使用した場合には、接触する配線間の短絡が無い、極めて信頼性の高いパッケージを得ることが可能である。
【0031】
【実施例】
以下、本発明を更に具体的に説明するため、実施例を挙げるが、本発明はこれらの実施例に限定されるものではない。
【0032】
尚、実施例において、無機酸化物粒子中の金属異物量、無機酸化物粒子の平均粒径及び粒度分布、比表面積は以下の装置、方法によって測定したものである。
【0033】
(1)金属異物量
ろ紙で異物を除去したアセトン等の有機溶媒をビーカーに100ml入れ、これに無機酸化物粒子を100g添加してスラリーを調製した。得られたスラリーに棒磁石(12000ガウス相当)を挿入し、30rpm程度の攪拌速度で1分間攪拌した。攪拌終了後、該棒磁石を取り出し、表面に付着した着磁性異物を捕集した。
【0034】
捕集された着磁性異物を光学顕微鏡にて観察し、観察される異物中で10μm以上の最長径を持ち、且つ金属光沢を持つ粒子を計数し、その個数をもって金属異物の個数とした。
【0035】
(2)樹脂混練物の粘度
エポキシ樹脂(油化シェルエポキシ社製 エピコート807)50gに無機酸化物粒子100gを添加したものを、自転・公転式混練機(シンキー社製 あわとり練り太郎AR−250)を用いて混練し、樹脂混練物を作製した。得られた樹脂混練物を恒温槽にて25℃に調製後、粘度計(ブルックフィールド製 DV−II+(スピンドル:CPE−51))を用いて、回転数3rpmにおける粘度を測定した。
【0036】
(3)平均粒径及び粒度分布
堀場製作所製 レーザー回折・散乱式粒度分布測定装置(LA−920)により測定した。
【0037】
(4)比表面積
柴田科学器機工業製 比表面積測定装置(SA−1000)を用い、窒素吸着法によるBET1点により測定した。
【0038】
(5)低導電性試験
(2)で得られたエポキシ樹脂と無機酸化物粒子との組成物を電極幅50μmの2本の電極パターン表面で硬化せしめ、電極パターン間の電気抵抗(Ω・cm)を測定した。
【0039】
尚、上記操作を5回実施し、その平均値を結果として示した。
【0040】
実施例1〜5
無機酸化物粒子として平均粒子径4.7μmのシリカ粉末700gを使用し、これを、電気炉を使用して、大気雰囲気下で表1中の加熱温度に示すそれぞれの加熱温度にて3時間加熱し、加熱処理シリカ粉末を得た。
【0041】
上記方法より得られた粉末シリカ中の導電性異物量、樹脂混練物の粘度、シリカ粉末の平均粒子径及び比表面積は表1中のそれぞれの値であった。
【0042】
また、上記シリカ粉末について、低導電性試験の結果を表1に併せて示す。
【0043】
比較例1
実施例1において使用したシリカ粉末の加熱処理前の金属異物量は38個であり、樹脂混練物の粘度は11万cpであり、平均粒子径は、4.7μmであり、また、比表面積は1.9m/gであった。
【0044】
また、上記シリカ粉末について、低導電性試験の結果を表1に併せて示す。
【0045】
比較例2
実施例1において、加熱を、水素及び窒素よりなる還元性ガス雰囲気下で行った以外は、実施例1と同様にしてシリカ粉末を処理した。
上記方法より得られた粉末シリカ中の導電性異物量、樹脂混練物の粘度、粉シリカ粉末の平均粒子径及び比表面積は表1中のそれぞれの値であった。
【0046】
また、上記シリカ粉末について、低導電性試験の結果を表1に併せて示す。
【0047】
【表1】

Figure 0004083560
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel method for producing inorganic oxide particles having improved insulating properties. More specifically, the method for producing inorganic oxide particles with improved insulating properties can reduce the conductivity of inorganic oxide particles containing foreign metal particles by simple treatment without removing the contained foreign metal particles. Is to provide.
[0002]
[Prior art]
Inorganic oxide particles are generally used as a resin filler for semiconductor encapsulation in the manufacture of semiconductor packages and the like. For example, in the case of silica, it is used for the purpose of improving the dimensional stability against the temperature change of the resin for sealing semiconductors, for improving the strength, and in the case of alumina, for the purpose of improving the thermal conductivity of the resin for sealing semiconductors. used.
[0003]
Usually, the pipes and containers of the inorganic oxide particle manufacturing equipment are made of a metal such as stainless steel, and the inorganic oxide particles are used for transporting the inorganic oxide particles in a gas phase or pulverizing the inorganic oxide particles. Since the surfaces of the pipes and containers are shaved due to the abrasiveness of the object particles, the inorganic oxide particles are included in a state where metal foreign matter such as fine stainless powder of about several μm to several hundred μm is attached to the surface. Yes.
[0004]
On the other hand, in the use as a filler for the semiconductor sealing resin, when a foreign metal such as iron or stainless steel is mixed in the inorganic oxide particles, the resin comes into contact when the wiring is sealed with the semiconductor sealing resin. A short circuit is likely to occur due to the presence of a metal foreign object across the wiring, and this may cause a problem that a circuit malfunctions. Therefore, it is required to improve the insulation characteristics by suppressing the contamination of the metal foreign matter.
[0005]
In particular, in recent years, semiconductor products have become smaller and thinner, and accordingly, the wiring interval of semiconductors has been narrowed, and malfunctions of semiconductor products due to the presence of the above-mentioned minute metal foreign matter that did not cause problems, etc. The problem is getting more serious.
[0006]
Conventionally, as a method for solving the above problem, inorganic oxide particles containing foreign metal are heated in a reducing atmosphere to magnetize the foreign metal, and then mixed using a magnetic iron remover. A method for removing metallic foreign objects by magnetic force is known (see Patent Document 1).
[Patent Document 1]
JP, 62-132722, A Claims [Problems to be Solved by the Invention]
However, in the method of removing the metallic foreign matter by magnetic force, the minute metallic foreign matter of about several μm to several hundred μm is firmly attached to the surface of the inorganic oxide particles, and the magnetic force of the iron remover is effective. Since only the metallic foreign matter that has passed through the portion can be removed, it has been difficult to effectively remove minute metallic foreign matter in the method.
[0007]
The metal foreign matter remaining without being removed has a relatively high electrical conductivity although the electrical conductivity is somewhat reduced, so that the circuit malfunction may be caused in the application as the filler for the semiconductor sealing resin. It is difficult to prevent completely.
[0008]
In the method for removing metallic foreign matter by the above magnetic force, in order to achieve a complete removal rate of the metallic foreign matter, the inorganic oxide particles containing the metallic foreign matter are dispersed in an appropriate solvent to increase the adhesion of the metallic foreign matter. It is conceivable to carry out removal by magnetic force after lowering.
[0009]
However, in such a method, the physical properties of the inorganic oxide particles change when the inorganic oxide particles come into contact with the solvent or when the inorganic oxide particles after separating the metal foreign matter are dried and crushed. We are concerned about the problem. Further, since complicated steps such as dispersion in a solvent and drying are required, this leads to a significant increase in cost and is not practical.
[0010]
Therefore, the object of the present invention is to improve the insulation characteristics, effectively and inexpensively reducing the adverse effects of the metal foreign matter in the inorganic oxide particles containing the metal foreign matter without changing the physical properties of the inorganic oxide particles. Another object of the present invention is to provide a method for obtaining inorganic oxide particles.
[0011]
[Means for Solving the Problems]
The present inventor has intensively studied to solve the above problems. As a result, it has been found that, by oxidizing inorganic oxide particles containing foreign metal particles, adverse effects caused by the foreign metal particles can be effectively and inexpensively made harmless without changing the physical properties of the inorganic oxide particles. It came to complete.
[0012]
That is, the present invention provides a method for producing inorganic oxide particles with improved insulation characteristics, characterized by oxidizing inorganic oxide particles containing metal foreign matter to render the metal foreign matter contained non-conductive. It is.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the inorganic oxide particles containing foreign metal particles are not particularly limited, but generally, the inorganic oxide particles are mixed with the foreign metal particles as a result of polishing the surface of the inorganic oxide particles by contacting the metal pipe or metal container. Inorganic oxide particles that have led to
[0014]
Therefore, particles having high abrasiveness are particularly targeted as the inorganic oxide particles. Specific examples include particles of dry silica, wet silica, fused silica, alumina, titania, and the like.
[0015]
The average particle diameter of the particles is generally about several nm to several hundred μm.
[0016]
Moreover, as a metal foreign material, it originates in the material of the said metal piping or a metal container, and iron, stainless steel, etc. are common. The metal foreign matter has a minute particle size of about several μm to several hundred μm.
[0017]
That is, the manufacturing equipment for the inorganic oxide particles usually consists of metal pipes and containers made of iron, stainless steel, etc., when transporting the inorganic oxide particles in a gas phase, or pulverizing the inorganic oxide particles, etc. In addition, fine metal foreign matters generated by scraping the surfaces of the pipe and the container due to the abrasiveness of the inorganic oxide particles are contained in a form attached to the surface of the inorganic oxide particles.
[0018]
In addition, the amount of the metal foreign matter mixed into the inorganic oxide particles is slightly different depending on the contact time with the metal pipe or the like, but is usually present at a ratio of about 10 to 100 particles in 100 g of the inorganic oxide particles.
[0019]
A feature of the present invention resides in that non-conductivity is obtained by oxidizing the inorganic oxide particles containing the metal foreign matter to oxidize the metal foreign matter into a metal oxide.
[0020]
That is, in the present invention, unlike the conventional idea of removing the metal foreign matter contained in the inorganic oxide particles, the idea is extremely novel that the metal foreign matter is rendered harmless in the presence of the particles. Is based.
[0021]
The oxidation treatment method is not particularly limited as long as it contains a non-conductive oxide as a metal foreign substance and does not adversely affect the physical properties of the inorganic oxide particles. For example, it is preferable to carry out by a dry method such as a method of oxidizing by heating in an oxidizing atmosphere or a method of oxidizing by contact with a strong oxidizing agent such as ozone.
[0022]
When the oxidation treatment is performed by heating in the above oxidizing atmosphere, the heating temperature does not adversely affect the physical properties of the inorganic oxide particles, and the softening point of the inorganic oxide particles is 200 ° C. or higher in order to increase the degree of the oxidation treatment. It is preferred to select a temperature below. In particular, in the case of silica, it is preferable to perform heat treatment at 500 to 1100 ° C.
[0023]
The oxidizing atmosphere is formed by a gas containing oxygen necessary for oxidation. Examples of the gas include pure oxygen, oxygen-containing gas, and air. Among them, the atmosphere is more suitable in consideration of equipment, convenience, and cost.
[0024]
In addition, in the oxidation treatment using ozone, it is preferable to use a gas having an ozone concentration of 10 to 30% by volume.
[0025]
In addition, during the oxidation treatment, the inorganic oxide particles are preferably treated in a stationary state. That is, there is a method in which inorganic oxide particles are filled in a container, a gas containing oxygen or a gas containing a strong oxidizing agent is passed through the packed bed, and the gas and / or the packed bed is heated as necessary. Is preferred.
[0026]
In addition, it is possible to bring the inorganic oxide particles into contact with the gas in a fluid state, but in this case, it is preferable to use a reaction vessel that does not have a metal surface. Specifically, containers made of nonmetals such as ceramics and glass, metal containers coated with nonmetals, and the like are suitable. The inorganic oxide particles in the reaction vessel are generally heated by a method of heating the reaction vessel and / or gas.
[0027]
The treatment time required for the above-described oxidation treatment varies somewhat depending on the oxidation treatment method and cannot be generally limited. However, the number of metal foreign matters in the inorganic oxide particles oxidized by the oxidation treatment remains in the metal state. The treatment time is preferably set so that it is 10 or less, preferably 5 or less, more preferably none in 100 g of the inorganic oxide particles.
[0028]
The inorganic oxide particles obtained by the method of the present invention are present in a state where the metal foreign matter is oxidized and the conductivity is remarkably lowered. Incidentally, when the metal is iron, the electrical resistance of 9.7 × 10 −6 Ω · cm becomes ferric oxide after oxidation and rises to about 10 8 Ω · cm. It can be set as the inorganic oxide particle containing.
[0029]
【The invention's effect】
As can be understood from the above description, according to the method of the present invention, it is possible to render the contained metal foreign matter nonconductive by a very simple operation of oxidizing the inorganic oxide particles containing the metal foreign matter. it can.
[0030]
And, when the inorganic oxide particles with improved insulation properties after the treatment are used as, for example, a filler for a resin for a sealing material, there is no short circuit between the contacting wires, and a highly reliable package It is possible to obtain
[0031]
【Example】
EXAMPLES Hereinafter, examples will be given to describe the present invention more specifically, but the present invention is not limited to these examples.
[0032]
In the examples, the amount of foreign metal in the inorganic oxide particles, the average particle size and particle size distribution of the inorganic oxide particles, and the specific surface area were measured by the following apparatus and method.
[0033]
(1) Amount of metallic foreign matter 100 ml of an organic solvent such as acetone from which foreign matter was removed with a filter paper was placed in a beaker, and 100 g of inorganic oxide particles were added thereto to prepare a slurry. A bar magnet (equivalent to 12,000 Gauss) was inserted into the obtained slurry, and stirred for 1 minute at a stirring speed of about 30 rpm. After completion of the stirring, the bar magnet was taken out and the magnetic foreign matter adhering to the surface was collected.
[0034]
The collected magnetic foreign matter was observed with an optical microscope, and the particles having the longest diameter of 10 μm or more and having a metallic luster were counted in the observed foreign matter, and the number was counted as the number of metallic foreign matters.
[0035]
(2) Viscosity of resin kneaded product Epoxy resin (Epicoat 807 manufactured by Yuka Shell Epoxy Co., Ltd.) 50 g added with 100 g of inorganic oxide particles was rotated and revolved kneader (Shinky Co., Ltd. ) To prepare a resin kneaded product. The obtained resin kneaded material was adjusted to 25 ° C. in a thermostatic bath, and then the viscosity at a rotation speed of 3 rpm was measured using a viscometer (Brookfield DV-II + (spindle: CPE-51)).
[0036]
(3) Average particle size and particle size distribution It was measured with a laser diffraction / scattering type particle size distribution measuring device (LA-920) manufactured by Horiba.
[0037]
(4) Specific surface area Using a specific surface area measuring device (SA-1000) manufactured by Shibata Kagaku Kogyo Co., Ltd., measurement was performed using a BET 1 point by a nitrogen adsorption method.
[0038]
(5) The composition of the epoxy resin and inorganic oxide particles obtained in the low conductivity test (2) is cured on the surface of two electrode patterns having an electrode width of 50 μm, and the electric resistance between the electrode patterns (Ω · cm ) Was measured.
[0039]
In addition, the said operation was implemented 5 times and the average value was shown as a result.
[0040]
Examples 1-5
700 g of silica powder having an average particle size of 4.7 μm is used as the inorganic oxide particles, and this is heated for 3 hours at the respective heating temperatures shown in Table 1 in the air atmosphere using an electric furnace. Heat-treated silica powder was obtained.
[0041]
The amount of conductive foreign matter in the powdered silica obtained by the above method, the viscosity of the resin kneaded product, the average particle size and specific surface area of the silica powder were the values shown in Table 1.
[0042]
Moreover, about the said silica powder, the result of a low electroconductivity test is combined with Table 1, and is shown.
[0043]
Comparative Example 1
The amount of metal foreign matter before the heat treatment of the silica powder used in Example 1 was 38, the viscosity of the resin kneaded material was 110,000 cp, the average particle size was 4.7 μm, and the specific surface area was It was 1.9 m 2 / g.
[0044]
Moreover, about the said silica powder, the result of a low electroconductivity test is combined with Table 1, and is shown.
[0045]
Comparative Example 2
In Example 1, the silica powder was treated in the same manner as in Example 1 except that heating was performed in a reducing gas atmosphere consisting of hydrogen and nitrogen.
The amount of conductive foreign matter in the powdered silica obtained by the above method, the viscosity of the resin kneaded product, the average particle diameter and the specific surface area of the powdered silica powder were the values shown in Table 1.
[0046]
Moreover, about the said silica powder, the result of a low electroconductivity test is combined with Table 1, and is shown.
[0047]
[Table 1]
Figure 0004083560

Claims (3)

金属異物を含有する無機酸化物粒子を酸化処理することによって、含有される金属異物を非導電性化することを特徴とする絶縁特性が改善された無機酸化物粒子の製造方法。A method for producing inorganic oxide particles with improved insulation characteristics, wherein the inorganic oxide particles containing metallic foreign matter are oxidized to render the contained metallic foreign matter nonconductive. 酸化処理が、酸化雰囲気下で、且つ、200℃以上、無機酸化物粒子の軟化点未満の温度で金属異物を含有する無機酸化物粒子を加熱するによって行われる請求項1記載の絶縁特性が改善された無機酸化物粒子の製造方法。The insulating property according to claim 1, wherein the oxidation treatment is performed by heating the inorganic oxide particles containing foreign metal particles at a temperature of 200 ° C. or higher and lower than the softening point of the inorganic oxide particles in an oxidizing atmosphere. Of the produced inorganic oxide particles. 無機酸化物粒子が、シリカ粒子である請求項1又は請求項2記載の絶縁特性が改善された無機酸化物粒子の製造方法。The method for producing inorganic oxide particles with improved insulation characteristics according to claim 1, wherein the inorganic oxide particles are silica particles.
JP2002362733A 2002-12-13 2002-12-13 Method for producing inorganic oxide particles having improved insulating properties Expired - Lifetime JP4083560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002362733A JP4083560B2 (en) 2002-12-13 2002-12-13 Method for producing inorganic oxide particles having improved insulating properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002362733A JP4083560B2 (en) 2002-12-13 2002-12-13 Method for producing inorganic oxide particles having improved insulating properties

Publications (2)

Publication Number Publication Date
JP2004189577A JP2004189577A (en) 2004-07-08
JP4083560B2 true JP4083560B2 (en) 2008-04-30

Family

ID=32761094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002362733A Expired - Lifetime JP4083560B2 (en) 2002-12-13 2002-12-13 Method for producing inorganic oxide particles having improved insulating properties

Country Status (1)

Country Link
JP (1) JP4083560B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653053U (en) * 1992-12-28 1994-07-19 藤沢産業株式会社 Corner forming equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691321B2 (en) * 2003-12-26 2011-06-01 三菱レイヨン株式会社 Method for producing high-purity silicon oxide powder
JP2006273927A (en) * 2005-03-28 2006-10-12 Sanyu Rec Co Ltd Method for improving electrical insulation property of inorganic filler
WO2010073457A1 (en) * 2008-12-22 2010-07-01 電気化学工業株式会社 Powder, method for producing same, and resin composition containing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653053U (en) * 1992-12-28 1994-07-19 藤沢産業株式会社 Corner forming equipment

Also Published As

Publication number Publication date
JP2004189577A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
Hadadian et al. Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids
KR100572453B1 (en) Silica-based slurry
Kartsonakis et al. Synthesis and characterization of cerium molybdate nanocontainers and their inhibitor complexes
Yao et al. Study on the weakly alkaline slurry of copper chemical mechanical planarization for GLSI
JP2013122003A (en) Heat conductive filler and manufacturing method thereof
KR100279083B1 (en) High Purity Spherical Silica And Method Of Manufacturing The Same
US20120315212A1 (en) Diamond particles and method for obtaining diamond particles from aggregate structures
Jiang et al. Synergistic effect of ternary electrospun TiO 2/Fe 2 O 3/PPy composite nanofibers on peroxidase-like mimics with enhanced catalytic performance
JP7445016B2 (en) Self-heating gas sensor, gas-sensitive material, manufacturing method and use thereof
JP4083560B2 (en) Method for producing inorganic oxide particles having improved insulating properties
JP2011212531A (en) Alkylsilanol removing material, and method for manufacturing the same
JP2010180471A (en) Flaky silver powder and method for producing the same, and conductive paste
JP2010236039A (en) Flaky silver powder, its production method and conductive paste
KR20150118624A (en) Manufacture method of basic ink containing carbon-nonbonding metal nanoparticles & metal nanoparticles particle-dispersed ink
Lim et al. Novel fabrication of functionalized graphene oxide via magnetite and 1-butyl-3-methylimidazolium tetrafluoroborate
JP4111425B2 (en) Copper powder for conductive paste, conductive paste using the copper powder, and chip component including a conductor using the conductive paste
Gao et al. Influence of surface oxide layer of SiC powder on the rheological properties of its slurry
Maeda et al. Polypyrrole-tin (IV) oxide colloidal nanocomposites
CN110003783A (en) A kind of graphene functional anticorrosive paint and preparation method thereof
CN107598183B (en) Macroscopic quantity preparation method of nano-silver particles
JP4428495B2 (en) Abrasive and abrasive slurry
CN106587014A (en) Preparation method of graphene nanoribbon
JPH03193624A (en) Method for production of stable and pure powder of boron nitride and product obtained thereby
JP4691321B2 (en) Method for producing high-purity silicon oxide powder
JP2016145404A (en) Copper powder for conductive paste and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080213

R150 Certificate of patent or registration of utility model

Ref document number: 4083560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

EXPY Cancellation because of completion of term